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ANISOTROPIC GLOBAL MICROLOCAL ANALYSIS FOR

TEMPERED DISTRIBUTIONS

LUIGI RODINO AND PATRIK WAHLBERG

Abstract. We study an anisotropic version of the Shubin calculus of pseudodiffer-
ential operators on Rd. Anisotropic symbols and Gabor wave front sets are defined
in terms of decay or growth along curves in phase space of power type parametrized
by one positive parameter that distinguishes space and frequency variables. We show
that this gives subcalculi of Shubin’s isotropic calculus, and we show a microlocal as
well as a microelliptic inclusion in the framework. Finally we prove an inclusion for
the anisotropic Gabor wave front set of chirp type oscillatory functions with a real
polynomial phase function.

1. Introduction

In this paper we study an anisotropic version of Shubin’s calculus of pseudodifferential
operators on Rd [26] and a naturally appearing anisotropic Gabor wave front set.

Shubin symbols for pseudodifferential operators satisfy estimates involving 1+|x|+|ξ|,
and they are thus isotropic on the phase space (x, ξ) ∈ T ∗Rd. In particular they behave
in a way that does not distinguish between x ∈ Rd and ξ ∈ Rd.

Otherwise expressed, the symbols satisfy growth or decay restrictions on straight lines
in phase space of the formR+ ∋ λ 7→ (λx, λξ) for (x, ξ) ∈ T ∗Rd\0. For Shubin operators
there are results concerning global microlocal analysis involving the Gabor wave front
set, introduced by Hörmander in [14] and elaborated in several recent works [2, 4, 5, 7,
8, 21–23, 25, 27]. The Gabor wave front set detects the lack of superpolynomial decay
along straight lines in phase space of the short-time Fourier transform of a tempered
distribution. It is global in the sense that it measures smoothness and decay at infinity
of the distribution comprehensively. It is empty exactly when a tempered distribution
is a Schwartz function.

In this paper we replace the weight 1 + |x| + |ξ| by 1 + |x| + |ξ|
1
s where s > 0. We

introduce Shubin type symbols with anisotropic behaviour, with decay or growth along
power type curves in phase space of the form

(1.1) R+ ∋ λ 7→ (λx, λsξ)

for (x, ξ) ∈ T ∗Rd \ 0.
The idea of anisotropy in pseudodifferential calculus has been around for a long time,

cf. [16, 20], with recent contributions exemplified by [10]. These works treat mainly
anisotropic behavior in the frequency variable ξ ∈ Rd with d parameters, for fixed
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2 L. RODINO AND P. WAHLBERG

x ∈ Rd. Our idea is to study global anisotropy comprehensively in the phase space
T ∗Rd. For simplicity we use only one parameter for the relation between the space and
the frequency variables. Even the idea of anisotropic pseudodifferential calculus on T ∗Rd

is not new, cf. [3, 6, 18, 20], but as far as we know a systematic microlocal analysis has
not yet been fully developed. The aim of our paper is to contribute to such a calculus
and adapted microlocal analysis.

For s > 0 and m ∈ R we study symbols that are smooth and satisfy estimates of the
form

|∂αx ∂
β
ξ a(x, ξ)| ≲ (1 + |x|+ |ξ|

1
s )m−|α|−s|β|, (x, ξ) ∈ T ∗Rd, α, β ∈ Nd.

This is a generalization of the isotropic Shubin symbols that satisfy the estimates with
s = 1. When s ̸= 1 an anisotropic symbol is still embedded in an isotropic Shubin
symbol space of possibly higher order. These symbol classes were introduced in [20, Def-
inition 3.1], and the corresponding basic calculus is briefly stated there without proofs.
In this paper we provide detailed proofs of the calculus from scratch, and extend the
analysis to an adapted anisotropic Gabor microlocal analysis.

For fixed s > 0 we show that the anisotropic symbols give rise to a subcalculus of the
isotropic Shubin calculus. More precisely the anisotropic symbol classes are independent
of the quantization parameter that admits transfer between Weyl and Kohn–Nirenberg
quantization. They are also stable with respect to operator composition as well as formal
adjoint.

Then we introduce the corresponding notion of anisotropic Gabor wave front set
WFs

g(u) of a tempered distribution u. This means the complement of curves of the
form (1.1) in a neighborhood of which the short-time Fourier transform decays super-
polynomially. The neighborhoods are s-conic, that is if a point (x, ξ) ∈ T ∗Rd \0 belongs
to the neighborhood then it contains the whole curve (1.1), and so is the anisotropic
Gabor wave front set.

The first main result that we present is the microlocal inclusion

WFs
g(a

w(x,D)u) ⊆ WFs
g(u),

where u is a tempered distribution, a is an isotropic Shubin symbol, and aw(x,D) denotes
the Weyl quantization.

The second main result is the microelliptic inclusion

WFs
g(u) ⊆ WFs

g(a
w(x,D)u)

⋃
chars,m1(a)

where again u is a tempered distribution, a is an anisotropic Shubin symbol with param-
eter s > 0 and order m, m1 ⩽ m and chars,m1(a) is a notion of microlocal characteristic
set adapted to the anisotropic Shubin calculus (see Definition 3.8).

Taken together these results imply

WFs
g(a

w(x,D)u) = WFs
g(u)

if chars,m1(a) = ∅ for some m1 ⩽ m.
The paper is organized as follows. Section 2 sets the stage in terms of notations

and some definitions, and a background on pseudodifferential operators in the Weyl
quantization with isotropic Shubin symbols. In Section 3 we introduce the anisotropic
Shubin symbols for a fixed parameter s > 0. We show adapted asymptotic expansions,
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and invariance under a commonly used family of quantizations parametrized by a real
parameter. This family includes the Weyl as well as the Kohn–Nirenberg quantization.
We also show the continuity of the Weyl product acting on the anisotropic symbol Fréchet
spaces, and we discuss s-conic cutoff functions.

Section 4 is devoted to the anisotropic Gabor wave front set. We state the definition,
discuss a few properties and show that it does not depend of the chosen nonzero Schwartz
window function in the short-time Fourier transform. The full metaplectic invariance of
the isotropic (s = 1) Gabor wave front set does not hold when s ̸= 1 but we show a few
partial such invariances.

In Section 5 we show that pseudodifferential operators with isotropic Shubin symbols
are microlocal with respect to all anisotropic Gabor wave front sets. In particular mi-
crolocality holds for anisotropic Shubin symbols. Another consequence is the invariance
of anisotropic Gabor wave front sets with respect to translation and modulation.

Section 6 treats a microelliptic inclusion for the anisotropic Gabor wave front set and
anisotropic Shubin symbols with s > 0 fixed. Finally in Section 7 we show inclusions and
equalities for the anisotropic Gabor wave front set of oscillatory functions with phase
functions that are real polynomials on Rd of order m ⩾ 2. The anisotropy parameter is
s = m− 1.

2. Preliminaries

The unit sphere in Rd is denoted by Sd−1 ⊆ Rd. A ball of radius r > 0 in Rd is
denoted by Br, and ej ∈ Rd is the vector of zeros except for position j, 1 ⩽ j ⩽ d, where

it is one. The transpose of a matrix A ∈ Rd×d is denoted by AT . We write f(x) ≲ g(x)
provided there exists C > 0 such that f(x) ⩽ C g(x) for all x in the domain of f and of

g. If f(x) ≲ g(x) ≲ f(x) then we write f ≍ g. We use the bracket ⟨x⟩ = (1 + |x|2)
1
2 for

x ∈ Rd. Peetre’s inequality with optimal constant [24, Lemma 2.1] is

⟨x+ y⟩s ⩽
(

2√
3

)|s|
⟨x⟩s⟨y⟩|s| x, y ∈ Rd, s ∈ R.

The normalization of the Fourier transform is

Ff(ξ) = f̂(ξ) = (2π)−
d
2

∫
Rd

f(x)e−i⟨x,ξ⟩ dx, ξ ∈ Rd,

for f ∈ S (Rd) (the Schwartz space), where ⟨ · , · ⟩ denotes the scalar product on Rd.
The conjugate linear action of a tempered distribution u ∈ S ′(Rd) on a test function
ϕ ∈ S (Rd) is written (u, ϕ), consistent with the L2 inner product ( · , · ) = ( · , · )L2

which is conjugate linear in the second argument.
Denote translation by Txf(y) = f(y− x) and modulation by Mξf(y) = ei⟨y,ξ⟩f(y) for

x, y, ξ ∈ Rd where f is a function or distribution defined on Rd. The composed operator
is denoted by Π(x, ξ) =MξTx. Let φ ∈ S (Rd) \ {0}. The short-time Fourier transform

(STFT) of a tempered distribution u ∈ S ′(Rd) is defined by

Vφu(x, ξ) = (2π)−
d
2 (u,MξTxφ) = F (uTxφ)(ξ), x, ξ ∈ Rd.
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The function Vφu is smooth and polynomially bounded [11, Theorem 11.2.3], that is
there exists k ⩾ 0 such that

(2.1) |Vφu(x, ξ)| ≲ ⟨(x, ξ)⟩k, (x, ξ) ∈ T ∗Rd.

We have u ∈ S (Rd) if and only if

(2.2) |Vφu(x, ξ)| ≲ ⟨(x, ξ)⟩−N , (x, ξ) ∈ T ∗Rd, ∀N ⩾ 0.

The inverse transform is given by

(2.3) u = (2π)−
d
2

∫∫
R2d

Vφu(x, ξ)MξTxφdx dξ

provided ∥φ∥L2 = 1, with action under the integral understood, that is

(2.4) (u, f) = (Vφu, Vφf)L2(R2d)

for u ∈ S ′(Rd) and f ∈ S (Rd), cf. [11, Theorem 11.2.5].
We will use

|x+ y|
1
s ⩽ κ(s−1)

(
|x|

1
s + |y|

1
s

)
, x, y ∈ Rd, s > 0,

where

κ(t) =

{
1 if 0 < t ⩽ 1
2t−1 if t > 1

.

Let s > 0. We use the weight function on (x, ξ) ∈ T ∗Rd

(2.5) µs(x, ξ) = 1 + |x|+ |ξ|
1
s .

The following inequality of Peetre type holds.

Lemma 2.1. If t ∈ R then

µs(x+ y, ξ + η)t ⩽ Cs,tµs(x, ξ)
|t|µs(y, η)

t, x, y, ξ, η ∈ Rd.

Proof. We may assume t = 1. We have

µs(x+ y, ξ + η) = 1 + |x+ y|+ |ξ + η|
1
s

⩽ 1 + |x|+ |y|+ κ(s−1)|ξ|
1
s + κ(s−1)|η|

1
s

⩽
(
1 + |x|+ κ(s−1)|ξ|

1
s

)(
1 + |y|+ κ(s−1)|η|

1
s

)
⩽ κ(s−1)2µs(x, ξ)µs(y, η).

□

For s > 0 we will use subsets of T ∗Rd \0 that are s-conic, that is subsets closed under
the operation T ∗Rd \ 0 ∋ (x, ξ) 7→ (λx, λsξ) for all λ > 0.
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2.1. Pseudodifferential operators. We need some elements from the calculus of pseu-
dodifferential operators [9, 13, 19, 26]. Let a ∈ C∞(R2d), m ∈ R and 0 ⩽ ρ ⩽ 1. Then
a is a Shubin symbol of order m and parameter ρ, denoted a ∈ Gmρ , if for all α, β ∈ Nd

there exists a constant Cα,β > 0 such that

(2.6) |∂αx ∂
β
ξ a(x, ξ)| ⩽ Cα,β⟨(x, ξ)⟩m−ρ|α+β|, x, ξ ∈ Rd.

The Shubin symbols Gmρ form a Fréchet space where the seminorms are given by the
smallest possible constants in (2.6). We write Gm1 = Gm.

For a ∈ Gmρ and t ∈ R a pseudodifferential operator in the t-quantization is defined
by

(2.7) at(x,D)f(x) = (2π)−d
∫
R2d

ei⟨x−y,ξ⟩a((1− t)x+ ty, ξ) f(y) dy dξ, f ∈ S (Rd),

whenm < −d. The definition extends tom ∈ R if the integral is viewed as an oscillatory
integral. If t = 0 we get the Kohn–Nirenberg quantization a0(x,D) and if t = 1

2 we get
the Weyl quantization a1/2(x,D) = aw(x,D). The relation between symbols in different
quantizations is [13]

eit⟨Dx,Dξ⟩at(x, ξ) = eis⟨Dx,Dξ⟩as(x, ξ), t, s ∈ R

where eit⟨Dx,Dξ⟩ is the Fourier multiplier operator with symbol eit⟨x,ξ⟩. Using [13, Theo-
rem 7.6.1] we may write for t ∈ R \ 0 and a ∈ S (R2d)

(2.8) eit⟨Dx,Dξ⟩a(x, ξ) = (2π|t|)−d
∫∫

R2d

a(y, η)e−
i
t
⟨x−y,ξ−η⟩dy dη.

If 0 < ρ ⩽ 1 then the Shubin symbols are invariant with respect to the parameter t
in the sense of at ∈ Gmρ if and only if as = ei(t−s)⟨Dx,Dξ⟩at ∈ Gmρ for any t, s ∈ R [26,
Theorem 23.2]. If t ∈ R then for the formal adjoint we have at(x,D)∗ = a1−t(x,D).
Thus if at ∈ Gmρ then at(x,D)∗ = bt(x,D) where bt ∈ Gmρ [26, Theorem 23.5].

We will use exclusively the Weyl quantization which has several particular features.
One important such feature is the simplicity of the formal adjoint: aw(x,D)∗ = aw(x,D).
As for the Shubin symbols, we will see that also the anisotropic symbol classes that we
will use in this paper give pseudodifferential calculi that are invariant with respect to
the quantization parameter t ∈ R (see Proposition 3.3).

If 0 < ρ ⩽ 1 and a ∈ Gmρ then the operator aw(x,D) acts continuously on S (Rd) and

extends uniquely by duality to a continuous operator on S ′(Rd). By Schwartz’s kernel
theorem the Weyl quantization may be extended to a weak formulation which yields
continuous linear operators aw(x,D) : S (Rd) → S ′(Rd), even if a is only an element
of S ′(R2d).

If a ∈ S ′(R2d) then

(2.9) (aw(x,D)f, g) = (2π)−d(a,W (g, f)), f, g ∈ S (Rd),

where the cross-Wigner distribution [9, 11] is defined as

W (g, f)(x, ξ) =

∫
Rd

g(x+ y/2)f(x− y/2)e−i⟨y,ξ⟩dy, (x, ξ) ∈ R2d.

We have W (g, f) ∈ S (R2d) when f, g ∈ S (Rd).
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The real phase space T ∗Rd ≃ Rd⊕Rd is a real symplectic vector space equipped with
the canonical symplectic form

σ((x, ξ), (x′, ξ′)) = ⟨x′, ξ⟩ − ⟨x, ξ′⟩, (x, ξ), (x′, ξ′) ∈ T ∗Rd.

This form can be expressed with the inner product as σ(X,Y ) = ⟨JX,Y ⟩ for X,Y ∈
T ∗Rd where

J =

(
0 Id

−Id 0

)
∈ R2d×2d.

The real symplectic group Sp(d,R) is the set of matrices in GL(2d,R) that leaves σ
invariant. Hence J ∈ Sp(d,R).

To each symplectic matrix χ ∈ Sp(d,R) is associated an operator µ(χ) that is unitary
on L2(Rd), and determined up to a complex factor of modulus one, such that

µ(χ)−1aw(x,D)µ(χ) = (a ◦ χ)w(x,D), a ∈ S ′(R2d)

(cf. [9, 13]). The operator µ(χ) is a homeomorphism on S and on S ′.
The mapping Sp(d,R) ∋ χ→ µ(χ) is called the metaplectic representation [9]. It is in

fact a representation of the so called 2-fold covering group of Sp(d,R), which is called the
metaplectic group. The metaplectic representation satisfies the homomorphism relation
modulo a change of sign:

µ(χχ′) = ±µ(χ)µ(χ′), χ, χ′ ∈ Sp(d,R).

We do not enter into the geometric subtleties of this construction since they are not
needed in this paper.

Let 0 < ρ ⩽ 1. The Weyl product a#b of two symbols a ∈ Gmρ and b ∈ Gnρ is de-
fined as the product of symbols corresponding to operator composition: (a#b)w(x,D) =
aw(x,D)bw(x,D). According to [26, Theorem 23.6] a#b ∈ Gm+n

ρ if a ∈ Gmρ and b ∈ Gnρ ,

and the bilinear map (a, b) 7→ a#b is continuous Gmρ ×Gnρ → Gm+n
ρ . When a, b ∈ S (R2d)

we have the formula [13, Eq. (18.5.6)]

(2.10) a#b(x, ξ) = e
i
2
σ(Dx,Dξ;Dy ,Dη)a(x, ξ)b(y, η)

∣∣
(y,η)=(x,ξ)

.

Using [13, Vol. 3 p. 152] we may write for a, b ∈ S (R2d)

(2.11) a#b(z) = π−2d

∫∫
R4d

a(w)b(u)e2iσ(z−u,z−w)dw du, z ∈ T ∗Rd.

3. Anisotropic Shubin calculus

Let s > 0 be fixed. We need a simplified version of a tool taken from [16,20] and their
references. Given (x, ξ) ∈ R2d \ 0 there is a unique λ = λ(x, ξ) = λs(x, ξ) > 0 such that

λ(x, ξ)−2|x|2 + λ(x, ξ)−2s|ξ|2 = 1.

Then (x, ξ) ∈ S2d−1 if and only if λ(x, ξ) = 1. By the implicit function theorem the
function λ : R2d \ 0 → R+ is smooth [17].

If µ > 0 and (x, ξ) ∈ S2d−1 then λ(µx, µsξ) = µ = µλ(x, ξ). In fact

(3.1) λ(µx, µsξ) = µλ(x, ξ)



ANISOTROPIC GLOBAL MICROLOCAL ANALYSIS FOR TEMPERED DISTRIBUTIONS 7

holds for any (x, ξ) ∈ R2d\0 and µ > 0 by the following argument. Given (x, ξ) ∈ R2d\0
set µ1 = λ(x, ξ) so that (x/µ1, ξ/µ

s
1) ∈ S2d−1. Then for µ > 0

λ(µx, µsξ) = λ(µµ1x/µ1, (µµ1)
sξ/µs1) = µµ1 = µλ(x, ξ).

We may define the projection p(x, ξ) = ps(x, ξ) of (x, ξ) ∈ R2d \ 0 along the curve
R+ ∋ µ 7→ (µx, µsξ) onto S2d−1. This means

(3.2) p(x, ξ) =
(
λ(x, ξ)−1x, λ(x, ξ)−sξ

)
, (x, ξ) ∈ R2d \ 0.

Due to (3.1) p(µx, µsξ) = p(x, ξ) does not depend on µ > 0. The function p : R2d \ 0 →
S2d−1 is smooth since λ ∈ C∞(R2d \ 0) and λ(x, ξ) > 0 for all (x, ξ) ∈ R2d \ 0.

From [20], or by straightforward arguments, we have the bounds

(3.3) |x|+ |ξ|
1
s ≲ λ(x, ξ) ≲ |x|+ |ξ|

1
s , (x, ξ) ∈ R2d \ 0

and

(3.4) ⟨(x, ξ)⟩min(1, 1s ) ≲ 1 + λ(x, ξ) ≲ ⟨(x, ξ)⟩max(1, 1s ), (x, ξ) ∈ R2d \ 0.

Hörmander type symbol classes with anisotropic behavior in the frequency domain
can be found in [16, Définition 1.3] and in [20, Definition 1.4]. Now we define symbol
classes that are adaptations of this concept to the Shubin calculus.

Definition 3.1. Let s > 0 and m ∈ R. The space of (s-)anisotropic Shubin symbols
Gm,s of order m consists of functions a ∈ C∞(R2d) that satisfy the estimates

|∂αx ∂
β
ξ a(x, ξ)| ≲ (1 + |x|+ |ξ|

1
s )m−|α|−s|β|, (x, ξ) ∈ T ∗Rd, α, β ∈ Nd.

The symbols Gm,s enjoy the following symmetry: If b(x, ξ) = a(ξ, x) then a ∈ Gm,s if

and only if b ∈ Gm/s,1/s. It is clear that⋂
m∈R

Gm,s = S (R2d).

Referring to the weight (2.5) we use the seminorms on a ∈ Gm,s indexed by j ∈ N

(3.5) ∥a∥j = max
|α+β|⩽j

sup
(x,ξ)∈R2d

µs(x, ξ)
−m+|α|+s|β|

∣∣∣∂αx ∂βξ a(x, ξ)∣∣∣ .
The symbol classes Gm,s with s ∈ Q+ (positive rationals) were introduced in [20, Def-

inition 3.1] as a tool in order to construct parametrices for pseudodifferential operators.
Here we generalize to s ∈ R+ which is a straightforward extension concerning the cal-
culus. In [20, Section 3] results for a calculus for the symbol classes Gm,s are briefly
stated without proofs. In this section we prove in detail the basic calculus results for
the anisotropic Shubin symbols Gm,s.

We have Gm,1 = Gm = Gm1 , that is the usual Shubin class, and we cannot embed Gmρ
in a space Gn,s unless ρ = s = 1. Using (3.3) and (3.4) the embedding

(3.6) Gm,s ⊆ Gm0
ρ ,

where m0 = max(m,m/s) and ρ = min(s, 1/s), can be confirmed. Thus the Shubin
calculus [26] applies to the anisotropic Shubin symbols.
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We also note that the more general pseudodifferential calculus in [19] is not di-
rectly applicable to the symbol classes Gm,s unless s = 1. In fact if s ̸= 1 then ei-

ther the space weight function Φ(x, ξ) = 1 + |x| + |ξ|
1
s or the frequency weight func-

tion Ψ(x, ξ) = 1 + |x|s + |ξ| is not sublinear. Nevertheless from (3.4) it follows that

Gm,s ⊆ S(M ; Φ,Ψ) as defined in [19, Definition 1.1.1] with M(x, ξ) = ⟨(x, ξ)⟩max(m,m/s),

Φ(x, ξ) = ⟨(x, ξ)⟩min(1, 1s ) and Ψ(x, ξ) = ⟨(x, ξ)⟩min(1,s). Thus the pseudodifferential cal-
culus in [19, Chapter 1.2] applies to Gm,s, but the anisotropy is again lost.

There is a more subtle anisotropic subcalculus adapted to the anisotropic Shubin
symbols Gm,s, for each fixed s > 0, which preserves the anisotropy. We deduce a
minimal such calculus and start with asymptotic expansions.

Given a sequence of symbols aj ∈ Gmj ,s, j = 1, 2, . . . , such thatmj → −∞ as j → +∞
we write

a ∼
∞∑
j=1

aj

provided that for any n ⩾ 2

a−
n−1∑
j=1

aj ∈ Gµn,s

where µn = maxj⩾nmj .

Lemma 3.2. Let s > 0. Given a sequence of symbols aj ∈ Gmj ,s, j = 1, 2, . . . , such
that mj → −∞ as j → +∞, there exists a symbol a ∈ Gm,s where m = maxj⩾1mj such

that a ∼
∑∞

j=1 aj. The symbol a is unique modulo addition with a function in S (R2d).

Proof. Let φ ∈ C∞(R2d) satisfy 0 ⩽ φ ⩽ 1, φ(z) = 0 if |z| ⩽ 1
2 and φ(z) = 1 if |z| ⩾ 1.

Set for t ⩾ 1

ψ(x, ξ) = φ(t−1x, t−sξ), (x, ξ) ∈ T ∗Rd.

Then for all t ⩾ 1 we have∣∣∣∂αx ∂βξ ψ(x, ξ)∣∣∣ ⩽ Cα,βµs(x, ξ)
−|α|−s|β|.

If fact this is trivial if α = β = 0. If instead (α, β) ∈ N2d \ 0 then

1

4
⩽ t−2|x|2 + t−2s|ξ|2 ⩽ 1

in the support of ∂αx ∂
β
ξ φ(t

−1x, t−sξ). Thus |x|+ |ξ|
1
s ≲ t in said support. This gives

(3.7)

∣∣∣∂αx ∂βξ ψ(x, ξ)∣∣∣ = t−|α|−s|β|
∣∣∣(∂αx ∂βξ φ)(t−1x, t−sξ)

∣∣∣
⩽ Cα,βµs(x, ξ)

−|α|−s|β|.

The symbol a is constructed as

a(x, ξ) =
∞∑
j=1

φ(t−1
j x, t−sj ξ)aj(x, ξ)
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for a sufficiently rapidly increasing sequence (tj) ⊆ R+. Given n ⩾ 2 we must show

a−
∑n−1

j=1 aj ∈ Gµn,s. We have

a(x, ξ)−
n−1∑
j=1

aj(x, ξ) =
n−1∑
j=1

(
φ(t−1

j x, t−sj ξ)− 1
)
aj(x, ξ) +

∞∑
j=n

φ(t−1
j x, t−sj ξ)aj(x, ξ).

The first sum is compactly supported and hence belongs to Gµn,s trivially so it suffices
to prove

(3.8)
∞∑
j=n

φ(t−1
j x, t−sj ξ)aj(x, ξ) ∈ Gµn,s.

First we show

(3.9)
∣∣∣∂αx ∂βξ (φ(t−1

j x, t−sj ξ)aj(x, ξ)
)∣∣∣ ⩽ 2−jµs(x, ξ)

mj+1−|α|−s|β|

for all j ⩾ 1 and |α + β| ⩽ j, provided tj > 0 is sufficiently large. In fact this esti-
mate is a consequence of aj ∈ Gmj ,s, (3.7), Leibniz’ rule, and the support properties of

φ(t−1
j x, t−sj ξ), if tj > 0 is sufficiently large.

Let α, β ∈ Nd and pick N ⩾ max(n+ 1, |α+ β|) such that µN ⩽ µn − 1. Then for all
j ⩾ N it holds mj ⩽ µj ⩽ µN ⩽ µn − 1. Combined with (3.9) this gives

∞∑
j=N

∣∣∣∂αx ∂βξ (φ(t−1
j x, t−sj ξ)aj(x, ξ)

)∣∣∣ ⩽ 21−Nµs(x, ξ)
µn−|α|−s|β|.

Since
∑N−1

j=n φ(t
−1
j x, t−sj ξ)aj(x, ξ) ∈ Gµn,s we have proved (3.8). □

We have the following asymptotic expansion for the Weyl product of a ∈ Gm,s and
b ∈ Gn,s, m,n ∈ R [26]:

(3.10) a#b(x, ξ) ∼
∑
α,β⩾0

(−1)|β|

α!β!
2−|α+β|Dβ

x∂
α
ξ a(x, ξ)D

α
x∂

β
ξ b(x, ξ).

Each term in the sum belongs to Gm+n−(1+s)|α+β|,s.
In the next result we show that the symbol classes Gm,s are invariant with respect

to the parameter t ∈ R in (2.7). In other words if one changes quantization one gets
a new symbol in the same class. Combined with aw(x,D)∗ = aw(x,D), an immediate
consequence is that for each t ∈ R the symbol class Gm,s is closed with respect to formal
adjoint: If at ∈ Gm,s and at(x,D)∗ = bt(x,D) then bt ∈ Gm,s.

We also show the continuity of the bilinear Weyl product on the symbol classes
Gm,s. Again by the first result the continuity extends to the symbol product in the
t-quantization for any t ∈ R.

Proposition 3.3. Let s > 0 and m,n ∈ R.

(i) If t ∈ R and a ∈ Gm,s then b(x, ξ) = eit⟨Dx,Dξ⟩a(x, ξ) ∈ Gm,s, and the map a 7→ b
is continuous on Gm,s.

(ii) If a ∈ Gm,s and b ∈ Gn,s then a#b ∈ Gm+n,s, and the Weyl product is continuous

# : Gm,s ×Gn,s → Gm+n,s.
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Proof. (i) We may assume t ̸= 0 since the claim is trivial otherwise. Let α, β ∈ Nd.

The operator eit⟨Dx,Dξ⟩ commutes with differential operators ∂αx ∂
β
ξ . The distribution

∂αx ∂
β
ξ b = F−1

(
eit⟨·,·⟩∂̂αx ∂

β
ξ a

)
is well defined in S ′(R2d).

Let χ ∈ C∞
c (R2d) satisfy 0 ⩽ χ ⩽ 1, χ(z) = 1 when |z| ⩽ 1 and χ(z) = 0 when

|z| ⩾ 2. Set χε(z) = χ(εz) for ε > 0. Then χε(∂
α
x ∂

β
ξ a) → ∂αx ∂

β
ξ a in S ′(R2d) as ε→ 0+.

Hence we obtain from (2.8)

∂αx ∂
β
ξ b(x, ξ) = F−1

(
eit⟨·,·⟩∂̂αx ∂

β
ξ a

)
(x, ξ) = lim

ε→0+
F−1

(
eit⟨·,·⟩F

(
χε∂

α
x ∂

β
ξ a

))
(x, ξ)

= (2π|t|)−d lim
ε→0+

∫
R2d

e−
i
t
⟨x−y,ξ−η⟩χε(y, η)∂

α
x ∂

β
ξ a(y, η) dy dη

in S ′(R2d).
Define the operator

(Sf)(y, η) = (1−∆y,η)
(
⟨t−1(x− y, ξ − η)⟩−2f(y, η)

)
acting on f ∈ C∞(R2d). From

(1−∆y,η)e
− i

t
⟨x−y,ξ−η⟩ = ⟨t−1(x− y, ξ − η)⟩2e−

i
t
⟨x−y,ξ−η⟩

we obtain from integration by parts for N ∈ N

(2π|t|)d∂αx ∂
β
ξ b(x, ξ) = lim

ε→0+

∫
R2d

e−
i
t
⟨x−y,ξ−η⟩SN

(
χε(y, η)∂

α
x ∂

β
ξ a(y, η)

)
dy dη

=

∫
R2d

e−
i
t
⟨x−y,ξ−η⟩SN

(
∂αx ∂

β
ξ a(y, η)

)
dy dη

by dominated convergence, since SN∂αx ∂
β
ξ a ∈ L1(R2d) provided N is large enough.

This gives using (3.4), (3.5) and Lemma 2.1

|∂αx ∂
β
ξ b(x, ξ)| ≲

∫
R2d

∣∣∣SN (
∂αx ∂

β
ξ a(y, η)

)∣∣∣ dy dη
⩽ Ct,N∥a∥2N+|α+β|

∫
R2d

⟨(x− y, ξ − η)⟩−2Nµs(y, η)
m−|α|−s|β| dy dη

= Ct,N∥a∥2N+|α+β|

∫
R2d

⟨(y, η)⟩−2Nµs(x− y, ξ − η)m−|α|−s|β| dy dη

≲ Ct,N∥a∥2N+|α+β|µs(x, ξ)
m−|α|−s|β|

∫
R2d

⟨(y, η)⟩−2Nµs(y, η)
|m|+|α|+s|β| dy dη

⩽ Ct,N∥a∥2N+|α+β|µs(x, ξ)
m−|α|−s|β|

∫
R2d

⟨(y, η)⟩−2N+(|m|+|α|+s|β|)max(1, 1s ) dy dη

⩽ Ct,N∥a∥2N+|α+β|µs(x, ξ)
m−|α|−s|β|

after possibly increasing N (which may depend on |α + β|). In view of (3.5) we obtain
for any j ∈ N

∥b∥j ⩽ Ct,N∥a∥2Nj+j

for some Nj ∈ N, which proves claim (i).
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(ii) Due to (3.6) we may use results for the calculus of Shubin symbols Gmρ .

When a, b ∈ S (R2d) we have by (2.10) a#b(z) = f(z, z) where

f(z, w) = e
i
2
σ(Dz ,Dw)(a⊗ b)(z, w), z, w ∈ R2d.

Suppose a ∈ Gm,s and b ∈ Gn,s. Set aε = χεa and bε = χεb where χ ∈ C∞
c (R2d) and χε

is defined as above. Then aε ⊗ bε → a ⊗ b in S ′(R4d) as ε → 0+. Since e
i
2
σ(Dz ,Dw) is

continuous on S ′(R4d) it follows that

(3.11) f(z, w) = lim
ε→0+

e
i
2
σ(Dz ,Dw)(aε ⊗ bε)(z, w)

in S ′(R4d).
From the argument in the proof of [25, Theorem A.5] it follows that the limit (3.11)

is actually pointwise for all z, w ∈ R2d. The Fourier multiplier operator e
i
2
σ(Dz ,Dw)

commutes with differential operators so for any α, β ∈ N2d we have the pointwise limit

(3.12) ∂αz ∂
β
wf(z, w) = lim

ε→0+
e

i
2
σ(Dz ,Dw)(∂αaε ⊗ ∂βbε)(z, w)

which yields using (2.11)

(3.13)

∂α(a#b)(z) = ∂α(f(z, z)) =
∑
β⩽α

(
α

β

)
(∂βz ∂

α−β
w f)(z, z)

=
∑
β⩽α

(
α

β

)
lim
ε→0+

e
i
2
σ(Dz ,Dw)(∂βaε ⊗ ∂α−βbε)(z, z)

= π−2d
∑
β⩽α

(
α

β

)
lim
ε→0+

∫∫
R4d

e2iσ(z−v,z−u)∂βaε(u)∂
α−βbε(v) dudv.

Next we note

(1−∆u,v)e
2iσ(z−v,z−u) = ⟨2(z − u, z − v)⟩2e2iσ(z−v,z−u).

If we define the operator

(Sf)(u, v) = (1−∆u,v)
(
⟨2(z − u, z − v)⟩−2f(u, v)

)
, u, v ∈ R2d,

acting on f ∈ C∞(R4d), then we obtain for N ∈ N using integration by parts and
dominated convergence

lim
ε→0+

∫∫
R4d

e2iσ(z−v,z−u)∂βaε(u)∂
α−βbε(v) dudv

= lim
ε→0+

∫∫
R4d

e2iσ(z−v,z−u)SN
(
∂βaε(u)∂

α−βbε(v)
)
dudv

=

∫∫
R4d

e2iσ(z−v,z−u)SN
(
∂βa(u)∂α−βb(v)

)
du dv

since SN
(
∂βa⊗ ∂α−βb

)
∈ L1(R4d) provided N is sufficiently large.
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We denote α = (α1, α2) ∈ N2d with α1, α2 ∈ Nd. Combining with (3.13) and using
(3.4), (3.5) and Lemma 2.1 we obtain

|∂α(a#b)(z)|

≲
∑
β⩽α

(
α

β

)∫∫
R4d

∣∣∣SN (
∂βa(u)∂α−βb(v)

)∣∣∣ dudv
≲

∑
β⩽α

(
α

β

)
∥a∥2N+|β|∥b∥2N+|α−β|

×
∫∫

R4d

⟨(z − u, z − v)⟩−2Nµs(u)
m−|β1|−s|β2|µs(v)

n−|α1−β1|−s|α2−β2|dudv

⩽ ∥a∥2N+|α|∥b∥2N+|α|

×
∑
β⩽α

(
α

β

)∫∫
R4d

⟨(u, v)⟩−2Nµs(z − u)m−|β1|−s|β2|µs(z − v)n−|α1−β1|−s|α2−β2|dudv

≲ ∥a∥2N+|α|∥b∥2N+|α|µs(z)
m+n−|α1|−s|α2|

×
∑
β⩽α

(
α

β

)∫∫
R4d

⟨(u, v)⟩−2N+(|m|+|n|+2|α1|+2s|α2|)max(1, 1s )dudv

≲ ∥a∥2N+|α|∥b∥2N+|α|µs(z)
m+n−|α1|−s|α2|

if N is sufficiently large. This shows that for any α ∈ N2d we have

sup
z∈R2d

µs(z)
−m−n+|α1|+s|α2| |∂α(a#b)(z)| ≲ ∥a∥2N+|α|∥b∥2N+|α|

and the claimed continuity follows in view of (3.5). □

3.1. s-conic cutoff functions. A family of open s-conic subsets are defined and de-
noted as follows. Recall the projection function (3.2) p : R2d \ 0 → S2d−1.

Definition 3.4. Suppose s, ε > 0 and z0 ∈ S2d−1. Then

Γs,z0,ε = {(x, ξ) ∈ R2d \ 0, |z0 − p(x, ξ)| < ε} ⊆ T ∗Rd \ 0.

For simplicity we write Γz0,ε = Γs,z0,ε when s is fixed and understood from the context.

If ε > 2 then Γz0,ε = T ∗Rd \ 0 so we usually restrict to ε ⩽ 2.
Next we construct cutoff functions χ ∈ G0,s such that 0 ⩽ χ ⩽ 1, suppχ ⊆ Γz0,2ε\Br/2,

χ|Γz0,ε\Br
≡ 1 for given ε, r > 0, and z0 ∈ S2d−1. They will be needed in Section 6.

Lemma 3.5. Let s > 0. If r > 0, 0 < ε ⩽ 1 and z0 ∈ S2d−1 then there exists χ ∈ G0,s

such that 0 ⩽ χ ⩽ 1, suppχ ⊆ Γz0,2ε \ Br/2 and χ|Γz0,ε\Br
≡ 1.

Proof. Let φ ∈ C∞
c (R2d) satisfy 0 ⩽ φ ⩽ 1, suppφ ⊆ z0 + B2ε and φ|z0+Bε ≡ 1. Let

g ∈ C∞(R) satisfy 0 ⩽ g ⩽ 1, g(x) = 0 if x ⩽ 1
2 and g(x) = 1 if x ⩾ 1. Set

(3.14) ψ(λx, λsξ) = φ(x, ξ), (x, ξ) ∈ S2d−1, λ > 0,

and

(3.15) χ(z) = g(r−1|z|)ψ(z), z ∈ R2d.
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Note that (3.14) can be written

ψ(x, ξ) = φ(p(x, ξ)), (x, ξ) ∈ R2d \ 0,

and it follows that ψ ∈ C∞(R2d\0), and thus χ ∈ C∞(R2d). The properties χ|Γz0,ε\Br
≡

1 and suppχ ⊆ Γz0,2ε \ Br/2 follow.
From (3.14) we obtain

(3.16) ∂αx ∂
β
ξ φ(x, ξ) = λ|α|+s|β|(∂αx ∂

β
ξ ψ)(λx, λ

sξ), (x, ξ) ∈ S2d−1, λ > 0.

Let (y, η) ∈ R2d satisfy |(y, η)| > r
2 . Then (y, η) = (λx, λsξ) for a unique (x, ξ) ∈ S2d−1

and a unique

λ > δ := min

(
r

2
,
(r
2

) 1
s

)
> 0.

We have

1 + |y|+ |η|
1
s = 1 + λ(|x|+ |ξ|

1
s ) ⩽ 2(1 + λ).

Thus we obtain from (3.16) for any α, β ∈ Nd∣∣∣∂αy ∂βηψ(y, η)∣∣∣ ⩽ Cα,β(1 + λ)−|α|−s|β| ≲ (1 + |y|+ |η|
1
s )−|α|−s|β|.

From (3.15) we may conclude that χ ∈ G0,s. □

Sometimes it is useful to have the following alternative to the s-conic neighborhoods
of Definition 3.4.

Definition 3.6. Suppose s, ε > 0 and (x0, ξ0) ∈ S2d−1. Then

Γ̃s,(x0,ξ0),ε = Γ̃(x0,ξ0),ε = {(x, ξ) ∈ R2d \ 0 : (x, ξ) = (λ(x0 + y), λs(ξ0 + η), λ > 0, (y, η) ∈ Bε}

= {(x, ξ) ∈ R2d \ 0 : ∃λ > 0 : (λx, λsξ) ∈ (x0, ξ0) + Bε} ⊆ T ∗Rd \ 0.

Again Γ̃(x0,ξ0),ε is s-conic.

The neighborhoods Γs,(x0,ξ0),ε and Γ̃s,(x0,ξ0),ε are not identical, even if s = 1 in which
case p(x, ξ) = (x, ξ)/|(x, ξ)|. But by the following result the s-conic neighborhoods of

the form Γs,z0,ε and Γ̃s,z0,ε are equivalent topologically.

Lemma 3.7. Let z0 ∈ S2d−1. For each ε > 0 there exists δ > 0 such that

(3.17) Γz0,δ ⊆ Γ̃z0,ε

and

(3.18) Γ̃z0,δ ⊆ Γz0,ε.

Proof. Let z0 = (x0, ξ0). If ε > 0 and (x, ξ) ∈ Γz0,ε ∩ S2d−1 then (x, ξ) ∈ (x0, ξ0) + Bε so

(x, ξ) ∈ Γ̃z0,ε. Since both Γz0,ε and Γ̃z0,ε are s-conic, this shows

Γz0,ε ⊆ Γ̃z0,ε

for any ε > 0. Thus (3.17) follows with δ = ε.
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In order to show (3.18) let ε > 0, and suppose 0 < δ < 1. If (x, ξ) ∈ Γ̃z0,δ ∩ S2d−1

then there exists µ = µ(x, ξ) > 0 such that |(µx, µsξ)− (x0, ξ0)| < δ. We have

min(µ, µs) ⩽ |(µx, µsξ)| < 1 + δ,

max(µ, µs) ⩾ |(µx, µsξ)| > 1− δ

which gives

(1− δ)max(1, 1s ) < µ(x, ξ) < (1 + δ)max(1, 1s ) ∀(x, ξ) ∈ Γ̃z0,δ ∩ S2d−1.

Thus we may pick δ < ε/2 such that

max (|1− µ(x, ξ)| , |1− µ(x, ξ)s|) < ε/2 ∀(x, ξ) ∈ Γ̃z0,δ ∩ S2d−1.

If (x, ξ) ∈ Γ̃z0,δ ∩ S2d−1 then p(x, ξ) = (x, ξ) so we obtain

|p(x, ξ)− (x0, ξ0)| = |(µ(x, ξ)x, µ(x, ξ)sξ)− (x0, ξ0) + ((1− µ(x, ξ))x, (1− µ(x, ξ)s)ξ)|
< δ +max (|1− µ(x, ξ)|, |1− µ(x, ξ)s|) < ε.

Again due to s-conic property of Γ̃z0,δ and Γz0,ε, this shows Γ̃z0,δ ⊆ Γz0,ε, that is (3.18).
□

In Example 3.9 and in Section 6 we will use the following definition which is a natural
anisotropic microlocal version of [26, Definition 25.1] as well as of [3, Eq. (1.11)] (cf. [6]).

Definition 3.8. Let s > 0, z0 ∈ R2d \ 0, and a ∈ Gm,s. Then z0 is called non-
characteristic of order m1 ⩽ m, z0 /∈ chars,m1(a), if there exists ε > 0 such that, with
Γ = Γs,p(z0),ε,

|a(x, ξ)| ⩾ Cµs(x, ξ)
m1 , (x, ξ) ∈ Γ , |x|+ |ξ|

1
s ⩾ R,(3.19)

|∂αx ∂
β
ξ a(x, ξ)| ≲ |a(x, ξ)|µs(x, ξ)−|α|−s|β|, α, β ∈ Nd, (x, ξ) ∈ Γ, |x|+ |ξ|

1
s ⩾ R,

(3.20)

for suitable C,R > 0.

If m1 = m we write chars,m(a) = chars(a), and then the condition (3.20) is then

redundant. Note that chars,m1(a) is a closed s-conic subset of T
∗Rd\0, and chars,m1(a) ⊆

chars,m2(a) if m1 ⩽ m2 ⩽ m.

Example 3.9. In [3, 6] polynomial symbols of the form

(3.21) a(x, ξ) =
∑

|α|
k
+

|β|
m

⩽1

cαβx
αξβ, x, ξ ∈ Rd, cαβ ∈ C,

are studied for k,m ∈ N. Then a ∈ Gmax(k,m) and a ∈ Gk,
k
m . In fact we have for

(x, ξ) ∈ S2d−1 and λ > 0(
∂γx∂

κ
ξ a

)
(λx, λ

k
m ξ) =

∑
|α|
k
+

|β|
m

⩽1

cαβγκλ
|α−γ|+ k

m
|β−κ|xα−γξβ−κ.
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If (y, η) ∈ R2d and |(y, η)| ⩾ 1 then we write (y, η) = (λx, λ
k
m ξ) for (x, ξ) ∈ S2d−1 and

λ ⩾ 1. Since

|y|+ |η|
m
k = λ

(
|x|+ |ξ|

m
k

)
≍ λ

we obtain ∣∣∂γx∂κξ a(y, η)∣∣ ≲ ∑
|α|
k
+

|β|
m

⩽1

(1 + |y|+ |η|
m
k )

k
(

|α|
k
+

|β|
m

)
−|γ|− k

m
|κ|

≲ (1 + |y|+ |η|
m
k )k−|γ|− k

m
|κ|

which proves that a ∈ Gk,
k
m .

In [3, Eq. (1.11)] the symbol a given by (3.21) is called (k,m)-globally elliptic if

|a(x, ξ)| ⩾ C
(
|x|+ |ξ|

m
k

)k
, |x|+ |ξ|

m
k ⩾ R

for some C,R > 0. Thus Definition 3.8 can be viewed as a microlocalization of (k,m)-
global ellipticity. A (k,m)-globally elliptic symbol as above satisfies chark/m(a) =
chark/m,k(a) = ∅.

4. Anisotropic Gabor wave front sets

The following definition is inspired by H. Zhu’s [28, Definition 1.5] of a quasi-homogen-
eous wave front set defined by two non-negative parameters. Zhu uses a semiclassical
formulation whereas we use the STFT. As far as we know it is an open question to
determine if the concepts coincide.

Given positive parameters t, s > 0 we define the t, s-Gabor wave front set WFt,sg (u) ⊆
T ∗Rd \ 0 of u ∈ S ′(Rd).

Definition 4.1. Suppose u ∈ S ′(Rd), φ ∈ S (Rd) \ 0, and t, s > 0. A point z0 =
(x0, ξ0) ∈ T ∗Rd \ 0 satisfies z0 /∈ WFt,sg (u) if there exists an open set U ⊆ T ∗Rd such
that z0 ∈ U and

(4.1) sup
(x,ξ)∈U, λ>0

λN |Vφu(λtx, λsξ)| < +∞ ∀N ⩾ 0.

If s = t we have WFt,tg (u) = WFg(u) which denotes the usual Gabor wave front

set [14, 22]. In the definition of WFt,sg (u) only the fraction s/t matters. Therefore we

may assume in the sequel that t = 1, and we write WF1,s
g (u) = WFsg(u) for simplicity.

We call WFsg(u) the anisotropic s-Gabor wave front set. It is clear that WFsg(u) is
s-conic.

Referring to (2.1) and (2.2) we see that WFsg(u) records s-conic curves 0 < λ 7→
(λx, λsξ) where Vφu does not behave like the STFT of a Schwartz function. From (2.1)
it also follows that it suffices to check (4.1) for λ ⩾ L where L > 0 may be arbitrarily
large.

From (2.2) it follows that WFsg(u) = ∅ if u ∈ S (Rd). Conversely, if WFsg(u) = ∅ then

sup
(x,ξ)∈S2d−1, λ>0

λN |Vφu(λx, λsξ)| < +∞ ∀N ⩾ 0
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due to the compactness of the unit sphere S2d−1. Given (y, η) ∈ T ∗Rd\0 there is a unique
λ > 0 such that (y, η) = (λx, λsξ) and (x, ξ) ∈ S2d−1, and |(y, η)|2 = λ2|x|2 + λ2s|ξ|2 ⩽
λ2 + λ2s. This implies that (2.2) is satisfied, and thus u ∈ S (Rd). We have now shown
that WFsg(u) = ∅ if and only if u ∈ S (Rd), for any s > 0.

4.1. Window invariance and consequences. First we show that WFsg(u) does not

depend on the window function φ ∈ S (Rd) \ 0.

Proposition 4.2. Let s > 0, u ∈ S ′(Rd) and z0 ∈ T ∗Rd \ 0. If φ ∈ S (Rd) \ 0 and
(4.1) holds with t = 1 for an open set U ⊆ T ∗Rd \ 0 containing z0, and ψ ∈ S (Rd) \ 0,
then there exists an open set V ⊆ U such that z0 ∈ V and

(4.2) sup
(x,ξ)∈V, λ>0

λN |Vψu(λx, λsξ)| <∞, ∀N ⩾ 0.

Proof. Since z0 ∈ U ⊆ R2d where U is open we may pick an open set V ⊆ U such that
z0 ∈ V and V +Bε ⊆ U for some 0 < ε ⩽ 1, and we may assume

(4.3) sup
z∈V

|z| ⩽ |z0|+ 1 := µ.

By [11, Lemma 11.3.3] we have

|Vψu(z)| ⩽ (2π)−
d
2 ∥φ∥−2

L2 |Vφu| ∗ |Vψφ|(z), z ∈ R2d.

Let λ ⩾ 1 and N ∈ N. We have

λN |Vψu(λx, λsξ)|

≲
∫∫

R2d

λN |Vφu(λ(x− λ−1y), λs(ξ − λ−sη))| |Vψφ(y, η)|dy dη

= I1 + I2

where we split the integral into the two terms

I1 =

∫∫
R2d\Ωλ

λN |Vφu(λ(x− λ−1y), λs(ξ − λ−sη))| |Vψφ(y, η)|dy dη,

I2 =

∫∫
Ωλ

λN |Vφu(λ(x− λ−1y), λs(ξ − λ−sη))| |Vψφ(y, η)|dy dη

where

Ωλ = {(y, η) ∈ R2d : |(y, η)| < 2−
1
2 ελmin(1,s)}.
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First we estimate I1 when (x, ξ) ∈ V . From (2.1), (2.2) and (4.3) we obtain for some
k ⩾ 0 and any L ⩾ k

(4.4)

I1 ≲ λN
∫∫

R2d\Ωλ

⟨(λx− y, λsξ − η)⟩k |Vψφ(y, η)| dy dη

≲ (1 + µ2)
k
2λN+kmax(1,s)

∫∫
R2d\Ωλ

⟨(y, η)⟩k |Vψφ(y, η)| dy dη

≲ (1 + µ2)
k
2λN+kmax(1,s)

∫∫
R2d\Ωλ

⟨(y, η)⟩k−L−2d−1 dy dη

≲ λN+kmax(1,s)

(
1 +

1

2
ε2λ2min(1,s)

) 1
2
(k−L) ∫∫

R2d

⟨(y, η)⟩−2d−1 dy dη

≲ λN+kmax(1,s)+min(1,s)(k−L)

⩽ CN,L,µ,ε

for any λ ⩾ 1, provided we pick L ⩾ k+min(1, s)−1 (N + kmax(1, s)). Here CN,L,µ,ε > 0
is a constant that depends on N,L, µ, ε but not on λ > 0. Thus we have obtained the
required estimate for I1.

It remains to estimate I2. If (y, η) ∈ Ωλ then |y|2 < 1
2ε

2λ2 and |η|2 < 1
2ε

2λ2s which

implies (λ−1y, λ−sη) ∈ Bε. Hence if (x, ξ) ∈ V then (x − λ−1y, ξ − λ−sη) ∈ U and we
may use the estimate (4.1) with t = 1. This gives

(4.5)

I2 =

∫∫
Ωλ

λN |Vφu(λ(x− λ−1y), λs(ξ − λ−sη))| |Vψφ(y, η)|dy dη

⩽ CN

∫∫
R2d

|Vψφ(y, η)| dy dη

≲ CN

for all λ ⩾ 1. Thus we have obtained the required estimate for I2. Combining (4.4) and
(4.5), we have proved (4.2). □

If ǔ(x) = u(−x) then

(4.6) Vψ̌ǔ(x, ξ) = Vψu(−x,−ξ).

Using Proposition 4.2 it follows that we have the following symmetry:

(4.7) ǔ = ±u =⇒ WFsg(u) = −WFsg(u).

We also have

(4.8) Vψu(x, ξ) = Vψu(x,−ξ).

Referring to [24, Definition 3.2] we observe that

(4.9) WFsg(u) ⊆ WF1,s(u), s > 0, u ∈ S ′(Rd),

where WF1,s(u) is a particular case of a t, s-Gelfand–Shilov wave front set, a concept that
requires super-exponential rather than super-polynomial decay along curves in phase
space.
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4.2. Metaplectic properties. The Gabor wave front set is symplectically invariant as
(cf. [14, Proposition 2.2])

(4.10) WFg(µ(χ)u) = χWFg(u), χ ∈ Sp(d,R), u ∈ S ′(Rd).

When s ̸= 1 the s-Gabor wave front set WFs
g(u) is no longer symplectically invariant.

Nevertheless, two of the generators of the symplectic group behave invariantly in certain
individual senses which we now describe. By [9, Proposition 4.10] each matrix χ ∈
Sp(d,R) is a finite product of matrices in Sp(d,R) of the form

J ,
(
A−1 0
0 AT

)
,

(
I 0
B I

)
,

for A ∈ GL(d,R) and B ∈ Rd×d symmetric. The corresponding metaplectic operators
are µ(J ) = F ,

µ

(
A−1 0
0 AT

)
f(x) = |A|

1
2 f(Ax),

if A ∈ GL(d,R), and

µ

(
I 0
B I

)
f(x) = e

i
2
⟨Bx,x⟩f(x),

if B ∈ Rd×d is symmetric.

Proposition 4.3. Let s > 0 and u ∈ S ′(Rd). Then we have

(i)

WFs
g(û) = JWF

1
s
g (u).

(ii) If A ∈ GL(d,R) and uA(x) = |A|
1
2u(Ax) then

WFs
g(uA) =

(
A−1 0
0 AT

)
WFs

g(u).

(iii) If B ∈ Rd×d is symmetric and v(x) = e
i
2
⟨Bx,x⟩u(x) then if s = 1

(4.11) WFs
g(v) =

(
I 0
B I

)
WFs

g(u),

if s > 1 then

(4.12) WFs
g(v) = WFs

g(u),

and finally if 0 < s < 1 then

(4.13) (x, ξ) ∈ WFs
g(u) for some ξ ∈ Rd =⇒ (x,Bx) ∈ WFg(v).

Proof. Let φ ∈ S (Rd) \ 0. We have from the proof of [7, Corollary 4.5]

(4.14) |Vµ(χ)φ(µ(χ)u)(χ(x, ξ))| = |Vφu(x, ξ)|
for all χ ∈ Sp(d,R).

(i) If χ = J we obtain

|Vφ̂û(J (x, ξ))| = |Vφ̂û(ξ,−x)| = |Vφu(x, ξ)|.

From this and Proposition 4.2 it follows that (x, ξ) /∈ WF
1
s
g (u) if and only if

J (x, ξ) /∈ WFs
g(û) which proves claim (i).
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(ii) Next we insert uA for A ∈ GL(d,R) into (4.14) which gives

|VψA
uA(A

−1x,AT ξ)| = |Vψu(x, ξ)|.

Note that ψA ∈ S (Rd)\0. We obtain (x, ξ) /∈ WFs
g(u) if and only if (A−1x,AT ξ) /∈

WFs
g(uA) which shows claim (ii).

(iii) When s = 1 (4.11) is a particular case of (4.10).

Suppose s ̸= 1. With ψ(x) = e
i
2
⟨Bx,x⟩φ(x) ∈ S (Rd) \ 0 we obtain from (4.14)

|Vφu(x, ξ)| = |Vψv(x,Bx+ ξ)|

or equivalently

|Vφu(x,−Bx+ ξ)| = |Vψv(x, ξ)|.

If λ > 0 then

(4.15) |Vφu(λx, λsξ)| = |Vψv(λx, λs(λ1−sBx+ ξ))| = |Vψv(λx, λ(Bx+ λs−1ξ))|

and

(4.16) |Vψv(λx, λsξ)| = |Vφu(λx, λs(−λ1−sBx+ ξ))| = |Vφu(λx, λ(−Bx+ λs−1ξ))|.

Suppose s > 1 and 0 ̸= (x0, ξ0) /∈ WFs
g(u). Then for some ε > 0 we have

(4.17) sup
x∈x0+Bε, ξ∈ξ0+B2ε, λ>0

λN |Vφu(λx, λsξ)| < +∞ ∀N ⩾ 0.

We have λ1−s|Bx| < ε when x ∈ x0 + Bε if λ ⩾ L for L ⩾ 1 sufficiently large.
Thus ξ − λ1−sBx ∈ ξ0 + B2ε if ξ ∈ ξ0 + Bε and λ ⩾ L. From (4.16) and (4.17) we
obtain

sup
x∈x0+Bε, ξ∈ξ0+Bε, λ>0

λN |Vψv(λx, λsξ)| < +∞ ∀N ⩾ 0

which shows that (x0, ξ0) /∈ WFs
g(v). Thus WFs

g(v) ⊆ WFs
g(u). Likewise one shows

the opposite inclusion using (4.15). We have now proved (4.12).
Suppose 0 < s < 1 and 0 ̸= (x0, Bx0) /∈ WFg(v). Then for some ε > 0 we have

(4.18) sup
x∈x0+Bε, ξ∈Bx0+B2|B|ε, λ>0

λN |Vψv(λx, λξ)| < +∞ ∀N ⩾ 0.

Let η0 ∈ Rd. We have Bx + λs−1ξ ∈ Bx0 + B2|B|ε when x ∈ x0 + Bε and
ξ ∈ η0 +Bε if λ ⩾ L for L ⩾ 1 sufficiently large. From (4.15) we obtain

sup
x∈x0+Bε, ξ∈η0+Bε, λ>0

λN |Vφu(λx, λsξ)| < +∞ ∀N ⩾ 0

and it follows that (x0, η0) /∈ WFs
g(u). We have shown (4.13).

□
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5. Microlocality for anisotropic Gabor wave front sets

Let m ∈ R, 0 ⩽ ρ ⩽ 1, a ∈ Gmρ and φ ∈ S (R2d)\0. According to [5, Proposition 3.2]
the estimates

(5.1) |Vφa(z, ζ)| ≲ ⟨z⟩m⟨ζ⟩−L, (z, ζ) ∈ T ∗R2d,

hold for any L ⩾ 0. Note that the case ρ = 0 is included, so (5.1) is valid under the
assumption ∣∣∣∂αx ∂βξ a(x, ξ)∣∣∣ ≲ ⟨(x, ξ)⟩m, α, β ∈ Nd.

The next result concerns microlocality with respect to the s-Gabor wave front set for
pseudodifferential operators in the isotropic Shubin calculus. Due to (3.6) the result is
also true for the anisotropic Shubin symbols Gm,s.

Proposition 5.1. Let s > 0, m ∈ R and 0 ⩽ ρ ⩽ 1. If u ∈ S ′(Rd) and a ∈ Gmρ then

(5.2) WFs
g(a

w(x,D)u) ⊆ WFs
g(u).

Proof. Pick φ ∈ S (Rd) such that ∥φ∥L2 = 1. Denoting the formal adjoint of aw(x,D)
by aw(x,D)∗, (2.4) gives for u ∈ S ′(Rd) and z ∈ R2d

(2π)
d
2Vφ(a

w(x,D)u)(z) = (aw(x,D)u,Π(z)φ)

= (u, aw(x,D)∗Π(z)φ)

=

∫
R2d

Vφu(w) (Π(w)φ, a
w(x,D)∗Π(z)φ) dw

=

∫
R2d

Vφu(w) (a
w(x,D)Π(w)φ,Π(z)φ) dw

=

∫
R2d

Vφu(z − w) (aw(x,D)Π(z − w)φ,Π(z)φ) dw.

By e.g. [12, Lemma 3.1], or a computation using (2.9), we have

|(aw(x,D)Π(z − w)φ,Π(z)φ)| =
∣∣∣VΦa(z − w

2
,Jw

)∣∣∣
where Φ is the Wigner distribution Φ =W (φ,φ) ∈ S (R2d).

Combining the preceding identities we deduce

(5.3) |Vφ(aw(x,D)u)(z)| ≲
∫
R2d

|Vφu(z − w)|
∣∣∣VΦa(z − w

2
,Jw

)∣∣∣ dw.
Suppose 0 ̸= z0 /∈ WFsg(u). Then there exists an open set U such that z0 ∈ U and

(4.1) holds with t = 1. We pick an open set V such that z0 ∈ V and V + Bε ⊆ U for
some 0 < ε ⩽ 1, and we may assume that (4.3) holds.

Let λ ⩾ 1 and N ∈ N. We have

λN |Vφ(aw(x,D)u)(λx, λsξ)|

≲
∫∫

R2d

λN |Vφu(λ(x− λ−1y), λs(ξ − λ−sη))|
∣∣∣VΦa(λx− y

2
, λsξ − η

2
, η,−y

)∣∣∣ dy dη
= I1 + I2
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where the integral is decomposed into the two terms

I1 =

∫∫
R2d\Ωλ

λN |Vφu(λ(x− λ−1y), λs(ξ − λ−sη))|
∣∣∣VΦa(λx− y

2
, λsξ − η

2
, η,−y

)∣∣∣ dy dη,
I2 =

∫∫
Ωλ

λN |Vφu(λ(x− λ−1y), λs(ξ − λ−sη))|
∣∣∣VΦa(λx− y

2
, λsξ − η

2
, η,−y

)∣∣∣ dy dη

where

Ωλ = {(y, η) ∈ R2d : |(y, η)| < 2−
1
2 ελmin(1,s)}.

First we estimate I1 when (x, ξ) ∈ V . From (2.1), (4.3) and (5.1) we obtain for some
k ⩾ 0 and any L ⩾ k + |m|
(5.4)

I1 ≲ λN
∫∫

R2d\Ωλ

⟨(λx− y, λsξ − η)⟩k
∣∣∣VΦa(λx− y

2
, λsξ − η

2
, η,−y

)∣∣∣ dy dη
≲ (1 + µ2)

k
2λN+kmax(1,s)

∫∫
R2d\Ωλ

⟨(y, η)⟩k
∣∣∣VΦa(λx− y

2
, λsξ − η

2
, η,−y

)∣∣∣ dy dη
≲ (1 + µ2)

k+|m|
2 λN+(k+|m|)max(1,s)

∫∫
R2d\Ωλ

⟨(y, η)⟩k+|m|−L−2d−1 dy dη

≲ λN+(k+|m|)max(1,s)

∫∫
R2d\Ωλ

⟨(y, η)⟩k+|m|−L ⟨(y, η)⟩−2d−1 dy dη

⩽ λN+(k+|m|)max(1,s)

(
1 +

1

2
ε2λ2min(1,s)

) 1
2
(k+|m|−L) ∫∫

R2d

⟨(y, η)⟩−2d−1 dy dη

≲ λN+(k+|m|)max(1,s)+min(1,s)(k+|m|−L)

⩽ CN,L,a,µ,ε

for any λ ⩾ 1, provided we pick L ⩾ k + |m| + min(1, s)−1 (N + (k + |m|)max(1, s)).
Here CN,L,a,µ,ε > 0 is a constant that depends on N,L, a, µ, ε but not on λ > 0. Thus
we have obtained the required estimate for I1.

It remains to estimate I2. If (y, η) ∈ Ωλ then |y|2 < 1
2ε

2λ2 and |η|2 < 1
2ε

2λ2s which

implies (λ−1y, λ−sη) ∈ Bε. Hence if (x, ξ) ∈ V then (x − λ−1y, ξ − λ−sη) ∈ U and we
may use the estimate (4.1) with t = 1.
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This gives for any L ⩾ 0 and a constant CN,s,m > 0, using (5.1) and (4.3)
(5.5)

I2 =

∫∫
Ωλ

λN |Vφu(λ(x− λ−1y), λs(ξ − λ−sη))|
∣∣∣VΦa(λx− y

2
, λsξ − η

2
, η,−y

)∣∣∣ dy dη
= λ−|m|max(1,s)

∫∫
Ωλ

λN+|m|max(1,s)|Vφu(λ(x− λ−1y), λs(ξ − λ−sη))|

×
∣∣∣VΦa(λx− y

2
, λsξ − η

2
, η,−y

)∣∣∣ dy dη
⩽ CN,s,mλ

−|m|max(1,s)

∫∫
Ωλ

∣∣∣VΦa(λx− y

2
, λsξ − η

2
, η,−y

)∣∣∣ dy dη
⩽ CN,s,mλ

−|m|max(1,s)+|m|max(1,s)

∫∫
R2d

⟨(y, η)⟩|m|−L dy dη

≲ CN,s,m

provided L > |m| + 2d, for all λ ⩾ 1. Thus we have obtained the required estimate
for I2. Combining (5.4) and (5.5), referring to Definition 4.1, we may conclude that
z0 /∈ WFsg(a

w(x,D)u) and hence we have proved (5.2). □

A consequence of Proposition 5.1 is the invariance of the anisotropic Gabor wave front
set under translations and modulations, a k a time-frequency shifts [11].

Corollary 5.2. Suppose s > 0. For any z ∈ R2d and any u ∈ S ′(Rd) we have

WFs
g(Π(z)u) = WFs

g(u).

Proof. Let z = (x, ξ) ∈ R2d. By a calculation it is verified that Π(x, ξ) = awx,ξ(x,D)
where

ax,ξ(y, η) = e
i
2
⟨x,ξ⟩+i(⟨y,ξ⟩−⟨x,η⟩), (y, η) ∈ R2d.

For any α, β ∈ Nd we have ∣∣∣∂αy ∂βη ax,ξ(y, η)∣∣∣ = |ξαxβ| := Cα,β

where we may consider |ξαxβ| ⩾ 0 as a constant as a function of (y, η) ∈ R2d. This
implies that ax,ξ ∈ G0

0. Thus we may apply Proposition 5.1 which gives

WFs
g(Π(z)u) ⊆ WFs

g(u).

The opposite inclusion follows from u = e−i⟨x,ξ⟩Π(−(x, ξ))Π(x, ξ)u. □

We finish this section with the anisotropic Gabor wave front sets for a few important
tempered distributions.

Proposition 5.3. If s > 0 then:

(i) for any x ∈ Rd and any α ∈ Nd

(5.6) WFs
g(D

αδx) = {0} × (Rd \ 0);

(ii) for any α ∈ Nd

WFs
g(x

α) = (Rd \ 0)× {0};
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(iii) for any ξ ∈ Rd

WFs
g(e

i⟨·,ξ⟩) = (Rd \ 0)× {0}.

Proof. Due to Corollary 5.2 we may assume x = 0 in (i) and ξ = 0 in (iii). By Proposition

4.3 (i) it suffices to show (i), since D̂αδ0(ξ) = (2π)−
d
2 ξα.

Let φ ∈ S (Rd) satisfy φ ≡ 1 in a neighborhood of the origin. We have

VφD
αδ0(x, ξ) = (2π)−

d
2

∑
β⩽α

(
α

β

)
ξβDα−βφ(−x).

If ξ ̸= 0 we obtain for λ > 0

VφD
αδ0(0, λ

sξ) = (2π)−
d
2λs|α|ξα

which does not decay as a function of λ. Thus

(5.7) {0} × (Rd \ 0) ⊆ WFs
g(D

αδ0).

Suppose on the other hand (x0, ξ0) ∈ T ∗Rd and x0 ̸= 0. If 0 < ε < |x0|/2, x ∈ x0+Bε,
ξ ∈ ξ0 +Bε and λ ⩾ 1 then for any n ∈ N we have

|VφDαδ0(λx, λ
sξ)| = (2π)−

d
2

∣∣∣∣∣∣
∑
β⩽α

(
α

β

)
λs|β|ξβDα−βφ(−λx)

∣∣∣∣∣∣
≲

∑
β⩽α

(
α

β

)
λs|β||ξ|β⟨λx⟩−n

≲ λs|α|−n.

This shows

WFs
g(D

αδ0) ⊆ {0} × (Rd \ 0)
so combining with (5.7) we have shown (5.6) when x = 0. □

6. Microellipticity for anisotropic Gabor wave front sets

The main result in this section is the microelliptic inclusion expressed in Theorem 6.4.
To get there we need a definition and several auxiliary results.

Definition 6.1. Suppose s > 0, a ∈ Gm,s and let p be the projection (3.2). The s-conical
support conesupps(a) ⊆ T ∗Rd\0 of a is defined as follows. A point z0 ∈ T ∗Rd\0 satisfies
z0 /∈ conesupps(a) if there exists ε > 0 such that

supp(a) ∩ {z ∈ R2d \ 0, |p(z)− p(z0)| < ε}

= supp(a) ∩ Γp(z0),ε is compact in R2d.

Clearly conesupps(a) ⊆ T ∗Rd \ 0 is s-conic.

Proposition 6.2. Let s > 0. If u ∈ S ′(Rd) and a ∈ Gm0 then

(6.1) WFs
g(a

w(x,D)u) ⊆ conesupps(a).
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Proof. We have |∂βa(w)| ≲ ⟨w⟩m for any β ∈ N2d. We may assume that conesupps(a) ̸=
T ∗Rd \ 0 since the inclusion is trivial otherwise. Let 0 ̸= z0 /∈ conesupps(a). We may
assume |z0| = 1.

By Lemma 3.7 we may assume that

(6.2) supp(a) ⊆ BR ∪
(
R2d \ Γ̃z0,2ε

)
for some R > 0 and 0 < ε < 1.

Let φ ∈ S (Rd) \ 0 and set Φ = W (φ,φ) ∈ S (R2d). We start by proving the
following estimate for any α, β ∈ N2d such that β ⩽ α, any λ ⩾ 1, (x, ξ) ∈ z0 + Bε, and
any L ⩾ |m|+ 2d+ 1. We have
(6.3)∫
R2d

∣∣∣∂βa(w)∣∣∣ ∣∣∣∂α−βΦ(
w −

(
λx− y

2
, λsξ − η

2

))∣∣∣ dw ≲ λ−Lmin(1,s)+|m|max(1,s)⟨(y, η)⟩2L.

In fact using Peetre’s inequality we obtain on the one hand for any L ⩾ 0

(6.4)

∫
BR

∣∣∣∂βa(w)∣∣∣ ∣∣∣∂α−βΦ(
w −

(
λx− y

2
, λsξ − η

2

))∣∣∣ dw
≲

∫
BR

〈
w −

(
λx− y

2
, λsξ − η

2

)〉−L
dw ≲

∫
BR

⟨w⟩L⟨(y, η)⟩L⟨(λx, λsξ)⟩−L dw

≲ λ−Lmin(1,s)⟨(y, η)⟩L.
On the other hand, since∣∣(λ−1u, λ−sθ

)
− z0

∣∣ ⩾ 2ε ∀λ > 0 ∀(u, θ) ∈ R2d \ Γ̃z0,2ε
we have for (x, ξ) ∈ z0 +Bε∣∣(λ−1u, λ−sθ

)
− (x, ξ)

∣∣ ⩾ ε ∀λ > 0 ∀(u, θ) ∈ R2d \ Γ̃z0,2ε.

It follows that for λ ⩾ 1, (x, ξ) ∈ z0 +Bε and w = (u, θ) ∈ R2d \ Γ̃z0,2ε we have

|w − (λx, λsξ)|2 = λ2|λ−1u− x|2 + λ2s|λ−sθ − ξ|2

⩾ λ2min(1,s)ε2.

This gives for (x, ξ) ∈ z0 +Bε and any L ⩾ |m|+ 2d+ 1

(6.5)

∫
R2d\Γ̃z0,2ε

∣∣∣∂βa(w)∣∣∣ ∣∣∣∂α−βΦ(
w −

(
λx− y

2
, λsξ − η

2

))∣∣∣ dw
≲

∫
R2d\Γ̃z0,2ε

⟨w⟩|m|
〈
w −

(
λx− y

2
, λsξ − η

2

)〉−2L
dw

≲ ⟨(y, η)⟩2L
∫
R2d\Γ̃z0,2ε

⟨w⟩|m| ⟨w − (λx, λsξ)⟩−L ⟨w − (λx, λsξ)⟩−L dw

≲ λ−Lmin(1,s)⟨(y, η)⟩2L
∫
R2d

⟨w + (λx, λsξ)⟩|m| ⟨w⟩−L dw

≲ λ−Lmin(1,s)⟨(y, η)⟩2L ⟨(λx, λsξ)⟩|m|
∫
R2d

⟨w⟩|m|−L dw

≲ λ−Lmin(1,s)+|m|max(1,s)⟨(y, η)⟩2L.



ANISOTROPIC GLOBAL MICROLOCAL ANALYSIS FOR TEMPERED DISTRIBUTIONS 25

Combining (6.2), (6.4) and (6.5) we have now shown (6.3).
Next we observe that integration by parts gives for any α ∈ N2d and z, ζ ∈ R2d

|ζαVΦa (z, ζ)| = (2π)−d
∣∣∣∣∫

R2d

a(w)∂αw

(
e−i⟨w,ζ⟩

)
Φ(w − z)dw

∣∣∣∣
≲

∑
β⩽α

(
α

β

)∫
R2d

∣∣∣∂βa(w)∣∣∣ ∣∣∣∂α−βΦ(w − z)
∣∣∣ dw.

Combining this with (6.3) we obtain for (x, ξ) ∈ z0 + Bε, and any M ∈ N, L ⩾
|m|+ 2d+ 1 and λ ⩾ 1

⟨(y, η)⟩2(M+L)
∣∣∣VΦa(λx− y

2
, λsξ − η

2
, η,−y

)∣∣∣
≲ max

|α|⩽2(M+L)

∣∣∣(y, η)αVΦa(λx− y

2
, λsξ − η

2
, η,−y

)∣∣∣
≲ max

|α|⩽2(M+L)

∑
β⩽α

(
α

β

)∫
R2d

∣∣∣∂βa(w)∣∣∣ ∣∣∣∂α−βΦ(
w −

(
λx− y

2
, λsξ − η

2

))∣∣∣ dw
≲ λ−Lmin(1,s)+|m|max(1,s)⟨(y, η)⟩2L.

Given any N,M ⩾ 0 we may pick L ⩾ 0 such that Lmin(1, s) − |m|max(1, s) ⩾ N .
We thus have

(6.6)
∣∣∣VΦa(λx− y

2
, λsξ − η

2
, η,−y

)∣∣∣ ≲ λ−N ⟨(y, η)⟩−M

for any N,M ⩾ 0, λ ⩾ 1 and (x, ξ) ∈ z0 +Bε.
Finally we prove that z0 /∈ WFs

g(a
w(x,D)u). We use (5.3) from the proof of Propo-

sition 5.1 and (6.6). This gives for (x, ξ) ∈ z0 + Bε, using (2.1) for some k ⩾ 0, for any
N,M ⩾ 0, λ ⩾ 1

|Vφ(aw(x,D)u)(λx, λsξ)|

≲
∫
R2d

|Vφu ((λx, λsξ)− (y, η)) |
∣∣∣VΦa(λx− y

2
, λsξ − η

2
, η,−y

)∣∣∣ dy dη
≲ ⟨(λx, λsξ)⟩k

∫
R2d

⟨(y, η)⟩k
∣∣∣VΦa(λx− y

2
, λsξ − η

2
, η,−y

)∣∣∣ dy dη
≲ λkmax(1,s)−N

providedM ⩾ k+2d+1. Since N ⩾ 0 is arbitrary we have shown z0 /∈ WFs
g(a

w(x,D)u),
and thus (6.1). □

As another tool for the microellipticity result Theorem 6.4 we need the following
lemma where we use Definition 3.8.

Lemma 6.3. Suppose s > 0, a ∈ Gm,s and chars,m1(a) ̸= T ∗Rd \ 0 for some m1 ⩽ m.

Let Γ ⊆ T ∗Rd \0 be a closed s-conic set such that chars,m1(a)∩Γ = ∅. Then there exists
ρ > 0 such that for any χ ∈ G0,s with supp(χ) ⊆ Γ \ Bρ, there exists b ∈ G−m1,s such
that

b#a = χ+ r

where r ∈ S (R2d).
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Proof. The proof follows established principles in pseudodifferential calculus. Therefore
we content ourselves with a sketch of the main steps of the construction of the microlocal
parametrix b.

As a first approximation set b0 := a−1χ. The estimates

|∂αx ∂
β
ξ (a

−1)(x, ξ)| ⩽ Cαβ|a(x, ξ)|−1µs(x, ξ)
−|α|−s|β|, α, β ∈ Nd, (x, ξ) ∈ Γ, |x|+|ξ|

1
s ⩾ R,

are consequences of the non-characteristic estimates (3.19), (3.20) and induction.
By Leibniz’ rule they imply the estimates

|∂αx ∂
β
ξ b0(x, ξ)| ⩽ Cαβ|a(x, ξ)|−1µs(x, ξ)

−|α|−s|β|, α, β ∈ Nd, |x|+ |ξ|
1
s ⩾ R,

and consequently b0 ∈ G−m1,s if ρ > 0 is sufficiently large.
Then, by (3.10) and again the non-characteristic estimates (3.19) and (3.20) it follows

that b0#a = χ + r0 + r0,S with r0 ∈ G−(1+s),s satisfying supp(r0) ⊆ supp(χ) and

r0,S ∈ S (R2d). Subsequently, setting b1 := −a−1r0, we notice that we obtain the
estimates

|∂αx ∂
β
ξ b1(x, ξ)| ⩽ Cαβ|a(x, ξ)|−1µs(x, ξ)

−(1+s)−|α|−s|β|, α, β ∈ Nd, |x|+ |ξ|
1
s ⩾ R,

and consequently b1 ∈ G−m1−(1+s),s.
This gives

(b0 + b1)#a = χ+ r0 + r0,S − r0 + r1 + r1,S = χ+ r1 + r0,S + r1,S

with r1 ∈ G−2(1+s),s, supp(r1) ⊆ supp(χ) and r1,S ∈ S (R2d). Constructing in this

way recursively bj+1 := −a−1rj ∈ G−m1−(s+1)(j+1),s and rj+1 ∈ G−(s+1)(j+2),s with
supp(rj+1) ⊆ supp(χ), j = 1, 2, . . . , one obtains a sequence of symbols (bj)j⩾0.

Finally set b ∼
∑∞

j=0 bj ∈ G−m1,s. The symbol b satisfies b#a = χ + r with r ∈
S (R2d). □

Finally we are in a position to state and prove the main result on microellipticity in
the anisotropic Shubin calculus. The proof is short due to the long preparation. Note
that we require that the symbol is anisotropic, as opposed to Proposition 5.1 where the
symbol is allowed to be isotropic.

Theorem 6.4. Let s > 0. If u ∈ S ′(Rd) and a ∈ Gm,s then for any m1 ⩽ m

WFs
g(u) ⊆ WFs

g(a
w(x,D)u)

⋃
chars,m1(a).

Proof. We may assume that WFs
g(a

w(x,D)u) ̸= T ∗Rd \ 0 and chars,m1(a) ̸= T ∗Rd \
0, since the inclusion is trivial otherwise. Let 0 ̸= z0 /∈ WFs

g(a
w(x,D)u) and z0 /∈

chars,m1(a). Due to s-conic invariance we may assume |z0| = 1.

Pick ε > 0 such that Γz0,2ε ∩ chars,m1(a) = ∅, and pick χ ∈ G0,s such that suppχ ⊆
Γz0,2ε \ BR and χ|Γz0,ε\B2R

≡ 1, for R > 0 to be chosen. This is possible due to Lemma

3.5. Then z0 /∈ conesupps(1− χ), and due to (3.6) we have χ ∈ G0
0. By Proposition 6.2

we may thus conclude

z0 /∈ WFs
g((1− χ)w(x,D)u).
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According to Lemma 6.3 we may pick R > 0 such that there exists b ∈ G−m1,s and
r ∈ S (R2d) such that 1 = b#a+ r + 1− χ, so we have

u = bw(c,D)aw(x,D)u+ rw(x,D)u+ (1− χ)w(x,D)u.

Here rw(x,D)u ∈ S (Rd) which means that z0 /∈ WFs
g(r

w(x,D)u) trivially. By Propo-
sition 5.1 we have z0 /∈ WFs

g(b
w(x,D)aw(x,D)u). Thus we may conclude that z0 /∈

WFs
g(u). □

Corollary 6.5. Let s > 0. If u ∈ S ′(Rd), a ∈ Gm,s and chars,m1(a) = ∅ for some
m1 ⩽ m then

WFs
g(a

w(x,D)u) = WFs
g(u).

7. The s-Gabor wave front set of oscillatory functions

An important reason for the introduction of the anisotropic Gabor wave front set
WFs

g(u) is that it describes accurately the phase space singularities of oscillatory func-
tions known generically as chirp signals.

Let φ : Rd → R be a real polynomial of order m ⩾ 2

(7.1) φ(x) = φm(x) + p(x)

where

(7.2) p(x) =
∑

0⩽|α|<m

cαx
α, cα ∈ R,

and

(7.3) φm(x) =
∑

|α|=m

cαx
α, cα ∈ R, ∃α ∈ Nd : |α| = m, cα ∈ R \ 0,

is the principal part.
We will study chirp functions of the form

(7.4) u(x) = eiφ(x), x ∈ Rd.

First we note that for any λ > 0 and any 1 ⩽ j ⩽ d we have

(7.5) λ−m∂j (φ(λy)) = ∂jφm(y) + λ1−m∂jp(λy)

and if |y| ⩽ R and λ ⩾ 1 then

(7.6) λ1−m|∂jp(λy)| =

∣∣∣∣∣∣
∑

0⩽|α|⩽m−1

αjcαy
α−ejλ|α|−m

∣∣∣∣∣∣ ⩽ CRλ
−1.

The following result shows that only the principal part φm(x) of φ is recorded in
WFm−1

g (u), and the (m− 1)-Gabor wave front set is contained in the (m− 1)-conic set
in phase space which is the graph of its gradient, that is 0 ̸= x 7→ (x,∇φm(x)). The
gradient of the phase function is known as the instantaneous frequency [1].
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Theorem 7.1. If m ⩾ 2 and φ is a real polynomial defined by (7.1), (7.2) and (7.3),
and u is defined by (7.4), then

(7.7) WFm−1
g (u) ⊆ {(x,∇φm(x)) ∈ R2d : x ̸= 0}.

If d = 1 and φ is even or odd then

(7.8) WFm−1
g (u) = {(x, φ′

m(x)) ∈ R2 : x ̸= 0}.

Proof. Set

W = {(x,∇φm(x)) ∈ R2d : x ∈ Rd \ 0} ⊆ T ∗Rd \ 0.

Then W is an (m− 1)-conic set in T ∗Rd \ 0.
Suppose (x0, ξ0) ∈ R2d \ 0 and (x0, ξ0) /∈ W . Then there exists 1 ⩽ j ⩽ d such that

ξ0,j ̸= ∂jφm(x0). Thus there exists an open set U such that (x0, ξ0) ∈ U , and 0 < ε ⩽ 1,
δ > 0, such that

(x, ξ) ∈ U, |x− y| ⩽ δ
√
2 =⇒ |ξj − ∂jφm(x)| ⩾ 2ε, |∂j(φm(x)− φm(y))| ⩽

ε

2
.

By (7.6) we have

λ1−m|∂jp(λy)| ⩽
ε

2

if (x, ξ) ∈ U , |x− y| ⩽ δ
√
2 and λ ⩾ L where L ⩾ 1 is sufficiently large.

Using (7.5) we obtain if (x, ξ) ∈ U , |x− y| ⩽ δ
√
2 and λ ⩾ L

(7.9)∣∣ξj − λ−m∂j (φ(λy))
∣∣ ⩾ |ξj − ∂jφm(x)| −

(
|∂j(φm(y)− φm(x))|+ λ1−m|∂jp(λy)|

)
⩾ ε.

Let ψ ∈ C∞
c (Rd) \ 0 have suppψ ⊆ Bδ. We denote by y′ ∈ Rd−1 the vector y ∈ Rd

except coordinate j. The stationary phase theorem [13, Theorem 7.7.1] gives, for any
k ∈ N, and any λ ⩾ L, if (x, ξ) ∈ U , using (7.9),

|Vψu(λx, λm−1ξ)| = (2π)−
d
2

∣∣∣∣∫
Rd

ei(φ(y)−λ
m−1⟨y,ξ⟩)ψ(λ(λ−1y − x)) dy

∣∣∣∣
= (2π)−

d
2λd

∣∣∣∣∣
∫
|x−y|⩽δ

eiλ
m(λ−mφ(λy)−⟨y,ξ⟩)ψ(λ(y − x)) dy

∣∣∣∣∣
⩽ Cλd

∫
|x′−y′|⩽δ

k∑
n=0

λn sup
|xj−yj |⩽δ

|(∂nj ψ)(λ(y − x))| |ξj − λ−m∂j (φ(λy)) |n−2k

× λm(n−2k) dy′

⩽ Ckε
−2k

k∑
n=0

λd+n+m(n−2k)

⩽ Ck,ελ
d−k(m−1).

This shows that (x0, ξ0) /∈ WFm−1
g (u) and the inclusion (7.7) follows.

Next let d = 1. If φ is even then u is even, and W = −W since m is even, so by
(4.7) we have either WFm−1

g (u) = ∅ or WFm−1
g (u) = W . The former is not true since

u /∈ S (R). Thus we have proved (7.8) when φ is even.



ANISOTROPIC GLOBAL MICROLOCAL ANALYSIS FOR TEMPERED DISTRIBUTIONS 29

If φ is odd then m is odd and ǔ(x) = u(x) = e−iφ(x). Again WFm−1
g (u) = ∅ cannot

hold since u /∈ S (R). If we assume that the inclusion (7.7) is strict we get a contradiction
from (4.6) and (4.8). Indeed suppose e.g.

WFm−1
g (u) = {(x, φ′

m(x)) ∈ R2 : x > 0}.

By (4.6) and (4.8) we then get the contradiction

WFm−1
g (ǔ) = {(x,−φ′

m(x)) ∈ R2 : x < 0}
= {(x,−φ′

m(x)) ∈ R2 : x > 0} = WFm−1
g (u).

This proves (7.8) when φ is odd. □

We would also like to determine WFs
g(u) when s ̸= m− 1. The following two results

treat this question.

Proposition 7.2. If m ⩾ 2, s > m − 1, and φ is a real polynomial defined by (7.1),
(7.2) and (7.3), and u is defined by (7.4), then

(7.10) WFs
g(u) ⊆ (Rd \ 0)× {0}.

If d = 1 and φ is even or odd then

(7.11) WFs
g(u) = (R \ 0)× {0}.

Proof. Suppose (x0, ξ0) ∈ T ∗Rd and ξ0 ̸= 0, that is ξ0,j ̸= 0 for some 1 ⩽ j ⩽ d. From
(7.5) we obtain

λ−1−s∂j (φ(λy)) = λm−1−s (∂jφm(y) + λ1−m∂jp(λy)
)
.

Thus from s > m − 1, using (7.6), it follows that there exists U ⊆ R2d such that
(x0, ξ0) ∈ U , and 0 < ε ⩽ 1, L ⩾ 1 such that

|ξj − λ−1−s∂j (φ(λy)) | ⩾ ε

when (x, ξ) ∈ U , |x− y| ⩽
√
2 and λ ⩾ L.

Let ψ ∈ C∞
c (R) \ 0 be such that suppψ ⊆ B1. The stationary phase theorem [13,

Theorem 7.7.1] yields, for any k ∈ N, and any λ ⩾ L, if (x, ξ) ∈ U ,

|Vψu(λx, λsξ)| = (2π)−
d
2

∣∣∣∣∫
Rd

ei(φ(y)−λ
s⟨y,ξ⟩)ψ(λ(λ−1y − x)) dy

∣∣∣∣
= (2π)−

d
2λd

∣∣∣∣∫
Rd

eiλ
1+s(λ−1−sφ(λy)−⟨y,ξ⟩)ψ(λ(y − x)) dy

∣∣∣∣
⩽ Cλd

∫
|x′−y′|⩽1

k∑
n=0

λn sup
|xj−yj |⩽1

|(∂nj ψ)(λ(y − x))| |ξj − λ−1−s∂j (φ(λy)) |n−2k

× λ(1+s)(n−2k) dy′

⩽ Ckλ
d−ks ε−2k.

This shows that (x0, ξ0) /∈ WFs
g(u) and (7.10) follows.

When d = 1 and φ is either even or odd then (7.11) follows as in the proof of Theorem
7.1. □
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Proposition 7.3. Let m ⩾ 2, 0 < s < m − 1, and φ be a real polynomial defined by
(7.1), (7.2) and (7.3). Suppose φm(x) ̸= 0 for all x ∈ Rd \ 0. If u is defined by (7.4)
then

(7.12) WFs
g(u) ⊆ {0} × (Rd \ 0).

If d = 1 and φ is even then

(7.13) WFs
g(u) = {0} × (R \ 0).

Proof. Suppose (x0, ξ0) ∈ T ∗Rd and x0 ̸= 0. The assumption φm(x) ̸= 0 for all x ∈
Rd \ 0 and Euler’s homogeneous function theorem imply that ∇φm(x0) ̸= 0, that is
∂jφm(x0) ̸= 0 for some 1 ⩽ j ⩽ d. From (7.5) and (7.6) and s < m − 1 it follows that

there exists U ⊆ R2d such that (x0, ξ0) ∈ U , 1 ⩽ j ⩽ d and 0 < ε ⩽ 1, L ⩾ 1 such that

|λ1+s−mξj − λ−m∂j (φ(λy)) | ⩾ ε

when (x, ξ) ∈ U , |x− y| ⩽ ε
√
2 and λ ⩾ L.

Let ψ ∈ C∞
c (R) \ 0 be such that suppψ ⊆ Bε. Again by the stationary phase

theorem [13, Theorem 7.7.1] we obtain, for any k ∈ N, and any λ ⩾ L, if (x, ξ) ∈ U ,

|Vψu(λx, λsξ)| = (2π)−
d
2

∣∣∣∣∫
Rd

ei(φ(y)−λ
s⟨y,ξ⟩)ψ(λ(λ−1y − x)) dy

∣∣∣∣
= (2π)−

d
2λd

∣∣∣∣∫
Rd

eiλ
m(λ−mφ(λy)−λ1+s−m⟨y,ξ⟩)ψ(λ(y − x)) dy

∣∣∣∣
⩽ Cλd

∫
|x′−y′|⩽ε

k∑
n=0

λn sup
|xj−yj |⩽ε

|(∂nj ψ)(λ(y − x))| |λ1+s−mξj − λ−m∂j (φ(λy)) |n−2k

× λm(n−2k) dy′

⩽ Ckλ
d−k(m−1) ε−2k.

This shows that (x0, ξ0) /∈ WFs
g(u) and (7.10) follows.

When d = 1 and φ is even then (7.13) follows as in the proof of Theorem 7.1. □

Example 7.4. Let k ∈ N \ 0 and consider the differential equation

u(k) − xu = 0.

for u ∈ S ′(R). When k = 2 this is the Airy equation. Fourier transformation gives

(7.14) ikξkû+Dû = 0

which is solved by

û(ξ) = C exp

(
−ik+1 ξ

k+1

k + 1

)
, C ∈ C.

This function belongs to S ′(R) provided k /∈ 1 + 4N.
The equation (7.14) can be written aw(x,D)û = 0 where

a(x, ξ) = ikxk + ξ.
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By Example 3.9 we know that a ∈ Gk ∩Gk,k. Suppose k = 2n with n ∈ N \ 0. Since
a(x, ξ) = 0 when ξ = (−1)n+1x2n, it follows from Definition 3.8 that (x, (−1)n+1x2n) ∈
char2n(a) for any x ̸= 0. It holds

(7.15) char2n(a) = {(x, (−1)n+1x2n) ∈ R2, x ̸= 0}.

In fact it suffices to show

(7.16) char2n(a) ⊆ {(x, (−1)n+1x2n) ∈ R2, x ̸= 0}.

Suppose (x0, ξ0) ∈ S1 with ξ0 ̸= (−1)n+1x2n0 . In order to show (7.16) we must show
(x0, ξ0) /∈ char2n(a). There exist ε, δ > 0 such that

|ξ − (−1)n+1x2n| ⩾ δ(|x|+ |ξ|
1
2n )2n

if (x, ξ) ∈ (x0, ξ0)+Bε. This inequality is 2n-conic, that is invariant to the transformation
T ∗R \ 0 ∋ (x, ξ) 7→ (λx, λ2nξ) for λ > 0. It follows that

|a(x, ξ)| ⩾ δ(|x|+ |ξ|
1
2n )2n

when (x, ξ) ∈ Γ̃2n,(x0,ξ0),ε. Hence from Lemma 3.7 it follows (x0, ξ0) /∈ char2n(a) and we
have shown (7.16) and thereby (7.15).

Invoking Theorem 6.4 we obtain

WF2n
g (û) ⊆ WF2n

g (aw(x,D)û)
⋃

char2n(a)

= char2n(a) = {(x, (−1)n+1x2n) ∈ R2, x ̸= 0}.

Thus we have found an alternative proof of a particular case of the inclusion (7.7) in
Theorem 7.1 when m is odd. From (7.8) we know that the inclusion is actually an
equality.

Adding this information and applying Proposition 4.3 (i) we obtain

WF
1
2n
g (u) = −JWF2n

g (û) = {((−1)nx2n, x) ∈ R2, x ̸= 0}.

If n = 1 then u is the Airy function (multiplied by C) [13], and thus

WF
1
2
g (u) = {(−x2, x) ∈ R2, x ̸= 0}.

This can be compared to [21, Example 8.5] which says that

WFg(u) = WF1
g(u) = {(x, 0) ∈ R2, x < 0}.
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