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Abstract

Graph embedding is a recurrent problem in quantum
computing, for instance, quantum annealers need to
solve a minor graph embedding in order to map a
given Quadratic Unconstrained Binary Optimization
(QUBO) problem onto their internal connectivity
pattern. This work presents a novel approach to con-
strained unit disk graph embedding, which is encoun-
tered when trying to solve combinatorial optimiza-
tion problems in QUBO form, using quantum hard-
ware based on neutral Rydberg atoms. The qubits,
physically represented by the atoms, are excited to
the Rydberg state through laser pulses. Whenever
qubits pairs are closer together than the blockade
radius, entanglement can be reached, thus prevent-
ing entangled qubits to be simultaneously in the ex-
cited state. Hence, the blockade radius determines
the adjacency pattern among qubits, corresponding
to a unit disk configuration. Although it is straight-
forward to compute the adjacency pattern given the
qubits’ coordinates, identifying a feasible unit disk
arrangement that matches the desired QUBO matrix
is, on the other hand, a much harder task. In the
context of quantum optimization, this issue trans-
lates into the physical placement of the qubits in
the 2D/3D register to match the machine’s Ising-like

Hamiltonian with the QUBO formulation of the op-
timization problems. The proposed solution exploits
the power of neural networks to transform an initial
embedding configuration, which does not match the
quantum hardware requirements or does not account
for the unit disk property, into a feasible embedding
properly representing the target optimization prob-
lems. Experimental results show that this new ap-
proach overcomes in performance Gurobi solver.
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1 Introduction

Quantum computers bear promises as tools to accel-
erate specific computations like prime factorization,
eigenvalues decomposition, combinatorial problem-
solving etc. However, in the noisy intermediate-
scale quantum (NISQ) era, practical applications
of canonical quantum algorithms (e.g., Shor’s al-
gorithm) are still out of reach due to low qubits
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count, limited coherence time, and gates fidelity; in
this context different approaches emerged, like hy-
brid quantum-classical algorithms and specialised ar-
chitectures (e.g., quantum annealers, quantum sim-
ulators), that showed promising results for specific
problems, but still present a number of implementa-
tion issues.

The goal of this work is to provide a suitable
methodology to port real-life applications to these
kinds of machines, with a specific focus on solving dis-
crete optimization problems on optical quantum sim-
ulators based on neutral atoms, by developing a Ma-
chine Learning (ML) technique for embedding graphs
into the suitable machine representation (register).

This quantum computing architecture operates at
room temperature and it is, in principle, flexible
enough to implement quantum gates as well as ma-
nipulate a given target system Hamiltonian through
laser pulses [1]. In this paper, gates-based operations
will not be considered, instead, attention will be paid
to the analog quantum processing mode, which in-
volves the use of laser pulses to induce dipole-dipole
interactions between Rubidium atoms (i.e., Rydberg
atoms [2]) in Rydberg state, arranged arbitrarily in
2D or 3D arrays.

The interactions between Rydberg atoms can, in
turn, be mapped into a spin Hamiltonian (e.g., Ising):
this capability of neutral atoms machines is inter-
esting because a significant set of NP-hard combina-
torial optimization problems can be mapped to the
Ising Hamiltonian [3] or to the equivalent Quadratic
Unconstrained Binary Optimization (QUBO) forms
[4], popularized by Quantum Annealers. In principle,
once a set of Rydberg atoms is organised in the space
to reproduce the desired Hamiltonian, it is possible
to solve the associated optimization problem using
the Quantum Approximate Optimization Algorithm
[5], [6].

While the idea is somewhat straightforward, the
hardware requirements of the experimental machine
characterize the optimization problems that can be
approached. The starting point is to model the opti-
mization problem at hand in the QUBO form, which
means building a square matrix Q ∈ Rn×n whose di-
mensionality n is determined by the number of binary
variables. In the proposed embedding solution, each

binary variable is represented by a physical qubit.
The diagonal elements of Q identify the penalty/gain
associated with each binary variable when it assumes
the value 1; due to the restriction of the machine
lasers to operate only at the global level (i.e., exciting
all atoms with the same Rabi frequency [1]), these di-
agonal elements should have all the same value. The
off-diagonal elements of Q represent quadratic inter-
actions between the variables, which are represented
by atoms coupled through the Rydberg blockade ef-
fect [7] which scales as ∝ 1/d6ij , with dij the Euclidean
distance between two qubits i and j. Thus, as the dis-
tance is necessarily positive, the off-diagonal elements
of Q should have all the same sign.

If a QUBO problem satisfies the requirements
above, it is in principle straightforwardly mapped
into the effective Hamiltonian that the real machine
is able to reproduce

H =

n∑
i=1

ℏΩ

2
σx
i −

n∑
i=1

ℏδ
2
σz
i +

∑
j>i

C6

d6ij
ninj (1)

where ni = (1+σz
i )/2 is the Rydberg state occupancy,

σx,z
i are the Pauli matrices of the spin of i-th qubit,

Ω is the Rabi frequency of the laser pulse and δ is the
detuning of the laser pulse. While a feasible formula-
tion of the QUBO matrix based on these constraints
can be achieved (e.g., for graph coloring problems
[4]), the magnitude of the off-diagonal elements of
Q is bound to the two-qubits coupling coefficient
C6/d

6
ij , therefore to the relative distances of qubits

in a 2D/3D register. In particular, a threshold-like
effect is reached when the distances between qubits’
pairs are shorter than the blockade radius, i.e., a crit-
ical distance at which the strength of the interactions
balances with the Rabi frequency, thus yielding oppo-
site entanglement [8] on neutral atoms: atoms with
a pair distance shorter than the blockade radius can-
not be simultaneously in the excited state.. There-
fore, the interactions between qubits in the register
can be represented by a unit disk (UD) graph [9] as
in figure 1, and the problem of mapping an arbitrary
QUBO/Ising problem onto a neutral atoms quantum
simulator can be formulated as a unit disk graph em-
bedding problem.

This paper will describe a novel heuristic to obtain
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Figure 1: Representation of a qubit register com-
posed of neutral atoms arranged in a 2D array. In-
teraction between qubits is regulated by the Rydberg
blockade effect: only atoms falling within the Ryd-
berg radius are subject to interaction.

the coordinates of a unit disk embedding for a given
QUBO problem.

2 Related Work

The qubits placement problem is well-known in the
context of quantum computing. Despite the specific
technologies, the design of a proper embedding to
exploit the hardware potential is of major impor-
tance. In the particular case of neutral atoms based
devices, the embedding for QUBO problems has been
approached in different ways.

In [6], non-convex constrained formulations of the
UD graph problem are provided, anyway, solving the
UD graph problem with classical solvers can become
pretty difficult as the size of the QUBO problems
increases or the adjacency pattern gets more compli-
cated: the computation of the unit disk graph could
become possibly harder than retrieving the QUBO
problem solution. To fully understand the complexity
of the unit disk graph problem, it is important to no-
tice that even the corresponding recognition problem
(i.e., determining if a given graph has a realization
that maps vertices to points of a unit disk configura-
tion) is NP-hard [10].
Further results on UD graphs are presented in [11]

with a focus on the non-approximability of the unit
disk (and d-quasi unit disk [12]) graphs, moreover, a
bound on the quality of the embedding is computed.
In [13], S. Bhore et al. investigate the unit disk graph
recognition problem for subclasses of planar graphs,
stating that even for outerplanar [14] and trees [15]
graphs this task is NP-hard.

Given the complexity of the problem, to over-
come the limitations of an exact solution, embed-
ding heuristics have been proposed, but their applica-
tion to the neutral atoms quantum hardware gener-
ally needs more physical qubits or greater sophistica-
tion in the hardware design. Several studies approach
the embedding issue through local fields’ manipula-
tion. In [16], local interactions enhance the quan-
tum annealing architecture with controllable all-to-
all connectivity between logical qubits, the physical
qubits are instead placed according to a square-lattice
geometry. In [17], the authors illustrate a three-
dimensional embedding based on Ising ferromagnetic
quantum wires to couple distant qubits and produce
a regular cubic lattice architecture. As additional re-
quirements to build quantum wires, multiple physical
qubits are used to represent a single variable and local
fields play a key role. Further work on quantum wires
is presented in [18], where Kim et al. overcome the
issue of local fields in quantum wires for maximum
independent set problems, anyway, the proposed ar-
chitecture still requires auxiliary wire atoms in a 3D
space and constrains the embedding to accomplish
constant distances among adjacent qubits, thus intro-
ducing a discretization of the embedding space and
not exploiting the full potential of the blockade effect.

QUBO problems’ embedding has also been ap-
proached through graph minors [19] search. The
D-Wave system exploits heuristic techniques to find
graph minors with a probabilistic setting to avoid ex-
haustive search [20]. Their quantum hardware is de-
signed with a fixed topology where qubits adjacency
is modelled through couplers. The mapping of the
QUBO problems is feasible whenever the graph of bi-
nary optimization variables interactions is a minor of
the graph of qubit interactions in the D-Wave hard-
ware. A similar approach was presented also by V.
Choi [21], with a focus on embedding Ising Hamilto-
nian for solving the maximum independent set prob-
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lem via adiabatic quantum computation. Again the
reduction through minor-embedding in the quantum
hardware graph relies on parameters settings of qubit
biases and coupler strengths.

3 Methodology

Starting from a properly representable, i.e., compli-
ant to the Hamiltonian formulation of eq. (1), QUBO
model, a feasible embedding for the qubits should
be retrieved. The adjacency matrix A, associated
with matrix Q, defines the adjacency pattern among
the qubits, but the concept of proximity/distance of
the atoms in the register cannot be defined at will.
Qubits placement has to satisfy strong requirements
in order to reproduce the blockade effect that under-
lies the entanglement between them and, therefore to
enhance optimization problems solution with quan-
tum technology.

To model these embedding constraints, the follow-
ing notation will be used: G = (V, E) is the graph as-
sociated with matrix A, with V vertexes and E edges,
G′ = (V, Ē) is the complement graph of G. Finally,
each vertex in V represents a qubit and xi, yi and
possibly zi are the coordinates of the qubits into the
2D/3D domain, ∀i ∈ V.

3.1 From QPU requirements to em-
bedding constraints

The register on which qubits have to be placed
identifies the domain for the qubits’ positions. In
the considered device (Pasqal’s R&D prototype,
Chadoq2[22]), this domain can cover at most a circu-
lar area with a maximum radius of 50 µm, so qubits
must be placed with a maximum pair distance dij
of 100 µm. Moreover, in this machine setting, two
atoms cannot be closer than 4 µm. Hence, the con-
straints:

dij ≤ 100 µm ∀i, j ∈ V, i < j (2)

dij ≥ 4 µm ∀i, j ∈ V, i < j (3)

Then, the unit disk representation requires vertexes,
i.e., qubits, that share an edge, to be closer than non-
adjacent vertexes, i.e., the ones not connected by an

edge. In principle, this constraint could be written
as:

max
(i,j)∈E

dij < min
(h,k)∈Ē

dhk (4)

But this formulation could lead to an embedding con-
figuration that prevents the blockade effect to take
place. In fact, the Rydberg blockade effect occurs in
the regime of strong interactions, which determines
the blockade radius rb [23] as

rb =
6

√
C6

ℏΩ
(5)

Moreover, to obtain the opposite entanglement [24]
between pairs of qubits that fall into the rb radius,
the laser pulses should have a time duration that is

t =
π√
2Ω

(6)

This is the time duration at which the maximally en-
tangled state is reached [8]. From equation (6), it
is possible to compute the minimum Rabi frequency
that can be allowed given t̃, the coherence time limit
of the machine. Then, exploiting eq. (5) the maxi-
mum blockade radius r̃b can be obtained as follows:

r̃b =
6

√√
2|C6|t̃
ℏπ

(7)

This leads to a reformulation of constraint (4) that
considers also the time limit t̃ of the machine:

dij ≤ r̃b ∀(i, j) ∈ E (8)

dhk > r̃b ∀(h, k) ∈ Ē (9)

The described constraints define a constrained UD
graph problem, whose solution, both in the 2D and
3D cases, provides realistic coordinates for qubits
embedding in the real quantum register. Provid-
ing qubits’ positions, while avoiding fixed geometries,
is enhanced by the capability to control individual
atoms trapped in optical tweezers, through a real-
time control system [25].
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3.2 Traditional approaches as a start-
ing point

Starting from the above-mentioned constraints, the
first approach to the UD embedding problem could be
to solve the corresponding quadratic constrained non-
convex optimization problem that arises using the po-
sitions of the qubits as variables. For these kinds of
problems, several solvers have been proposed (e.g.,
[26, 27, 28, 29]), but the UD embedding problem in
the general case is NP-hard, so these approaches did
not provide feasible solutions as the number of qubits
increases or as the connectivity pattern becomes more
complicated.

Other approaches to achieving embedding repre-
sentation take inspiration from force-directed algo-
rithms, like the Fruchterman-Reingold method [30]
[31]: this force-directed layout algorithm models at-
tractive and repulsive forces between vertexes pairs,
according to the adjacency pattern described by A;
repulsive forces intervene on all vertexes pairs with
module k2/d2ij , whilst attractive forces intervene only
on adjacent pairs and have module dij/k. The tra-
ditional algorithm, in this case, is designed to find
the embedding in a square domain and takes as a
parameter the optimal distance k at which the two
forces balance for adjacent pairs [31], which in our
case could be set to a value in the range [4, r̃b]. There
exists an easy way to modify the domain of the em-
bedding to match our requirement expressed by eq.
(2), that is by just changing the positions’ projector
into a circular domain with a radius of 50 µm instead
of the current square domain projector, anyway, a
further modification to match all other constraints
(eqs. (3), (8), (9)) is not straightforward.

Finally, it is worth mentioning that some optimiza-
tion problems inherit their connectivity patterns in
the QUBO formulation from their own topology, such
as antennas’ positions in a PCI (Physical Cell Iden-
tifier) problem [32], [33]. In these cases, some initial
positions are yet provided and they can be scaled to
match the register limit imposed by eq. (2), anyway
the matching of all other constraints is not guaran-
teed.
All these approaches provide some initial positions,
(xi, yi) ∀i ∈ V, for the UD embedding in the regis-

ter, which is yet an improvement over a randomly set
embedding, nevertheless, further manipulation is re-
quired to match the optimization problem structure.

3.3 GEAN: Graph Embedding Au-
toencoder Network

3.3.1 Model architecture

The proposed solution implements a Neural Network
based model, reported in figure 2, which has two main
components:

i) The autoencoder part follows the typical sym-
metric architecture, with an input layer whose nodes
are associated with the initial positions (xi, yi) ∀i ∈ V
and an output layer, CoordL, that provides the trans-
formed positions (x

′

i, y
′

i) ∀i ∈ V. The CoordL is
equipped with an activation function that is defined
as Fa(t) := 50tanh(t), thus the transformed coordi-
nates belong to the square domain (−50, 50)2 that
inscribes the circular domain of interest. As the con-
sidered domain is two-dimensional, the input and
the output layers have 2n nodes each, the first n
nodes of each layer represent x-coordinates, and the
other n nodes are y-coordinates. The hidden layers
of the model respectively have 64, 36, 18, 9, 18, 36 and
64 hidden nodes, they use ReLU as activation func-
tions, and they are interspersed with dropout layers,
with dropout probability set to 0.5, for regulariza-
tion purposes. All the weights of the autoencoder
are trainable and the bias nodes’ contributions are
also taken into account. The choice of this particu-
lar architecture was driven by two main observations.
On one hand, as the order of the elements in the in-
put vector does not imply local correlations, Convolu-
tional Neural Networks (CNNs) have been discarded,
as fully-connected architecture allowed a more gen-
eral interpretation of the elements in the input vector,
we opted for that choice; on the other hand, autoen-
coder architecture was proposed in [34], in this work,
an autoencoder is used to retrieve coordinates given
the distance matrix in a protein modelling use case,
even though the same architecture was not straightly
usable for our use case, we do not have feasible pair
distances a priori, Eguchi et al. study suggested us
that our neural network architecture could benefit

5



from a latent embedding representation.
ii) The second component makes the model aware

that the output of the autoencoder, (x
′

i, y
′

i) ∀i ∈ V,
are Cartesian coordinates. This component is in
charge of computing Euclidean distances between all
the qubits’ pairs, which is obtained by adding a sparse
layer that connects the CoordL to nodes in the DiffL
layer, which consists of 2

(
n
2

)
= n(n − 1) nodes. The

DiffL layer has no contribution from a bias node and
non-trainable weights in the sparse layer are set to
±1, such that the nodes α in the DiffL reflect differ-
ences between pairs of coordinates:

α(i−1)(n−1)−(i−1
2 )+j−i = x

′

i − x
′

j i, j ∈ V, i < j

(10)

α(n−1)(n
2 +i−1)−(i−1

2 )+j−i = y
′

i − y
′

j i, j ∈ V, i < j

(11)

Then a square activation function Fa(t) := t2 is ap-
plied to DiffL. Finally, the squared pairs’ distances
are retrieved by adding another sparse layer, with
fixed weights of value +1 that allows the

(
n
2

)
nodes,

β, in the output layer, DistL, to assume the following
values:

βk = α2
k + α2

(n
2)+k

k ∈
{

1, 2, . . . ,

(
n

2

)}
(12)

At last, the Fa(t) :=
√
t activation function inter-

venes on the DistL layer to make the outputs of
the GEAN model, d, become the pairs’ distances
dij , i < j ∈ V.

3.3.2 Loss function

Once the pairs’ distances are computed, it is possi-
ble to model the loss function to target a feasible UD
embedding. In this case, the training of the model
has a different meaning from the one of a typical ma-
chine learning task: the mini-batch of the training set
consists of just one sample, i.e., the initial positions
(xi, yi) ∀i ∈ V, and the minimization of the loss func-
tion does not correspond to the intent of prediction,
but it pursues a proper approximation of the domain
transformation to achieve the desired UD connectiv-
ity.

As there are four kinds of constraints that the UD
embedding must satisfy (eqs. (2), (3), (8), (9)), the
proposed loss function is four-folded and each part
of it is applied to the distances output vector d: in
accordance to eq. (2), the qubits’ pairs that are more
distant than 100 µm should be penalized, so the first
contribution to the loss function, loss1, is computed
as follows:

loss1(d) = avg
i<j∈V

|max(100, dij) − 100| (13)

To match constraint (3), which defines the minimum
distance allowed between qubits’ pairs, loss2 contri-
bution is designed as:

loss2(d) = avg
i<j∈V

|min(4, dij) − 4| (14)

Then, loss3 expresses constraint (8), and it penalizes
pairs’ distances of adjacent qubits that are greater
than r̃b:

loss3(d) = avg
i<j∈V

Aij |max(r̃b, dij) − r̃b| (15)

Finally, loss4 is the counterpart for constraint (9),
and it penalizes pairs’ distances of non-adjacent
qubits that are shorter than r̃b + ϵ, where parame-
ter ϵ is set to 0.1 to account for the strictly greater
sign in the constraint:

loss4(d) = avg
i<j∈V

(1 −Aij)|min(r̃b + ϵ, dij) − (r̃b + ϵ)|

(16)
The overall loss function sums up all the previous

contributions. The absence of weighting constants in
the final loss formulation is justified by the fact that
all constraints violations have the same importance;
they all would imply an unfeasible embedding:

loss(d) = loss1(d) + loss2(d) + loss3(d) + loss4(d)
(17)

In order to minimize the loss function, the PyTorch
implementation of the AdamW algorithm [35] has
been exploited, in combination with a constant learn-
ing rate equal to 1e−3. The maximum number of
epochs allowed for each graph embedding has been
set to 5000, but a stopping criterion based on the
achievement of a feasible embedding prevents the
training to go through all the epochs when it is not
necessary.
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𝑥1
𝑥2
𝑥3
𝑥4
𝑥5
𝑦1
𝑦2
𝑦3
𝑦4
𝑦5

𝑥′1
𝑥′2
𝑥′3
𝑥′4
𝑥′5
𝑦′1
𝑦′2
𝑦′3
𝑦′4
𝑦′5

𝐹𝑎 𝑡 = 50 tanh(𝑡) 𝐹𝑎 𝑡 = 𝑡2 𝐹𝑎 𝑡 = 𝑡

𝑑12

𝑑13

𝑑14

𝑑15

𝑑23

𝑑24

𝑑25

𝑑34

𝑑35

𝑑45

CoordL DiffL DistL

Trainable weights

Fixed weights = +1
Fixed weights = -1

Figure 2: GEAN architecture: 5 qubits embedding in 2D, the initial coordinates (x1, y1), . . . (x5, y5) are
transformed into feasible coordinates (x

′

1, y
′

1), . . . (x
′

5, y
′

5). The output layer of the model, DistL, provides all
pairs’ distances between nodes.

3.4 The limitations of the 2D domain

This UD embedding methodology has to be subject
to the limitations of 2-dimensional space, thus the
connectivity of the graphs that can be embedded is
not general. As they are of particular interest to
identify which QUBO problems could be embedded
into the 2D register, two necessary conditions have
been identified: one concerning the maximal clique
and the other one regarding the maximal degree of
graph G. These two connectivity-related properties
should be complemented by the other requirements
expressed in the 1 section: constant values in the
diagonal of Q and constant sign for its off-diagonal
elements. The key concept underlying these results
comes from Thue’s Theorem, which states that the
regular hexagonal packing is the densest circle pack-
ing in the plane [36]. Thus, the densest packing for

the considered qubits’ register has the structure re-
ported in figure 3b). Considering constraint (3), the
hexagon side of the densest embedding is 4 µm. Fur-
thermore, the time limit of the machine determines
the maximum t̃, and consequently r̃b, for this exper-
imental setting t̃ = 3 µs and r̃b ≈ 10.26 µm. From
these considerations, the following properties are ob-
tained:

Property 1 (Maximum clique property) The
maximum N , such that a complete graph (or clique),
KN , with N vertices, can be embedded into the
register is N = 7.

Property 2 (Maximum degree property)
Given a graph G(V, E), the maximal degree dmax(G)
allowed for a feasible embedding is 18.

Fig. 3 represents both these properties. To embed
a clique, all the vertices of the graph, KN , must lie
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within a circle of maximum radius set to r̃b
2 (fig. 3a))

and the maximum degree for a graph, dmax(G), im-
plies all the adjacent qubits to lie within a maximum
radius r̃b- Anyway this bound on the maximum de-
gree relies on the hypothesis that the adjacency pat-
tern among all other qubits within the circle matches
the adjacency matrix A one.

𝑟𝑏 ≈ 10.26 𝜇𝑚𝑙 = 4 𝜇𝑚

𝑟𝑏

a) b)

𝑟𝑏

Figure 3: Representation of the maximal clique, K7,
fig. 3a), and of the maximal degree, fig. 3b), that can
be embedded on the register. The baseline embed-
ding is the regular hexagonal packing with l = 4 µm
side and the Rydberg blockade radius is the maxi-
mum available on the machine r̃b ≈ 10.26 µm.

3.5 Adding new dimensions: the 3D
embedding case

To be able to embed a greater set of QUBO prob-
lems and with a view to a future quantum machine
able to work with a 3D register, the GEAN model
can be modified to obtain also feasible z-coordinates.
This implies some modification to the architecture
presented in Fig. 2 but does not require loss function
changes, given that the constraints on pairs’ distances
remain the same. The architecture changes concern:
i) the addition of nodes in the input and in the

CoordL layers to represent the z-coordinates, zi and
z

′

i, ∀i ∈ V, so the size of these layers passes from 2n
to 3n nodes. When the initial zi coordinates are not
available, they can be initialized to 0;
ii) the DiffL layer should be modified to account

also for the z-coordinates pairs’ differences, so it con-

tains 3
(
n
2

)
nodes, and the weights in the fully con-

nected layer are modified such that the last
(
n
2

)
α

nodes in DiffL are

α(n−1)(n+i−1)−(i−1
2 )+j−i = z

′

i − z
′

j i, j ∈ V, i < j

(18)
iii) the DistL layer does not change the size, as

it still computes pairs’ distances between qubits, but
the increment of the DiffL layer requires it to consider
the contribution also from the z-coordinates square
differences, so β nodes input values become

βk = α2
k +α2

(n
2)+k

+α2
2(n

2)+k
k ∈

{
1, 2, . . . ,

(
n

2

)}
(19)

4 Results and Discussion

4.1 Classical solver as a benchmark

In order to provide benchmarks, we formulated the
Unit Disk graph problem and attempted to find so-
lutions for feasible embeddings with state-of-the-art
solvers. In particular, we opted for the Gurobi solver
[37] and handled the implementation of the program-
ming model through the Pyomo1 Python library. The
choice of a classical solver for comparison, instead of
a heuristic approach based on fixed geometries, is in-
tended to try and fully exploit at most all the degrees
of freedom available for the placements of the atoms
in the register.
Since the considered optimization problem is NP-
hard, the computing time for retrieving the optimal
solution is linked to the dimension of the problem,
i.e., the n number of qubits. Accordingly, as n in-
creases it becomes necessary to set up a time limit
for the solver, thus we set a maximum walltime for
the classical solver to 2 minutes, as it is the maxi-
mum time required by the GEAN model to retrieve
a feasible solution on the largest instance.
In the definition of the programming model, which is
quadratic and non-convex, we will refer to P as the

set of all unordered pairs in V, thus |P| = n(n−1)
2 ,

the embedding dimensionality is N ∈ {2, 3}, and

1https://pyomo.readthedocs.io
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the positions of the qubits will be represented by N -
dimensional vector −→p i, ∀i ∈ V. The retrieval of a
feasible embedding is modelled through γij binary
variables, described as follows.

γij :=

{
1 pair distance is unfeasible

0 pair distance is feasible
(20)

Hereafter, we present the overall constrained Unit
Disk graph problem, with reference to the specifica-
tions of the considered Quantum machine.

min−→p , γ

∑
{i,j}∈P

γij

s.t. d2ij ≤ r̃b
2 + ((100

√
2)2 − r̃b

2)γij (i, j) ∈ E ,
d2ij ≥ (1 − γij)4

2 (i, j) ∈ E ,
d2ij ≤ 1002 + 1002γij (i, j) /∈ E ,
d2ij ≥ (1 − γij)(r̃b + ϵ)2 (i, j) /∈ E ,
d2ij = ||−→p i −−→p j ||22 {i, j} ∈ P,
−→p ∈ [−50,+50]n×N ,

γ ∈ {0, 1}|P|

(21)

4.2 QUBO instances description

To evaluate the proposed methodology, different
QUBO problem instances have been investigated.
The studied problems all allow for a binary variables
representation that can be mapped to the machine
Hamiltonian (1), thus, even if in the classical nomen-
clature of optimization problems, they are referred
to with different names (i.e., graph coloring, protein
folding problems), all problems that can be formu-
lated as Maximum Independent Set problems [38] can
take advantage of the proposed embedding method-
ology.

Starting from previous work on graph coloring
problems [39], solved through an iterative QUBO
Maximum Independent Set (MIS) approach [6], the
antennas dataset, has been created: this dataset is
natively UD-based, as it is built from the original

positions of antennas2 in the city of Turin and it
presents an adjacency pattern set using conflict dis-
tance Dc: all antennas that are nearer than Dc are in
conflict and as a consequence introduce a quadratic
penalty term in the MIS QUBO formulation. The
antennas dataset contains at most 87 antennas, and
as each antenna is represented by a qubit in the
MIS QUBO formulation, this implies that at most
87 qubits should be embedded. Anyway, according
to the distance Dc, the antennas dataset could be
separated into connected components and the respec-
tive QUBO instances can be embedded separately.
The antennas dataset provides an example for QUBO
problems that rely on a precise topology to obtain
starting positions (xi, yi), ∀i ∈ V scaled to the quan-
tum register domain. Problems’ instances of this kind
will be hereafter named QUBO MIS antennas prob-
lems.

Then, other not UD-based problems have been in-
vestigated. For instance, the protein folding problem
aims to find the folding of a protein chain made of
hydrophilic and hydrophobic amino acids. The chain
naturally folds to bring as many hydrophobic acids as
possible close together, this is modelled by maximiz-
ing the number of hydrophobic acid matchings, which
in the optimization problem are modelled as binary
variables δij . So, starting from the protein folding
formulation in [40], the equivalent QUBO formula-
tion is proposed:

min
δij

−
∑
i>j

δij + P
∑

ij,kh∈S

δijδkh

s.t. δij ∈ {0, 1}
(22)

S = {ij, kh| i ≤ f < j, f ̸= i + j − 1

2
, f =

k + h− 1

2
∈ N}

(23)
The QUBO instances belonging to this class of prob-
lems will be referred to as QUBO protein folding sam-
ples and the possible matchings δij will be named
after the hydrophobic acids positions.

Finally, a QUBO formulation that fits the Hamil-
tonian formulation of eq. (1), can be provided also for
a one-hot-encoding modelled graph coloring problem

2https://opencellid.org/
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[41]. Problems’ instances belonging to this class will
be referred to as QUBO graph coloring problems.

For both the QUBO protein folding and the
QUBO graph coloring problems, the initial positions
of the qubits (xi, yi), ∀i ∈ V are computed through
the Fruchterman-Reingold method.

To describe the characteristics of the embeddings,
the following notation is introduced

• |Kmax|, the size of the estimated maximum
clique

• r0min, minimum distance among qubits in the ini-
tial configuration

• rfmin, minimum distance among qubits in the fi-
nal configuration

• r0max, maximum distance among qubits in the
initial configuration

• rfmax, maximum distance among qubits in the
final configuration

• r0adj , maximum distance among adjacent qubits
in the initial configuration

• rfadj , maximum distance among adjacent qubits
in the final configuration

• r0
adj

, minimum distance among non-adjacent

qubits in the initial configuration

• rf
adj

, minimum distance among non-adjacent

qubits in the final configuration

• Ec, number of epochs used by the GEAN model
to find a feasible embedding

• Gurobi sol, whether the Ipopt solver is able to
retrieve a feasible solution

4.3 QUBO instances embeddings

The first set of results concerns QUBO MIS anten-
nas problems, embedded in the 2D register. Setting
a conflict distance Dc = 130 m, all the connected
components of the corresponding MIS QUBO prob-
lems were successfully embedded onto the quantum

register. In particular, 10 out of the 87 initial ver-
texes were isolated nodes, the other vertexes could
be divided into 17 connected components. Among
the connected components, there were 6 K2, 1 K3

and 1 K5 graphs, whose feasible embedding can be
trivially obtained and 3 graphs with 3 vertexes that
had yet a feasible embedding from the scaling oper-
ation. All other connected components required the
intervention of the GEAN model to reach feasibility
as summarized in Table 1. From the results, it can
be noticed that the unfeasible condition of the ini-
tial position is related to too near qubits that violate
constraint (3). However, applying a uniform magnifi-
cation to work around the issue with the r0min would
just shift the issue: for instance, considering graph
Gc, r

0
min is 3 order of magnitude below the minimum

allowed distance of 4 µm, a uniform magnification
would make the constraint (3) satisfied, but would
violate constraints (2) and (8). Fig. 4 shows the em-
bedding transformations on the hardest to embed,
in terms of Ec, connected components of the QUBO
MIS antennas problem.

Concerning the instances of QUBO protein folding
problems, feasible embeddings were reached for all
the proposed instances. The graphs associated with
the QUBO problems will be referred to as Gaa ha,
with aa as the number of the amino acids of the entire
chain and ha the number of the hydrophobic ones.
In particular, the results concerned the following in-
stances:

• G12 6 with hydrophobic amino acids placed at
positions 1, 2, 3, 5, 11, 12

• G17 7 with hydrophobic amino acids placed at
positions 1, 2, 5, 6, 10, 12, 17

• G22 8 with hydrophobic amino acids placed at
positions 1, 3, 5, 6, 9, 10, 11, 17

In these cases, the initialization of the coordi-
nates (xi, yi) ∀i ∈ V is performed through the
Fruchterman-Reingold method with the equilibrium
point between the attractive and the repulsive forces
set to k = 4 µm. As can be noticed from Table 2,
the initial positions lack the unit disk property, as
r0adj > r0

adj
. Moreover, the absence of the control on
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Table 1: Results obtained with the GEAN model to embed the QUBO MIS antennas instances with a
conflict distance Dc set to 130 m.

G |V| dmax |Kmax| r0min rfmin r0max rfmax r0adj rfadj r0
adj

rf
adj

Ec Gurobi sol

(µm) (µm) (µm) (µm) (µm) (µm) (µm) (µm)

Ga 13 8 5 0.454 4.006 19.457 26.725 7.070 9.984 7.193 10.634 733 Yes
Gb 7 4 4 2.634 4.004 15.956 21.265 6.873 10.090 7.265 11.155 71 Yes
Gc 6 4 4 0.001 4.013 14.663 22.046 6.899 8.943 8.731 11.462 384 Yes
Gd 6 5 3 1.960 4.028 11.855 16.650 7.067 8.724 7.334 11.273 374 Yes
Ge 4 3 3 1.198 4.037 7.799 8.547 6.952 6.511 7.799 8.547 98 Yes
Gf 5 4 4 0.855 4.061 7.255 13.473 6.670 9.865 7.255 13.473 261 Yes
Gg 7 5 4 2.559 4.015 13.137 21.496 6.572 8.616 7.418 11.139 281 Yes
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Figure 4: Transformation into feasible 2D embeddings of the Ga, Gc and Gd connected components for the
QUBO MIS antennas problem.

the maximum distance between adjacent vertexes
leads to r0adj > r̃b. The difficulty of the UD embed-

ding task is reflected in the loss function behaviour,
see Fig. 5, most of the loss contribution comes
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from the adjacency pattern requirements. In fact,
averaging on the overall loss score, 37% and 31%
contributions come respectively from loss3 and loss4.

Sometimes the limitations on the 2D embeddings
do not allow for a feasible UD embedding. Hence,
here are reported the instances whose adjacency pat-
tern could not be fully respected in a 2D configu-
ration, but that achieved feasibility through the ex-
ploitation of the third dimension. An example comes
from the QUBO MIS antennas case with an increased
conflict distance Dc = 250 m, which makes the graph
of the corresponding QUBO model form a unique
connected component, so the UD embedding consid-
ers 87 qubits to place into a sphere domain of radius
50 µm, see Fig. 6.

The increased dimensionality allows the embed-
ding to deal with a more complex graph that has
dmax = 14 and |Kmax| = 10. The effect of the GEAN
model on the coordinates transformation has a sig-
nificant impact on the feasibility of the embedding:
the minimum distance among qubits is increased by
3 orders of magnitude, from r0min = 0.001 µm to

rfmin = 4.007 µm, and the distance among adja-
cent qubits is reduced, from r0adj = 13.552 µm to

rfadj = 10.134 µm, within 2120 epochs. Moreover, the

UD property is still preserved, as rf
adj

is 10.415 µm

and the maximum distance constraint is largely sat-
isfied as rfmax = 53.300 µm. The Gurobi solver could
not provide a feasible solution within a comparable
time.

Another example is from the QUBO graph coloring
problem: from the red graph in Fig. 7, a three col-
ors graph coloring QUBO problem was formulated.
In this case, the graph GGC that is associated with
the QUBO formulation has 21 vertexes, dmax = 6,
|Kmax| = 3, corresponding to the clique that is as-
sociated with the exclusivity constraint of colors as-
signed to a vertex. The effect of the GEAN model

transformation can be summed up as follows:

r0min = 8.948 µm −→ rfmin = 4.183 µm

r0max = 67.980 µm −→ rfmax = 28.545 µm

r0adj = 19.217 µm −→ rfadj = 10.242 µm

r0
adj

= 9.137 µm −→ rf
adj

= 10.265 µm

The feasible UD embedding was reached within 767
epochs, whilst the Gurobi solver did not reach a fea-
sible embedding within the available wall-time.

A final observation about the power of this em-
bedding approach concerns its running speed: since
the input of each training step consists of just one
sample, even many epochs can be performed in a
short time. Implementing and running the model
on a standard consumer machine not equipped with
dedicated acceleration hardware, it was possible to
obtain solutions for both the 2D and the 3D embed-
dings instances within 2 minutes also for the biggest
and most complex instance, i.e., embedding of QUBO
MIS antennas in 3D. This capability to retrieve solu-
tion in such short times represent an advantage over
traditional approaches for the solution of UD graph
problems, as a matter of fact, the Gurobi solver was
not able to provide a feasible embedding for instances
considering 10, 21 and 87 qubits.

5 Conclusion

Summing up, the GEAN model shortens the gap
between the theoretical QUBO problems formulation
and the actual quantum optimization, by allowing
UD embedding to match with the machine’s effective
Hamiltonian. The proposed model relies on a strong
characterization of a specific quantum register, but it
can be easily adapted to match other requirements,
at different levels. Nevertheless, our solution is not
constrained to a fixed lattice structure and requires
the minimum number of physical qubits to provide
feasible embeddings. Thus, it provides an efficient
tool to test QUBO problems of non-trivial scale
on quantum hardware that cannot handle many
qubits. The success of the GEAN model over other
classical approaches is enhanced by the tight control
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Table 2: Results obtained with the GEAN model to embed instances of the QUBO protein folding problem.

G |V| dmax |Kmax| r0min rfmin r0max rfmax r0adj rfadj r0
adj

rf
adj

Ec Gurobi sol

(µm) (µm) (µm) (µm) (µm) (µm) (µm) (µm)

G12 6 5 4 3 27.344 4.000 74.611 11.324 55.524 9.853 27.344 11.138 187 Yes
G17 7 10 9 4 11.601 4.056 64.463 20.237 32.719 10.255 22.277 10.606 492 No
G22 8 9 7 4 9.438 4.104 79.640 23.329 27.957 10.217 27.215 10.514 404 Yes

c)b)a)

Figure 5: Embedding for the QUBO protein folding problem corresponding to G17 7: the initial position, fig.
5a), are computed through Fruchterman-Reingold method and are mapped into a feasible 2D UD embedding
reported in fig. 5b). Fig. 5c) shows the behaviour of the loss function along the epochs.

of the distances, relying on loss function definition,
and the exploitation of very effective optimizers
for neural networks’ training. Another key feature
of the proposed solution is the multi-dimensional
readiness, the extension from the 2D to the 3D
case has yet been presented here, but a general
N -dimensions definition, targeting distances’ com-
putation as outputs, is straightforward. As a matter
of fact, this methodology can pave the way to other
problems’ solutions, not only embedding related ones.

Future directions for this work will consider a fur-
ther characterization of the QUBO problems that ad-
mits a feasible UD embedding, both for the 2D and
the 3D cases. A more detailed comparison with state-
of-the-art solvers or heuristic approaches will be also

performed, thus gathering more insights on the scal-
ability and performance of the GEAN model. More-
over, other stopping criteria and convergence analysis
along the epochs will be explored to increase the gap
between rfadj and rf

adj
, with the aim of differentiating

better adjacent from non-adjacent qubits in the em-
bedding configuration. Finally, a test phase on the
real machine for some classes of problems, mainly
QUBO MIS antennas’ instances, will bring further
validation to the embedding methodology. The vali-
dation on the real hardware will also support a study
to quantify the error tolerance for the qubits’ place-
ments, concerning the expected Rydberg blockade ef-
fect.
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b)a)

Figure 6: Embedding for the full QUBO MIS antennas problem in 3D: the initial positions with z-coordinates
set to 0, fig. 6a), are mapped into a feasible 3D embedding, fig. 6b).

a’)a)

Figure 7: QUBO graph coloring embedding in 3D corresponding to GGC : starting from the red graph on
the left, the one-hot-encoding QUBO formulation is built to take into account 3 colors. The initial qubits
positions shown on fig. 7a) are mapped into a feasible configuration as in fig. 7a’).
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[1] Löıc Henriet et al. “Quantum Computing with
Neutral Atoms”. In: Quantum 4 (Sept. 2020),
p. 327. issn: 2521-327X. doi: 10.22331/q-

2020-09-21-327.

14



[2] Thomas F Gallagher. “Rydberg atoms”. In: Re-
ports on Progress in Physics 51.2 (1988), p. 143.

[3] Andrew Lucas. “Ising Formulations of Many
NP Problems”. In: Frontiers in Physics 2
(2014). issn: 2296-424X. doi: 10.3389/fphy.
2014.00005.

[4] Fred Glover, Gary Kochenberger, and Yu Du.
“A tutorial on formulating and using QUBO
models”. In: arXiv preprint arXiv:1811.11538
(2018).

[5] Michel Fabrice Serret, Bertrand Marchand, and
Thomas Ayral. “Solving Optimization Prob-
lems with Rydberg Analog Quantum Comput-
ers: Realistic Requirements for Quantum Ad-
vantage Using Noisy Simulation and Classi-
cal Benchmarks”. In: Physical Review A 102.5
(Nov. 2020), p. 052617. issn: 2469-9926, 2469-
9934. doi: 10.1103/PhysRevA.102.052617.

[6] Constantin Dalyac et al. “Qualifying quantum
approaches for hard industrial optimization
problems. A case study in the field of smart-
charging of electric vehicles”. In: EPJ Quantum
Technology 8.1 (May 2021). issn: 2196-0763.
doi: 10.1140/epjqt/s40507-021-00100-3.
url: http://dx.doi.org/10.1140/epjqt/
s40507-021-00100-3.

[7] E Urban et al. “Observation of Rydberg block-
ade between two atoms”. In: Nature Physics 5.2
(2009), pp. 110–114.

[8] T. Wilk et al. “Entanglement of Two Individual
Neutral Atoms Using Rydberg Blockade”. In:
Phys. Rev. Lett. 104 (1 Jan. 2010), p. 010502.
doi: 10.1103/PhysRevLett.104.010502. url:
https : / / link . aps . org / doi / 10 . 1103 /

PhysRevLett.104.010502.

[9] Brent N. Clark, Charles J. Colbourn, and David
S. Johnson. “Unit disk graphs”. In: Discrete
Mathematics 86.1 (1990), pp. 165–177. issn:
0012-365X. doi: https://doi.org/10.1016/
0012-365X(90)90358-O. url: https://www.
sciencedirect.com/science/article/pii/

0012365X9090358O.

[10] Heinz Breu and David G. Kirkpatrick. “Unit
Disk Graph Recognition Is NP-hard”. In: Com-
putational Geometry 9.1-2 (Jan. 1998), pp. 3–
24. issn: 09257721. doi: 10 . 1016 / S0925 -

7721(97)00014-X.

[11] Fabian Kuhn, Thomas Moscibroda, and Roger
Wattenhofer. “Unit Disk Graph Approxima-
tion”. In: Proceedings of the 2004 Joint Work-
shop on Foundations of Mobile Computing -
DIALM-POMC ’04. Philadelphia, PA, USA:
ACM Press, 2004, p. 17. isbn: 978-1-58113-921-
1. doi: 10.1145/1022630.1022634.

[12] Fabian Kuhn, Rogert Wattenhofer, and Aaron
Zollinger. “Ad-hoc networks beyond unit disk
graphs”. In: Proceedings of the 2003 joint
workshop on Foundations of mobile computing.
2003, pp. 69–78.

[13] Sujoy Bhore et al. “Unit Disk Representa-
tions of Embedded Trees, Outerplanar and
Multi-Legged Graphs”. In: arXiv:2103.08416
[cs] (Aug. 2021). arXiv: 2103.08416 [cs].

[14] Maciej M Sys lo. “Characterizations of outer-
planar graphs”. In: Discrete Mathematics 26.1
(1979), pp. 47–53.

[15] Douglas Brent West et al. Introduction to graph
theory. Vol. 2. Prentice hall Upper Saddle
River, 2001.

[16] Wolfgang Lechner, Philipp Hauke, and Peter
Zoller. “A quantum annealing architecture with
all-to-all connectivity from local interactions”.
In: Science advances 1.9 (2015), e1500838.

[17] Xingze Qiu, Peter Zoller, and Xiaopeng Li.
“Programmable quantum annealing architec-
tures with Ising quantum wires”. In: PRX
Quantum 1.2 (2020), p. 020311.

[18] Minhyuk Kim et al. “Rydberg Quantum
Wires for Maximum Independent Set Problems
with Nonplanar and High-Degree Graphs”. In:
arXiv:2109.03517 [physics, physics:quant-ph]
(Sept. 2021). arXiv: 2109 . 03517 [physics,

physics:quant-ph].

15



[19] Neil Robertson and Paul D Seymour. “Graph
minors. XIII. The disjoint paths problem”. In:
Journal of combinatorial theory, Series B 63.1
(1995), pp. 65–110.

[20] Jun Cai, William G. Macready, and Aidan
Roy. “A Practical Heuristic for Finding Graph
Minors”. In: arXiv:1406.2741 [quant-ph] (June
2014). arXiv: 1406.2741 [quant-ph].

[21] Vicky Choi. “Minor-embedding in adiabatic
quantum computation: I. The parameter set-
ting problem”. In: Quantum Information Pro-
cessing 7.5 (2008), pp. 193–209.
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