POLITECNICO DI TORINO Repository ISTITUZIONALE

FACILE AND SCALABLE SYNTHESIS OF CU2O-SNO2 CATALYST FOR THE PHOTOELECTROCHEMICAL CO2 CONVERSION

Original

FACILE AND SCALABLE SYNTHESIS OF CU2O-SNO2 CATALYST FOR THE PHOTOELECTROCHEMICAL CO2 CONVERSION / Zoli, Maddalena; Roldán, Daniela; Guzmán, Hilmar; Castellino, Micaela; Chiodoni, ANGELICA MONICA; Bejtka, KATARZYNA TERESA; Russo, Nunzio; Simelys, Hernández. - ELETTRONICO. - (2022), pp. 174-175. (Intervento presentato al convegno 11th European Conference on Solar Chemistry and Photocatalysis tenutosi a Torino (IT) nel 06-10/06/2022).

Availability: This version is available at: 11583/2975225 since: 2023-01-26T14:16:13Z

Publisher: Organizing Committee SPEA11.

Published DOI:

Terms of use:

This article is made available under terms and conditions as specified in the corresponding bibliographic description in the repository

Publisher copyright

(Article begins on next page)

Facile and Scalable Synthesis of Cu₂O-SnO₂ Catalyst For TheOR063Photoelectrochemical CO₂ Conversion

Zoli Maddalena,¹ Roldán Daniela,¹ Guzmán Hilmar,¹ Castellino Micaela,¹ Chiodoni Angelica,² Bejtka Katarzyna,² Russo Nunzio,¹ Hernández Simelys,¹

(1) CREST group, Department of applied science and technology (DISAT), Politecnico di Torino, Turin, Italy. (2) Center for Sustainable Future Technologies, IIT@Polito, Istituto Italiano di Tecnologia, Turin, Italy. <u>maddalena.zoli@polito.it;</u> simelys.hernandez@polito.it.

The CO₂ conversion into high value-added products is becoming increasingly attractive to found substitutes to fossil-fuel-based products and tackle the environmental crisis. Herein, a simple, reproducible and scalable novel photo-electrocatalyst was synthesised and characterized. The strategy of coupling cuprous oxide with tin oxide allowed to protect the instable Cu(I) species from photo-corrosion. Evidences of the SnO₂ stabilization role were found via XPS and chronoamperometry test. An optimised catalytic ink was used to prepare the photocathodes. The CO₂ photo-electroreduction tests demonstrated prevalent а production of CO and Formate with Faradaic efficiencies of and 53.5%, respectively, under 18.5% 2-hours of chronopotentiometry. Moreover, light conditions were demonstrated to play a major role in hindering H₂ and promoting C-products formation.

CO₂ concentration in the atmosphere is increasing every year from the 50s, at the beginning of industrial acceleration, up to now, when it exceeds 410 ppm. Since natural CO₂ sink cannot keep up with the constant anthropogenic emissions, a renewable and green approach to CO_2 recovery is increasingly necessary to minimize its worrying impact on the environment. Within the depicted scenario, electrochemical and photoelectrochemical CO₂ reduction processes have been widely investigated as promising methods to transform CO₂, under mild reaction conditions, into useful chemicals or fuels [1,2]. The first challenge of such processes is to find suitable catalysts with a high activity, good charges separation and improved solar conversion efficiency. Whitin this work, we focused on the CO₂ reduction reaction (CO₂RR) path directed towards products like CO (the syngas production is also taken into consideration) and formic acid, for which the transfer of 2 electrons is required. Cu₂O is a cheap, abundant, and intrinsically p-type semiconductor. Due to its narrow band gap (~ 2.1 eV) and the suitable positioning of conduction and valence bands, Cu₂O is an ideal photocatalyst for CO₂RR. Despite these promising features, Cu₂O is limited by its instability and continuous decrease of photoactivity under operative conditions [3]. The coupling cuprous oxide with a with a n-type wide bandgap semiconductor is here investigated as an effective way to prevent its self-photoreduction or oxidation. A noticeable electron mobility together with a good intrinsic stability have driven the choice towards tin oxide (SnO₂), which is also able to form a p-n junction with the Cu₂O photocatalyst.

In this work we target the development of a facile and scalable synthesis method for the Cu₂O-SnO₂ catalyst. A particular focus is given to the preparation of photoelectrodes for the photo-electrocatalytic CO₂ reduction process and, finally, the evaluation of the catalyst performances in terms of stability and faradaic efficiencies of the target products.

The synthesis of photoactive copper-tin-oxide-based catalyst was optimized by an ultrasound assisted coprecipitation method. The significant advantages of the sonochemical synthesis approach [4] guided the choice of coupling these two methods. In addition, the reproducibility of the synthesis is boosted by using a completely automatised set-up made of peristaltic pumps, as shown in Fig. 1.

Fig. 1 Schematic setup designed for the automatised Cu₂O-SnO₂ synthesis.

The characterization steps included several techniques: Transmission Electron Microscopy (TEM), Field Emission Scanning Electron Microscopy (FESEM), X-ray photoelectron spectroscopy (XPS) X-rays Diffraction Analysis (XRD), among others, and