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Abstract—A simple procedure for obtaining hierarchical curl-
conforming pyramid bases has been obtained by shifting to a
new paradigm that requires the mapping of the pyramidal cell
into a cube and then directly imposing the conformity of the
vector bases with those used on adjacent differently shaped cells
(tetrahedra, hexahedra and triangular prisms). This summary
discusses and generalizes some features of the new construction
method recently published elsewhere.

I. INTRODUCTION

Curl- and divergence-conforming bases for tetrahedra, hex-
ahedra (bricks) and prismatic cells are reported in [1]. Hybrid
meshes using these higher order bases provide highly accurate
models that balance computational efficiency with geometric
flexibility. However, it is difficult to create hybrid meshes
without pyramidal elements as they are the natural fillers for
discretizations formed mainly by the other differently-shaped
cells. Unfortunately, it has been extremely complicated to
obtain vector bases for the pyramid while it is quite simple
for tetrahedral, brick and prismatic cells. These latter cells
are in fact accompanied by polynomial vector bases in a
completely natural way because only three edges and three
faces branch off from their vertices while a pyramid has four
edges and faces converging at one vertex. A simpler procedure
for obtaining higher-order hierarchical curl-conforming vector
bases for pyramids was recently published in [2]. These bases
have a polynomial form in the so-called grandparent space,
where the pyramid of the “child” space (x,vy, z) is mapped by
a unit-cube (see Fig. 1). The object space is called the child
space to distinguish it from the parent space which is the
one where, for all cell types, the shape functions that specify
the geometry of the cells and the vector basis functions are
defined [1], [2]. In [2], the curl-conforming bases are obtained
by imposing the continuity of the tangential components of
the basis functions across adjacent elements of equal order
but different shape, according to the following new paradigm:

1) The vector basis functions are subdivided from the outset
into three different groups of edge, face, and volume-
based functions.

2) Each higher order vector function is obtained by mul-
tiplying one edge-based vector function of the lowest
order by a scalar polynomial. In the case of hierarchical
bases, the polynomials are the product of normalized
orthogonal polynomials.

3) The polynomials are defined in a cell whose vertices are
points of intersection of only three edges and faces (i.e.,
for the pyramid, the grandparent cube of Fig. 1).
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Fig. 1. The parent-space pyramid shown on the left maps the child pyramid of
the object space shown at center. In turn, the unitary cube of the grandparent
space shown on the right maps the parent pyramid.

4) On the cell border, the polynomials that generate the
edge and face based functions equal those of the adjacent
elements, no matter what shape they have.

5) The vector components of the basis functions and their
curl are polynomials of the parent or grandparent (for the
pyramid) variables. Unisolvency and base completeness
is proved in this space.

The reader is referred to [1], [2] for the construction of the
bubble (volume-based) functions which are obtained by fol-
lowing a different construction path. Several numerical results
show that higher-order functions provide faster convergence
with avoidance of spurious modes and more accurate results
than those achievable with low-order elements [1], [2].

For the sake of brevity, in [2] we prove the tangential conti-
nuity at the boundary of each cell by expressing the pyramidal
basis functions in terms of parent-coordinates despite the fact
that the bases in [2] have been obtained precisely by imposing
this continuity. The demonstration is simple and immediate
because in the parent space the quadrilateral and triangular
faces of differently shaped cells are mapped by the same unit-
square or triangular simplex, respectively.

In the following we list the main characteristics of the
multiplicative polynomials and display the edge- and face-
based vectors functions behavior on the cell faces, up to the
first order.

II. ORTHOGONAL POLYNOMIALS AND VECTOR BASES

To build the vector functions as stated in point 2 of our
paradigm it is necessary to distinguish between three types of
edges:

a) Quadrilateral edges in common with two rectangular
faces, such as the twelve edges of the brick or three edges
(out of 9) of the triangular prism;



Fig. 2. An edge-based function has a zero tangential component on all faces
but the two sharing that edge. The edge can be a quadrilateral edge (left),
a triangle edge (center) or a mixed edge (right) depending on the shape of
the two faces it has in common. The figure shows, in the parent domain, the
component tangent to the two faces of the edge-based function of order zero
(above) and of the first order (below).

b) Triangle edges shared by two triangular faces of the cell,
for example the six edges of a tetrahedron or the four
edges of the pyramid connected to the vertex;

¢) Mixed edges shared by a triangular and a rectangular face.
that is to say the edges of the quadrilateral base of the
pyramid or the edges bounding the two triangular bases
of the prism.

The edge-based polynomials of a quadrilateral edge are ob-
tained by using Legendre polynomials [3] while shifted scaled
Legendre polynomials build the edge-based functions associ-
ated with triangle and mixed edges [2], [4], [5]. Obviously,
for a given polynomial order, the trend of the multiplicative
polynomial along the edge does not depend on the type of edge
(whether quadrilateral, triangular or mixed) and therefore all
the edge-based polynomials simplify with the same functional
behavior along the edge. This is because an edge can be shared
by several cells and therefore be, for example, of mixed type
in one cell and quadrilateral in another.

These polynomials are in turn multiplied by orthogonal
Jacobi polynomials to build the face-based multiplicative func-
tions. Finally, as illustrated in [1], it is possible to obtain
better conditioned vector bases by linearly combining the
polynomials thus obtained with the volume-based polynomials
(which, for the sake of brevity, are not discussed here) in
order to obtain multiplicative polynomials which are mutually
orthogonal for integrals on the parent cell or, in case of the
pyramid, on the grandparent cube.

These scalar polynomials of order p are then multiplied by

Fig. 3. A face-based function has a zero tangential component on all faces
except the one where it is based. On the left we show the tangential component
of the I-st order function based on a quadrilateral face, The tangential
component of the 1-st order function based on a triangular face is shown
at right. The zeroth order edge-based function used to construct these vector
functions is associated to the edge at bottom. The tangent component of the
face-based basis functions vanishes on all the bounding edges.
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Fig. 4. Total number of degrees of freedom (DoF) for curl-conforming vector
bases of order p on single, differently shaped canonical cells.

the lowest order vector function (of order zero) associated with
the edge at issue to get a vector function of order p. In this
regard, bear in mind that each zero-order vector function has
a non vanishing tangential component only on the two faces
sharing the aforesaid edge.

Not all the face-based vector functions are independent of
each other. To form a p-th order base, we must discard the
dependent functions and count the total number of Degrees
of Freedom (DoF), as done in [1], [2]. Fig. 4 shows the total
number of DoF for curl-conforming vector bases of order p
on single, differently shaped canonical cells.
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