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Density-tunable pathway complexity in a minimalistic
self-assembly model

Matteo Becchi,a Riccardo Capelli,b,c Claudio Perego,d Giovanni M. Pavan,∗b,d and Cristian
Micheletti∗a

An open challenge in self-assembly is learning how to design systems that can be conditionally guided
towards different target structures depending on externally-controlled conditions. Using a theoretical
and numerical approach, here we discuss a minimalistic self-assembly model that can be steered
towards different types of ordered constructs at the equilibrium by solely tuning a facile selection
parameter, namely the density of building blocks. Metadynamics and Langevin dynamics simulations
allow us to explore the behavior of the system in and out of equilibrium conditions. We show that
the density-driven tunability is encoded in the pathway complexity of the system, and specifically in
the competition between two different main self-assembly routes. A comprehensive set of simulations
provides insight into key factors allowing to make one self-assembling pathway prevailing on the other
(or vice versa), determining the selection of the final self-assembled products. We formulate and
validate a practical criterion for checking whether a specific molecular design is predisposed for such
density-driven tunability of the products, thus offering a new, broader perspective to realize and
harness this facile extrinsic control of conditional self-assembly.

1 Introduction
Self-assembling systems, where fundamental building blocks, or
monomers, interact with each other and organize spontaneously
into supramolecular structures, offer promising routes to build
new types of materials with tunable properties1–6. Notable natural
examples include protein filaments7, tubules8, viral capsids9,10,
and amyloid fibrils11, only to name a few. In recent years, the fas-
cinating dynamic properties of such natural self-assembled systems
motivated considerable efforts in the supramolecular chemistry
community, with the aim to synthesize bioinspired artificial sys-
tems via similar self-assembly principles4,12,13. A variety of, e.g.,
supramolecular polymers14,15, tubules16, micelles17, vescicles18,
knots19, catenanes20,21, etc., has been reported, and the factors
that control their self-assembly have been investigated in great
detail22–28.

Within this rapidly advancing frontier, an open challenge is

a Scuola Internazionale Superiore di Studi Avanzati - SISSA, via Bonomea 265, 34136
Trieste, Italy. Email: cristian.micheletti@sissa.it
b Department of Applied Science and Technology, Politecnico di Torino, Corso Duca degli
Abruzzi 24, 10129 Torino, Italy. Email: giovanni.pavan@polito.it
c Department of Biosciences, Università degli Studi di Milano, Via Giovanni Celoria 26,
20133 Milano, Italy
d Department of Innovative Technologies, University of Applied Sciences and Arts of
Southern Switzerland, Polo Universitario Lugano, Campus Est, Via la Santa 1, 6962
Lugano-Viganello, Switzerland
† Electronic Supplementary Information (ESI) available: Supplementary Methods,
Supplementary Figures. See DOI: 10.1039/cXsm00000x/

learning how to design self-assembling systems so that they can
be externally guided towards different target structures29. To this
end, a recognised crucial factor for controlling assembly products
both in and out of equilibrium27,30,31 is the so-called “pathway
complexity”, that is the presence of multiple intermediate states
and competing self-assembly routes30,32. These defining features
have been leveraged to alternatively establish different types of
assemblies by modulating intrinsic properties, such as the shape of
monomers33,34and their interactions35,36, or by mixing different
types of monomers30,37–39, or using fuel-driven/regulated31,40,41

and other out-of-equilibrium setups42,43.

Examples of tuning the pathway complexity via extrinsic ap-
proaches have been also reported. For example, modifying the tem-
perature29,44,45, the solvent29,46–48, or the dilution strategy21,49

were demonstrated to have an impact on the selection of the self-
assembly products. While these extrinsic parameters expectedly
have direct bearings on the assembly thermodynamics, these ap-
proaches provide examples of how one can externally move the
process toward alternative target products. The potential gen-
erality of selective assembly strategies based on extrinsic, and
hence transferable, control parameters, make them particularly
appealing and significant.

Indeed, there are several contexts where qualitatively different
assemblies can be obtained with same building blocks at differ-
ent concentrations, such as micellar versus lamellar structures50,
BCC versus FCC lattices51 or different non-crystalline phases52,53.
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Fig. 1 Tunability of prevalent assembly products. (A) The helical building blocks, which are rigid and can bind at the ends via attractive patchy
interactions (patches are rendered as pink beads; their size is exaggerated for visual clarity), can form linear amorphous constructs (Ln) as well as
self-limited ordered rings (Rn), including those highlighted and made of n = 3 and n = 4 building blocks. For simplicity, populations of linear and circular
species with more than 4 building blocks are consolidated in two groups labelled as Llonger and Rlonger, respectively. (B) Equilibrium configuration of
systems with N = 240 building blocks in periodic cubic simulation boxes with different volumes, V , corresponding to building block densities ρ = N/V
equal to 0.25 and 2.0, respectively, expressed in units of a reference concentration ρ0 = 7.5 ·10−3σ−3. The histograms show the relative abundances of
the different Ln and Rn species at equilibrium and show that varying ρ allows for selecting either R3 or R4 as the prevalent assembly type at equilibrium.
Histograms with the instantaneous populations of the two snapshots are instead provided in Fig. S1 in the ESI†.

These and analogous instances typically harness the coexistence
of distinct bulk phases, involving structures that can extend in-
definitely. By contrast, using monomer concentration to select
different products among self-limited assemblies has proved much
more elusive, and only a few specific examples have been reported,
showing the potential of the approach54.

The inherent challenges for such use of monomer concentration
are aptly illustrated by processes resulting in one-dimensional,
polymer-like assemblies, such as tubules55, cylindrical micelles56

and supramolecular polymers14,54. The string-like species formed
in equilibrium are poly-dispersed in length, their abundance de-
caying exponentially with the polymerization degree. Varying
monomer density can change the exponential decay length, skew-
ing the population towards shorter or longer species, but no tuning
of the density can e.g. make a given species more abundant than
shorter ones. In addition, varying monomer concentrations can
lead to kinetic trapping, disordered aggregation or precipitation.
Thus, in most instances it remains prohibitively difficult to obtain
clear knowledge on how to design effective one-dimensional sys-
tems where selective self-assembly can be achieved by tuning the
pathway complexity via monomer density.

Here, we introduce and study a minimalistic self-assembly model
with an intrinsic pathway complexity, and show unambiguously
that it can be selectively guided towards one of two possible target
products by solely varying building block concentration. By means
of this model, we can thus investigate what features of pathway
complexity ultimately underpins the assembly tunability in and
out of equilibrium. This also allows us to formulate a practical
criterion for checking whether such density-based tunability of

the products is intrinsically encoded in a specific molecular de-
sign, which ought to be useful to screen candidate systems for
conditional self-assembling properties.

2 Methods

2.1 Model

We consider monodispersed mixtures of N patchy helical build-
ing blocks, that are treated as rigid bodies and are modelled as
in ref.24,57,58. The rigid building blocks, that are inspired by
synthetic helicates used in supramolecular assembly, consist of
n = 16 touching spherical beads of diameter σ with two attractive
patches at the ends. The centers of the beads lie on a helical curve,
parametrised as

r⃗i = R(cos(αi/n),sin(αi/n),hi/n)

where i ∈ {1, ...,16} is the bead index and R = 3.36σ , α = 1.55π

and h = 1.008R. The interaction centers of the patches also lie on
the helical centerline, close to the outer surface of the terminal
beads, see Fig. 1A. The building blocks interact via the hard-
core repulsion of the beads and the short-range attraction of the
patches. The combination of repulsive and short-ranged attractive
interactions confers an effective directionality to the latter, which
allows one patchy terminal to bind another one, but no more.
Self-assembly of branched structures is thus avoided24,58.

The repulsion is provided by a truncated and shifted (WCA)
Lennard-Jones potential,
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UWCA =
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]
for d ≤ 21/6σ

0 otherwise

where d is the distance between beads’ centers; ε , the characteristic
Lennard-Jones energy scale, is customarily taken equal to the
system thermal energy kBT .

The attractive, binding potential is instead

Ub =

−25εBexp
[
− d2

2 σ̃ 2

]
for d ≤ 21/6σ

0 otherwise

where d is the distance between the centers of the patches and
σ̃ = σ/10.

The amplitudes of the potentials are set to their default val-
ues, A = 150 and B = 124,58. For the out-of-equilibrium setup we
used B = 1.2, which makes binding practically irreversible. With
the default parametrization, bound configurations correspond to
distances of about 0.1σ or less. Accordingly, we used a tolerant
distance threshold 0.4σ for the algorithmic identification of bound
building blocks, see Fig. S2 in the ESI†.

2.2 Langevin Dynamics

Langevin dynamics simulations of the assembly process were car-

ried out for a periodic cubic box of side Lb =
(

N
ρ

)1/3
, where ρ

is the total building block concentration, expressed in units of a
reference concentration ρ0 = 7.5 ·10−3σ−3, at which the average
nearest neighbor distance is comparable with the gyration diame-
ter of a building block (≈ 7σ). The system initial building block
density ρ was varied in the range 0.125 ≤ ρ

ρ0
≤ 2.0.

The molecular dynamics simulations were integrated with the
LAMMPS simulation package59, with unit values, in simulation
units, for the friction coefficient, γ , and the beads’ mass, m. The in-
tegration time step was set equal to 0.012τLJ, where τLJ = σ

√
m/ε

is the characteristic Lennard-Jones time.
We simulated N = 36 and N = 240 building blocks and, for each

combination of ρ and N, we collected from 20 to 40 independent
trajectories of duration between 24 ·106 and 120 ·106τLJ.

For the default amplitude of the attractive potential, B = 1, the
lifetime of dimers is about 480 · 103τLJ

58, much larger than the
typical self-diffusion time of the building blocks, τB ≈ 20τLJ

24. The
characteristic binding energy, εb, was estimated by linearly fitting
the average potential energies of different assemblies (dimers,
trimers, R3 and R4) versus the number of bonds, see Section 1.2
and Fig. S4 in the ESI†.

2.3 Free-energy and kinetics calculations

The free-energy landscapes associated to the N = 5 building blocks
system at different densities were characterised by means of
multiple-walkers (96 replicas) well-tempered metadynamics (WT-
MetaD)60, which enhances the exploration of the conformational
space with a history-dependent bias potential along a given set of
order parameters, the collective variables (CVs). Two CVs were
biased during the WT-MetaD simulations, controlling the overall
distance and number of established contacts between the building

blocks (see details in the Section 1.1 in the ESI†). The initial height
of the Gaussians was 0.1kBT , with bias factor (the damping pa-
rameter) set to 30. The free-energy obtained from the exploration
of the CV space was then projected via a reweighting procedure61

onto the different aggregation states indicated in Fig. 2 (see also
Section 1.1 in the ESI†).

The kinetics of transition between different states was estimated
by means of infrequent WT-MetaD simulations62,63. Operatively,
we performed 100 repetitions of each selected state transition,
applying a WT-MetaD bias potential to trigger the change of state.
The deposition frequency was set to 105 steps-1 with an initial
height of 0.1kBT , bias factor of 30. The empirical time distribu-
tions obtained following ref.62 were then fitted to a rare-events
distribution63 to estimate the unbiased rates of transitioning to a
target state from a given initial one, reported in Fig. 2.

The MetaD simulations were performed by coupling the
PLUMED 2.6 library64,65 with LAMMPS66. As for the unbiased
Langevin dynamics we set an integration time step of 0.012τLJ.
The building block density is modulated by setting a different
value of the simulation box side Lb.

3 Results and discussion

3.1 Overview of density-driven assembly selection

We considered monodispersed solutions of rigid, curved building
blocks24 that can bind at their ends via attractive patchy inter-
actions (see Methods). The helical shape of the building blocks,
which was selected with a general design principle discussed fur-
ther below, allows for the formation of both linear (string-like)
and self-limited circular (knotted) structures. Elements of these
two families are indicated as Ln and Rn, respectively, where n is
the number of building blocks, see Fig. 1A.

Two remarkable properties of this model readily emerge from
assembly simulations at different initial building block density
ρ = N/V , N being the total number of building blocks in the
considered volume V , see Fig. 1B. First, the ordered assemblies R3

and R4 are prevalent against the background of disordered, open
polymers Ln in the entire range of considered densities ρ. Next,
R3 and R4 can be alternatively selected as the globally dominant
species by solely tuning ρ.

In the following we discuss more in detail the factors under-
pinning the notable properties of the model, whose minimalistic
nature make it ideally suited to extensive systematic characteriza-
tion of the assembly pathways both in and out of equilibrium.

3.2 Free energy landscape

As a first step, we discuss the case of N = 5 building blocks, which
is the smallest system where finite size effects do not inevitably
introduce enthalpic biases in configurations with either R3 or R4

constructs. In fact, the lowest energy microstates featuring R3 and
R4 are R3 +L2 and R4 +L1, which have the same total number of
bonds between building blocks (four). The same does not occur in
other small-sized systems, such as N = 4 or N = 6.

The limited size of the systems makes it amenable to use metady-
namics protocols60,62 to establish the free-energies of the various
microstates as well as the height of the barriers connecting them.
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Fig. 2 Thermodynamics and kinetics of a system composed of 5 building blocks. (A) Schematic representation of all states (in the circles) and
their inter-conversions (arrows) in the system. The red dashed box encloses the key microstates, i.e., those where the prevalent complex assemblies
R3 or R4 are present, or can be formed via a single elementary step. (B-E) Inter-conversion maps between the key states for different building block
densities (from ρ = 0.25 to ρ = 2.0). The colors of the rings enclosing each state represent its free energy in kBT (color bar). Dashed arrows identify
interconnections with the states not shown in the panels. The numbers on the inter-conversion arrows represent the rates of transition from the given
initial states to the target ones (in units of 109 MD steps-1). For the two dominant ordered states, R3 and R4, the equilibrium canonical probabilities at
the different concentrations are also reported. Complete results accounting for the entire set of microstates (i.e., also those out of the red dashed box)
are provided in the Fig. S3 in the ESI†.

The full set of microstates and possible inter-conversion paths are
shown in Fig. 2A. The dashed box encloses the key microstates,
i.e. those where R3 or R4 are present or can be formed in a single
elementary step.

Figs. 2B-E show the equilibrium abundances of the key mi-
crostates, and the transition rates among them at different build-
ing block densities, ρ. Here and in the rest of the text, ρ is
expressed in units of a reference concentration ρ0 = 7.5 ·10−3σ−3

(see Methods). At all considered ρ ’s, the fastest processes (thicker
arrows) are the growth of linear constructs and linear to circular
conversions. Varying the concentration has virtually no impact on
dissociation steps or inter-conversions between circular and linear
forms, while it strongly modulates the growth rate of linear types.
Fig. 2 shows unambiguously that the bias towards growing linear
constructs with increasing ρ suffices to change the most probable
assembly pathway in the system (marked with red arrows) and
to flip the relative balance of R3 and R4. This clarifies that the
inversion of R3 and R4 populations can be rationalised in terms

of the system pathway complexity and how it is coupled to the
building block concentration, as we discuss below.

3.3 Stochastic dynamics of self-assembly

We now turn to larger systems, from N = 36 to N = 240 building
blocks, for which we study the assembly process with stochastic
(Langevin) molecular dynamics simulations. Differently from the
N = 5 case, where the small system size made it possible to consider
microstates involving all the building blocks, the larger systems
are more appropriately analysed in terms of the populations or
concentrations of the linear and circular species.

The results for a system of N = 36 building blocks are presented
in Fig. 3, which shows the asymptotic, equilibrium abundance of
various species over a 16-fold variation of initial building block
density, from ρ = 0.125 to ρ = 2.0. The data for this larger system
confirm the concentration-driven population inversion of the two
prevalent species, with the larger R4 assembly taking over at larger
densities. Notice that the curve for R4 abundance is non-monotonic
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and, similarly to the R3 species, it declines for sufficiently large
values of ρ. This is caused by more building blocks being co-
opted into longer linear constructs, as in other systems assembled
from linear building blocks67–69. However, the concentration of
each type of linear constructs remains much below those of R3

and R4 at all values of ρ. Circular constructs with more than
4 building blocks can be formed too, as illustrated by the Rlonger

assembly in Fig. 1A. In the minimalistic case N = 5, these constructs
can become prevalent with increasing density, superseding the
shorter circular species, R4 and R3 see Fig. S3 in the ESI†. However,
this does not occur in the considered system, N = 36, nor in the
larger one of N = 240, where Rlonger constructs remain marginally
populated. We note that the species abundances for N = 36 and
N = 240 are all consistent, cf. Figs. 1 and 3, indicating that finite
size effects are marginal in these systems.
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Fig. 3 Equilibrium populations Average equilibrium populations of
different species, from MD simulations with N = 36 building blocks (dots)
together with the theoretical prediction (dashed lines), as a function of
building block density ρ. The simulation points are averaged over 20
independent simulations starting from different initial configurations; error
bars are smaller than the data points. The theoretical predictions are for
infinite systems, and are based on parameters fitted from the simulation
at ρ = 1.0, see Fig. 4. The more abundant species can be modulated
varying the building block density above or below a certain crossover
concentration located around ρc = 0.397.

Quantitative insight into the tunable selection of the prevalent
assemblies can be gained with the stat-mech framework of cluster
formation. In dilute conditions, the equilibrium concentration of
species i is

ρi = ρ
n
1 vn−1

i e−β Ei , (1)

where β = 1/kBT , ρ1 is the (equilibrium) concentration of free
building blocks, n is the number of building blocks in the construct,
vi is a (species dependent) characteristic volume and Ei is the
binding energy of the species, which is proportional to the number
of bonds between building blocks (see Section 1.2 and Fig. S4 in
the ESI†).

The above expression holds when the system density is low
enough that multi-body interactions, including steric ones, can
be neglected70,71. We found a posteriori that Eq. 1 provides a
viable description of the abundance of both self-limited and linear

species in our system, even though the building block density ρ is
varied significantly.

For each of our observed species we computed the concentra-
tion independent term vn−1

i e−β Ei by inverting Eq. 1 and using the
asymptotic concentrations ρi and ρ1 evaluated at one single build-
ing block density, ρ = 1.0, see Fig. 4. With this proviso, Eq. 1 can
be used predictively to yield the concentrations of all species of
infinite systems at arbitrary densities. To this end it suffices to treat
the sole free parameter, ρ1, as quantity to be set self-consistently
so to yield the correct system density (see Section 1.3 in the ESI†).

The predicted concentrations are shown in Fig. 3 as dashed
curves. Although, we stress, the latter are for infinite systems
and were not fitted to the data points, they closely interpolate
the points. The good agreement of the actual and predicted pop-
ulations shows a posteriori that the theory of cluster formation
remains applicable even at densities where the nominal distance
between building blocks, Lb/N1/3, becomes comparable to their
characteristic size derived from the second virial coefficient, which
we computed following ref.72. For instance, at ρ = 2.0, the nomi-
nal distance is 10.2σ and the characteristic building block size is
6.2σ , see Section 1.4 in the ESI†.

The robust match of the observed and predicted concentrations
has important practical implications. Namely, it allows for us-
ing measurements taken at one sole density to test whether the
concentration-driven tunability is encoded into the system or not.
This was indeed the criterion that we used to single out the shape
of the considered building blocks. In fact, the theoretical curves
allow to pinpoint the critical density at which population inver-
sion occurs as ρc = 0.397. The more general chemical-physical
implications are that, provided that measurement at one single
concentration can be made on a given system, one can directly
establish whether the latter affords control over the density-driven
tunability of pathway complexity and over the selection of the
products. Moreover, this theoretical scheme also allows to de-
termine the temperature range inside which the density-driven
product selection is feasible.

Further insight into the tunability of the assembly outcome
with building block density is provided by the diagram of Fig. 5.
The Cartesian axes report the yield of the two ordered domi-
nant species, measured as the fraction of involved building blocks
(3NR3 + 4NR4)/N, and the system composition, measured as the
NR4/NR3 ratio. The diagram provides a synoptic representation of
the assembly dynamics at different ρ from the initial condition of
N = 36 dispersed building blocks to the asymptotic, equilibrium
state. The trajectories are overlaid to a curvilinear grid that rep-
resents the theoretical predictions of the equilibrium yields and
composition at different ρ ’s and different binding energies (in
reduced units), βεb.

The diagram establishes that the evolution towards equilibrium
from the initial dispersed state mostly proceeds along constant-ρ
grid lines. As time advances, the average dynamical trace for a
given ρ visits composition-yield values pertinent to equilibrium
states at the same density but with the magnitude of the binding
energy (i.e. its absolute value) progressively increasing towards
the actual value of the system, βεb = −22.69 (Section 1.2 and
Fig. S4 in the ESI†). This remarkable regularity of the trends in
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Fig. 4 Data from the simulation at a single density ρ = 1.0 (A) Concentrations of the different species, linear (blue) and circular (orange), at
equilibrium, measured from simulation at ρ = 1.0. Data are averages over 20 independent initial configurations. The abundance of open species decays
approximately exponentially with the size n. Species R3 and R4 dominate over other types of circular and linear assemblies. (B) Logarithm of the
weighting factor, vn−1

i e−β Ei , for a given species i, made of n building blocks. The density-independent weighting factor was calculated from the species’
concentrations at ρ = 1.0 (panel A) using Eq. 1. The weighting factors were used to obtain the theoretical predictions of the concentrations in Fig. 3
for ρ ̸= 1.0.
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Fig. 5 Composition-yield diagram. The plot shows (gray lines) the
predicted equilibrium values of the assembly yield (3NR3 +4NR4 )/N and
the composition of the assemblies, measured as the ratio between the two
main product concentrations NR4/NR3 , for different values of the building
block density ρ (increasing from bottom to top) and the characteristic
binding enthalpy βεb (increasing from left to right). The black line is
the one corresponding to the binding enthalpy βεb =−22.69 used in the
simulations. Colored lines show the path followed on this diagram by the
MD simulations, at the different ρ. The starting points of the simulations
are on the lower left, and there is a phase of initial relaxation, followed by
fluctuations around the equilibrium. The bold triangles show the average
values at equilibrium.

Fig. 5 gives quantitative substance to the heuristic conclusion that
the system evolution from an initial unbound state is not dissimilar
from a quasi-equilibrium assembly process where temperature is
gradually lowered from a large value (yielding unbound building
blocks) to the actual one.

The observed property is expected to hold more in general73,74

and, we surmise, might be harnessed to devise informed out-of-
equilibrium protocols where the assembly products could be pur-
posely altered or skewed with respect to the equilibrium case75,76.

One such possible protocol, directly inspired by our setup, could
involve the following steps: initial high-temperature equilibration
to populate isolated building blocks, temperature quenching to
establish the “attractor” value of βεb, and finally chemical-locking
of the assembly products after a specific time delay. Alternatively
to the last step, the system could be repeatedly driven through
cycles of low and high temperatures/binding energies, a setting
that we will directly address further below.

3.4 Density-tunable pathway complexity

We now examine in detail how the conditional selection of assem-
bly products is encoded in the pathway complexity of the system,
and specifically in the striking difference of the main assembly
pathways above and below the critical density, ρc ≈ 0.4.

Fig. 6 summarises the assembly dynamics for a system of N = 36
building blocks at the smallest and largest considered densities,
ρ = 0.125 and ρ = 2.0. For clarity, the populations of all species
with up to 4 building blocks are shown individually, while those
of larger linear and circular constructs are consolidated in two
groups labelled as Llonger and Rlonger, respectively.

The results show that R3 and R4 equilibrium populations are
reached much more slowly at ρ = 2.0 than at ρ = 0.125, the re-
laxation times being approximately 30 · 106τLJ and 8 · 106τLJ, re-
spectively. From this we conclude that the process is not diffusion-
limited, as otherwise it would be faster at higher concentrations77.
In fact, the characteristic times for building blocks to diffuse over
the nominal inter-particle separation is ≈ 300τLJ (ρ = 0.125) and
≈ 50τLJ (ρ = 2.0), which are orders of magnitude smaller than the
relaxation times noted above. The depletion of the population of
individual building blocks also occurs over time scales (≈ 104τLJ)
that largely exceed the diffusive ones. Note that the depletion is
much faster at ρ = 2.0 where, however, the formation of R3 and
R4 is slower. Furthermore, the balance of short and long species is
opposite at the two building block densities: the most abundant
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Fig. 6 Different concentrations select different pathways toward equilibrium. Pathways leading to the R3 and R4 rings (and other species) during
the relaxation towards equilibrium, for (A) low (ρ = 0.125) and (B) high (ρ = 2.0) building block densities (the populations’ evolution for intermediate
densities is reported in Fig. S5 in the ESI†). In the lower panels, Sankey diagrams show the fluxes among different species for both concentrations, at 4
different time slices: (i) Start of simulation, (ii) peak of linear constructs longer than n = 4, (iii) a typical time of bond breaking after the previous slice,
and (iv) at equilibrium. The size of each coloured bar is proportional to the total number of building blocks involved in the assemblies of each species.
Moreover, the fluxes between different species are shown by the gray bands, having width proportional to the number of building block flowing from one
aggregation state to another during each time slice.

types have four or fewer building blocks at ρ = 0.125 while they
involve three or more building blocks at ρ = 2.0.

These diverse aspects are rationalised in the bottom panels of
Fig. 6, which show the inter-conversion flow of different species
milestoned at four selected times. The milestones correspond
to: (i) the initial condition, where only the L1 unbound building
blocks are present, (ii) the maximum population of Llonger (iii) a
later time delayed by the characteristic lifetime of bonds in linear
constructs, τL ≈ 0.5 ·106τLJ, see Fig. S6 in the ESI†, and finally (iv)
the end of the relaxation phase when equilibrium has set in.

Analysis of the flows establishes the following results. At low
density, the isolated building blocks bind to form relatively short
linear constructs, dimers, trimers and tetramers. Upon closure,
the latter two yield the R3 and R4 species. Because R3 and R4 are
formed from the gradual growth and subsequent closure of linear
constructs, we dub this pathway as bottom-up.

At high density, instead, the isolated building blocks rapidly bind
to establish long linear constructs with more than four building
blocks. These assemblies later break up into smaller fragments, in-
cluding L3 and L4 species that, again after closure, can accumulate
as R3 and R4. We dub this pathway as top-down.

The emergent behaviour of the system is thus notable in several
respects. First, varying the system density introduces a competition
between the bottom-up and top-down self-assembly pathways,
which are qualitatively different. Next, for increasing density, the
top-down pathway antagonizes the bottom-up one, with the result

that larger self-limited ordered structures are favoured.

3.5 Harnessing pathway complexity with extreme assembly
conditions

The results thus establish building block density as a facile key
tuning parameter for selecting the self-assembly outcome by con-
trolling the balance of top-down or bottom-up pathways.

A relevant question is whether there exist other facile assembly
conditions or protocols, independent from varying system density,
that can be harnessed to further tune the balance between the
aforementioned pathways78. Identifying such conditions would
afford an even higher level of command over the conditional
selection of assembly products.

As a specific instance, we considered a general setup where
building block binding is periodically switched from reversible to
irreversible and vice versa. The rationale of the periodic switching
is twofold. On the one hand, the irreversible step is introduced to
deplete the top-down pathway, which is essentially characterized
by dissociation events. On the other hand, the periodic reinstating
of binding reversibility is made necessary to avoid runaway linear
constructs.

Within our model, this protocol is conveniently realized by
varying the building block binding energy at regular intervals, al-
ternating between the default strength and a sufficiently large one
(see Methods). In experimental realizations, analogous conditions
could be obtained with, e.g., periodic changes of the pH.
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Fig. 7 Evolution with modulated interaction strength highlights pathway complexity. Time evolution of the populations of different self-assembled
species at (A) low (ρ = 0.125) and (B) high (ρ = 2.0) building block density (N = 240) with the strength of bonding interactions alternatively switched
between B = 1.2 (irreversible bonding, light blue background) and B = 1.0. During the irreversible evolution, one can note a monotonic increase of the
rings populations, and a strong interconversion from open (green) to closed (purple) longer constructs. Vice versa, during the reversible evolution the
longer rings break up, increasing the population of longer linear constructs, which can subsequently provide building blocks for the R3 and, mostly, R4
rings, leading to an increase of the second with respect to the first ones.

Fig. 7 shows the effects of such periodic variations of inter-
building block interactions on a system of N = 240 building blocks
at low and high building block densities (ρ = 0.25 and ρ = 2.0,
respectively). The switching time was set equal to 6 · 106τLJ, a
timescale chosen to be comparable to the characteristic relaxation
times of most species populations, see Fig. 6.

At both densities, the irreversible step boosts the formation of
long constructs, involving more than 4 building blocks. In fact,
the species at the end of the first irreversible phase involve 64
building blocks on average, with some constructs consisting of as
many as 213 building blocks. The emergence of such atypically
long constructs is a vivid consequence of the suppression of the
top-down pathway (where the assemblies can dissociate). In the
subsequent reversible phase, the long constructs break-up into
shorter fragments, thus favoring the top-down pathway.

The overall effect is that the irreversible step skews the balance
in favour of R3 species, while the reversible steps swings it back
towards R4 assemblies. As the cyclic evolution progresses, the R3

and R4 populations are thus differentially ratcheted up towards
the steady-state values.

We stress that the choice of timing of the switches and bind-
ing energies of our out-of-equilibrium protocols were based on
the observed system relaxation kinetics and assembly pathways.
Differently from arbitrary choices of the protocol, this informed
parametrization allow for tuning the balance of the dominant
species beyond what can be achieved at equilibrium by solely
intervening on the building block density.

4 Conclusions

In summary, we considered a minimalistic self-assembling model
with innate pathway complexity where alternative types of ordered
assemblies can be conditionally selected as the prevalent product
against a background of disordered constructs by solely tuning
the system density. This density-driven tunability of the domi-
nant assembly outcome is noteworthy in several respects. First,
it is uncommon in self-assembling systems, like the considered
one, where building blocks have two attractive ends, thus yielding

polymeric, or string-like constructs. In such systems, varying the
density can typically at best skew the heterogeneous population
towards shorter or longer constructs, but with no possibility of
changing the ranking of the various species. On the other hand, in
most practical contexts increasing building block density is often
avoided in self-assembling systems as it is generally associated with
aspecific aggregation, entrapment in disordered states, and pre-
cipitation. Our study shows, instead, that not only such undesired
consequences can be escaped, but that different types of ordered
self-assembled products can be selected and made prevalent by
acting on building block density.

Analysis of the assembly process from an initial state of dispersed
building blocks reveals such density-driven tunability is integrated
in the system’s pathway complexity. The latter involves two main
self-assembly routes, which we dub bottom-up and top-down. In
the former, the two competing types of ordered assemblies are
formed by accretion, that is, via progressive addition of smaller
units. In the latter, the same ordered assemblies are preferentially
established via the breakage and reconfiguration of long linear-
like aggregates (fragmentation and recombination). The dominant
type of ordered assembled product is controlled by the competition
between the two self-assembling routes, which can be tuned by
acting solely on building block concentration. This provides a
facile way to externally select alternative self-assembly outcomes
in equilibrium. As we showed, resorting to out-of-equilibrium
assembly protocols can provide additional tunability of the process.

The unusual tunable properties of our model system were
achieved thanks to a general design concept based on a stat-mech
framework for cluster formation. The principle was used to ratio-
nally customize the building blocks’ features, in terms of shape,
directionality and range of interaction, so to program the con-
ditional selectability of two ordered products. Importantly, we
showed that the same design criterion can also be conveniently
used to assess, based on population measurements at one den-
sity only, whether a self-organizing system is predisposed to such
control with varying density.

In consideration of the minimalistic formulation of our model
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and the general purpose of our strategy, we expect that a similar
approach can be generally applicable, thus providing a powerful
search strategy for identifying, in computationally or experimen-
tally efficient manners, candidate systems amenable to conditional
selection of the self-assembly outcome. Possible leads include
supramolecular structures based on, e.g., DNA origami79,80, or
rigid organic molecules such as helicates19,81, that self-assemble
into closed self-limiting structures, cages, macrocycles, etc.82–87.
In general, the physical knowledge that can be gleaned from such
molecular models in terms of key factors controlling the emergence
of complexity and the selection of species during self-assembly
holds a considerable potential towards a systematic exploration
of naturally-occurring systems with similar properties, as well
as for discovering practical manners to control self-assembly in
supramolecular chemistry.
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