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Computing with Memristor-based Nonlinear
Oscillators
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Abstract—Among the recent disruptive technologies,
volatile/nonvolatile memory–resistor (memristor) has attracted
the researchers’ attention as a fundamental computation
element. It has been experimentally shown that memristive
elements can emulate synaptic dynamics and are even capable
of supporting spike timing dependent plasticity (STDP), an
important adaptation rule for neuromorphic computing systems.
The overall goal of this work is to provide an unconventional
computing platform exploiting memristor-based nonlinear
oscillators described by means of phase deviation equations.
Experimental results show that the approach significantly
outperforms conventional architectures used for pattern
recognition tasks.

I. INTRODUCTION

Recently, novel information processing solutions have been
proposed to perform energy efficient data centric computation
that is called to satisfy the need of the present intercon-
nected society. Most of them are similar in that they exploit
memristors as an alternative key-enabling technology [1], [2].
Approaches ranges from more conservative ones trying to
close the distance between logic and memory [3] to more
innovative ones pushing towards bio-inspired architectures, i.e.
neural and neuromorphic networks [4]–[8]. While the former
are expected to provide a substantial but still incremental im-
provement to the Big Data issue, the latter, the neuromorphic
computation, which potentially constitutes a real breakthrough,
is still hindered by the non–idealities of memristor devices
[9]. Conversely, in recent works [10], [11], oscillator–based
computing has been demonstrated to exploit the inherent
complex dynamics of memristors to perform computation with
significant energy benefits. In this framework the memristor
plays a crucial role in the realization of nonlinear oscilla-
tors displaying a tunable range of periodic and chaotic self-
oscillations. Their importance in neuromorphic applications,
such as pattern recognition and signal processing tasks in real
time, have been demonstrated in hardware [12].

The aim of this work is twofold: (a) to provide a comphren-
sive mathematical framework to describe nonlinear oscillators
by means of phase models. This approach is presented for
classical nonlinear oscillators but can be extended, mutatis
mutandi, to memristor oscillators described in the flux–charge
domain [13]; (b) to show how an Oscillatory Neural Network
(ONN), i.e. an array of nonlinear oscillators (with or without
memristor) coupled by means of programmable memristive
synapses, can be trained with the Equilibrium Propagation
algorithm by exploiting phase models.

Numerical simulations show that the proposed ONN signif-
icantly outperforms conventional approaches used for pattern
reconstruction tasks.

II. NONLINEAR OSCILLATOR AND PHASE MODEL

The fundamental building blocks of ONNs are nonlinear os-
cillators, that we describe by means of the ordinary differential
equation (ODE)

dx

dt
= f(x) (1)

where x : R 7→ Rn is the state of the oscillator, and f : Rn 7→
Rn is a smooth enough vector valued function, that describes
the oscillator’s internal dynamics. For the sake of simplicity
we shall assume that all oscillators are identical. We shall also
assume that equation (1) admits an asymptotically stable T -
periodic solution xs(t) = xs(t+ T ), corresponding to a limit
cycle γ in its state space.

The phase of a nonlinear oscillator can be defined intro-
ducing an homeomorphism φ(x) : γ 7→ [0, 2π[, mapping
the periodic solution xs(t) to the unit circle. Consider a
reference initial point on the limit cycle x0 ∈ γ, and assign
phase zero to this point φ(x0) = 0. Let xs(0) = x0, then
obviously φ(xs(T )) = 2π. The phase of the solution xs(t)
at any arbitrary time instant is φ(xs(t)) = t/T = ωt, where
ω = 2π/T is the oscillator free running frequency.

The phase just defined can be extended to the whole
basin of attraction of the limit cycle, introducing the concept
of isochrons. Isochrons are (n − 1)–dimensional manifolds
transverse to the limit cycle. The isochron transverse to the
cycle at x0 ∈ γ is defined as

Ix0
=

{
xα ∈ Rn : lim

t→+∞
||xα(t)− x0(t)|| = 0

}
(2)

The isochrons are the set of initial conditions xα(0) such that
the trajectories starting from xα(0) eventually meet on γ at
x0(t). Therefore, they represent the stable manifold foliation
of x0(t).

The phases of the points inside the basin of attraction of
a stable limit cycle are defined by assigning the same phase
to points lying on the same isochron. The phase of the point
xα(t) is φ(xα(t)) = ωt+φ(xα(0)). In other words, isochrons
are the level sets of the scalar field φ(x).

Together with the phase function we introduce a vector
valued function R(x) : Rn 7→ Rn−1, that we call amplitude
deviation or simply amplitude, that represents a deviation



from the limit cycle. The amplitude deviation is most con-
veniently measured on the linear subspace locally tangent to
the isochrons on the limit cycle. This counterintuitive choice
guarantees that phase and amplitude variables are linearly
independent in a small enough neighborhood of the limit cycle.
Therefore the coordinate transformation is invertible and we
can write x = x(φ,R). Moreover, such a choice guarantees
that amplitude and phase dynamics are uncoupled up to linear
terms [14], [15].

By their very definitions, it follows that

dφ

dt
= ∇φ(x) · f(x) = ω (3)

and, R(x)→ 0 for t→ +∞.

III. OSCILLATORY NEURAL NETWORKS

An ONN composed by N coupled nonlinear oscillators
can be conveniently described by the ODEs (from now on,
subscript indexes will identify the oscillator)

dxi
dt

= f(xi) + ε

N∑
j=1

gij(xi,xj) i = 1, . . . , N (4)

where ε � 1 is a parameter that measures the coupling
strength, and gij : Rn×n 7→ Rn are vectors field describing
the coupling between the i-th and the j-th oscillators. In
this example, only pairwise interactions are assumed, but the
theory can be easily generalized to more complex coupling
functions.

Introducing the phase and amplitude of each oscillator
φi(xi) and Ri(xi), it is straightforward deriving the equations

dφi
dt

= ω + ε

N∑
j=1

Γi,j(φi, φj ,Ri,Rj) (5a)

dRi

dt
= F i(φi,Ri) + ε

N∑
j=1

Gij(φi, φj ,Ri,Rj) (5b)

where, taking into account that xi = xi(φi,Ri),

Γij(φi, φj ,Ri,Rj) = ∇φi(xi) · gij(xi,xj) (6)

F i(φi,Ri) =
∂Ri

∂xi
f(xi) (7)

Gij(φi, φj ,Ri,Rj) =
∂Ri

∂xi
gij(xi,xj) (8)

and ∂Ri/∂xi is the Jacobian matrix of partial derivatives.
The asymptotic stability hypothesis of the limit cycles

implies that, as long as the coupling strength remains small
enough, then the amplitude deviation remains close to zero.
Thus it seems appropriate to make the approximation Ri ≈ 0
for all i = 1, . . . , N . The phase equation (5a) reduces to

dφi
dt

= ω + ε

N∑
j=1

Γij(φi, φj) (9)

Equation (9) can be simplified further. Introduce the phase
deviation ψi = φi−ωt, that represents the difference between

the phase in presence and in absence of coupling, obtaining
the phase deviation equation

dψi
dt

= ε

N∑
j=1

Γij(ψi + t, ψj + t) (10)

Eq. (10) shows that, for small values of ε, the phase deviation
is a slow (or nearly constant) variable. Thus we can average
over one period without introducing a great error, thus obtain-
ing the averaged phase deviation equation

dψi
dτ

=

N∑
j=1

Γij(ψj − ψi) (11)

where τ = εt is the slow time, and

Γij(ψj − ψi) =
1

T

∫ T

0

Γij(ψi + t, ψj + t) dt (12)

IV. ASSOCIATIVE MEMORIES USING OSCILLATORY
NETWORKS

The usual approach for implementing neural associative
memories consists in teaching the system to converge to pre-
scribed equilibria. The requirement of this dynamic learning
is the stability of the equilibrium points. As the Hopfield net-
work, oscillatory networks may exhibit associative properties
that can be used to recognize binary patterns. If all oscillators
have equal frequencies and functions Γij have pairwise odd
form, then the phase model defined in (11) is guaranteed to
converge to one of the many possible equilibrium points of
the system [16]. This means that networks of the form (4)
implement neural systems whose phase dynamics (11) can be
used to solve pattern retrieval tasks.

The Kuramoto oscillator is one of the most used mathemati-
cal models for associative memory that makes use of the phase
dynamics defined in Eq. (11). The dynamics of the network
is described in terms of the phase equations:

dψi
dτ

=

N∑
j=1

wij sin (ψj − ψi) ∀i = 1, . . . , N (13)

where ψ = [ψ1, . . . , ψN ]T is the state variable vector and
W ∈ RN×N is the coupling weight matrix. If the connections
are assumed to be symmetric, i.e. wij = wji and wii = 0,
the stability of the system dynamics can be deduced by
reformulating it as a gradient system

dψi
dτ

= − ∂E
∂ψi

(ψ,W) (14)

where

E(ψ,W) = −1

2

N∑
i,j=1

wij cos (ψi − ψj). (15)

Equilibria of (13) are minima of the scalar (or potential)
function defined in Eq. (15).

Consider a set of m binary patterns Tk ∈ RN ∀k =
1, . . . ,m such that T jk ∈ {0, π} ∀j = 1, . . . , N ). The
objective of an equilibrium point learning scheme is to find



the model’s parameter so that, for a given initial condition,
the fixed point of the system (14) corresponds to a desired
target value. Donald O. Hebb [17] suggested that connections
between neurons should be strengthened when a simultaneous
activity under an external input occurs, and reduced otherwise.
This can be mathematically reformulated in the following
construction of the weight matrix [18]:

W =
1

m

m∑
i=1

[cos(Ti) cos(Ti)T − IN×N ]

where cos(Ti) = [cos(T 1
i ), . . . , cos(TNi )]T . Although this

is a basic local learning rule, it can lead to powerful self-
organization effects in relatively simple neural networks mod-
els. This learning rule is prone to local minima, but a small
amount of noise can be useful for escape from these spurious
state.

From a different perspective, gradient descent offers a
more sophisticated technique that provides to the system
some guiding directions to reorganize the connections changes
throughout the network. This is achieved by minimizing the
cost C for a single pair of points T and ψ = [ψ1, . . . , ψN ]T :

C(T,ψ) = N −
N∑
i=1

cos (Ti − ψi) (16)

which measures the distance between a desired target T and
the output state of the system ψ. Observe that C(T,ψ) ≥ 0
and C(T,ψ) = 0 ⇔ Ti = ψi ∀i. Recently, Bengio and
the authors in [19] proposed a promising local learning tech-
nique used for Energy-based models. In particular, the authors
focused on recurrent neural networks that admit a gradient
formulation [20]. Our work generalizes the algorithm to the
case of ONNs whose phase dynamics is defined as in Eq. (11),
and admit a gradient formulation. We illustrate the analysis
focusing on the Kuramoto model described in Eq. (13).

Let us define the following augmented energy function:

F (ψβ ,T,W, β) = E(ψβ ,W) + βC(T,ψβ) (17)

where β ≥ 0 is the forcing parameter, and consider the
corresponding gradient system:

dψβi
dτ

= − ∂F

∂ψβi
(ψβ ,T,W, β) (18)

for all i = 1, . . . , N . Let ψ̂ and ψ̂
β

be the fixed points of
systems (14) and (18), respectively. By recasting Theorem 1 in
[19] to the case of the Kuramoto model dynamics, the learning
scheme can be defined as:

∆wij ∝ −
d

dβ

[
∂F

∂Wij
(ψ̂

β
,T,W, I, β)

]
β=0

=

=
d

dβ
cos (ψ̂βi − ψ̂

β
j )
∣∣∣
β=0

=

≈
cos (ψ̂βi − ψ̂

β
j )− cos (ψ̂i − ψ̂j)
β

(19)

with β ' 0.

V. SIMULATIONS AND RESULTS

The network architecture consists of a fully connected ONN
with N = 64 oscillators and symmetric weights as depicted
in Fig. 1(a). Oscillators are individually controllable through
the coupling with an additional driving oscillator unit. In the
simulations, the driving unit oscillators have two different
important roles:
• to set the phase of each oscillator as equal to the per-

turbed/target pattern (β � 0);
• in case of in-situ training, to model the teaching signal of

the second phase of Equilibrium Propagation as defined
in the augmented energy defined in Eq. (17).

In our example, van der Pol oscillators are used as working
units. The system is trained using either the Hebbian learning
rule or Equilibrium Propagation, to learn the four different
pattern shown in Fig. 1(c). The former as a one shot computa-
tion whereas the latter starts with a randomly initialized weight
matrix, whose entries are sampled from a uniform distribution.
Weights are found with off-line training phase, simulating the
Kuramoto model. Once the training process ends, weights are
mapped into the adjustable connections of the oscillatory units
using memristors as ideal programmable resistors, coupled in
a differential pair configuration. The update of the weights
is performed by averaging the back propagated errors over
the total number of training images. This approach allows us
to lower the amount of total updates of the weight matrix.
The learning rate is η = 0.0001 and it decreases during the
iterations using a step decay schedule. The forcing parameter
is set to β = 0.1 and the training process ends once a prefixed
accuracy is achieved. The learning curve is shown in Fig.
1(b). The information of the patterns are encoded into the
network with the following rule: a yellow square corresponds
to the phase difference between each oscillator and a reference
unit equal to 0, and a blue square corresponds to the phase
difference equal to π. Patterns are successively corrupted
using either a uniform flipping of the pixels with probability
p = 0.1 or an additive Gaussian noise with standard deviation
σ = 1. Initial patterns composed by 0 and/or π represent
stable equilibria of the free dynamical system defined in Eq.
(13). Thus, a small perturbation is added to the phase initial
conditions of the oscillators.

Phase trajectories might not converge to multiple values of
0 and π. This is probably due to the cosinusoidal combination
in the potential function that allows the system to have
many possible equilibria. Therefore, once the cosine of the
output phase differences at equilibrium is computed, results
are then saturated to the closest values −1 = cos(π) or
1 = cos(0). A pattern is recognized as correctly reconstructed
if the Hamming difference between the reconstruction and the
target image is zero. As shown in Fig. 1(c), results provide
evidence that Oscillatory Networks trained with Equilibrium
Propagation are perfectly able to reconstruct the corrupted
patterns. Even though the network trained with Equilibrium
Propagation needs a larger amount of epochs compared to the
Hebbian learning scheme, the former method reaches 98% of
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Figure 1: (a) Illustration of an ONN with symmetric weights and 6 working units. (b) Accuracy of the network trained with
Equilibrium Propagation to reconstruct perturbed patterns: in blue, pixels are perturbed by flipping the pixels from yellow to
blue and vice versa with probability p = 0.1; in green, the same patterns are corrupted with a Gaussian noise with σ = 1. (c)
Examples of reconstruction: the second row shows the four learned patterns that are found by the network when perturbing
with either a uniform flip (first row) or a Gaussian noise (third row).

accuracy over 1000 different perturbed patterns whereas the
latter has only 48% of correct retrieval on the same test set.

VI. CONCLUSIONS

In this paper, the dynamics of oscillatory neural networks
with memristive synapses has been analyzed. The mathemat-
ical framework to describe the oscillatory array in terms of
the corresponding phase model is introduced. Then, the phase
model is used to adjust synaptic weights accoding to Equi-
librium Propagation algorithm. Finally, numerical simulations
show that proposed oscillatory neural network exhibits 98%
of accuracy in reconstructing noise corrupted patterns.
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