

Electrochemical CO₂ conversion in Ionic Liquid-based electrolytes

Alessia Fortunati^{1,*}, María José Rubio¹, Boyan Iliev², Thomas Schubert², Nunzio Russo¹, Simelys Hernández^{1,*}

¹ Department of Applied Science and Technology, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129, Turin, Italy

² Iolitec Ionic Liquids technologies GMBH, Salzstraße 184, 74076 Heilbronn, German

*Email addresses: <u>alessia.fortunati@polito.it</u>; simelys.hernandez@polito.it

SCI2021 Talk ID: ELEOR21 Session: ELE03

Introduction and aim of the work

At high current densities, the RDS involved in the CO₂ reduction to CO is the formation of the reactive CO₂ anion radical.

 $E^0 = -1.9V \text{ } vs \text{ NHE}^1 (\sim -2.1 \text{ } vs \text{ Ag/AgCI})$

The main objective of this work is to study the influence of different **lonic Liquids (ILs)** in the performance and selectivity of the electrocatalytic CO_2 reduction to CO.

State of the art

Aqueous Media

Ioni Liquid Media

Low Cost

Greener Solvent

Higher CO₂ solubility

Role as co-catalyst

Advantageous physo-chemical properties

Other ILs advantages

- ✓ Good conductivity
- √ Thermal stability
- ✓ Wide electrochemical stability window
- ✓ Good solvation ability
- ✓ Low melting temperature
- ✓ Large variety of physical and chemical properties thanks to several combination of anion and cation

CO₂RR in liquid phase

Advantages of using Ionic Liquid

Materials and methods

 $[BMIM][BF_4]$

[EMIM][CO₂CH₃]

[BMIM][CO₂CF₃]

[BMIM][SO₃CF₃]

[BMIM][5FF]

[EMIM][SO₃CF₃]

List of ILs studied in this work. They are composed by:

Cationic Part: [BMIM+] or [EMIM+]

Anionic Part: [BF₄-], [CO₂CF₃], [CO₂CH₃], [5FF] or [SO₃CF₃]

Materials and methods

✓ **Set-up:** The experimental setup to perform the CO₂ ECR was defined. Typical CO₂ reduction cells in IL-based electrolytes include a two-compartment cell (H-type) or continuous flow electrochemical reactors. Concerning our electrochemical application, a two compartments cell (H-type) was chosen.

Electrochemical Stability Window

Single compartment cell, WE=Pt, CE=Pt, REF=Ag/AgCl

H⁺ Presence due to:

- H⁺ crossover from anolyte
- H⁺ produced at the bipolar membrane internal interface

H₂O

Acidic nature of C₂-H in the alkyl chain

Hypothesis of reaction mechanisms

Cation role

ANION ROLE of IL

- •CO₂ solubility strongly depends on the anion influence.
- •A higher fluorination degree in the IL leads to a higher CO₂ solubility and current density.
- It might be related to the anion electronegativity.

CATION ROLE of IL

- •The alkyl chain of the cation plays an orientation role.
- When the alkyl chain decreases, the imidazolium ring finds a more convenient position in the cathode to reduce and form the complex with the carbon dioxide molecule, which might be translated into a less negative onset potentials.

✓ CVs' highlights: Onset potential of all the ILs is shifted to less negative potentials when atmosphere is saturated with CO₂.

Chronopotentiometry (CP) in CO₂, t=120 min, -20 mA

- ✓ CP's highlights: comparing the CP's curves, for the same anion with EMIM cation there are fewer potentials than with BMIM. Probably this trend is due to two aspects:
 - 1- A more convenient orientation reached by a shorter cation alkyl chain on the electrode surface
 - 2- It can be linked to the conductivity of the catholyte. Catholyte conductivities of [EMIM][CO₂CH₃] and [EMIM][SO₃CF₃] solutions are higher than [BMIM][CO₂CH₃] and [BMIM][SO₃CF₃] respectively.

Chronopotentiometry (CP) in CO₂, t=120 min, -20 mA

✓ [V]_{Onset}'s highlights

 Imidazolium salts of [SO₃CF₃], [BMIM][5FF] and [BMIM][CO₂CH₃] are able to decrease the overpotential for the CO₂RR to CO with respect to the most used [BMIM][BF₄].

✓ Selectivity highlights

- The maximum FE% to CO is reached by [BMIM][SO₃CF₃].
- Ionic Liquids with acetate anion are more selective towards the production of H₂ than CO.

Conclusions

Seven imidazolium salts were tested for the electrocatalytic CO₂ conversion to CO.

CO₂ solubility depends on the anion of the imidazolium salt, which tends to be higher for fluorinated anions.

❖ The cation has a steric effect and an orientation role. When the alkyl chain decreases, the imidazolium ring finds a more convenient position in the cathode surface.

♣ Imidazolium salts of acetate are more selective towards the production of H₂. [BMIM][SO₃CF₃] promotes the reduction of CO₂ to CO better than the commonly used [BMIM][BF₄].

Next Steps

- i. Test **other Ionic Liquids** with different anionic and cationic part, and consequently different properties. We are also evaluating a mixture of different ionic liquids.
- ii. Test other solvents (for example: Propylene carbonate).
- iii. Optimize analytical methods for other liquid and gaseous products of CO₂RR in Ionic Liquid-based media.
- iv. We plan to **deepen the reaction mechanisms** of ionic liquids on the surface of the catalyst, to investigate the reactions that regulate the CO₂ reduction thanks to the intermediation of the ionic liquid on the surface of the catalyst.

Acknowledgements

The research leading to these results has received funding from the European Union's Horizon 2020 Research and Innovation Action programme under the SunCoChem project.

(Grant Agreement No 862192)

Politecnico

