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Bridging the Gap Between Artificial Neural
Networks and Kernel Regressions for Vector-Valued

Problems in Microwave Applications
Nastaran Soleimani, Student Member, IEEE, Riccardo Trinchero , Member, IEEE,

and Flavio G. Canavero , Life Fellow, IEEE

Abstract— Thanks to their convex formulation, kernel regres-
sions have shown an improved accuracy with respect to artificial
neural network (ANN) structures in regression problems where
a reduced set of training samples are available. However, despite
the above interesting features, kernel regressions are inherently
less flexible than ANN structures since their implementations
are usually limited to scalar-output regression problems. This
article presents a vector-valued (multioutput) formulation of the
kernel ridge regression (KRR) aimed at bridging the gap between
multioutput ANN structures and scalar kernel-based approaches.
The proposed vector-valued KRR relies on a generalized defin-
ition of the reproducing kernel Hilbert space (RKHS) and on
a new multioutput kernel structure. The mathematical back-
ground of the proposed vector-valued formulation is extensively
discussed together with different matrix kernel functions and
training schemes. Moreover, a compression strategy based on the
Nystrom approximation is presented to reduce the computational
complexity of the model training. The effectiveness and the
performance of the proposed vector-valued KRR are discussed
on an illustrative example consisting of a high-speed link and on
the optimization of a Doherty amplifier.

Index Terms— Kernel, kernel ridge regression (KRR),
microwave structures, optimization, parametric modeling, repro-
ducing kernel Hilbert space (RKHS), vector-valued kernel
regression.

I. INTRODUCTION

IN THE last decades, machine learning (ML) and
data-driven techniques have been widely adopted to con-

struct accurate and fast-to-evaluate surrogate models [1], [2],
[2], [4], [5], [6], [7], [8], [9], [10], [11], [12], [13], [14],
[15], [16] and macromodels [17], [18], [19] able to mimic
the parametric behavior of complex electromagnetic (EM)
structures provided by computationally expensive models (i.e.,
EM or circuital solvers). The underlying idea is to adopt
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supervised regressions to construct a closed-form approxi-
mation of the input–output behavior of the structures under
modeling by using a “small” set of training samples (i.e.,
simulations carried out with EM or circuital solvers for
different configurations of the input parameters) [20]. The
resulting surrogate model can then be inexpensively adopted to
explore the design space within optimization and uncertainty
quantification algorithms, thus providing an efficient alterna-
tive to computationally expensive simulations in microwave
applications. In the above scenario, two different classes of
supervised ML regressions have emerged, such as artificial
neural network (ANN) [1], [2], [2], [4], [5], [6], [7] and kernel
regression techniques [8], [9], [10], [11], [12], [13].

According to the universal approximation theorem [21],
ANN structures can approximate any nonlinear function or
a set of functions for the multioutput case, via a collection of
artificial neurons connected together and organized in layers.
The overall structure turns out to be extremely flexible, without
any limitation in terms of number of layers, neurons per layer,
number of outputs, and so on. Moreover, the mathematical
model describing the input–output map obtained by the ANN
is usually not linear with respect to the model unknowns (i.e.,
the weights and bias) since they appear within the argument of
nonlinear functions (i.e., the activation functions). This allows
learning very complex nonlinear behaviors, but on the other
hand, the nonlinear structure of the ANN model leads to a
nonconvex optimization problem with several local minima.
Such nonconvex optimization makes the training phase for the
ANN rather complicated and data-hungry [14], [16].

Kernel-based regressions [22], [23], [24], [25] provide an
interesting alternative to the above ANN structures, especially
in regression problems in which a “relatively small” set of
training data is available. Kernel regressions can be seen as a
linear and less flexible interpretation of the more general ANN
formulation. As shown in Fig. 1, a generic kernel model can
be interpreted as ANN structure with a single hidden layer,
in which the unknown weights (i.e., {α1, . . . , αL }) appear
linearly as the connection between the hidden and the output
layer [22], [23], [24]. It is important to remark that in such
structure, the number of both weights and neurons in the
hidden layer is fixed and turns out to be equal to the number of
training samples [24] (or less for the support vector machine
regression [22], [23]). This means that the overall model
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Fig. 1. ANN interpretation of a scalar-output kernel regression (the picture
is inspired by [24]).

complexity in terms of regression unknowns turns out to be
independent of the number of input parameters considered
by the model [22]. Unlike ANNs, the linear model structure
adopted by kernel regression (i.e., the model unknowns appear
linearly) has the key advantage of heavily simplifying the
training phase, which leads to the solution of a standard convex
optimization problem [25], thus providing several advantages
in terms of training time and accuracy with respect to the
number of training samples [12], [14], [16], [25].

Conversely, the lack of flexibility needed to guarantee the
linear structure in the advocated scalar kernel regressions leads
to some limitations with respect to ANN. Indeed, due to
their inherently scalar nature, plain kernel regressions are not
able to deal with multioutput problems [26]. Unfortunately,
multioutput or vector-valued regression problems are quite
common in microwave and electronic applications. As an
example, we can consider the problem of building a parametric
model able to learn the parametric behavior of the scattering
parameters of an amplifier as a function of the values of its
geometrical and electrical parameters. In the above scenario,
under the assumption that the realizations for each output
dimension (e.g., frequency samples) are uncorrelated, the
learning problem turns out to be equivalent to learn a set
of single-output models, one for each output dimension [12],
[27]. Unfortunately, when the number of output dimensions is
in the order of several hundreds, such a procedure turns out to
be quite cumbersome since it would require to independently
train a large number of scalar models, along with the tuning
of a huge number of hyperparameters. Also, such an approach
unavoidably neglects any possible correlation among the out-
put dimensions, thus leading to an overall model with possible
overfitting issue and highly vulnerable to noise [26].

Data compression techniques can be seen as a promising
alternative to the above brute-force approach. Compression
strategy, such as principal component analysis (PCA) [28], can
be used to explore and remove redundant information from the
available dataset, leading to a compressed representation of the
output dimensions. After the above compression, the number
of output components to be modeled can be significantly

reduced, thus requiring the training of a reduced set of single-
output regressions [12], [27]. Such a technique exploits the
statistical correlations among the different components of the
output dimensions. Due to its statistical nature, it provides
extremely accurate results in the uncertainty quantification
scenario [12], [27], [29]. On the contrary, if the number of
components in the compressed representation is not carefully
tuned, the obtained model can have a limited generalization
capability on unseen data, thus leading to possible lack of
accuracy for the case of deterministic parametric models (e.g.,
the ones used for optimization purposes) [29].

This article makes use of a vector-valued formulation of
the kernel ridge regression (KRR) able to deal with mul-
tioutput regression problems. The proposed methodology is
based on a generalized definition of the reproducing kernel
Hilbert space (RKHS) and kernel functions in the case of
vector-valued learning problem presented in [26], [30], [31],
and [32] and extends the preliminary implementation briefly
presented in [29]. The proposed multioutput KRR aims at
reducing the gap between kernel-based regressions and mul-
tioutput ANN structures. The advantages and drawbacks of
the proposed vector-values KRR will be widely discussed in
this article, as well as the features of different multioutput
kernel functions. Moreover, a Nystrom approximation is here
proposed in order to mitigate the computational complexity of
model training [25], [33], [34], [35]. The effectiveness and
the performance of the proposed approach will be investi-
gated on an illustrative example consisting of a high-speed
link and by considering the optimization of a Doherty
amplifier.

The remainder of this article is organized as follows.
Section II briefly introduces the scalar KRR. Section III
presents the extension of the KRR to vector-valued problems.
Section IV discusses different kernel functions for the pro-
posed vector-valued formulation, along with the corresponding
training strategy. Section V presents a compression technique
able to reduce the training complexity based on the Nystrom
approximation. The performance of the proposed approach is
discussed in Sections VI and VII based on an illustrative
example and for the optimization of a Doherty amplifier.
Finally, conclusions are drawn in Section VIII.

II. REPRESENTER THEOREM AND SCALAR KRR

This section discusses the mathematical background of
supervised scalar-output kernel regressions, with specific
emphasis on KRR.

A. Representer Theorem for Scalar Kernel Regression

First, let us start introducing the representer theorem for a
generic scalar kernel regression. We consider a set of training
pairs S = {(xl, yl)}L

l=1, where xl ∈ X ⊆ R
p represents the

training input and yl ∈ Y ⊆ R are the corresponding scalar
outputs generated by the actual function under modeling f (x)
(i.e., yl = f (xl) + η, where η represents a random noise).
Knowing the training set, we seek the “best” structure of a
generic function f̂ (x) able to approximate f (x) for any x ∈ X
by minimizing the following functional, also known as the
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empirical risk minimization (ERM) [36]:

f̂ = arg min
f̃ ∈H

L∑
l=1

�
(
xl, yl , f̃ (xl)

) + λ�
(� f̃ �H

)
(1)

where �(·) is the generic loss function providing the “error”
between the training outputs and the predictions of a generic
model f̃ ∈ H evaluated on the corresponding training inputs,
�(·) : R → R is a strictly increasing function applied to the
L2-norm of the function f̃ acting as a regularizer, and λ is
the hyperparameter associated with it.

According to the representation theorem [36], any optimal
solution f̂ (x) of (1) can be written as

f̂ (x) =
L∑

l=1

αlk(xl, x) (2)

where k(·, ·) : R
p×p → R is the so-called kernel function

(additional details are provided in Appendix A).

B. Scalar KRR
Scalar KRR can be seen as a special case of the above

general framework, in which a squared loss is used as a loss
function �(·) and �(� f̃ �H) = � f̃ �2

H is a Tikhonov regular-
izer [37]. Under the above assumptions, the optimization in (1)
for the KRR writes

f̂ = arg min
f̃ ∈H

L∑
l=1

(
yl − f̃ (xl)

)2 + λ� f̃ �2
H. (3)

From the representation theorem, we know that any solution
f̂ takes the form in (2). Plugging (2) into (3), we can write

min
α

L∑
l=1

(
yl −

L∑
m=1

αmk(xm, xl)

)2

+ λ

∥∥∥∥∥
L∑

l=1

αl k(xl, x)

∥∥∥∥∥
2

H
(4)

where according to the kernel properties [36]

� f̂ �2
H =

∥∥∥∥∥
L∑

l=1

αl k(xl, x)

∥∥∥∥∥
2

H

=
L∑

l,m=1

αlαmk(xl, xm) = αT Kα. (5)

In (5), K ∈ R
L×L is the empirical kernel matrix, also

known as kernel Gram matrix, defined by evaluating the kernel
function on each configuration pair belonging to the training
input set such that

[K]i j = k
(
xi , x j

)
(6)

for any xi and x j in the training input set.
The optimization problem in (3) can be written in its matrix

form as

min
α

(y − Kα)T (y − Kα) + λαT Kα (7)

where y = [y1, . . . , yL ]T is a vector collecting the training
outputs, whereas Kα represents the corresponding predictions
computed via (2), such that for the nth training output, we get

yn ≈
L∑

l=1

αlk(xl, xn) = K[n,:]α (8)

where K[n,:] represents the nth row of the Gram matrix
K [38], [39].

The cost function in (7) can be expanded as

E(α) = yT y − αT KT y +
− yT Kα + αT KT Kα + αT Kα. (9)

The above cost function can be minimized by computing the
zero of its partial derivative with respect to the vector of
unknowns α, which is written as

∂ E(α)

∂α
= −2KT y + 2KT Kα + 2λKα = 0. (10)

Since the kernel function is symmetric by construction (i.e.,
k(xi , x j ) = k(x j , xi )), the Gram matrix K associated with the
kernel is a square symmetric matrix, such as KT = K. This
means that (10) can be simplified as follows:

−K y + K2α + λKα = 0 (11)

which can be recast in terms of the following linear system:
(K + λIL )Kα = K y (12)

where IL refers to the L × L identity matrix.
Since all the matrices in the left side are symmetric matrices

(i.e., AB = BA), the above linear system is equivalent to

K(K + λIL )α = K y (13)

which leads to the well-known formulation of the KRR

(K + λIL )α = y. (14)

Therefore, the model coefficients in the vector α can be
suitably computed by solving the above linear system of
equations, i.e.,

α = (K + λIL )−1 y. (15)

III. FROM SCALAR- TO VECTOR-VALUED KRR

This section aims at providing a generalized formulation
of the scalar-output kernel-based regression presented in Sec-
tion II for vector-valued output or multitask regression. For
the sake of simplicity, this article will focus on the specific
case of vector-valued regression for which the training set is
defined as S = {(xl , yl)}L

l=1, in which x ∈ X ⊆ R
p is a

vector collecting the configurations of the input parameters
(e.g., geometrical and electrical parameters of an EM structure)
and yi = [y(1)

i , . . . , y(D)
i ]T ∈ R

D is a vector collecting
the corresponding vector-valued training outputs (e.g., the
frequency samples of frequency response). The above training
set can be rewritten in its compact form as S = {(X, Y)},
where X = [x1, . . . , xL ]T is an L × p matrix collecting the
configurations of the training input and Y = [ y1, . . . , yL ]T is
an L × D matrix associated with the training outputs.

A. Reproducing Hilbert Space for Vector-Valued KRR

Given the information available in the training set S,
our goal is to learn D scalar functions f̂ (d) : X → R with
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d = 1, . . . , D, able to provide an accurate prediction of the
actual output vector y(x) for any configuration of the para-
meters x ∈ X .1 In order to deal with the above vector-valued
regression problem, the learning problem in (3) must be
generalized as follows:

f̂ = arg min
f̃ ∈H

D∑
d=1

L∑
l=1

(
y(d)

l − f̃ (d)(xl)
)2 + λ� f̃ �2

H (16)

where y(d)
l and f̃ (d)(xl) represent the dth component of the

lth training output and the corresponding model prediction,
respectively.

According to the represented theorem for vector-valued
regression problem presented in [31], any solution f̂ of (16)
takes the form

f̂ (x) =
L∑

l=1

K(x, xl)cl (17)

where K(·, ·) : R
p×p → R

D×D is a matrix multioutput kernel
acting on the column vectors cl ∈ R

D collecting the regression
unknowns for l = 1, . . . , L. For a generic output n, (17) can
be written as

f̂ (n)(x) =
L∑

l=1

[K(x, xl)][n,:]cl

=
D∑

d=1

L∑
l=1

[K(x, xl)][n,d]cd,l (18)

where [K(x, xl)][n,:] and [K(x, xl)][n,d] denote the nth row and
the (n, d)-element of the matrix kernel K(·, ·), respectively,
and cd,l is the dth element of the vector cl .

Equation (18) can be rewritten in its scalar form, i.e.,

f (n)(x) =
D∑

d=1

L∑
l=1

k((x, n), (xl, d))cd,l (19)

where k((x, n), (xl, d)) : R
p×p × R

{1,...,D}×{1,...,D} → R

represents the (n, d) entry of the multioutput kernel matrix
K(x, xl) such that k((x, n), (xl, d)) = [K(x, xl)][n,d].

B. Separable Multioutput Kernels for
Vector-Valued Regression

The kernel structure in (18) and (19) was introduced in [30].
The multioutput kernel should be able to account for the
correlation in both the parameter space and output compo-
nents. Unfortunately, there do not exist off-the-shelf kernel
functions, which can be directly applied in such context. The
simplest solution is to work on a specific class of multioutput
kernels such as the separable kernel or sum of separable
kernels [26], [30], [31]. Specifically, we will consider matrix
kernel functions K(x, x�), obtained as the product between
two scalar kernels acting either on the input space or on the
output dimensions, such that[

K
(
x, x�)]

[d,d �] = k
(
(x, d),

(
xl, d �))

= kx
(
x, x�)ko

(
d, d �) (20)

1The proposed formulation can be extended to the more general case of
multitask formulation in which the number of training samples Ld can vary
for each output d, as well as the number of parameters pd .

where kx and ko are scalar kernels acting independently on the
input space (i.e., kx : X × X → R) and output dimensions
(i.e., ko : {1, . . . , D} × {1, . . . , D} → R).

Therefore, for each pair x and x� belonging to the input
space X , the resulting multioutput kernel matrix K(x, x�) can
be written as

K
(
x, x�) = kx

(
x, x�)B (21)

where B ∈ R
D×D is a symmetric semidefinite matrix com-

pletely independent of the input parameters x and x�, in which
its elements are obtained by evaluating the scalar kernel ko on
the output dimensions (i.e., {1, . . . , D} × {1, . . . , D}). The
overall kernel matrix K(x, x�) is a D × D symmetric matrix
by construction since it is the product of a symmetric function
kx(x, x�) with a symmetric matrix B.

By combining the optimal solution in (17) for the vector-
output scenario, with the separable kernel structure in (20),
we can write

f̂ (x) =
L∑

l=1

K(x, xl)cl =
L∑

l=1

kx(x, xl)Bcl . (22)

C. Matrix Formulation for the Vector-Valued KRR With
Separable Kernel

Let us now consider the following matrix formulation of the
ERM in (16) developed for the vector-valued scenario:

min
f ∈H

�Y − F�2
F + λ� f �2

H (23)

where F = [ f T
1 , . . . , f T

L ] is an L × D matrix collecting the
model predictions for the samples in the training set, such that
[F]i j = f ( j)(xi ), and � · �F is the Frobenius norm defined as

�A�2
F =

∑
i=1

∑
j=1

a2
i j = Tr

(
AAT

)
. (24)

According to (18) and (21), the n-row of the matrix F in (23)
can be written as

[F][n,:] = f̂ (xn)
T =

L∑
l=1

kx(xn, xl)cT
l BT

=
L∑

l=1

kx(xn, xl)cT
l B. (25)

Since B is a symmetric matrix (i.e., B = BT ), the matrix F
can be rewritten as [40]

F = KxCB (26)

where Kx ∈ R
L×L with [Kx][i j ] = kx(xi , x j ) is the Gram

matrix associated with the kernel kx evaluated on the input
training samples and C ∈ R

L×D is a matrix collecting the
regression unknowns cl such that C = [c1, . . . , cL ]T

By substituting the above model structure in (23), we get
the following optimization problem:

min
C

�Y − KxCB�2
F + λ

〈
CT KxC, B

〉
F

(27)
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in which �·, ·	F is the inner Frobenius product, which for the
case of matrices A and B can be written as

�A, B	F =
∑
i, j

Ai j Bi j = Tr
(
AT B

)
. (28)

The optimal values for the entries of the coefficient matrix C
can be estimated as the ones for which the partial derivatives
of the cost function in (27), computed with respect to them, are
equal to zero. By doing this, after some calculations provided
in Appendix B, we get the following discrete-time Sylvester
equation:

KxCB + λC = Y. (29)

Equation (29) can be solved in a closed form by using the
Kronecker formulation [41] such that [40]

(B ⊗ Kx + λIL D)︸ ︷︷ ︸
A

vec(C) = vec(Y) (30)

where ⊗ is the Kronecker product and IL D refers to the L D ×
L D identity matrix and the vec(·) operator stacks column of
its argument matrix into a column vector; therefore, vec(C) ∈
R

L D is a vector collecting the regression coefficients cl in (17),
with C = [c1, . . . , cL ]T ∈ R

L×D. Like the scalar case, (30) can
be rewritten in terms of the Gram vector-valued matrix K such
that

(K + λIL D) vec(C) = vec(Y) (31)

where the Gram vector-valued matrix K ∈ R
(L D)×(L D) asso-

ciated with the whole input training dataset X and output
components can be written as

K = K(X, X) = B ⊗ kx(X, X) = B ⊗ Kx. (32)

It is straightforward to see that the unknown coefficients
collected in the vector vec(C) can be computed by solving a
linear system of equations, which can be written as

vec(C) = (B ⊗ Kx + λIL D)−1 vec(Y). (33)

After computing the regression coefficients, (22) can be
used to make predictions for a generic input configuration
x ∈ X

f̂ (x) =
L∑

l=1

kx(x, xl)Bcl =
L∑

l=1

K(x, xl)cl . (34)

IV. SEPARABLE KERNELS FOR VECTOR-VALUED KRR
AND INVERSION STRATEGIES

This section aims at discussing possible solutions for the
design of separable kernel functions tailored for vector-valued
KRR, as well as their key features and training strategies.

A. Block-Diagonal Multioutput Kernel Matrix

The discussion starts considering a special case of the
separable kernel function in (20), in which the kernel acting
on the output dimensions ko(d, d �) = δd,d � such that

kx
(
x, x�)ko

(
d, d �) = kx

(
x, x �)δd,d � (35)

where δd,d � is the Kronecker delta. This means that in (22),
we are considering B = ID (i.e., the identity matrix).

In the above case, the overall regression problem turns out
to be equivalent to train D scalar regression problems using
the same kernel function kx. Therefore, the associated Gram
kernel matrix K(X, X) becomes an L D × L D block-diagonal
matrix

K(X, X) = diag(Kx, . . . , Kx) =

⎡
⎢⎢⎢⎣

Kx 0
...

0
. . . 0

... 0 Kx

⎤
⎥⎥⎥⎦. (36)

Such decoupled interpretation of the vector-valued KRR
has several advantages with respect to the standard modeling
scheme in which a plain scalar kernel regression is applied
to construct a set of independent surrogate models, one for
each output dimension. Indeed, even if the multioutput kernel
in (35) still considers the output dimensions to be independent,
it allows to learn them in one shoot via the solution of
single optimization problem. This means that the number
of hyperparameters to be tuned during the model training
is independent of the number of output dimensions since
it is determined by the structure of scalar kernel kx , only.
Also, possible correlations among the output dimensions are
inherently accounted for during the training phase by means of
the hyperparameters tuning since the latter operation is carried
out on the whole training set and output dimensions.

It is important to notice that due to the block-diagonal
structure of the Gram kernel matrix K(X, X) in (36), the
regression training turns out to be extremely efficient. Indeed,
the overall inversion of the L D × L D Gram matrix K reduces
to invert an L × L matrix, i.e.,

[K + λIL D]−1 = [
diag((Kx + λIL ), . . . , (Kx + λIL ))

]−1

= diag
(
[Kx + λIL ]−1, . . . , [Kx + λIL ]−1)

= ID ⊗ [Kx + λIL ]−1. (37)

Due to the block-diagonal structure of the vector-valued
kernel matrix K in (36), the overall computational complexity
required by the matrix inversion reduces from O(L3 D3) to
O(L3) (i.e., the computational cost required to invert the sub-
matrix [Kx +λIL ]) since the hyperparameters of the kernel kx

and λ are shared by all the output dimensions.

B. Coupled Multioutput Kernel Matrix

A possible alternative for the kernel ko acting on the output
dimensions is provided by the so-called mixed kernel [30],
which can be written as

ko
(
d, d �) = ω + (1 − ω)δd,d � (38)

or equivalently to a matrix B in (22)

B = ω1 + (1 − ω)ID (39)

where 1 is a D × D matrix whose entries are equal to 1 and
ω ∈ [0, 1] is the kernel hyperparameter.

The resulting Gram kernel matrix K(X, X) is a coupled
matrix accounting for a possible uniform correlation among
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Fig. 2. Graphical interpretation of the resulting block-diagonal (left), weakly coupled (central), and strongly coupled (right) kernel Gram matrices. Dark
color is used for matrix entries with smaller values and bright color is used for matrix entries with higher values.

all the output components. It is important to point out that by
setting ω = 0, the learning problem turns out to be equivalent
to the block-diagonal formulation presented before.

As a tradeoff between the uncoupled and mixed kernel
function, this article presents a separable kernel structure
based on the product of standard radial basis function (RBF)
kernels [29], such as

kx/o
(
θ , θ �) = exp

(
−�θ − θ ��

σx/o

)2

(40)

where the pair (θ , θ �) can be any combination of input or
output pairs and σx and σo are the hyperparameters of the
scalar kernels kx and ko, respectively. Such hyperparameters
are shared by all the output dimensions and can be tuned once
via either cross validation or validation set [37], for instance,
via Bayesian optimization [42].

The idea of using an RBF function for the kernel ko

acting on the output components can be seen as a tradeoff
between a block-diagonal kernel and the mixed kernel. Indeed,
a large value of σo will lead to a strong coupling among the
output components, while a small value leads to a block-
diagonal problem. For the sake of illustration, Fig. 2 shows
a graphical interpretation of block-diagonal (left), weakly
coupled (central), and strongly coupled (right) kernel Gram
matrices.

Unfortunately, dealing with coupled kernel structures, such
as the ones provided by the kernels in (38) and (40) is rather
challenging. Indeed, in such cases, the model training requires
the inversion of a fully coupled matrix A in (30) of dimension
L D × L D, for which the computational complexity scales as
O(L3 D3). This makes the direct inversion of the matrix A
extremely inefficient or intractable in a standard laptop when
the product between the number of training samples L and the
output dimensionality D becomes in the order of thousands.

To overcome the above limitation, the linear system in (30)
can be efficiently solved via an iterative procedure based on
the gradient descent (GD) algorithm [25], [43]

vec(C)k = vec(C)k−1 − α
[
A vec(C)k−1 − vec(Y)

]
(41)

where vec(C)k represents the unknown regression coeffi-
cients estimated at the kth step and α is a scalar number,
known as the learning rate, defining the step size at each
iteration.

Specifically, the proposed modeling framework implements
the conjugate gradient method [43], which provides an effi-
cient version of the above algorithm tailored for semidefinite
matrices, as the matrix A [29]. Such implementation allows
reducing the computational complexity of the training phase
from O(L3 D3) to O(K L2 D2), where K is the number of
iterations required by the GD algorithm to converge. It is
important to remark that due to the benefits in terms of
computational cost of the GD algorithms with respect to
the plain inversion algorithms, the above inversion scheme
implemented in standard laptop allows to deal with regression
problems in which L D ≤ 10 k.

V. NYSTROM SUBSAMPLING AND COMPRESSION

This section presents a compression strategy based on the
Nystrom approximation aimed at reducing the computational
complexity arising from the training of the proposed vector-
valued KRR. Unlike data compression strategies which act on
the training dataset (e.g., PCA [28]), the proposed Nystrom
compression performs directly on the Gram kernel matrix to be
inverted during the model training [25], [33], [34], [35]. Such
an approach will be here adopted to compress the empirical
kernel matrix Kx in (30) from L × L to n × n with n ≤ L.
Possible further generalization and extension of the proposed
compression scheme to the whole separable kernel structure
will be investigated in future publications.

The Nystrom method or Nystrom approximation allows
to approximate any positive semidefinite matrix, such as the
kernel Gram matrix Kx , by a smaller matrix collecting a subset
of the columns of the original one. To this aim, let us define
a subset X̃n collecting n ≤ L input samples randomly chosen
without replacement from the training set X such as

X̃n = [x̃1, . . . , x̃n]T (42)

where n ≤ L.
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According to the Nystrom approximation, the original Gram
matrix Kx can be reconstructed as follows [34], [35]:

Kx ≈ K̃LnK̃−1
nn K̃nL (43)

where K̃nn = kx(X̃n, X̃n) is an n × n symmetric Gram matrix
such as [K̃nn]i j = kx(x̃i , x̃ j) for i, j = 1, . . . , n and K̃Ln =
K̃T

nL = kx(X, X̃n) is an L × n rectangular matrix such as

[K̃Ln]i j = kx(xi , x̃ j ) for i = 1, . . . , L and j = 1, . . . , n.
Several advanced algorithms have been presented for the

selection of the number of configurations n in the reduced
subset X̃n in (42) (see, e.g., [25], [34], [35]). However, in our
implementation of the Nystrom method, the parameter n is
iteratively increased until the relative error of the approxima-
tion in (43) is less than a given tolerance

�Kx − K̃LnK̃−1
nn K̃nL�F

�Kx�F
× 100 ≤ ε%. (44)

Hereafter, in this article, ε% has been set to 0.1%.
By using the Nystrom approximation of the Gram kernel

matrix in (43), the ERM in (27) can be written as

min
C̃

�Y − K̃LnC̃B�2
F + λ�C̃T K̃nnC̃, B	F (45)

where in this case C̃ ∈ R
n×D is a compressing matrix

collecting row-by-row the unknown vectors [c̃1, . . . , c̃n]T , with
c̃n ∈ R

D .
Similar to what has been done in Section III-C, the above

convex optimization problem can be solved by setting to zero
the partial derivatives of the cost function computed with
respect to the unknown matrix C̃. Again, after some calcula-
tions reported in Appendix C, the solution we are looking for
can be written in terms of the following generalized discrete-
time Sylvester equation:

−K̃nLY + K̃nLK̃LnC̃B + λK̃nnC̃ = 0 (46)

where the matrix C̃ can be computed by solving the following
linear system [41]:(

B ⊗ K̃nLK̃Ln + λID ⊗ K̃nn
)︸ ︷︷ ︸

Ã

vec
(
C̃

) = vec
(
K̃nLY

)
(47)

where now the matrix Ã is an nD × nD matrix.
The model prediction for a generic test point x can be

written as

f̂ (x) =
n∑

l=1

kx(x, x̃l)Bc̃l = B ⊗ kx
(
x, X̃n

)
vec

(
C̃

)
(48)

where vec(C̃) ∈ R
(nD)×1 and kx(x, X̃n) ∈ R

1×n.
It is important to notice that due to the Nystrom compres-

sion, the number of unknowns to be estimated during the
model training turns out to be n × D with n ≤ L, while the
dimensionality of the original uncompressed matrix A is L ×
D. Therefore, the training cost for inverting the matrix Ã with
the GD reduces from O(K L2 D2) to O(n · L + K n2 D2) for the
full coupled kernel and to O(n·L+K n2) for the block-diagonal
kernel function. The Nystrom compression strategy presented
in this section will be used hereafter in this article to con-
strain the size of the Gram kernel matrix K to be less
than 10k × 10k.

TABLE I

MEAN VALUE AND CORRESPONDING RELATIVE RANGE OF VARIATION OF
THE 11 PARAMETERS CONSIDERED FOR THE ILLUSTRATIVE

EXAMPLE IN SECTION VI

Fig. 3. Schematic of the high-speed link considered as illustrative example
in Section VI.

VI. ILLUSTRATIVE EXAMPLE

This section provides a more practical interpretation of
the mathematical formulation presented in Sections III–V by
means of an illustrative example, with the aim of discussing
the advantages and drawbacks of the proposed vector-valued
KRR. Without loss of generality, the proposed results will
focus on the high-speed link in Fig. 3.

Specifically, the proposed vector-valued KRR is applied to
predict the parametric behavior of the magnitude of the fre-
quency response y(x; f ) = |H ( f ; x)| = |Vout( f ; x)/E( f )|,
as a function of 11 normalized parameters collected in the
vector x = [x1, . . . , x11]T , in which each parameter xi ∼
U([−1,+1]) is modeled as a normalized uniformly distributed
random variable. Additional details about the variability and
mean value of the 11 parameters are provided in Table I.
The high-speed link has been implemented by means of a
parametric simulation in MATLAB. Such implementation is
then used to generate the training, validation, and test sets
based on a Latin hypercube sampling (LHS).

The performance of the proposed KRR is investigated on
three different configurations of the proposed test case.

1) CASE A: Noise-free training set in a frequency band
from 1 MHz to 2 GHz.

2) CASE B: Noisy training set2 in a frequency band from
1 MHz to 2 GHz.

2Uniformly distributed and uncorrelated noise terms affecting the real and
imaginary parts of the frequency response H ( f ; x) with an absolute level
of 0.05.
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Fig. 4. Parametric behavior of the magnitude of transfer function y(x; f ) of
the high-speed link in Fig. 3 computed on 1000 test samples for CASEs A,
B, and C.

3) CASE C: Noise-free training set in a wider frequency
band from 1 MHz to 5 GHz.

For each of the above configurations, the parametric behav-
ior of the magnitude of the frequency response H ( f ; x) is
investigated for 100 equally spaced frequency points (i.e., the
number of outputs is D = 100). For the sake of illustration,
Fig. 4 shows the spread of 1000 realizations (used as test
samples) of the frequency responses for the three considered
configurations: CASEs A, B, and C. The plots highlight
the complexity of the three datasets, as well as the strong
sensitivity of the model output to the considered parameters.

Two vector-valued KRRs with a block-diagonal and a
coupled kernel are trained with L training samples. A vali-
dation set [37] with 150 samples is used within a Bayesian
optimization [42] to tune the regression hyperparmaters by
considering the following intervals: σx = [10−2, 102], σo =
[10−4, 10−2], and λ = [10−3, 10−1] for the coupled kernel
matrix and σx = [10−2, 102], σo = [10−11, 2 × 10−11], and
λ = [10−5, 10−2] for the block-diagonal one.

Fig. 5 shows a comparison between the predictions
obtained by the proposed vector-valued KRR trained with
a block-diagonal and coupled kernel matrix (see Fig. 2) for
three different configurations of the input parameters x and
the corresponding scatter plots computed on the 1000 test
samples. The comparison highlights the excellent capability
of trained models to capture the actual variation of the
transfer function under modeling for the three considered test-
case configurations. Moreover, Table II presents a quantitative
comparison among the proposed implementations in terms of
training time ttrain and relative L2- and L∞-error computed in
a linear scale from the predictions in decibels provided by the
proposed models on 1000 test samples. The figures of merit
provided in the table lead to the following observations.

1) Training Time: As shown in the rows labeled with ttrain

in Table II, the computational cost for the training of the
vector-valued KRR with coupled kernel is higher than
the one required by the block-diagonal implementation.
Indeed, as discussed in Section IV, the computational
complexity of the model training depends on the struc-
ture of the matrix A to be inverted in (30), and it is

TABLE II

COMPARISON OF TRAINING TIME tTRAIN AND RELATIVE L2- AND
L∞-ERROR COMPUTED FOR THE COUPLED AND UNCOUPLED KERNEL

IMPLEMENTATION OF THE PROPOSED VECTOR-VALUED KRR. THE

STUDY WAS CONDUCTED ON THE ILLUSTRATIVE EXAMPLE OF

FIG. 3, FOR 1000 TEST SAMPLES

TABLE III

MEAN VALUE AND CORRESPONDING RELATIVE RANGE OF VARIATION

OF THE PARAMETERS CONSIDERED FOR THE OPTIMIZATION OF THE

DOHERTY AMPLIFIER IN SECTION VII

proportional to O(K L2 D2) for the implementation of
the proposed vector-valued KRR with a coupled kernel
and reduces to O(K L2) for the uncoupled one.

2) Model Accuracy: The KRR implementation based on the
block-diagonal kernel provides the most accurate model
for CASEs A and C with an L2-error below 5%. The
high value of the L∞-error (i.e., the worst case error)
for the CASE C is motivated by the inherently resonance
behavior of the frequency response under modeling in
the considered frequency bandwidth. On the other hand,
the results for CASE B highlight the benefits of the
regularization effect on the output dimension introduced
by the coupled kernel [32]. Such regularization allows to
suppress the sharp fluctuations induced by the noise, thus
leading to a more accurate prediction on the noiseless
test set.

Summarizing, the block-diagonal kernel provides the best
tradeoff between efficiency and accuracy for noiseless multi-
output regression problems, but it is also extremely sensitive
to noise. Indeed, the block-diagonal formulation does not
directly account for a possible correlation among the out-
put dimensions (i.e., the frequency points of the frequency
response), thus increasing the model variance and leading
to overfitting issue in the output space. On the contrary,
the coupled formulation introduces a regularization effect on
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Fig. 5. Parametric and scatter plots comparing the prediction of the proposed vector-valued KRR with block-diagonal and coupled kernels with the
corresponding ones obtained from the computational model for CASEs A, B, and C on 1000 test samples.

the output dimensions, leading to a smoother model in the
output space able to heavily suppress noise fluctuations. It is
important to remark that, despite the Nystrom compression and
the GD algorithm proposed in this work, alternative inversion
approach will be further investigated in future works to speed
up the Gram matrix inversion, as an example, by exploring the
mathematical structure of the proposed separable kernel [32].

VII. APPLICATION EXAMPLE: DOHERTY AMPLIFIER

This section discusses the performance of the proposed
method by considering the optimization of the power splitter
of the Doherty amplifier shown in Fig. 6 [44]. Specifically,
the proposed vector-valued KRR is used to train a parametric
model able to predict the S11 and S21 of the amplifier, as a
function of several coupled and uncoupled parameters listed
in Table III, characterizing the working point of the amplifier
and the geometry of the power splitter (see the red square
in Fig. 6).

First, the schematic in Fig. 6 has been implemented as
a parametric simulation in ADS. For any configuration of
the input parameters, the ADS simulation provides the fre-
quency responses of the scattering parameters S11 and S21

computed for D = 1101 frequency points in a bandwidth
from 1.9 to 3 GHz. A set of L = 700 training samples and
100 validation samples have been generated via an LHS.

Such samples have been used to train a parametric model
for the scattering parameters of interest via the KRR with the
block-diagonal kernel. The model training takes 220 s. The
obtained models are then used together with a “brute-force”
optimization algorithm based on a random grid search [45]
implemented in MATLAB, with the aim of optimizing the
amplifier parameters in order to meet the following constraints:

S11 ≤ −10 dB for 2.4 GHz ≤ f ≤ 2.6 GHz (49a)

10 dB ≤ S21 ≤ 12 dB for 2.1 GHz ≤ f ≤ 2.9 GHz.

(49b)
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Fig. 6. Schematic of the Doherty amplifier considered in Section VII (inspired by [44]).

Fig. 7. Scattering parameters of the Doherty amplifier presented in
Section VII obtained from the initial design (black dashed line) and after
optimization carried out via the ADS random optimizer (red solid line) and
the proposed model (blue solid line).

Fig. 7 compares the S11 and S21 scattering parameters
estimated after the optimization via the proposed vector-valued
model with those obtained from the initial design. Moreover,
the plots show the corresponding results obtained from the
random optimizer (default option) in ADS after 2800 iter-
ations. The results clearly highlight the strong agreement
and consistency between the optimization results obtained

via the proposed modeling scheme and the ones obtained
from the ADS optimization. Concerning the computational
cost, the overall optimization with our advocated model takes
25 s. On the other hand, the corresponding optimization in
ADS requires 2800 iterations and takes 386 s. The proposed
simulation approach leads to a speedup 15× with respect to
ADS. It is important to stress that the obtained speedup is
mitigated by the relatively fast simulation time required by the
ADS circuital solver when it is used in a small-signal analysis.
Moreover, unlike the ADS optimizer, the obtained model turns
out to be independent of the optimization constraints and
therefore can be suitably adopted as it is to meet different
optimization constraints, as well as for the stochastic analysis
within the uncertainty quantification scenario [13], [29].

VIII. CONCLUSION

This article presented a generalized vector-valued formula-
tion of the KRR, able to deal with the inherently multioutput
nature shared by most of the microwave applications. The
proposed vector-valued KRR can be seen as a generaliza-
tion of the mathematical framework used by state-of-the-art
scalar kernel regressions. The mathematical formulation has
been discussed in detail, also providing several alternatives
for the kernel functions and training schemes. Moreover,
a compression strategy based on the Nystrom approxima-
tion has been proposed with the aim of mitigating the
computational complexity of the training phase. The feasi-
bility and the performance of the proposed approach have
been investigated on an illustrative example consisting of
a high-speed link and for the optimization of a Doherty
amplifier.

APPENDIX A
FROM BASIS EXPANSION TO SCALAR-OUTPUT KRR

We consider a set of training pairs S = {(xl, yl)}L
l=1, where

xl ∈ X ⊆ R
p represents the training input samples and

yl ∈ Y ⊆ R are the corresponding scalar outputs. We seek
a linear model f̃ defined as a standard basis expansion, such
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as [36], [38], [39]

f̃ (x) =
P∑

k=1

wkφk(x) = �w,φ(x)	 (50)

where φ(x) = [φ1(x), . . . , φP (x)]T is a vector collecting the
basis functions φi (x) such that φ(·) : R

p → R
P provides

a nonlinear map between the p-dimensional parameter space
and the P-dimensional feature space, w = [w1, . . . , wP ]T is
a vector collecting the regression coefficients, and �w,φ(x)	
is the inner product in the Hilbert space (i.e., �w,φ(x)	 =
wT φ(x) for a feature space with finite dimension).

The regression coefficients in the vector w are estimated
during the training phase by solving the following ERM:

min
w

L∑
l=1

(yl − �w,φ(xl)	)2 + λ�w�2 (51)

for λ ≥ 0.
The above optimization problem can be rewritten in its

matrix form as

min
w

(
y − �T w

)T (
y − �T w

) + λwT w (52)

where �T ∈ R
L×P is a matrix collecting the basis functions

evaluated on the training inputs

�T = [φ(x1), . . . ,φ(xL)]T (53)

and y = [y1, . . . , yL ]T ∈ R
L is a vector collecting the training

outputs. According to the above definition, the lth training
output is approximated as

yl ≈ [
�T w

]
l
= φ(xl)

T w. (54)

After some straightforward calculation, the cost function
in (52) can be written as

E(w) = yT y − wT � y − yT �T w + wT ��T y + λwT w

= yT y − 2wT � y + wT ��T y + λwT w (55)

since yT �T w = (yT �T w)T . The above cost function can be
minimized by calculating its partial derivatives with respect to
the regression unknowns w

∂ E(w)

∂w
= −2� y + 2��T w + 2λw (56)

where we are using the following property of the derivatives
with vectors:

∂xT Ax
∂x

= 2Ax. (57)

The optimal values of w can be found as

∂ E(w)

∂w
= 0 → (

��T + λIP
)
w − � y = 0 (58)

which gives the well-known solution for the KRR based on
the pseudoinverse matrix

w = (
��T + λIP

)−1
� y (59)

where IP ∈ R
P×P is the identity matrix and ��T ∈ R

P×P .
It is important to notice that the overall number of unknowns
in (59) is P (i.e., the number of basis functions).

However, it is possible to prove that if ��T is symmetric,
(59) admits its direct dual solution [39] such that

w = (
��T + λIP

)−1
� y = �

(
�T � + λIL

)−1
y (60)

where, in this case, IL is an L × L identity matrix since �T �

is an L × L matrix.
Let us now define the vector α = [α1, . . . , αL ]T as

α = (K + λIL )−1 y (61)

where the matrix K = �T � ∈ R
L×L is the so-called Gram

matrix [38]. Therefore, the original unknown vector w in (59)
can be written as

w = �α =
L∑

l=1

φ(xl)αl . (62)

Now, we can focus on the Gram matrix K, which is defined
as

K = �T � =
⎡
⎢⎣

φ(x1)
T

...

φ(xL)T

⎤
⎥⎦[

φ(x1) . . . φ(xL )
]

(63)

such that the i j -element of the matrix K can be written as

[K]i j = k
(
xi , x j

) = φ(xi)
T φ

(
x j

) = �φ(xi),φ
(
x j

)	H (64)

where k(·, ·) : R
p×p → R is a kernel function, defined as the

inner product in the Hilbert space between the basis functions.
According to (63), the Gram matrix K collects the kernel
function evaluated on the training inputs.

By substituting (62) into (50), for any x ∈ X , we have

f̃ (x) = �w,φ(x)	 =
L∑

l=1

αl�φ(xl),φ(x)	

=
L∑

l=1

αlk(xl, x). (65)

Equation (65) is the dual formulation of the ridge regres-
sion [38], [39]. It is important to notice that the resulting model
is completely defined by L unknowns, where L is equal to
the number of training samples. Indeed, due to the kernel
function, the number of regression unknowns is completely
independent of the number of basis functions collected in the
vector φ in (50). Indeed, we do not need to explicitly define the
basis functions, and we just need to know the corresponding
kernel, leading to the so-called kernel trick [22]. In principle,
since the kernel is defined as the inner product in the Hilbert
space, we can even work in an infinite-dimensional space (i.e.,
P → ∞) [22], [23].

APPENDIX B
DERIVATION OF THE VECTOR-OUTPUT KRR

Let us recall the matrix formulation of the ERM for the
vector-valued KRR with a separable matrix kernel, which can
be written as

min
C

�Y − KxCB�2
F + λ� f̂ �2

H (66)
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where

f̂ (x) =
L∑

l=1

kx(x, xl)Bcl . (67)

In the above ERM, the regularizer term � f̂ �2
H can be

rewritten in terms of a Frobenius inner product [40], [46]

� f̂ �2
F =

L∑
i, j=1

�ci , Bkx
(
xi , x j

)
c j	

=
L∑

i, j=1

cT
i Bkx

(
xi , x j

)
c j

= Tr
(
CT KxCB

) = �CT KxC, B	F (68)

in which we have used the following properties of the trace
operator:∑

l

∑
k

Alkw
T
l wk = Tr

(
WAWT

)
(69a)

Tr(AB) = Tr
(
(AB)T

) = Tr
(
BT AT

)
(69b)

Tr

(∑
i

Ai

)
=

∑
i

Tr(Ai) (69c)

together with the definition of the Frobenius inner product
in (28).

Therefore, the optimization problem in (66) can be rewritten
as

min
C

�Y − KxCB�2
F + λ�CT KxC, B	F . (70)

Now, we can write �Y − KxCB�2
F as

�Y − KxCB�2
F

= Tr
(
(Y − KxCB)T (Y − KxCB)

) =
= Tr

(
YT Y − (KxCB)T Y − YT KxCB + (KxCB)T KxCB

)
= Tr

(
YT Y − BCT KxY − YT KxCB + BCT KxKxCB

)
= Tr

(
YT Y − 2BCT KxY + BCT KxKxCB

)
(71)

since

Tr
(
YT KxCB

) = Tr
((

YT KxCB
)T

)
= Tr

(
BCT KxY

)
. (72)

Therefore, the optimization problem in (66) can be written
as

min
C

Tr
(
YT Y − 2BCT KxY (73)

+BCT KxKxCB + λCT KxCB
) = E(C). (74)

In the above minimization problem, the optimal values of
the entries of coefficient matrix C are estimated as the ones
for which

∂ E(C)

∂C
= 0. (75)

In order to compute the above partial derivative, let us recall
some properties of the trace and derivative operator [41]

Tr
(
XT A

)
∂X

= A (76a)

Tr
(
AXT B

)
∂X

= BA (76b)

Tr
(
BT XT CXB

)
∂X

= CT XBBT + CXBBT . (76c)

According to the above relationships, (75) can be written as

∂ E(C)

∂C
= −2KxYB + 2KxKxCBB + 2λKxCB = 0 (77)

from which we get

Kx(−Y + KxCB + λC)B = 0 (78)

which leads to the following discrete-time Sylvester
equation [40]:

KxCB + λC = Y. (79)

Equation (79) can be solved in a closed form by using the
Kronecker formulation [41] such that [40]

(B ⊗ Kx + λIDL ) vec(C) = vec(Y). (80)

After permutations, (80) is equivalent to the one reported
in [46], which can be written as

(Kx ⊗ B + λIL D) vec
(
CT

) = vec
(
YT

)
(81)

where, in this case, the vectors cl in (67) are the columns of
the matrix CT that can be reconstructed from vec(CT ).

APPENDIX C
DERIVATION OF THE NYSTROM COMPRESSED

VECTOR-OUTPUT KRR

Let us recall the matrix form of the ERM obtained from the
Nystrom approximation of the Gram kernel matrix in (43)

min
C̃

�Y − K̃LnC̃B�2
F + λ�C̃T K̃nnC̃, B	F (82)

where, in this case, C̃ ∈ R
nD×nD .

By expanding the term �Y − KLnC̃B�2
F , we get

�Y − K̃LnC̃B�2
F

= Tr
((

Y − K̃LnC̃B
)T (

Y − K̃LnC̃B
))

= Tr
(
YT Y − 2BC̃T K̃nLY + BC̃T K̃nLK̃LnC̃B

)
. (83)

Therefore, (82) can be written as

min
C̃

Tr
(
YT Y − 2BC̃T K̃nLY

+ BC̃T K̃nLK̃LnC̃B + λC̃T K̃nnC̃B
) = E

(
C̃

)
. (84)

Again, the cost function E(C̃) is minimized by setting
to zeros its partial derivatives with respect to C̃, i.e.,
(∂ E(C̃)/∂C̃) = 0. By using the properties of the trace and the
derivative operator in (76a), (76b) and (76c), (84) turns out to
be equivalent to the following linear system of equation:

−2K̃nLYB + 2K̃nLK̃LnC̃BB + 2λK̃nnC̃B = 0 (85)

which also in this case leads to the following discrete-time
generalized Sylvester equation:

−K̃nLY + K̃nLK̃LnC̃B + λK̃nnC̃ = 0 (86)

for which the coefficients C̃ can be computed by solving the
following linear system:(

B ⊗ K̃nLK̃Ln + λID ⊗ K̃nn
)

vec
(
C̃

) = vec
(
K̃nLY

)
. (87)
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In this case, a prediction for a generic test point x∗ ∈ X
can be written as

f̂ (x) =
n∑

l=1

kx(x, x̃l)Bc̃l = B ⊗ kx
(
x, X̃n

)
vec

(
C̃

)
. (88)
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