
15 April 2024

POLITECNICO DI TORINO
Repository ISTITUZIONALE

Processing-aware Migration Model for Stateful Edge Microservices / Calagna, A.; Yu, Y.; Giaccone, P.; Chiasserini, C.
F.. - STAMPA. - (2023). (Intervento presentato al convegno IEEE ICC 2023 tenutosi a Rome (Italy) nel 28 May 2023 -
01 June 2023) [10.1109/ICC45041.2023.10278877].

Original

Processing-aware Migration Model for Stateful Edge Microservices

IEEE postprint/Author's Accepted Manuscript

Publisher:

Published
DOI:10.1109/ICC45041.2023.10278877

Terms of use:

Publisher copyright

©2023 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any
current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating
new collecting works, for resale or lists, or reuse of any copyrighted component of this work in other works.

(Article begins on next page)

This article is made available under terms and conditions as specified in the corresponding bibliographic description in
the repository

Availability:
This version is available at: 11583/2974824 since: 2023-06-02T08:59:25Z

IEEE

Processing-aware Migration Model for
Stateful Edge Microservices

Antonio Calagna
Politecnico di Torino

Torino, Italy

Yenchia Yu
Politecnico di Torino

Torino, Italy

Paolo Giaccone
Politecnico di Torino

Torino, Italy

Carla Fabiana Chiasserini
Politecnico di Torino

Torino, Italy

Abstract—To support latency sensitive microservices at the
edge, stateful container migration has gathered momentum as
a key solution to ensure a satisfying experience to mobile users.
In this paper, we first investigate experimentally the stateful mi-
gration process, by using state-of-the-art tools, namely, Podman
and CRIU. We then characterize the main migration KPIs, i.e.,
migration duration and downtime, and develop an analytical
model that can effectively assess whether stateful migration is
feasible while meeting the user’s QoE requirements. Importantly,
our model is validated using real-world microservices and,
by accounting for all relevant real-world aspects of stateful
migration, significantly outperforms state-of-the-art models.

Index Terms—Migration, Microservices, Modeling

I. INTRODUCTION

Network Function Virtualization (NFV) has been acknowl-
edged as the pivotal technology to meet the challenges of
placement, management, chaining, and orchestration of net-
work services. According to NFV, network services are repre-
sented by service function chains, composed of a set of Virtual
Network Functions (VNFs). Along with NFV, the concept of
microservices has emerged with the aim to make VNFs cloud-
oriented by design, thus being implemented into lightweight,
scalable, general purpose containers [1]. In this context, live
migration has gathered momentum as a means to enable
container migration and, hence, ensure continuous proximity
of latency-sensitive or bandwidth-consuming microservices
with mobile end users. Additionally, live migration can be
used as dynamic resource management tool for, e.g., resource
rescheduling, load balancing, and fault tolerance.

In this paper, we focus on stateful migration, which is used
whenever keeping track of the service state is essential to
guaranteeing service continuity. In other words, in stateful
migration, beside the service template image, the following
pieces of information are made available at the destination
host: (i) the CPU-context state, e.g., registers, processes’ tree
structure, and namespaces, (ii) the memory content, i.e., pages
allocated in the main memory, (iii) the network sockets, and
(iv) the open file descriptors.

Unlike stateless migration, which has already been inves-
tigated thoroughly and implemented in relevant orchestration

This work was partially supported by the European Union under the
Italian National Recovery and Resilience Plan (NRRP) of NextGenerationEU,
partnership on “Telecommunications of the Future” (PE00000001 - program
“RESTART”).

systems like Kubernetes, stateful migration is less straight-
forward and still exhibits several open issues. In particular,
none of the existing works has modeled the container-based
live migration process in a sufficiently accurate manner. We
thus fill this gap by proposing a Processing-Aware Migration
(PAM) model that captures all the relevant real-world aspects
of stateful migration. Unlike state-of-the-art models [2], PAM
accounts for the processing time overhead introduced by the
migration tool and its impact on both the migration and the
downtime duration. Our work demonstrates that such compo-
nent, neglected in prior art, is often a dominant contribution to
the latency of the migration process. Furthermore, we design
the PAM model starting from experimental observations made
through our testbed, and we validate it using such popular
microservices as MQTT Broker and Memcached.

Our main contributions are therefore as follows: (i) we
assess experimentally the performance of container stateful
migration controlled through off-the-shelf tools; (ii) leverag-
ing our experiments, we devise a new analytical model to
accurately estimate the migration key performance indicators
(KPIs), accounting for the processing time overhead neglected
in prior art; (iii) we validate the model in a realistic scenario
and show that it greatly outperforms existing models.

In the following, Sec. II introduces stateful migration,
Sec. III describes the testbed we developed to get experimental
results reported and used in Sec. IV to derive the PAM model.
The model is validated in Sec. V, while Sec. VI discusses some
relevant related work and Sec. VII draws our conclusions.

II. OVERVIEW OF CONTAINER MIGRATION

This section provides an overview of microservice stateful
migration, along with its KPIs. Further, it introduces CRIU, as
the primary enabling tool to effectively implement microser-
vice stateful migration.

Microservice migration. We consider microservices run-
ning on containers, whose internal state must be migrated.
Since stateful migration involves transferring microservice’s
memory content, multiple strategies have been defined to
minimize the time to perform such transfer. All of them are
based on the concept of dirtiness, which refers to the amount
of memory pages that the microservice has modified. Each
microservice is characterized by the value of dirty page rate,
R, i.e., the number of memory pages it modifies per time unit.

Initialization

Running

Microservice

SRC

Host

Before

Migration

Migration After

Migration

Finalization

Running

Microservice

Stop

&

Copy

Iterative PreCopy

DST

Host

Resource

Allocation

Resource

Release

Fig. 1: Live migration diagram under the Iterative PreCopy strategy

Live migration can then be categorized depending upon
which strategy is adopted to cope with the microservice
dirtiness, namely, PreCopy, PostCopy, or HybridCopy. Since
PostCopy and HybridCopy do not yet support container mi-
gration and are still at an early experimental stage [3], we
focus on PreCopy. In particular, we tackle an extension of
the PreCopy strategy, named Iterative PreCopy, which, to
minimize the microservice disruption time, transfers the dirty
pages to the destination host iteratively while the microservice
is still running at the source and till, e.g., the new user
connection is established or a deadline set by the orchestrator
is reached. As depicted in Fig. 1, this approach enables the
system orchestrator to set-up the destination host in advance
and keep it continuously up-to-date before the final microser-
vice migration is scheduled and executed. Such final migration
procedure is known as Stop&Copy stage, during which the
microservice is stopped at the source node, and its state is
transferred to the destination host where the service will be
eventually resumed. After migration, the source host is notified
about the successful restoration, and the resources reserved
therein are released.

We remark that the duration of the Stop&Copy phase
determines the service disruption experienced by the final user,
which is commonly referred to as downtime (T down). The total
migration duration consists of the duration of both the Iterative
PreCopy and the Stop&Copy stage, i.e.,

Tmig =

I∑
i=0

Ti + T down , (1)

where Ti is the generic iteration duration and I + 1 denotes
the number of iterations required for migration. Given that our
study aims at characterizing the migration cost for the network
operator as well as the user’s QoE, we take both the overall
migration duration and the downtime as migration KPIs.

Furthermore, we express the amount of data to be trans-
mitted from source to destination host during iteration i as:
Vi = ρ · τ1 · M for i = 0, and Vi = ρ · τ2 · Ni · σ for
i > 0, where M is the microservice state size, Ni is the
number of dirty memory pages at iteration i, and σ is the size
of each page, which depends on the considered architecture
and kernel settings. During the first iteration (i = 0), the
data volume consists of the whole memory content of the
microservice, while for i > 0, only the dirty memory pages,

Stop&CopyIterative PreCopy

Fig. 2: Live migration diagram: CRIU implementation

i.e., those that have been modified with respect to the previous
iteration, are considered. Coefficients τ1 and τ2 account for
the amount of transferred data, including the encapsulation
overhead introduced by a migration tool (which, for any i > 0,
depends upon the dirty page rate). Parameter ρ indicates the
ratio of the compressed data volume to the uncompressed one,
while the additive volume contribution due to the CPU-context
state is negligible and has been omitted.

Migration tool: CRIU. It is considered the key tool to
effectively implement stateful migration. It defines: (i) a check-
point procedure, which seizes a running process, collects its
state and encapsulates it into an image, and (ii) a restore pro-
cedure that leverages a previously created checkpoint image
to create a process and resume its state, on a host machine.
To successfully retrieve the microservice state, CRIU requires
to temporarily freeze the microservice at the source at every
iteration during the Iterative PreCopy stage, thus producing
a service disruption period, named frozen time, that adds to
the aforementioned downtime. Our aim is to characterize both
such sources of service disruption.

More specifically, CRIU provides two kinds of checkpoint
procedure: predump and dump, corresponding to, respectively,
the first and the generic iteration of the Iterative PreCopy. As
depicted in Fig. 2, the predump duration T p

criu consists of three
major contributions: (i) the freezing time T freeze

criu , needed to
seize a process, (ii) the frozen time T p,frozen

criu , during which
microservice state and memory content are identified, (iii)
the memory time contribution T p,mem

criu , related to extracting
and encapsulating these memory pages. In the case of the
dump duration (T d

criu), instead, the memory time contribution
is already part of the frozen time period T d,frozen

criu . In summary,

T p
criu=T

freeze
criu +T p,frozen

criu +T p,mem
criu ; T d

criu=T
freeze
criu +T d,frozen

criu . (2)

It is also worth introducing the time needed to transfer the
dirty memory pages at each iteration, denoted with T net. Then,
considering that the iterations in (1) correspond to a predump
stage for i = 0, and to a generic dump iteration for i > 0, we
can write the iterations duration at CRIU layer, as:

Tcriu,i =

{
T p

criu + T net if i = 0

T d
criu + T net if i > 0 .

(3)

Given a generic iteration i, the number of dirty memory pages
multiplied by their size σ is given by the product between the

dirty page rate and the time period during which the process
was actively running during the previous iteration, i.e.,

Ni · σ = Ri−1 · (Tcriu,i−1 − T x,frozen
criu,i−1) , (4)

with Tcriu,i−1 being the duration of the previous iteration and
T x,frozen

criu,i−1 the corresponding frozen time.
Finally, CRIU performs restoration by forking a new process

tree for each microservice. Thus, the restore time, T r
criu,

consists of relocating the microservice state in terms of CPU
state and memory content, i.e.,

T r
criu = T fork

criu + T reloc
criu . (5)

Finally, the Stop&Copy stage at the CRIU layer consists of
(i) one last dump execution, which also stops the microservice
at the source host; (ii) the transfer of this final checkpoint
image to the destination host, and (iii) the restoration of the
microservice state at the destination host. Thus, the overall
downtime during Stop&Copy is given by:

T down
criu = T d

criu + T net + T r
criu . (6)

III. OUR TESTBED

In this section, we briefly describe the testbed we developed
to analyze the migration process of containerized microser-
vices. While the testbed uses CRIU as de facto standard for
migration, it supports the creation, running, and management
of containerized microservices through the runC and Podman
tools, which operate on top of CRIU.

Creation, running, and management of containerized
microservices. To extend the process layer perspective offered
by CRIU, we leverage runC as container runtime, and Podman
as container engine. runC is at the basis of most container
engines and orchestration systems, including Podman. One of
the main perks of runC is its integration with CRIU. Although
directly experimenting with runC is possible, our aim is to
analyze the migration duration and the downtime experienced
at the microservice layer, thus assessing the impact on the
user’s QoE in terms of additional latency. For this reason, our
experimental setup takes a higher layer perspective and focuses
on the Podman container engine, in order to evaluate live
migration performance in a realistic microservice deployment
scenario. Podman is an open-source product, designed to
develop, manage, and run containers and pods. Podman di-
rectly leverages runC APIs, thus leading to better performance
than Docker. Also, Podman has been designed to organize
containers in pods and allowing their definition to be exported
to a Kubernetes-compatible file. These features, along with
CRIU integration, strongly motivate the use of Podman as
container engine. As for the migration latency, similarly to
(3), we can write:

Tpodman,i =

{
T p

podman + T net if i = 0

T d
podman + T net if i > 0 .

(7)

Likewise, the downtime, corresponding to the Stop&Copy
stage duration in (6), can be expressed at Podman layer as:

T down
podman = T d

podman + T net + T r
podman . (8)

As mentioned, our study also characterizes experimentally
the processing time overhead introduced by runC and Podman,
with respect to the underlying CRIU layer.

Experimental setting. To run extensive, yet controlled,
experiments, we developed a synthetic containerized microser-
vice that mimics an actual microservice but whose behavior
in terms of memory allocation is finely controllable. Starting
from a scratch Docker image, we developed a testing software,
in C language, which was encapsulated along with its library
dependencies. It leverages malloc API to allocate a circular
buffer of size M bytes which is randomly initialized to
maximize entropy and avoid compression. The software keeps
modifying the content of the buffer with a predetermined rate
evaluated within a fixed time period. Two different scenarios
are considered, with minimum (best-case scenario) and maxi-
mum (worst-case scenario) dirty page rate (denoted with Rmin

and Rmax, respectively).
For our experiments, we leverage a cloud computing archi-

tecture featuring Intel Xeon CPU E5-2620 v3 and instantiate
two identical virtual machines (VMs), one acting as source
and the other as destination of the migration process. The two
VMs, with Ubuntu 20.4 LTS as operating system, are assigned
4 vCPUs and 16 GB of RAM each. The size of each memory
page is set equal to 4,096 B. The results shown in the following
have been obtained by averaging over 50 runs, and computing
the 99% confidence interval.

IV. MODELING MIGRATION AND DOWNTIME DURATION

We now present our experimental analysis and leverage it
to derive the Processing-Aware Migration (PAM) model. The
PAM model accurately describes, regardless of the specific
microservice, the fundamental KPIs that characterize stateful
container migration and their components. Given (1), (7)
and (8), we relate Tmig and T down at the Podman layer to CRIU
time metrics. The parameter setting used for the proposed
model depend upon the specific testbed architecture and its
computational capabilities; however, they can be estimated
easily for any scenario by running few experiments.

A. Checkpoint duration
As shown by the experimental results in Fig. 4, the overhead

introduced by Podman with respect to the underlying runC
and CRIU layers can be approximated through multiplicative
constant factors (respectively, α1 and α2). Then, combining
this observation with (2), we get:

T p
podman = α1α2 · (T freeze

criu + T p,frozen
criu + T p,mem

criu) (9)

T d
podman = α1α2 · (T freeze

criu + T d,frozen
criu) . (10)

Additionally, we can replace T freeze
criu with a constant, β, as

demonstrated by the results in Fig. 3(left).
Fig. 3(center) provides experimental evidence that the frozen

time has a linear relationship with the microservice state size
M and it depends on both the dirty page rate R and the type
of phase, i.e., predump or dump. Thus, we can write:

T p,frozen
criu (M) = φp+γp ·M ; γp=Γ · ζ (11)

T d,frozen
criu (M,R) = φd+γd(R) ·M ; γd=Γ · ξ(R) .(12)

10−2 10−1 100 101 102 103

Microservice State Size, M [MB]

100

101

102

103

F
re

ez
in

g
T

im
e,
T

fr
ee

ze
cr

iu
[m

s]

Predump - Rmax

Predump - Rmin

Dump - Rmax

Dump - Rmin

10−2 10−1 100 101 102 103

Microservice State Size, M [MB]

100

101

102

103

F
ro

ze
n

T
im

e,
T

x
,f

ro
ze

n
cr

iu
[m

s]

Predump - Rmax

Predump - Rmin

Dump - Rmax

Dump - Rmin

10−2 10−1 100 101 102 103

Microservice State Size, M [MB]

100

101

102

103

M
em

or
y

T
im

e,
T

x
,m

em
cr

iu
[m

s]

Predump - Rmax

Predump - Rmin

Dump - Rmax

Dump - Rmin

Fig. 3: Checkpoint time contributions at CRIU layer, namely (left) freezing time, (center) frozen time, and (right) memory time

10−2 10−1 100 101 102 103

Microservice State Size, M [MB]

0.75

1.00

1.25

1.50

1.75

2.00

2.25

2.50

2.75

R
at

io

T p
podman/T

p
runC

T p
runC/T

p
criu

T d
podman/T

d
runC

T d
runC/T

d
criu

Fig. 4: Comparison between different stage durations at Podman,
runC, and CRIU layer

10−2 10−1 100 101 102 103

Microservice State Size, M [MB]

10−2

10−1

100

101

102

103

P
ag

es
W

ri
tt

en
,
N
·σ

[M
B

]

Predump

Dump

Memory Usage

Restored

Fig. 5: Amount of memory pages written by CRIU in the final
checkpoint image, for Rmax

Note that φp and φd act as a lower bound due to CRIU
algorithms and the specific implementation, and they are
independent of the microservice state size and the dirty page
rate. Coefficients γp and γd are sensitivity factors that relate
processing time with memory allocation; they consist of a
constant Γ scaled by parameters ζ and ξ (resp.), with the latter
expressing the relationship with the dirty page rate R.

Next, according to the results in Fig. 3(right), the process-
ing time contribution due to memory operations, i.e., pages
selection and extraction, linearly depends upon M . Thus,

T p,mem
criu (M)=δ+Λ·M ; T d,mem

criu (M,R)=δ+Λ·η(R)·M , (13)

where δ is a lower bound independent of the stage (predump
or dump), the microservice state size, or the dirty page rate;
η(R) ∈ (0, 1], in accordance with the behavior shown in
Fig. 3(right), models the impact of the dirtiness tracking
system adopted in dump iterations and its relationship with
R; Λ is a constant scaling factor.

Finally, T net is approximated as the time needed to transfer
Vi data over a link of capacity Li, i.e., T net = Vi/Li. Ac-
cording to the experimental behavior depicted as an example
in Fig. 5 for Rmax, the number of memory pages written into

10−2 10−1 100 101 102 103

Microservice State Size, M [MB]

10−1

100

101

102

103

104

T
im

e
[m

s]

T r
criu - Rmax

T r
criu - Rmin

T r
runC - Rmax

T r
runC - Rmin

T r
podman - Rmax

T r
podman - Rmin

T fork
criu - Rmax

T fork
criu - Rmin

Fig. 6: Restore operations time at CRIU, runC, and Podman layer

the checkpoint image linearly depends upon the microservice
state size:

N p(M) = µp + νp ·M (14)

N d(M,R) =

{
µd(R) if M ≤ 105 B

µd(R) + νd(R) ·M if M > 105 B .
(15)

In (14) and (15), µp and µd, and slopes νp and νd, describe,
respectively, the minimum number of pages extracted and the
overhead with respect to the actual microservice state size.

B. Restore duration

To address the restoration of the microservice state at the
destination host, we leverage the experimental evidence that,
similarly to what shown for the predump and dump phases,
relates the restoration time to the duration at the runC layer
and the latter to the restore duration at the CRIU layer through
constant values (namely, α3 and α4 below). Furthermore, con-
sidering (5) and given that the forking time can be neglected
and the context relocation time linearly depends upon M only
(see the results in Fig. 6), we can write:

T r
podman ≈ α3α4T

reloc
criu = α3α4(ψ + ω ·M) . (16)

In (16), ψ is the minimum time needed to accomplish a restore
procedure, regardless of the value of M , while ω accounts for
the impact of M on the total restore duration.

C. Dirty page rate analysis

We now enhance our model by investigating and character-
izing the dependency of its parameters on the dirty page rate.
To this end, we extend the experimental setting introduced in
Sec. III to consider any value of dirty page rate as input, and
we define R̂ = R−Rmin

Rmax−Rmin
as the normalized dirty page rate.

The experimental results in Fig. 7(left) highlight that
ξ, η, µd, and νd have a linear relationship with

0.0 0.2 0.4 0.6 0.8 1.0

Normalized Dirty Page Rate, R̂

−5

0

5

10

15

20

25

30

η
(R

)
,

µ
d
(R

)
,

ξ(
R

)

M=0.1 MB

M=100 MB

M=1000 MB

Experimental

Model

0

1

2

3

4

5

ν
d
(R

)
[1

/B
]

×10−4

0.0 0.2 0.4 0.6 0.8 1.0

Normalized Dirty Page Rate, R̂

1.0

1.5

2.0

2.5

3.0

3.5

4.0

τ 2
(M

,R
)

M = 0.1 MB

M = 1 MB

M = 10 MB

M = 100 MB

M = 1000 MB

Model

0.0 0.2 0.4 0.6 0.8 1.0

Normalized Dirty Page Rate, R̂

10−1

100

101

102

103

V
(M

,R
)

[M
B

]

M = 0.1 MB

M = 1 MB

M = 10 MB

M = 100 MB

M = 1000 MB

Model

Fig. 7: Experimental behavior of model parameters vs dirty page rate, and analytical function that best fit them

the dirty page rate, which can be modeled as fol-
lows: ξ(R)=25R̂ ; η(R)=0.01+0.99R̂ ; νd(R)=2.5·10−4R̂;
µd(R) = 8+44R̂ if R̂ < 0.5, and µd(R) = 30 otherwise.

On the other hand, as depicted in Fig. 7(center), for small
values of microservice state size M (i.e., M < 105 B), τ2 can
be approximated by a logarithmic relation with R̂ (see the blue
curve), while for M ≥ 105 B such relationship is hyperbolic.

Finally, Fig. 7(right) validates our model by comparing
analytical and experimental results for the volume of data Vi
to be transmitted, as given in Sec. II and combined with (14)-
(15). The results highlight (i) how the data volume depends
upon R̂ and the state size M , as well as (ii) the excellent
match between our model and the experimental results.

D. Migration KPIs

We can now derive the PAM model for the fundamental
migration KPIs, i.e., migration duration and downtime. Com-
bining (7), (9), and (10), the duration of the Iterative PreCopy
stage for iteration i can be written as:

T0 = α1α2 · (T freeze
criu + T p,frozen

criu + T p,mem
criu) + T net (17)

Ti = α1α2 · (T freeze
criu + T d,frozen

criu) + T net . (18)

Then, using (8), (10), and (16), the downtime is given by:

T down = α1α2 · (T freeze
criu +T d,frozen

criu)+T net +α3α4T
reloc
criu . (19)

Finally, combining (1), (17), (18) and (19), we get the total
migration duration:

Tmig=α1α2

(
T freeze

criu +T p,frozen
criu +T p,mem

criu

)
+T net+(I + 1)·(

α1α2 · (T freeze
criu +T d,frozen

criu)+T net
)
+ α3α4T

reloc
criu . (20)

V. MODEL VALIDATION

We now validate the PAM model by using popular, real-
world microservices, namely, MQTT Broker and Memcached.
As shown below, our results suggest that the PAM model
accurately describes stateful migration performance and re-
markably outperforms the state-of-the-art (SotA) model in [2].

Validation setup. MQTT is a publish/subscribe protocol,
commonly used for IoT applications, which involves three
main logical entities: broker, publisher, and subscriber. An
MQTT broker is a microservice acting as an intermediate
between publisher and subscriber. Since the MQTT broker
manages the connections and preserves the messages that
must be delivered in its internal queue, a stateful approach

is fundamental to prevent information loss during migration.
Memcached is an in-memory, key-value store intended as
user-defined and high-performance caching system. Other
than speeding up applications by alleviating database load,
Memcached is widely exploited to define distributed virtual
pools of memory. Clearly, due to its memory-related nature,
Memcached migration must be stateful to prevent information
loss. To thoroughly evaluate the migration performance, we
define a validation setup that allows for a fine tuning of the
microservice state size and of the dirty page rate.

Results. Figures 8a–8c present the total migration duration
as a function of the number of iterations I . Observe how the
PAM model (blue and green curves, respectively, for Rmin and
Rmax) matches the experimental results obtained with real-
world microservices (”x” and ”+” markers) very closely in all
cases, while the state-of-the-art, ideal model in [2] (orange
and brown curves) is unable to do so. The reason for this
behavior is that, under ideal conditions (i.e., not accounting
for the processing contribution), the number of pages to be
transmitted decreases at each iteration, and, hence, so does
the iteration duration. Instead, combining (3) and (4), it can
be seen that, according to the PAM model, the number of
memory pages written during the i-th dump iteration depends
upon both the processing overhead and the network transfer,
with the processing time being the dominant component.

Figures 8d–8f further investigate the downtime, versus the
state size M , for varying values of bandwidth L. Again, notice
how our model well approximates the migration performance,
and the gap with respect to the SotA model dramatically
increases with L. Indeed, consistently with (19), the larger
L, the more significant the processing contribution to the
downtime, due to the dump and the restore phases.

Finally, by looking at Figures 8c and 8d, we observe that
dirtiness is best leveraged for large values of M , while, for
lower values, the KPIs are practically independent of R.

VI. RELATED WORK

A large body of work has investigated container live migra-
tion. A taxonomy of the main stateful migration techniques
is presented in [4], [5]. Promising applications of stateful
migration by using CRIU can instead be found in [6], [7].
As for latency-sensitive applications, [8] proposes migration
as a decisive technology to ensure proximity of services to
IoT, while [9] presents a migration framework for mobile
core network components and demonstrates that container

10−2 10−1 100 101 102 103

Microservice State Size, M [MB]

100

101

102

103

104

105

106

M
ig

ra
ti

on
D

ur
at

io
n,
T

m
ig

[m
s]

PAM - Rmin

SotA [2] - Rmin

PAM - Rmax

SotA [2] - Rmax

MQTT - Rmin

MQTT - Rmax

Memcached - Rmin

Memcached - Rmax

(a) I = 1

10−2 10−1 100 101 102 103

Microservice State Size, M [MB]

100

101

102

103

104

105

106

M
ig

ra
ti

on
D

ur
at

io
n,
T

m
ig

[m
s]

PAM - Rmin

SotA [2] - Rmin

PAM - Rmax

SotA [2] - Rmax

MQTT - Rmin

MQTT - Rmax

Memcached - Rmin

Memcached - Rmax

(b) I = 10

10−2 10−1 100 101 102 103

Microservice State Size, M [MB]

100

101

102

103

104

105

106

M
ig

ra
ti

on
D

ur
at

io
n,
T

m
ig

[m
s]

PAM - Rmin

SotA [2] - Rmin

PAM - Rmax

SotA [2] - Rmax

MQTT - Rmin

MQTT - Rmax

Memcached - Rmin

Memcached - Rmax

(c) I = 100

10−2 10−1 100 101 102 103

Microservice State Size, M [MB]

100

101

102

103

104

105

106

D
ow

nt
im

e,
T

d
ow

n
[m

s]

PAM - Rmin

SotA [2] - Rmin

PAM - Rmax

SotA [2] - Rmax

MQTT - Rmin

MQTT - Rmax

Memcached - Rmin

Memcached - Rmax

(d) L = 10 Mbps

10−2 10−1 100 101 102 103

Microservice State Size, M [MB]

100

101

102

103

104

105

106

D
ow

nt
im

e,
T

d
ow

n
[m

s]

PAM - Rmin

SotA [2] - Rmin

PAM - Rmax

SotA [2] - Rmax

MQTT - Rmin

MQTT - Rmax

Memcached - Rmin

Memcached - Rmax

(e) L = 100 Mbps

10−2 10−1 100 101 102 103

Microservice State Size, M [MB]

100

101

102

103

104

105

106

D
ow

nt
im

e,
T

d
ow

n
[m

s]

PAM - Rmin

SotA [2] - Rmin

PAM - Rmax

SotA [2] - Rmax

MQTT - Rmin

MQTT - Rmax

Memcached - Rmin

Memcached - Rmax

(f) L = 1000 Mbps

Fig. 8: Model validation: migration duration vs no. of iterations, with network bandwidth set to L = 1Gbps (top); downtime vs L (bottom)

PreCopy outperforms other strategies and virtualization tech-
nologies. [10] introduces Teddybear, a Docker based system
that enhances live migration by using the user’s mobile device
as a carrier for the container. [11] presents CloudHopper, a
functional live migration system for containerized applications
that holds and redirects client connections. Further, [12], [13]
investigate QUIC, underlying its validity for stateful migration
and extending it to support server-side connection migration.

Few studies however have modeled microservice migration.
The recent work in [14] explores container orchestration in a
hybrid computing environment and proposes an optimization
model to achieve minimal downtime for fault recovery by
either re-instantiating or migrating containers. The closest
work to ours is [2], which introduces an ideal model that serves
as a starting point for planning and scheduling multiple VMs.
As mentioned, our goal is to present a model more accurate
than the one in [2] by capturing all the relevant real-world
aspects of the container migration process.

VII. CONCLUSIONS

We proposed a novel processing-aware migration model that
effectively characterizes the fundamental stateful migration
KPIs. Using state-of-the-art tools, we evaluated their pro-
cessing overhead and assessed their impact on the migration
performance. The results show that our model accurately
describes the migration process, substantially outperforming
the state-of-the-art. In addition, our study demonstrates that
Iterative PreCopy is very effective for microservices with a
large state size and low dirty page rate, while alternative
solutions are required in case of small state size or high dirty
page rate. Future work will exploit the proposed model to
optimally configure the system for the migration of various,
real-world containerized microservices.

REFERENCES

[1] P. Jamshidi, C. Pahl, N. C. Mendonça, J. Lewis, and S. Tilkov, “Mi-
croservices: The journey so far and challenges ahead,” IEEE Software,
vol. 35, no. 3, pp. 24–35, 2018.

[2] T. He, A. N. Toosi, and R. Buyya, “SLA-aware multiple migration
planning and scheduling in SDN-NFV-enabled clouds,” J. of Systems
and Software, vol. 176, p. 110943, 2021.

[3] D. Fernando, J. Terner, K. Gopalan, and P. Yang, “Live migration ate
my VM: Recovering a virtual machine after failure of post-copy live
migration,” in IEEE INFOCOM, 2019, pp. 343–351.

[4] M. Terneborg, J. K. Rönnberg, and O. Schelén, “Application agnostic
container migration and failover,” in IEEE LCN, 2021, pp. 565–572.

[5] G. Singh and P. Singh, “A taxonomy and survey on container migration
techniques in cloud computing,” Sustainable Development Through
Engineering Innovations, pp. 419–429, 2021.

[6] M. Sindi and J. R. Williams, “Using container migration for HPC
workloads resilience,” in IEEE HPEC, 2019, pp. 1–10.

[7] H. Htet, N. Funabiki, A. Kamoyedji, X. Zhou, and M. Kuribayashi, “An
implementation of job migration function using CRIU and podman in
docker-based user-pc computing system,” in ACM ICCCM, 2021.

[8] C. Puliafito, A. Virdis, and E. Mingozzi, “The impact of container
migration on fog services as perceived by mobile things,” in IEEE
SMARTCOMP, 2020, pp. 9–16.

[9] S. Ramanathan, K. Kondepu, M. Razo, M. Tacca, L. Valcarenghi,
and A. Fumagalli, “Live migration of virtual machine and container
based mobile core network components: A comprehensive study,” IEEE
Access, vol. 9, pp. 105 082–105 100, 2021.

[10] A. Elgazar and K. Harras, “Teddybear: Enabling efficient seamless
container migration in user-owned edge platforms,” in IEEE CloudCom,
2019, pp. 70–77.

[11] T. Benjaponpitak, M. Karakate, and K. Sripanidkulchai, “Enabling
live migration of containerized applications across clouds,” in IEEE
INFOCOM, 2020, pp. 2529–2538.

[12] L. Conforti, A. Virdis, C. Puliafito, and E. Mingozzi, “Extending the
QUIC protocol to support live container migration at the edge,” in IEEE
WoWMoM, 2021, pp. 61–70.

[13] C. Puliafito, L. Conforti, A. Virdis, and E. Mingozzi, “Server-side QUIC
connection migration to support microservice deployment at the edge,”
Pervasive Mobile Computing, 2022.

[14] S. Aleyadeh, A. Moubayed, P. Heidari, and A. Shami, “Optimal
container migration/re-instantiation in hybrid computing environments,”
IEEE Open J. of the Communications Society, vol. 3, pp. 15–30, 2022.

	Introduction
	Overview of Container Migration
	Our Testbed
	Modeling migration and downtime duration
	Checkpoint duration
	Restore duration
	Dirty page rate analysis
	Migration KPIs

	Model Validation
	Related Work
	Conclusions
	References

