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Abstract—An energy management strategy for mild hybrids
that prevents battery overheating is introduced in this digest.
Energy management strategy design for mild hybrids requires
particular care to prevent overheating of the battery pack as they
typically do not have an active cooling system. To tackle this issue,
we extend the well-known equivalent consumption minimization
strategy approach to develop a real-time capable fuel-optimal
controller that is sensitive to the battery’s thermal dynamics and
that can enforce constraints on its temperature. The rationale
for our formulation is developed using Pontryagin’s minimum
principle from optimal control theory. The same principle is
also used to design an off-line numerical procedure for the
energy management strategy’s calibration. The effectiveness of
the procedure is corroborated by numerical experiments on two
different drive cycles, whose results are also compared with
the solution obtained with a dynamic programming algorithm.
Several peculiar aspects of our solution procedure, such as the
method used to incorporate state constraints and the approximate
boundary value problem solution method using a particle swarm
optimization algorithm, are also detailed and discussed. The
proposed controller is computationally light-weight and can be
readily extended to on-line control provided that a suitable co-
state selection procedure is employed, based on the data collected
by using our calibration method on a large number of driving
missions.

Index Terms—mild hybrid, hybrid electric, predictive, thermal
management, passive cooling, battery

I. INTRODUCTION

The market of mild hybrid electric vehicles (HEVs) is
currently valued at 71.19 billion USD and it is forecast
achieving a 17.45% annual growth rate over the next five
years [1]. Effective energy management is a key requirement
for enhancing the fuel economy of mild HEVs. In a mild
HEV, the energy management strategy (EMS) is responsible
for controlling the mechanical power split between the internal
combustion engine (ICE) and the belt-starter generator (BSG).

EMSs for mild HEVs can be classified between off-line and
on-line approaches depending on the future driving conditions
being known a priori beforehand or not, respectively [2].
Obviously, only on-line EMSs are implementable on-board

mild HEVs since knowing the profile of the vehicle speed
over time for the entire drive cycle in advance is not possible.
Several on-line EMSs for mild HEVs have been proposed in
the literature, involving for example Pontryagin’s minimum
principle (PMP) [3], rule-based [4], and reinforcement learn-
ing [5].

Mild HEVs embed a 48V battery pack which is an impor-
tant power component and requires dedicated management.
For example, overheating the 48V battery pack needs to be
prevented since it may lead to thermal runaway and accelerated
aging [6]. This concern especially holds for mild HEVs since
they typically use a passive cooling system. This means that
the EMS provides compliance with the battery thermal limits
by appropriately limiting its charge and discharge currents over
time. At the same time, a significant use of the 48V battery
pack is crucial to enable fuel saving in mild HEVs. Finding
the right trade-off between fuel economy enhancement and
preventing battery overheating is not trivial.

When developing the EMS for a mild HEV, several research
works neglect the 48V battery pack temperature evolution
over time in their vehicle modeling approach [3], [5]. Other
research works model the battery temperature evolution over
time, however they do not use this information as a feedback
loop to the EMS of the electrified powertrain [7]. To the
best of the authors’ knowledge, improving the fuel economy
effectiveness of the real-time EMS for mild HEVs while taking
into account the evolution of the battery temperature over time
is still an open research question.

Equivalent consumption minimization strategy (ECMS) is
a well-known real-time near-optimal EMS for HEV pow-
ertrains [8]. In its traditional formulation, the instantaneous
cost function which needs minimization in ECMS considers
the fuel rate and the equivalent fuel consumption associated
to the battery power weighted according to the value of an
equivalence factor [9]. Zhou et al. assessed the impact of the
value of equivalence factor on the battery temperature and
aging entailed by an ECMS HEV controller [10]. In this work,



we apply Pontryagin’s minimum principle to develop a version
of the ECMS which includes a term related to the battery’s
temperature in the cost function. This allows optimizing the
mild HEV powertrain control towards enhancing fuel economy
while avoiding 48V battery overheating. Compared with a
baseline ECMS formulation, the proposed battery temperature
aware ECMS is demonstrated guaranteeing compliance with
the battery thermal limits.

Recently, Maamria [11] presented a set of methods using
the minimum principle to design an EMS taking the thermal
dynamics of the engine and after-treatment systems into ac-
count. Our work focuses on the battery’s thermal dynamics
instead and is driven by a specific application, that is a
mild hybrid without an active battery cooling system. Another
notable difference with our work is that Maamria enforces state
constraints on the battery state of charge (SOC) by adding
a penalty term to the cost function (this is known as an
interior point method). This method unfortunately has a major
drawback of having to tune at least one penalty factor for
each constraint, which becomes highly impractical as more
constraints are added as we do in our work.

gearboxengine
final 
drive

48V battery packBSG

Fig. 1. p0 HEV architecture.

Finally, another difference of our method with respect to
the minimum principle applications to the EMS design that
can be found in the literature is that we do not attempt to find
an exact solution to the associated boundary value problem
but rather look for an approximate solution using a particle
swarm optimization algorithm, as will be discussed later in
the following section.

The rest of this paper is structured as follows: the p0 HEV
simulation model (depicted in Figure 1) is briefly introduced
first. The proposed battery temperature aware ECMS formu-
lation is then presented, and a detailed procedure for its fuel-
optimal calibration based on the minimum principle is de-
scribed. Numerical results are then discussed, and conclusions
are finally drawn.

II. ENERGY MANAGEMENT STRATEGY

The control strategy investigated in this paper works in a
layered fashion. First, the gear number is set by a gear shift
schedule as a function of the vehicle’s speed. The optimization
of the gear shift schedule is not treated in this work. Then,
the energy management strategy sets the powerflow by con-
trolling the e-machine torque-split factor, defined as the ratio

between the e-machine’s torque contribution at the gearbox
input Tem,gb and the torque demand Td, i.e. α =

Tem,gb

Treq
.

The torque demand was evaluated as a function of the
vehicle’s speed vveh and acceleration aveh using a backward-
facing quasi-static model [12]:

Td =
Fveh(vveh, aveh)rwh

τfdτgb(γ)
, (1)

where rwh is the wheels’ radius, τfd and τgb are the final
drive and gearbox speed ratios, and γ is the gear number. The
tractive effort Fveh was evaluated using a longitudinal vehicle
model with a set of rolling resistance coefficients [13], [14].
Note that the vehicle speed and acceleration are defined by a
vehicle driving mission; therefore, they are explicit functions
of time and so is Td (although we omit this in (1) for
conciseness).

To derive a fuel-optimal energy management strategy, the
presented EMS design problem was formulated as an optimal
control problem and then solved with an indirect method [15].
In essence, indirect methods involve deriving necessary con-
ditions of optimality using the minimum principle and then
transcribing these into a boundary value problem (BVP) whose
solution yields the optimal control trajectory as well as the
optimal state and co-state trajectories. Compared to other
approaches to EMS design such as dynamic programming,
they are generally far less computationally expensive while
still retaining high accuracy. However, this does not mean that
their numerical solution is easy: BVPs of this kind require a
good initial guess of the solution in order to converge [16].

The system state was defined by two state variables: the
battery’s state of charge σ and temperature Tb. This allows
to formulate the charge-sustaining constraint that σ(tf) =
σ(t0) = σ0 and the battery temperature constraint Tb(t) ≤
Tb,ub, where Tb,ub is the maximum allowable temperature.

The battery’s SOC dynamics was modeled using an internal
resistance model:

σ̇ =
ib
Qb

, (2)

ib =
voc −

√
v2oc − 4ReqPb

2Req
, (3)

where ib, voc, Req and Qb are the battery current, open-
circuit voltage, equivalent resistance and capacity. The open-
circuit voltage and equivalent resistance were characterized
as a function of both the battery state of charge and temper-
ature. The battery power Pb does not depend on the state
variables and is only a function of the control variable α
and time (through the torque demand). Ultimately, because of
the battery characteristics’ dependence on the state variables,
the current and the SOC dynamics are dependent on both
states and the the torque-split factor α as well as time, i.e.
ib = ib(σ, Tb, α, t) and σ̇ = σ̇(σ, Tb, α, t).

The battery’s thermal dynamics were modeled considering
the heat generated due to the Joule losses and the convective
heat transfer with the surrounding environment [17]–[19]:

Ṫb =
1

Cb

(
Reqi

2
b − hAb(Tb − Tenv)

)
, (4)



where Cb is the battery’s thermal capacity. Heat transfer to the
environment was modeled as proportional to the temperature
difference between the battery (Tb) and the surrounding air
(Tenv) via the heat exchange area Ab and a heat transfer
coefficient h. Because of this as well as the dependence on the
battery current, the battery’s thermal dynamics depends on the
state variables in addition to α and t, i.e. Ṫb = Ṫb(σ, Tb, α, t).

The running cost was set as the fuel flow rate ṁf , which
was evaluated using a steady-state map as a function of the
engine speed ωeng and torque Teng [14], [20], [21]. Therefore,
it is ultimately a function of α and t.

In addition to the various control-dependent constraints that
must be formulated to enforce feasibility of the powertrains
components’ operation (e.g. enforcing the limit torques of the
engine and e-machine), we want to formulate state inequality
constraints on the battery SOC and temperature, so that

σ ≤ σub, (5)
σ ≥ σlb, (6)

Tb ≤ Tb,ub, (7)

where lb and ub define lower and upper bounds.
In order to incorporate these constraints in our necessary

conditions for optimality, we follow the approach described
in [15, Chapter 5.3] and we introduce an additional state
variable η whose dynamics are defined by

η̇ = (σ − σub)
2
1(σ − σub) + (σlb − σ)2 1(σlb − σ)

+ (Tb − Tb,ub)
2
1(Tb − Tb,ub)

1 (8)

Note that, by definition, η(t) is monotonically increasing in
time and is strictly equal to zero only if the state constraints are
never violated. In a way, this variable can be see as quantifying
the constraints violation. Since our goal is to minimize this
violation, we set η(t0) = 0 and we require that the final state

η(tf) = η(t0) +

∫ tf

t0

η̇(t) dt (9)

is also equal to zero.
The Hamiltonian for this control system was therefore

written as

H(σ, Tb, α, p1, p2, p3, t) = ṁf(α, t) + p1 σ̇(σ, Tb, α, t)

+ p2 Ṫb(σ, Tb, α, t) + p3 η̇(σ, Tb, α, t). (10)

For this problem, the principle states that if α(t) is the optimal
control trajectory, then there must exist three co-state functions
p1(t), p2(t) and p3(t) satisfying the adjoint equations

ṗ1 = −∂H

∂σ
, (11)

ṗ2 = − ∂H

∂Tb
, (12)

ṗ3 = −∂H

∂η
= 0, (13)

1Here, 1(·) denotes the unit step function.

and such that α ∈ U(t) minimizes the Hamiltonian

H(σ, Tb, α, p1, p2, p3, t), (14)

where U(t) defines the set of admissible controls and the
Hamiltonian is defined by (10).

Furthermore, since the final temperature Tb(tf) is free, the
corresponding terminal co-state must satisfy the transversality
condition:

p2(tf) =
∂F (Tb(tf))

∂Tb
= 0, (15)

where F (Tb(tf)) is the terminal cost associated to the battery
temperature. Since we did not want to associate a cost to the
final battery temperature, this term was set to zero.

The adjoint equations (11)–(13) together with the state
dynamics (2), (4) and (8) form a system of six differen-
tial equations. Correspondingly, six boundary conditions are
provided by the initial and terminal states together with the
transversality condition (15):

σ(t0) = σ0, (16)
Tb(t0) = Tenv, (17)

η(t0) = 0, (18)
σ(tf) = σ0, (19)
p2(tf) = 0, (20)
η(tf) = 0. (21)

Together, these equations coupled with the Hamiltonian
minimization and these boundary conditions form a BVP
problem, as we previously mentioned. To solve this problem,
the shooting method was employed. In indirect shooting, an
initial guess is generated for all the boundary conditions at
the left endpoint t0. Then, the initial value problem composed
by the differential equations coupled to this set of initial
conditions is solved by numeric integration. In particular, we
used a forward Euler integration scheme, and we obtained the
partial derivatives in (11)–(13) using finite differences. The
difference between the resulting boundary conditions at tf and
those imposed in the BVP is used to update the initial guess
and the process is repeated.

The same procedure can also be formulated in terms of
an optimization problem, where the optimization variables
are the initial values of the co-states p1(t0), p2(t0) and
p3(t0) and the objective function is the difference between
the corresponding σ(tf), p2(tf) and η(tf) and those set by the
boundary conditions (19)–(21).

This allowed us to use a particle swarm optimization (PSO)
algorithm to calibrate the initial co-states. The reason we used
a PSO algorithm to solve the BVP is that it proved to be
quite robust with respect to a poor first guess. We attribute
this to the fact that PSO is a derivative-free algorithm, hence
it is less sensible to the strong lack of smoothness in the
problem. This lack of smoothness is ultimately caused by the
presence of non-continuously differentiable functions such as
linear interpolants in the vehicle model, which are used to
model e.g. the fuel consumption as is typical in quasi-static
HEV powertrain models.



Fig. 2. Simulation profiles with a regular ECMS and the proposed formula-
tion. The ECMS formulation proposed in this digest is labeled as Th-ECMS,
while the regular implementation is denoted simply as ECMS.

Nonetheless, a proper derivative-based BVP solver would be
likely be more computationally efficient, although this would
come at the cost of increased modeling effort. A systematic
comparison of these two different approaches would be an
interesting topic but is out of the scope of this paper.

The objective function of the PSO solver was defined as a
scalarized objective:

J(p(t0)) =
|σ(tf)− σ0|

σ̄
+

|p2(tf)|
p̄2

+
η(tf)

η̄
(22)

where σ̄, p̄2 and η̄ are normalization factors.
One thing that should be noted is that altough the PSO

algorithm is able to reduce (22) to a very small quantity, it is
never able to reduce it to exactly zero. This is also due to the
many other approximations in the optimization process, such
as the numerical integration error and the approximation of the
adjoint equations by finite differences. Indeed, this reflects the
fact that we are obtaining an approximate solution to the exact
optimality conditions, as is typical of all indirect methods.

III. RESULTS AND DISCUSSION

The procedure described in the previous section was im-
plemented in MATLAB and tested on a number of driving
cycles. Here, we report results for the WLTP (Worldwide
Harmonised Light vehicles Test Procedure) and UDDS (Urban
Dynamometer Driving Schedule) cycles. For each simulation,
the parameters p1(t0), p2(t0) and p3(t0) where calibrated
using the PSO algorithm as described in the previous section in
order to minimize fuel consumption while keeping the battery
temperature below 40 °C, with an environment temperature of
20 °C. For the purpose of the Hamiltonian minimization, the
torque-split factor α was discretized with a uniformly spaced
grid of 121 values ranging from -1 to 1.

The effectiveness of the proposed implementation is shown
in Figure 2. The Th-ECMS produces a solution hitting the
constraints with great accuracy whereas a regular ECMS
implementation violates the battery temperature constraint,
making a larger use of the battery to maximize fuel economy
and producing higher currents as a consequence. This is

also clearly visible from the deeper charging and discharging
observable from the SOC profiles. Furthermore, the regular
ECMS produced a fuel economy of 6.46 l/100km while the
Th-ECMS 6.67 l/100km. Since both are fuel-optimal, with
the only difference being in the introduction of the battery
temperature constraint, the gap between the two can be seen as
the minimum gap that can be attained without introducing an
active cooling system while keeping the battery under 40 °C,
acting on the EMS design only.

Fig. 3. Comparison of the Th-ECMS and the solution obtained with dynamic
programming on the WLTP cycle.

As we mentioned in the previous section, due to a number
of reasons related to the numerical solution of the BVP
formulated with the minimum principle, we are obtaining an
approximate solution to the necessary conditions of optimality.
Moreover, the fact that these conditions are necessary but
not sufficient does not guarantee global optimality but only
local optimality. To assess the optimality of our method, we
compared simulation results with the solution obtained using
dynamic programming (DP). While DP uses its own approxi-
mations to obtain a solution, it is based on both necessary and
sufficient conditions of optimality and is therefore often used
as a benchmark.

For our simulations, we used a dedicated MATLAB toolbox
called DynaProg [22]. The control variable α was discretized
with a uniformly spaced grid of 121 values ranging from -1
to 1 (as for the ECMS). For the purpose of the value function
update and evaluation, the state variables (the battery SOC and
temperature) were discretized with uniformly spaced grids of
801 values ranging from 0.4 to 0.8 and 212 values ranging
from 20 °C to 41 °C.

As reported in Table I, the Th-ECMS comes very close to
dynamic programming in terms of fuel economy. In both the
WLTP and UDDS, the difference is below 0.6 %. The fact
that the Th-ECMS produces a slightly lower fuel economy
can be explained by inspecting the simulation results shown
in Figures 3 and 4. While the control and state profiles match
quite well overall, there is a small but notable difference in the
maximum temperatures reached. While the Th-ECMS reaches
maximum temperatures of 40.3 °C and 40.2 °C on the UDDS
and WLTP cycles respectively, dynamic programming only



reaches 39.6 °C and 39.2 °C.

Fig. 4. Comparison of the Th-ECMS and the solution obtained with dynamic
programming on the UDDS cycle.

This is due to the difference in the way the two algorithms
handle state constraints. The dynamic programming algorithm
enforces the state constraint as a hard constraint; moreover, the
inherent characteristics of the value function approximation
scheme tend to artificially penalize operating close2 to the
constraint boundary. On the other hand, the formulation of
the minimum principle employed in this work to develop the
Th-ECMS treats the state constraints as something similar to
a soft constraint, where violations are strongly penalized by
the requirement that the additional state η(t) remains zero for
all t.

TABLE I
FUEL ECONOMY OF THE PROPOSED TH-ECMS COMPARED TO THE

DYNAMIC PROGRAMMING BENCHMARK.

Driving cycle Fuel economy, l/(100 km) Difference

Th-ECMS DP

UDDS 5.79 5.83 0.6 %
WLTP 6.67 6.70 0.4 %

IV. CONCLUSIONS

In this paper, we described an EMS design approach that
keeps the battery temperature under control suitable for 48V
mild HEVs. The fact that we obtain the torque split-factor α
by minimizing the Hamiltonian (10) essentially leads to an
extension of the original ECMS approach with an additional
term penalizing the battery temperature increase. In this sense,
p2(t) can be seen as a time-varying equivalence factor for
the battery heat power. While the methodology in this paper
can be used to calibrate this parameter in an off-line design
procedure, the approach could be used on-line if a suitable
online co-state selection technique was adopted (see e.g. [16]
and [23]). This research topic represents the first and most
important development area of the present work.

2The meaning of close here depends on the state grids’ discretization.

The inclusion of the battery temperature constraint in the
formulation of the minimum principle was done with an
approach that, when considering the approximate nature of
the solution obtained to the resulting BVP, effectively behaves
like a soft constraint, with the final state η(tf) being a measure
of the extent of the constraint violation in both magnitude
and violation time. To make it as close as possible to a hard
constraint, we aimed at bringing this value to zero when
solving the BVP. An alternative approach that is enabled by
this technique would be to leave η(tf) free and to formu-
late a terminal cost F (η(tf)) instead, which would replace
the boundary condition (21) with an additional transversality
condition. This terminal cost could be formulated based on
techno-economical considerations to reflect the amount of
damage (in terms of lifetime reduction) taken by the battery
as a result of overheating and/or crossing the SOC bounds.

Finally, another important area of investigation which may
further improve the methods presented in this paper would be
to carry out a systematic comparison of the PSO solver used
in this paper with more standard BVP solvers. This may in
turn enable the development of a robust and computationally
fast technique which combines the advantages of both. For
example, since PSO is naturally well-suited for multi-objective
optimization, it could be used to generate a set of first guesses
which are close enough to enforcing the right boundary condi-
tions (at tf ) and then using a computationally fast and accurate
state-of-the-art BVP solver to obtain the proper solution.
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