
20 May 2024

POLITECNICO DI TORINO
Repository ISTITUZIONALE

Dynamic Job Allocation on Federated Cloud-HPC Environments / Vitali, G.; Scionti, A.; Viviani, P.; Vercellino, C.; Terzo,
O.. - ELETTRONICO. - 497:(2022), pp. 71-82. (Intervento presentato al convegno 16th International Conference on
Complex, Intelligent and Software Intensive Systems, CISIS 2022 tenutosi a Online nel 2022) [10.1007/978-3-031-
08812-4_8].

Original

Dynamic Job Allocation on Federated Cloud-HPC Environments

Springer postprint/Author's Accepted Manuscript

Publisher:

Published
DOI:10.1007/978-3-031-08812-4_8

Terms of use:

Publisher copyright

This version of the article has been accepted for publication, after peer review (when applicable) and is subject to
Springer Nature’s AM terms of use, but is not the Version of Record and does not reflect post-acceptance improvements,
or any corrections. The Version of Record is available online at: http://dx.doi.org/10.1007/978-3-031-08812-4_8

(Article begins on next page)

This article is made available under terms and conditions as specified in the corresponding bibliographic description in
the repository

Availability:
This version is available at: 11583/2974767 since: 2023-01-18T11:28:35Z

Springer

Dynamic job allocation on federated Cloud-HPC
environments

Giacomo Vitali, Alberto Scionti, Paolo Viviani, Chiara Vercellino, Olivier Terzo

Abstract With the growing complexity of workflows brought by the recent integra-
tion of machine learning, deep learning and big data analytics techniques, there is an
ever increasing demand for compute, network and storage resources which require
innovative approaches to their management, as well as their easy access and use
(including the cloud model). Although there is an abundance of resources in today’s
HPC infrastructures, they remained shared across the users, and for certain use cases
(e.g., urgent computing applications) they may be still not enough to fulfil the work-
flow requirements. Also, specific computing resources (e.g., hardware accelerators)
may be accessible only within certain datacentres. To cope with these challenges, a
secure interconnection among multiple HPC datacentres that allows mutual access
to their resources (federation) is considered. This paper focuses on the extension
of the SimGrid software library, a C++ based simulation framework, for evaluating
the jobs allocation strategies that lay at the core of a federated execution platform.
A greedy-based allocation strategy has been evaluated against random and round-
robin approaches; then, this greedy allocation strategy has been integrated within
the main orchestration service developed in the context of the LEXIS federated ex-
ecution platform. Tests with real workflows showed the capability of this greedy
allocation strategy to dynamically select the best suitable execution cluster for dif-
ferent jobs.

Giacomo Vitali
LINKS Foundation, Torino e-mail: giacomo.vitali@linksfoundation.com

Alberto Scionti
LINKS Foundation, Torino e-mail: alberto.scionti@linksfoundation.com

Paolo Viviani
LINKS Foundation, Torino e-mail: paolo.viviani@linksfoundation.com

Chiara Vercellino
LINKS Foundation, Torino e-mail: chiara.vercellino@linksfoundation.com

Olivier Terzo
LINKS Foundation, Torino e-mail: olivier.terzo@linksfoundation.com

1

2 Giacomo Vitali, Alberto Scionti, Paolo Viviani, Chiara Vercellino, Olivier Terzo

1 Introduction

The ever-growing of workflows complexity is putting more pressure on HPC infras-
tructures in providing adequate resources for executing different jobs demanding
very diverse computing, storage and networking resources. To address this chal-
lenge, the federation of HPC infrastructures and combination of cloud services pro-
visioning has been proposed as an effective way of providing such resources, as well
as to support applications with peculiar requirements such as the cases found in the
urgent computing domain. In this regard, the orchestration of complex scientific and
industrial workflows on distributed resources presents a large number of challenges,
such as the management of data dependencies, automatic job scheduling, results re-
trieval and visualization among others. Moreover, moving towards such federated
execution environments, composed of HPC datacentres and cloud services, adds an-
other layer of complexity to it, as data and jobs have to be orchestrated between
different and often distant locations.

In this context, the LEXIS (Large-scale EXecution for Industry & Society)
project proposed a solution [1] that leverages the flexibility of the Yorc orchestrator1

supported by the common Distributed Data Infrastructure (DDI)[2], which provides
data availability on multiple centres, and a newly developed module –named Dy-
namic Allocation Module (DAM), which is written in Python language. The latter
allows the orchestrator to dynamically allocate jobs at any available location and
at any given moment, by retrieving all the necessary information for each federated
HPC datacentre before the actual job submission. The gathered information involves
mainly the HPC and cloud resource status; gathering operation is accomplished by
means of REST APIs requests to the HEAppE middleware 2[3] and OpenStack re-
spectively, while programmed maintenance and networking performances are peri-
odically updated through dedicated REST APIs and stored in a database. Then, the
preferred location is chosen using a greedy strategy, which, for each location, com-
putes the weighted mean of the scores associated with the gathered information.

To validate this type of approach, a C++ based HPC-federation simulator has
been developed, leveraging the SimGrid3 software library. The simulator allows to
define a number of workflows composed of any number of jobs, as well as the
resources each centre dispose of, such as clusters and cloud partitions. Moreover,
it can simulate data transmission, as well as queue-like behaviour and machines
occupancy, by using a parametrized Monte Carlo approach. The preliminary results
of this simulator demonstrate that the implemented greedy strategy performs better
in terms of overall time-to-solution and job distribution than random and round-
robin approaches, which are typically used by meta-orchestrators to fairly distribute
the workload on available resources. This activity resulted in the implementation of
the DAM4 and its full integration within the LEXIS orchestration architecture.

1 https://github.com/ystia
2 https://heappe.eu/web/
3 https://simgrid.org
4 https://github.com/lexis-project/orch-service-dynamic-allocator-module

Dynamic job allocation on federated Cloud-HPC environments 3

2 Related Work

Dynamic resource allocation is a research topic well studied in the literature, with
approaches based on well defined optimality criteria being proposed both in the
cloud and Grid computing domains. Similarly, simulation frameworks have been
proposed to model large computing infrastructures with different degrees of detail.

The resource allocation task resembles a scheduling problem and, thus, can be
tackled in many different ways; among the others, the mapping of the resource al-
location problem as a combinatorial optimization one has been well studied. For
instance the (online) bin packing problem [4] is well-known to be NP-hard to solve;
thus, effective solvers use heuristics to approximate the optimal solution within an
acceptable time window. To mention a few, in [5], the authors proposed to hybridize
the cuckoo search heuristic with a gradient descent technique, to speed up the al-
gorithm convergence towards the overall workload execution time reduction, while
in [6], particle swarm optimization (PSO) based heuristic was used to optimally
schedule the predicted workloads. An overview of various approaches for allocating
cloud resources have been surveyed in [7], which include bio-inspired approaches.
A scheduling approach oriented to cover specific requirements (e.g., urgent comput-
ing) that are common in the weather forecast workflows is reported in [9]. Finding
a suitable allocation of the computing resources has been studied to contribute in
reducing the energy consumed by the infrastructures. As such, the energy mini-
mization has been tackled by solving an associated mixed integer linear program-
ming (MILP) problem [8]. Also, a deep learning (DL) approach has been used by
Google5 to reduce the power usage effectiveness (PUE) of their datacentres by 15%.

Unlike the cloud, in Grid computing the assignment of resources is done through
a “pull” mechanism, i.e., each resource signals its availability to the orchestrator
and requests a new task/job to run. Examples of such pulling approaches can be
found in the SETI@Home and BOINC [10] world-scale projects, as well as in the
DIRAC management system [11], which has been developed in the context of the
LHCb experiment at CERN. With respect to the cloud and Grid computing models,
the LEXIS platform lies in between, (HPC/cloud partitions on the clusters) served
through a queuing system (similarly to the case of Grid’s nodes).

Simulation frameworks have been used in all the scientific and technical domains
to evaluate the behavior of a system without the need of performing complex op-
erations on the real target system. As such, simulation frameworks provide means
for assessing the behavior of a given resource allocation strategy and to compare it
against the others. Several frameworks have been proposed to quickly and accurately
simulate distributed computing infrastructures. Worth to mention are WRENCH
system [12], which is based on the SimGrid library, and GSSIM [13]. Mansouri
et al. [15] surveyed other tools developed for research in the cloud domain. Com-
pared to these works, we provided extensions to the SimGrid library for modelling
and simulating heterogeneous clusters exposing different types of computing re-
sources.

5 https://www.deepmind.com/blog/deepmind-ai-reduces-google-data-centre-cooling-bill-by-40

4 Giacomo Vitali, Alberto Scionti, Paolo Viviani, Chiara Vercellino, Olivier Terzo

3 Simulator Overview

The multi-centre federated context for which the LEXIS platform has been devel-
oped does not allow for the straightforward creation of a separate test environment
where the functionality of every single module, as well as their interactions, can be
properly and safely assessed before moving to production. Therefore, in order to
minimize any possible detrimental effects on the overall system, the development
phase must follow a strict procedure. Moreover, in the specific case of the creation
of a module for the dynamic allocation of workflow jobs, assessing the functionality
of the envisioned allocation algorithm was a sensible prerequisite. These considera-
tions led to the idea of developing a software library for the simulation of a federated
HPC-centre environment where we could safely make initial tests on the module’s
behaviour and evaluate the effect on the system.

It is important to note that, while it is very challenging to precisely model a “dig-
ital twin” of the whole LEXIS federation, its simulation still remains an interesting
and useful topic to investigate, as it allows, among other things, to perform a rough
performance evaluation of the allocation strategy before even starting the develop-
ment of the real module.

In the following sections, we describe in detail the simulator’s architecture and
design, as well as report the results obtained from the performed tests.

3.1 Simulator Architecture and Design

To create a simulation library for a complex multi-centre federated environment,
composed of both HPC and cloud partitions, connection between datacentres and
clusters, as well as supporting the execution of heterogeneous multi-job workflows,
we performed a survey of the existing frameworks and we decided to use the Sim-
Grid6 as the main engine of the simulator. In fact, SimGrid is a C/C++ based frame-
work for distributed computer systems’ simulation, which has been used by re-
searchers in many fields of application to prototype, evaluate and compare relevant
platform configurations, system designs, and algorithmic approaches. It provides
models and API to simulate a wide range of distributed computing platforms (such
as commodity clusters, wide-area and local-area networks, peers over DSL connec-
tions, datacentres, etc.), which we used as fundamental bricks to build our specific
HPC-federation simulator.

Following the S4U (SimGrid for you) interface’s formalism, we created a set of
actors, which represent the independent streams of execution in the application,
i.e., the orchestrator (master actor), the HPC resources composed of the receiver
and the executor actors, and the cloud actor. Each actor associates a function de-
scribing the task the specific actor has to execute, with a host, that represents the
“physical” HPC/cloud resources on which the actor’s function is performed. A set

6 https://simgrid.org/

Dynamic job allocation on federated Cloud-HPC environments 5

Executor

Receiver

Avail. cores

Sched. Algorithm

Tot. cores

Core
speed

Orchestrator
Allocation Algorithm

Executor

Receiver

Avail. cores

Sched. Algorithm

Tot. cores

Core
speed

HPC partition 1 HPC partition N

JO
B/

DA
TA

 R
EQ

.

JO
B/

DA
TA

 R
EQ

.

CORES
UPDATES

CORES
UPDATES

JOB
EXEC.

JOB
EXEC.

M
O

N
IT

O
RI

N
G

 M
SG

.

M
O

N
IT

O
RI

N
G

 M
SG

.

ACTOR HPC/CLOUD ORCHESTRATOR DATA LINK

Cloud Cloud

Max
vCPUs

Created
VMs

Max
vCPUs

Created
VMs

Cloud
partition 1

M
O

N
IT

O
RI

N
G

 M
SG

.

Cloud
partition K

M
O

N
IT

O
RI

N
G

 M
SG

.

JO
B/

DA
TA

 R
EQ

.

JO
B/

DA
TA

 R
EQ

.

DATA TRANSFER DATA TRANSFER

…… …

Fig. 1: Simulator architecture with extension provided to properly represent the
HPC/cloud federation.

of parameters can be set for the orchestrator actor (i.e., the name of the allocation
strategy to be used, the number of workflows to be executed, etc.) and the hosts (i.e.,
the max core Flop/s, the total number of cores, network performance, presence of
specific hardware, such as Burst Buffers, GPU, etc.) in two dedicated configuration
XML files. The modular approach adopted by the developed solution allows for the
creation of specific classes for any allocation algorithm to be tested, which then
can be easily selected for a simulation run through the specific configuration XML
file. Figure 1 shows the described simulator architecture, detailing the interactions
between hosts (also named as partitions in the figure) and actors.

The workflows to be simulated have to be described in text files following a for-
mat specifically created for this simulator. This format allows for the definition of
HPC and cloud jobs’ parameters, such as Flop/s and number of cores required, and
the size of input data, as well as the dependencies between them. These templates are
then used by the simulator to launch workflow execution instances. During the sim-
ulation run, the status of the resources is emulated using a Monte Carlo approach. In
detail, queue waiting time and CPU occupancy follow a normal distribution, while
their update is triggered following a Poisson distribution. The parameters, such as
mean, standard deviation, update frequency, are defined in the configuration files
mentioned above. Moreover, the distribution types can be customized by users, but
contrary to the allocation algorithm’s case the change should be done in the code
(this could be improved in a future version of the simulator). One important remark
is that, while computing the Flop/s needed by a specific job (which approximates
the average amount of operations performed in the time unit) is unrealistic in real
cases, a reasonable value can be computed using the computational time for the job
in a real machine whose technical specifications are known.

6 Giacomo Vitali, Alberto Scionti, Paolo Viviani, Chiara Vercellino, Olivier Terzo

3.2 Simulator Assessment

The simulator has been used to benchmark the performance of a greedy allocation
strategy (developed in the context of LEXIS project) with respect to simple allo-
cation policies, such as purely random allocation and round robin. The algorithm
computes the weighted mean value smean, j of a set of scores si j assigned for specific
metrics i for each available location j, then chooses the one with the highest mean
score:

smean, j =
∑i wisi j

∑i wi
,

where wi is the weight assigned to the i-th score. The values of these scores range
from 0 to 1, where the former indicates a non compatible platform, and the latter the
best one.

The rationale behind this approach is to try to find the best compromise between
the various metrics, excluding the incompatible locations (si j ≤ 0). This simple ap-
proach is easily extensible in the number of metrics considered and provides enough
flexibility in terms of expected behaviour through the customization of the scores’
weights. In the implemented code, 4 metrics and the relative scores have been taken
into account for each location j:

s1, j =
1

1+ cused, j
ctot, j

; s2, j =
Flopscore, j

Flopsmax
; s3, j =

tsim, j

tsim, j + tqueue, j
; s4, j = e−x j ,

where cused, j is the number of used cores at the allocation time, ctot, j is the total
number of cores, Flopscore, j is the Flop/s per core, Flopsmax is the max Flop7s per
core between all the available resources of the same type (HPC or cloud), tsim, j is
the estimated simulation time, tqueue, j is the estimated queue waiting time (only for
HPC resources) and x j is a discrete variable whose value is 0 if the job’s input data
are in the same location j, 1 if they are in the same datacentre and 2 otherwise; the
rationale being data-transfer over long distances should be penalized. To evaluate
the functionality of the envisioned greedy strategy, two simulated experiments have
been performed using a common system platform which is shown in Figure 2.

Orchestrator
Cluster - 1

Cluster - 2

Cluster - 3

Cloud

Cluster - 4

Cloud

Cluster - 5

Cluster - 6

H
PC

H
PC

H
PC

H
PC

H
PC

H
PCInternet

IT4Innovations datacentre LRZ datacentre

lo
ca

l i
nt

er
co

nn
ec

t

lo
ca

l i
nt

er
co

nn
ec

t

workflow
1 2 N

Fig. 2: The simulated LEXIS federa-
ted platform.

Alloc. Strategy µ [103s] σ [103s]

Se
tu

p
1 greedy 93.602 0.049

random 196.496 91.354
round robin 192.351 96.866

Se
tu

p
2 greedy 134.294 2.472

random 248.927 85.807
round robin 246.124 84.648

Table 1: Timing results for the exper-
iment with setup 1 and 2.

Dynamic job allocation on federated Cloud-HPC environments 7

Table 1 shows the results obtained in terms of simulated workflow execution time
during the two experiments with different setups. They consisted of the execution of
100 identical single-branch DAG workflows, each composed of 3 jobs with linear
dependency to emulate pre-processing, simulation and post-processing. The two se-
tups differ in the clusters’ occupancy parameters and in the weights’ setting. For the
first setup, the occupancy has been set at around half capacity with a small variance
(µ ' 50% and σ ' 5%) for all the clusters and wi = 1. In the second case, instead,
the occupancy of the most frequently chosen location during the first experiment,
and the weight assigned to the score related to the CPU core performance has been
lowered from 1 to 0.25 as the difference between each cluster was impacting too
much the choice of the allocation in the first experiment. As expected, the greedy
strategy performed better than random and round-robin in both cases, as the work-
flows are statistically executed in a shorter time and with a much smaller variance.
These simple tests demonstrate the functionality of this approach in a simulated and,
therefore, controlled environment, which of course may differ from the complex and
unpredictable real case scenarios, but provides nonetheless a first indication of the
expected behaviour. In the next section, we describe the developed solution for the
LEXIS orchestrator and its implementation in the real platform.

4 Service Implementation

Figure 3 depicts the main structure and the components involved in the orchestration
process, as designed in the context of the LEXIS platform. The services that lay be-
hind the LEXIS platform allow the provision of computing and storage resources by
federating many datacentres into a single managed platform. For this purpose, each
datacentre may expose the capabilities of different machines in terms of computing
power and storage space; as such, the access to the resources is provided via cloud
or HPC model. To make the federation work, a network connection among the data-
centres exists. Furthermore, the access to computing, cloud and storage resources is
abstracted through two specific software components: (i) the HEAppE middleware
instances govern the actual job submission process to the HPC resources; (ii) the
Distributed Data Infrastructure (DDI) component abstracts and eases the access to
the datasets used by running workflows. The access to OpenStack cloud resources,
instead, is provided through YORC plugin using HEAppE authentication support.

Workflows are formally described by the composition of TOSCA7 software ab-
stractions which represent either infrastructural elements (e.g., a compute node with
its CPU(s), memory and storage) or software elements (e.g., the instantiation of a
docker engine or a specific software). Alien4Cloud provides the mechanisms driving
the user with the workflow description process; workflows and their building blocks
components are stored in a catalogue which has been made accessible through the
LEXIS portal (not represented in Figure 3). The actual workflow execution engine is

7 https://www.oasis-open.org/committees/tc home.php?wg abbrev=tosca

8 Giacomo Vitali, Alberto Scionti, Paolo Viviani, Chiara Vercellino, Olivier Terzo

API

DAM

Greedy LEXIS
Plugins

Yorc
Plugin

Alien4CloudYorc

YS
TI

A

LEXIS
AAI

Orchestration service level

Infrastructure and other services

DDIHPC/
Cloud

1

HPC/
Cloud

N

HEAppE instance

…
DDI

HEAppE instance

…HPC/
Cloud

1

HPC/
Cloud

N

Datacenter - 1 Datacenter - K

. . .

Network

Fig. 3: Architecture of the LEXIS federated orchestration: Ystia toolbox is aug-
mented with the DAM for dynamically selecting the jobs’ execution locations.

Yorc orchestrator; it has been extended through specific plugins to interact with the
HEAppE middleware instances and DDI, as well as with the Dynamic Allocation
Module (DAM).

DAM allows Yorc engine to rely on the delegation model for selecting the proper
HPC/cloud set of resources (location) to execute a given job (i.e., by fulfilling the
job requirements and all the infrastructural constraints). As such, the DAM has been
implemented as a flexible and extensible service, whose purpose is to compute the
most suitable location. To this end, like the case of the simulator (see Section 3),
the DAM comes with different allocation strategies, which allow selecting time by
time the most suitable location. Among the others, the greedy allocation strategy, as
described in Section 3, allows combining different scores related to the amount of
resources already in use at a given location, the total available resources, the avail-
ability of the input dataset and the data transfer speed between locations. All the
scores are computed by dynamically querying the HEAppE middleware instances
(one per datacentre) and the DDI subsystem. The averaged score can be eventually
masked out if the specific location is planned to go into maintenance during the
scheduled job execution time-frame. Averaged scores for the various locations are
ranked and the one receiving the highest (averaged) score is selected and sent back to
Yorc orchestrator to submit the job(s). Worth mentioning is that, through the DAM,
the entire workflow execution becomes dynamic, i.e., the allocation decisions are
made during the workflow execution; this implies that different locations can be se-

Dynamic job allocation on federated Cloud-HPC environments 9

lected between two different runs of the same workflow, and for each job contained
in it. Such dynamicity allows the LEXIS platform to better exploit all the federated
resources and to fulfil hard requirements such as in the case of urgent computing ap-
plications (where multiple locations can be selected to ensure the completion of the
jobs within a given time window) or to overcome failures and other outage events.

The DAM service module has been implemented using Flask, a Python-based
framework for developing web-based services, with less than 2000 lines of code
and exposing a REST API. The service was supplemented by a time-series database
(InfluxDB) to asynchronously collect and store values used to compute the scores,
or the evaluated scores themselves. All the LEXIS orchestration service components
have been designed to authenticate each time against the LEXIS Authentication and
Authorization Infrastructure (AAI), thus following the zero-trust security principle.
Also, these components have been mostly deployed on virtual machines which are
able to connect to all the federated resources.

5 Experimental Tests

The LEXIS orchestration service along with the DAM has been tested in the field, by
running application workflows defined by the LEXIS project’s pilots and covering
Aeronautics, Earthquake and Tsunami (also covering urgent computing use cases),
and Weather and Climate application domains. These three pilots defined workflows
involving the massive use of HPC resources, as well as the access to cloud virtual
machines and datasets distributed across the federated datacentres.

To this purpose, the federation comprised the access to 3 supercomputers lo-
cated in the Czech Republic –IT4Innovation HPC centre (i.e., Salomon cluster –
2.0 PFlop/s, Barbora cluster –849.0 TFlop/s, and Karolina cluster –15.7 PFlop/s),
and 3 supercomputers located in Germany –LRZ HPC centre (i.e., SuperMUC (de-
commissioned) –3.0 PFlop/s, SuperMUC-NG –26.9 PFlop/s, and a generic Linux
Cluster). Additionally, the access to cloud partitions and to smart buffer nodes for
accelerating I/O intensive operations was provided by IT4Innovations and LRZ cen-
tres. A dedicated VPN connection between the two centers was set up, allowing a
seamless access to the federated resources.

The DAM was tested in the context of the aforementioned application domains,
by running different workflows and letting the module dynamically selecting the
most suitable locations for running different jobs. To this end, and to demonstrate the
limited amount of resources required by the DAM, a small virtual machine (2 vCPUs
and 8GB of RAM) was used for the deployment. All the tests have been performed
using the previously discussed greedy allocation strategy. Also, failure conditions
have been extensively tested. As proof of the performed tests, we describe here
those obtained in the context of the Weather and Climate domain.

LEXIS pilot covering this application area resulted in three workflows, all with
a similar structure; they are namely: (i) RISICO –risks of wildland fires simulations
over Italy [16]; (ii) Continuum –risks of flooding simulation over Italy [17]; and

10 Giacomo Vitali, Alberto Scionti, Paolo Viviani, Chiara Vercellino, Olivier Terzo

DDI DAM Running on Cloud instance Cloud provider API HEAppE API

Fig. 4: Example of the Weather and Climate workflows’ structure: pre-processing
phase (left), heavy computing phase (center), post-processing phase (right).

b21d-e4a97cb25ccf][FindHPCLocationsJob][][tosca.interfaces.node.lifecycle.runnable][submit][]Status
for task execution "97f51658-775d-47f5-b21d-e4a97cb25ccf-0" changed to "RUNNING"
[2022-02-09T19:42:07.425880676+01:00][INFO]
[yorc-16d22cbf8f2d3ae813c66771ab0c9334_16444261327975780972246920613142276307-
Environment][Run][343cddd8-b369-4d1b-8b4a-3915b3812812][97f51658-775d-47f5-b21d-
e4a97cb25ccf][FindHPCLocationsJob][][tosca.interfaces.node.lifecycle.runnable][submit]
[]FindHPCLocationsJob submitting request to compute best location by
[2022-02-09T19:42:07.846470283+01:00][INFO]
[yorc-16d22cbf8f2d3ae813c66771ab0c9334_16444261327975780972246920613142276307-
Environment][Run][343cddd8-b369-4d1b-8b4a-3915b3812812][97f51658-775d-47f5-b21d-
e4a97cb25ccf][FindHPCLocationsJob][][tosca.interfaces.node.lifecycle.runnable][submit][]Component
FindHPCLocationsJob submitting to Dynamic Allocator Module HPC placement request
{"number":1,"project":"5f248333-a8d7-62af-4484-
ef763ff2b331","max_walltime":27000,"max_cores":512,"taskName":"WRF Generic","storage_inputs":
[{"size":3756872,"locations":["lrz_iRODS"],"numberOfFiles":13}],"attempt":0,"original_request_id":""}
[2022-02-09T19:42:59.12451051+01:00][INFO]
[yorc-16d22cbf8f2d3ae813c66771ab0c9334_16444261327975780972246920613142276307-
Environment][][][][FindHPCLocationsJob][0][][][]Attribute "request_id" value for node
"FindHPCLocationsJob", instance "0" changed to "50fb8eee-1c55-46c1-af7d-637c6b8cbf0a"
[2022-02-09T19:42:59.17961246+01:00][INFO]
[yorc-16d22cbf8f2d3ae813c66771ab0c9334_16444261327975780972246920613142276307-
Environment][][][][FindHPCLocationsJob][0][][][]Attribute "request_type" value for node
"FindHPCLocationsJob", instance "0" changed to "hpc"
[2022-02-09T19:42:59.213413479+01:00][INFO]
[yorc-16d22cbf8f2d3ae813c66771ab0c9334_16444261327975780972246920613142276307-
Environment][Run][343cddd8-b369-4d1b-8b4a-3915b3812812][97f51658-775d-47f5-b21d-
e4a97cb25ccf][FindHPCLocationsJob][][tosca.interfaces.node.lifecycle.runnable][submit][]Status for
workflow step "FindHPCLocationsJob_submit" changed to "DONE"
[2022-02-09T19:42:59.268024292+01:00][INFO]
[yorc-16d22cbf8f2d3ae813c66771ab0c9334_16444261327975780972246920613142276307-
Environment][Run][343cddd8-b369-4d1b-8b4a-3915b3812812][97f51658-775d-47f5-b21d-
e4a97cb25ccf][FindHPCLocationsJob][][tosca.interfaces.node.lifecycle.runnable][submit][]Status for
task execution "97f51658-775d-47f5-b21d-e4a97cb25ccf-0" changed to "DONE"
[2022-02-09T19:42:59.358964791+01:00][INFO]
[yorc-16d22cbf8f2d3ae813c66771ab0c9334_16444261327975780972246920613142276307-
Environment][Run][343cddd8-b369-4d1b-8b4a-3915b3812812][][][][][][]DeploymentID:
"yorc-16d22cbf8f2d3ae813c66771ab0c9334_16444261327975780972246920613142276307-
Environment", Workflow: "Run", step: "FindHPCLocationsJob_submit" ended successfully
[2022-02-09T19:42:59.996483563+01:00][INFO][yorc-16d22cbf8f2d3

Fig. 5: Example of log captured during the execution of the Continuum workflow.
The dynamic request to the DAM and its status change are highlighted in yellow.

Dynamic job allocation on federated Cloud-HPC environments 11

(iii) ADMS –Air quality over France. Figure 4 shows the common structure of these
workflows, highlighting how different steps involve the interaction with the compo-
nents of the LEXIS orchestration service, including the dynamic location selection.
All these workflows are characterized by three main phases, i.e., the initial prepro-
cessing of the input datasets, the heavy computational phase (where large simula-
tions are involved, using the Weather Research and Forecasting Model –WRF), and
the final step where post-processing of the simulation outputs is performed. These
phases demanded accessing cloud resources (an instance with at least 10 vCPUs,
45 GB of memory and 150 GB of disk space), and the HPC clusters by specifying
the number of cores and max wall time required. Figure 5 shows an example of
the tracked LEXIS orchestration service logs related to the run of the Continuum
workflow. Highlighted in yellow, there is the dynamic request done by Yorc orches-
trator to the DAM (by defining the max wall time and cores as parameters) along
with the detection of the request status change to “DONE”, meaning that the DAM
completed the location selection process. Indeed, the DAM REST API has been de-
signed to work asynchronously, thus implying that Yorc orchestrator has to check
whenever the request processing has been completed.

6 Conclusion

The ever-growing complexity of application workflows often demands accessing
computing and storage resources that are not available at the single site (HPC dat-
acentre), also by different access models (cloud vs. HPC batch schedulers). In this
context, the HPC datacentre federation provides a practical approach to overcom-
ing the limitations of the single HPC datacentre. The LEXIS project is building
an advanced engineering platform at the confluence of HPC, cloud and Big Data,
which leverages large-scale geographically-distributed resources from existing HPC
infrastructure, employs Big Data analytics solutions, and augments them with cloud
services; as such, the problem of dynamically selecting the most suitable compute
structure (location) arose. To tackle this challenge, in this paper we described the
design principle and implementation of a simulation framework we used to assess
the behavior of a greedy allocation strategy in a real context. Given the positive
feedback of the simulator, we implemented such a strategy as the main one for dy-
namically deciding the computing location to use for the job submission. To this
end, we developed the DAM and integrated it within the LEXIS orchestration ser-
vice. Finally, we provided a proof of the capability of the DAM in a real execution
environment, through the LEXIS pilot workflows.

12 Giacomo Vitali, Alberto Scionti, Paolo Viviani, Chiara Vercellino, Olivier Terzo

Acknowledgements

This work by the LEXIS project funded by the EU’s Horizon 2020 research and
innovation programme (2014-2020) under grant agreement No.825532.

References

1. Golasowski, M., et al. ”The LEXIS Platform for Distributed Workflow Execution and Data
Management.” HPC, Big Data, and AI Convergence Towards Exascale. Taylor & Francis,
2022.

2. Golasowski, M., et al. ”Data System and Data Management in a Federation of HPC/Cloud
Centers.” HPC, Big Data, and AI Convergence Towards Exascale. Taylor & Francis, 2022.

3. Svaton, V., et al., ”HPC-as-a-Service via HEAppE Platform.”, CISIS, Springer, Cham. (2020).
4. M. C. Cohen, P. W. Keller, M. Vahab and M. Zadimoghaddam, “Overcommitment in Cloud

Services: Bin Packing with Chance Constraints,” Management Science, p. 1–17, 2019.
5. S. H. Madni, et al., “Hybrid gradient descent cuckoo search (HGDCS) algorithm for resource

scheduling in IaaS cloud computing environment.”, Cluster Computing, vol. 22, 2019.
6. M. Somnath, A. Scionti and A. S. Kumar, “Adaptive resource allocation for load balancing in

cloud,” in Cloud Computing, Springer, Cham, 2017, pp. 301-327.
7. S. Singh and I. Chana, “A survey on resource scheduling in cloud computing: Issues and

challenges,” Journal of grid computing, vol. 14, no. 2, pp. 217-264, 2016.
8. M. Rahman, et al., “Adaptive workflow scheduling for dynamic grid and cloud computing

environment,” Concurrency and Computation: Practice and Experience, vol. 25, 2013.
9. A. Quarati and et al., “Scheduling strategies for enabling meteorological simulation on hybrid

clouds,” Journal of Computational and Applied Mathematics, vol. 273, pp. 438-451, 2015.
10. E. J. Korpela, “SETI@ home, BOINC, and volunteer distributed computing,” Annual Review

of Earth and Planetary Sciences, vol. 40, pp. 69-87, 2012.
11. A. Tsaregorodtsev et al., “DIRAC: a community grid solution,” Journal of Physics: Confer-

ence Series, vol. 119, no. 6, p. 062048, 2008.
12. H. Casanova, et al., “Teaching parallel and distributed computing concepts in simulation with

WRENCH”, Journal of Parallel and Distributed Computing, Vol. 156 (2021).
13. Bak Slawomir, et al., ”Gssim –a tool for distributed computing experiments.” Scientific Pro-

gramming 19.4 (2011): 231-251.
14. Buyya, Rajkumar, and Manzur Murshed. ”Gridsim: A toolkit for the modeling and simulation

of distributed resource management and scheduling for grid computing.” Concurrency and
computation: practice and experience 14.13-15 (2002).

15. Mansouri, Najme, R. Ghafari, and B. Mohammad Hasani Zade. ”Cloud computing simula-
tors: A comprehensive review.” Simulation Modelling Practice and Theory (2020).

16. Fiorucci P., et al., ”Development and application of a system for dynamic wildfire risk assess-
ment in Italy.” Environmental Modelling & Software, 23(6), 690-702 (2008).

17. Silvestro, F., et al., ”Exploiting remote sensing land surface temperature in distributed hy-
drological modelling: the example of the Continuum model.” Hydrology and Earth System
Sciences, 17(1), 39-62 (2013).

