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Abstract—Weakly Connected Oscillatory Networks (WCONs)
are bio-inspired models which exhibit associative memory prop-
erties and can be exploited for information processing. It has
been shown that the nonlinear dynamics of WCONs can be
reduced to equations for the phase variable if oscillators admit
stable limit cycles with nearly identical periods. Moreover, if
connections are symmetric, the phase deviation equation admits
a gradient formulation establishing a one-to-one correspondence
between phase equilibria, limit cycle of the WCON and minima
of the system’s potential function. The overall objective of this
work is to provide a simulated WCON based on memristive
connections and Van der Pol oscillators that exploits the device
mem-conductance programmability to implement a novel local
supervised learning algorithm for gradient models: Equilibrium
Propagation (EP). Simulations of the phase dynamics of the
WCON system trained with EP show that the retrieval accuracy
of the proposed novel design outperforms the current state-of-
the-art performance obtained with the Hebbian learning.

Index Terms—Associative Memory, Equilibrium Propagation,
Kuramoto, Memristor, Oscillatory Neural Networks.

I. INTRODUCTION

Weakly Connected Oscillatory Networks (WCONs) have
found application in many fields of Science and Engineering
as modeling tools for complex phenomena [1]. Noticeably, the
property of WCONs that has caught most of the researchers’
attention is synchronization which has proven to be exploitable
to carry out actual computation [2].

Recently, the unique switching features and signal storing
capability of memristive devices have been exploited to im-
plement synaptic connections of bio-plausible neural networks
[3]. Their non-volatile resistance can be programmed to de-
sired values within a conductance range enabling adjustable
neural connections necessary in the training phase. Since
memristors can implement only positive connections, different
approaches can be used to enable the system to have zeros and
negative weights [4], [5].

Nowadays, most training algorithms rely on weight updates
that do not exclusively depend on the pre- and post- synaptic
neurons. The novel learning framework known as Equilibrium
Propagation [6] has gained popularity in the neuromorphic
computing community thanks to the locality of its weight
update rule which makes it, amongst many proposed bio-
plausible learning techniques [7], the most suitable for VLSI
implementation. In this contribution, we apply EP learning
rule to train a network of weakly coupled oscillators to solve
pattern reconstruction tasks.

Research works on the mammalian brain have paved the
way to novel neuromorphic computing architectures made of
coupled arrays of oscillators which show intriguing dynamic
behaviors [5], [8]–[10]. In those studies, it has been shown
that WCONs may work as Hopfield Neural Networks (HNNs)
with limit cycles as attractors [8], [9].

Weakly Connected Oscillatory Networks are mathematically
described by large systems of coupled nonlinear ordinary
differential equations (ODEs) which may feature many attrac-
tors and/or bifurcation phenomena. Under the assumption of
having all the oscillators’ limit cycles stable and isofrequen-
tial, WCONs’ nonlinear dynamics can be studied using the
phase deviation equation [9], which describes the evolution
of the phase deviations of all the oscillators in the network
with respect to a single reference. This method enabled the
investigation of a one-dimensional weakly connected network,
composed by second order Van der Pol oscillators [11].

As a result of the biunivocal correspondence between the
limit cycles of the WCON and equilibrium points of the phase
deviation equation, oscillatory networks can work as models
of associative memory [8], [12].

In Section II, we show that the equilibria of the phase
deviation equation can be designed by means of Equilibrium
Propagation learning rule in order to recover a given set of
learnt pattern when presenting the network with their corrupted
version. In Section III, we derive an analytic expression of
the phase deviation equation of WCONs by applying the
technique proposed in [13], [14]. This allows us to establish a
biunivocal correspondence between the periodic limit cycles of
the network and the equilibrium points of the phase deviation
equation. The system performance is evaluated in Section IV.
Section V concludes the paper.

II. EQUILIBRIUM PROPAGATION

Inspired by the novel algorithm described in [6] for training
gradient-based models, the goal of this section is to generalize
Equilibrium Propagation to Oscillatory Neural Networks that
admit a gradient formulation. Let ψ ∈ RN be the state variable
vector, W ∈ RN×N the coupling weight matrix and the phase
dynamics defined by the system:

ψ̇i =

N∑
j=1

wij sin (ψj − ψi) ∀i = 1, . . . , N (1)
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Figure 1: a) Illustration of a weakly connected oscillatory neural network. b) Master-slave configuration of the k-th Van der
Pol oscillator with the corresponding (k + N)-th driving unit. The connection between the two oscillators is one-directional.
c) A black square corresponds to the phase difference between each oscillator and a reference unit equal to ∆ψ = 0, and a
white square corresponds to the phase difference equal to ∆ψ = π.

It is easy to verify that the system (1) can be expressed in the
form of a gradient system ψ̇ = −∇ψE(ψ,W) with potential
function defined as

E(ψ,W) = −1

2

N∑
i,j=1

wij cos (ψi − ψj) (2)

with symmetric interconnections wij = wji and wii = 0.
Let us define the cost function C that measures the phase

difference between a target memory T ∈ T = {T1, . . . ,Tm}
and the state of the system ψ:

C(T,ψ) = N −
N∑
i=1

cos (Ti − ψ̂i) (3)

where C(T,ψ) ≥ 0. The learning process consists in minimiz-
ing the distance between the target and the stable equilibrium
point of the system ψ̂. This process can be recast into the
following optimization problem [6], [15]:

min
W
C(T,ψ) subject to ∇ψE(ψ,W) = 0. (4)

In order to solve system (4), let us introduce the Lagrange
multipliers λ ∈ RN and consider the Lagrangian function

L(ψ,λ,W,T) = C(T,ψ) + λT∇ψE(ψ,W). (5)

The critical points of the Lagrangian function correspond to
the stationary values of the original function that satisfy the
constraint. Thus, for solving the optimization problem, one
has to find the minima of the augmented objective function.
This problem does not have a closed form solution for W. For

this reason, let us first keep constant the entries of the weight
matrix and find λ̂, ψ̂, solutions of the system:{
∇λL(ψ̂, λ̂,W,T) = ∇ψE(ψ̂,W) = 0

∇ψL(ψ̂, λ̂,W,T) = ∇ψC(T, ψ̂) + HE(ψ̂,W)λ̂ = 0
(6)

where HE is the Hessian of the function E.
Now, in order to update the remaining system parameters,

let us perform a stochastic descent on the total cost

∆Wij = −η ∂L
∂Wij

(ψ̂, λ̂,W,T) =

= −ηλ̂T ∂2E

∂W∂ψ
(ψ̂,W)

(7)

where η > 0 is the learning rate. Equation (7) shows that the
direction that minimizes the cost function depends on λ̂. The
authors in [6] proposed to find the Lagrange multipliers by
defining the following augmented potential function

F (ψ,T,W, β) = E(ψ,W) + βC(T,ψ) (8)

where β > 0 is the forcing parameter, and considering the
corresponding gradient system

ψ̇i = − ∂F
∂ψi

(ψ,T,W, β) =

=

N∑
j=1

wij sin (ψj − ψi) + β sin (Ti − ψi)
(9)

for ∀i = 1, . . . , N . A fixed point ψ̂
β

of (9) is given by

∇F (ψ̂
β
,T,W, β) = 0 (10)



which corresponds to a local minimum of the augmented
potential function.
Since (10) is constant for all β, we can compute the total
derivative with respect to β and evaluate the result in β = 0
and get

∇ψC(T, ψ̂) + HE(ψ̂,W)
∂ψβ

∂β

∣∣∣
β=0

= 0 (11)

Comparing this result with Eq. (6), we can identify λ̂ =
∂ψβ

∂β

∣∣∣
β=0

, obtaining

∆Wij ∝ −
(
∂ψβ

∂β

∣∣∣
β=0

)T
∂2E

∂Wij∂ψ
(ψ̂,W) =

= − d

dβ

[
∂E

∂Wij
(ψ̂

β
,W)

]
β=0

=

=
d

dβ

[
cos (ψ̂βi − ψ̂βj )

]
β=0

=

= lim
β→0

cos (ψ̂βi − ψ̂βj )− cos (ψ̂i − ψ̂j)
β

(12)

where we used the symmetry of second derivatives of the po-
tential function E. Thus, the learning rule can be approximated
by

∆Wij ∝
cos (ψ̂βi − ψ̂βj )− cos (ψ̂i − ψ̂j)

β
, β ' 0. (13)

The training process can be summarized as follows:
1) First, we set ψ0 = T and let the network follow the free

dynamics defined by the gradient system (1) relaxing to
the free fixed point ψ̂, and cos (ψ̂i − ψ̂j) is computed;

2) Secondly, a small perturbation is introduced to the system
(1) allowing the network (9) to relax to a new fixed point
ψ̂
β

where cos (ψ̂βi − ψ̂βj ) is measured;
3) Lastly, the weights of the matrix W are changed accord-

ing to (13).

III. PHASE DYNAMICS OF WCON

The existence of synchronized oscillations in the brain has
prompted research to use oscillatory network as models for
associative memory based on temporal coding of information.
Traditionally, these models consist of coupled oscillators in-
teracting with each other in accordance with a given topology,
and the information is coded as phase-locked oscillations.
As a result of a recently developed description of WCONs
dynamics in terms of amplitude and phase variables [14], [16],
it is possible to show that the phase dynamics of the system
coincides locally in the neighborhood of the limit cycle with
the asymptotic phase defined by Kuramoto model [1]. This
attractive result motivates this work to consider WCONs as
models able to implement the learning rule described in the
previous section.

Consider a network of N weakly connected nonlinear
oscillators whose states are individually controllable through
the coupling with an additional driving oscillator unit as shown

in Fig. 1(a). The driving unit oscillators have two different
important roles:
• to set the phase of each oscillator as equal to the per-

turbed/target pattern (β � 0);
• to model the teaching signal described in the second

phase of EP (see Eq. (9)).
Let us assume that each single nonlinear oscillator admits

an asymptotically stable, T periodic limit cycle. In this work
we consider a network of van der Pol oscillators, but the
generalization to other nonlinear oscillators is straightforward.
Let ε � 1 be the interaction strength, by applying Kirchhoff
laws to the network in Figs. 1(a)-(b) we obtain the equations

C
dvk
dt

= −ik − iG(vk)− εf(v1, . . . , v2N )

L
dik
dt

= vk

C
dvk+N
dt

= −ik+N − iG(vk+N )

L
dik+N
dt

= vk+N

(14)

where

f(v1, . . . , v2N ) =

N∑
j=1

Gkj(vk − vj) +Gk+N (vk − vk+N )

is the coupling function describing the interactions. We shall
assume iG(vk) = −gavk+gbv

3
k. Introducing the adimensional

time τ = t
LG , and state variables xk = vk

V0
, yk = ik

GV0
,

where G is a generic reference conductance and V0 is a
reference voltage, the state equations can be rewritten in the
adimensional form

dxk
dτ

= −αyk + δxk − γx3k − εf̃(x1, . . . , x2N )

dyk
dτ

= xk
dxk+N
dτ

= −αyk+N + δxk+N − γx3k+N
dyk+N
dτ

= xk+N

(15)

where

f̃(x1, . . . , x2N ) =

N∑
j=1

Γkj(xk − xj) + Γk(xk − xk+N )

is the normalized coupling function and α = LG2

C , δ = ga
LG
C ,

γ = gbV
2
0
LG
C , Γkj = Gkj

LG
C and Γk = Gk+N

LG
C .

Applying the procedure described in [13] (Section 3), we
obtain the phase deviation equation for the k-th state:

dψk

dt
= ε̃

[∑N
j=1 Γkj sin(ψj − ψk) + Γk sin(ψk+N − ψi)

]
dψk+N

dt
= 0⇒ ψk+N (t) = ψk+N (0)

(16)
where ε̃ = ε

α

2ω
.

It is trivial to verify that, assuming wkj = ε̃Γkj , β = δk = ε̃Γk
and ψi+N (0) = Ti, Eq. (16) is equivalent to the Kuramoto
model (9).
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Figure 2: (a) Training patterns of the network. (b) Evolution of the oscillators in terms of the cosine of the phase difference. (c)
Accuracy of the network over 1000 different corrupted patterns during the training phase. In blue the accuracy of the WCON
for reconstructing patterns with pixels flipped with probability 0.1. In orange the accuracy of the WCON for reconstructing
patterns corrupted with an additive Gaussian Noise (σ = 0.5).

IV. SIMULATIONS

The network architecture consists of a fully connected
WCON with N = 25 oscillators and symmetric weights
as described in Fig. 1(a). Weights are randomly initialized
by sampling from a uniform distribution U(−0.1, 0.1). The
adjustable connections are implemented by using memristors
as programmable resistors coupled in a differential pair config-
uration. The update of the weights is performed by averaging
the back propagated errors over the total number of training
images shown in Fig. 2(a). This approach allows us to lower
the amount of total updates of the weight matrix. The learning
rate is η = 0.01 and it decreases during the iterations using
a step decay schedule. The forcing parameter is set to β = 1
and the training process ends whenever a prefixed accuracy is
reached. The phase dynamics is simulated using the built-in
MatLAB routine ode15s and time spans are chosen in order
to guarantee the convergence of the state variables. Since all
target patterns composed by 0 and/or π are equilibria of the
system defined in Eq. (1), a small perturbation ε is added
to the phase initial conditions of the oscillators in order to
let the system escape from a constant evolution of the phase
dynamics.

In order to evaluate the effectiveness of EP for training
oscillatory networks in associative memory’s tasks, the novel
algorithm is compared with the unsupervised Hebbian learning
rule. Patterns are corrupted using either a uniform flipping of
the pixels with probability p = 0.1 or an additive Gaussian
noise with standard deviation σ = 0.5. As can be observed
in Fig. 2(b) phase trajectories do not converge to multiple
values of 0 and π. This is probably due to the cosinusoidal
combination in the potential function that allows the system to

have many possible equilibria. After convergence, the cosine
of the output phase differences is computed and results are
saturated to the closest values −1 or 1. A pattern is recognized
as correctly reconstructed if the Hamming difference between
the reconstruction and the target image is zero. As shown in
Fig. 2(c), results provide evidence that the WCON trained
with EP is perfectly able to reconstruct the corrupted patterns.
In contrast, the network with hebbian connections gets stuck
in some local minima reaching 45% accuracy. However, the
accuracy degrades as a function of the flipping probability p
and the standard deviation σ. For example, with either p = 0.3
or σ = 1.5, the network is able to reconstruct only the 50%
of the corrupted patterns.

V. CONCLUSIONS

In this work, the dynamics of WCONs has been analyzed as
a model of associative memory. The network was trained by
adapting Equilibrium Propagation to the phase model defined
by Kuramoto. Such two-phase local learning rule enables the
memristor–based neural network to sequentially update and
adjust the synaptic weights by simply computing a symmet-
ric change that follows the cost function’s gradient descent.
Simulations showed compelling results that the method has
significant capabilities comparable to the one reached by the
current learning rules. However, further studies are needed to
evaluate the performance of the system considering systematic
and random errors arising from real implementations.
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