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PROPAGATION OF ANISOTROPIC GELFAND–SHILOV WAVE

FRONT SETS

PATRIK WAHLBERG

Abstract. We show a result on propagation of the anisotropic Gelfand–Shilov wave
front set for linear operators with Schwartz kernel which is a Gelfand–Shilov ultradistri-
bution of Beurling type. This anisotropic wave front set is parametrized by two positive
parameters relating the space and frequency variables. The anisotropic Gelfand–Shilov
wave front set of the Schwartz kernel of the operator is assumed to satisfy a graph type
criterion. The result is applied to a class of evolution equations that generalizes the
Schrödinger equation for the free particle. The Laplacian is replaced by a partial dif-
ferential operator defined by a symbol which is a polynomial with real coefficients and
order at least two.

1. Introduction

The paper treats the anisotropic Gelfand–Shilov wave front set and its propagation
for a class of continuous linear operators.

The Gabor wave front set, introduced by Hörmander in 1991 [10], is a closed conic sub-
set of the phase space T ∗Rd \ 0 that consists of globally singular directions of tempered
distributions. More precisely it records directions in T ∗Rd \ 0 in a conical neighbor-
hood of which the short-time Fourier transform of a tempered distribution does not
decay super-polynomially. It is empty precisely when the tempered distribution is a
Schwartz function, and thus it records local smoothness as well as rapid decay at infinity
comprehensively. These singularities thus merits the term global.

Several recent works [5,17,20,23,25] concern the Gabor wave front set and generaliza-
tions. In particular it has been shown to coincide with Nakamura’s homogeneous wave
front set [13,23]. Concerning propagation of singularities already the original paper [10]
treated the action of a linear continuous operator on the Gabor wave front set. In [17,25]
propagation of the Gabor wave front set for the solution operator to an evolution equa-
tion with quadratic Hamiltonian is studied. Then the singular space, introduced by
Hitrik and Pravda–Starov [8], plays a major role.

In [3] the Gabor wave front set is adapted to the functional framework of equal index
Gelfand–Shilov spaces of Beurling type and their dual ultradistribution spaces. This
means that the super-polynomial decay for the Gabor wave front set is replaced by super-
exponential decay with a subgaussian power parameter 1

s < 2. A study of propagation
of this s-Gelfand–Shilov wave front set for evolution equations of quadratic type is also
contained in [3].
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2 P. WAHLBERG

In [21] the isotropic s-Gelfand–Shilov wave front set is generalized into an anisotropic
Gelfand–Shilov wave front set parametrized by two parameters t, s > 0 such that t+s >
1. The parameters relate the space and frequency variables. The anisotropic Gelfand–
Shilov wave front set is defined for Gelfand–Shilov ultradistributions of Beurling type
with decay index t and regularity index s. The super-exponential decay along straight
lines in phase space T ∗Rd \0 used for the isotropic Gelfand–Shilov wave front set is then
replaced by super-exponential decay along curves of the form

R+ ∋ λ 7→ (λtx, λsξ) ∈ T ∗Rd \ 0

where (x, ξ) ∈ T ∗Rd \ 0. We call the resulting wave front set the anisotropic t, s-
Gelfand–Shilov wave front set. It is denoted WFt,s(u) ⊆ T ∗Rd \ 0 for a Gelfand–Shilov
ultradistribution u ∈ (Σst )

′ (Rd). If t = s we recapture the s-Gelfand–Shilov wave front
set. In [21] microlocal analysis for the anisotropic t, s-Gelfand–Shilov wave front set is
developed. In particular a result on microlocality for pseudodifferential operators in the
anisotropic framework is shown, with a symbol class taken from [1]. These operators are
continuous on the Gelfand–Shilov space Σst (R

d) and extends to continuous operators on
(Σst )

′ (Rd).
The following main result in this paper concerns propagation of the anisotropic t, s-

Gelfand–Shilov wave front set for a continuous linear operator K : Σst (R
d) → (Σst )

′ (Rd)
defined by a Schwartz kernel K ∈ (Σst )

′ (R2d).
Suppose that the t, s-Gelfand–Shilov wave front set of K contains no point of the

form (x, 0, ξ, 0) ∈ T ∗R2d \ 0 nor of the form (0, y, 0,−η) ∈ T ∗R2d \ 0. (Loosely speaking
this means that WFt,s(K) resembles the graph of an invertible matrix.) Then K :
Σst (R

d) → Σst (R
d) is continuous, extends uniquely to a continuous linear operator K :

(Σst )
′ (Rd) → (Σst )

′ (Rd), and for u ∈ (Σst )
′ (Rd) we have

(1.1) WFt,s(K u) ⊆ WFt,s(K)′ ◦WFt,s(u)

where

A′ ◦B = {(x, ξ) ∈ R2d : ∃(y, η) ∈ B : (x, y, ξ,−η) ∈ A}
for A ⊆ T ∗R2d and B ⊆ T ∗Rd.

The inclusion (1.1) is conceptually similar to propagation results for other types of
wave front sets, local [9], or global [3, 17,25].

As an application of the inclusion (1.1) we study propagation of the anisotropic t, s-
Gelfand wave front set for the initial value Cauchy problem for an evolution equation of
the form {

∂tu(t, x) + ip(Dx)u(t, x) = 0, x ∈ Rd,
u(0, ·) = u0

where p : Rd → R is a polynomial with real coefficients of order m ⩾ 2. This generalizes
the Schrödinger equation for the free particle where m = 2 and p(ξ) = |ξ|2.

Provided s > 1
m−1 we show that WFs(m−1),s of the solution e−itp(Dx)u0 at time t ∈ R

equals WFs(m−1),s(u0) transported by the Hamilton flow χt with respect to the principal
part pm of p, that is

(x(t), ξ(t)) = χt(x0, ξ0) = (x0 + t∇pm(ξ0), ξ0), t ∈ R, (x0, ξ0) ∈ T ∗Rd \ 0.
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This conclusion is again conceptually similar to other results on propagation of sin-
gularities [3, 9, 25], and generalizes known results when p is a homogeneous quadratic
form [17].

We also show that the propagator e−itp(Dx) for any t ∈ R is continuous on Σsr(R
d) for

any r, s > 0 such that r ⩾ s(m− 1) > 1, using the criterion mentioned above on the r, s-
Gelfand–Shilov wave front set of the Schwartz kernel of the propagator. This technique
to prove continuity on Gelfand–Shilov spaces avoids direct estimates for seminorms, and
we hope it may be useful in other contexts.

Several ideas and techniques for our works on anisotropic global microlocal analysis
are borrowed from the literature on anisotropic local microlocal analysis (see e.g. [15]).
In these works the anisotropy refers mostly to the dual (frequency) variables only, for
fixed space variables, whereas our anisotropy refers to the space and frequency variables
comprehensively.

The article is organized as follows. Notations and definitions are collected in Section 2.
Section 3 treats a family of seminorms for Gelfand–Shilov spaces defined using the short-
time Fourier transform. Section 4 recalls the definition of the anisotropic t, s-Gelfand–
Shilov wave front set and a result on tensorization is proved. We devote Section 5 to a
proof of the main result on propagation of the anisotropic t, s-Gelfand–Shilov wave front
set for linear operators. In Section 6 we generalize [21, Theorem 4.2 (i)] and find an
inclusion for anisotropic Gelfand–Shilov wave front sets of multivariable chirp functions.
These are exponentials with real polynomial phase functions. Finally Section 7 treats
an application of our propagation result to a class of evolution equations of Schrödinger
type.

2. Preliminaries

The unit sphere in Rd is denoted Sd−1 ⊆ Rd. A ball of radius r > 0 centered in
x ∈ Rd is denoted Br(x), Br(0) = Br, and ej ∈ Rd is the vector of zeros except for

position j, 1 ⩽ j ⩽ d, where it is one. The transpose of a matrix A ∈ Rd×d is denoted
AT and the inverse transpose of A ∈ GL(d,R) is A−T . We write f(x) ≲ g(x) provided
there exists C > 0 such that f(x) ⩽ C g(x) for all x in the domain of f and of g. If

f(x) ≲ g(x) ≲ f(x) then we write f ≍ g. We use the bracket ⟨x⟩ = (1 + |x|2)
1
2 for

x ∈ Rd. Peetre’s inequality with optimal constant [21, Lemma 2.1] is

⟨x+ y⟩s ⩽
(

2√
3

)|s|
⟨x⟩s⟨y⟩|s| x, y ∈ Rd, s ∈ R.

The normalization of the Fourier transform is

Ff(ξ) = f̂(ξ) = (2π)−
d
2

∫
Rd

f(x)e−i⟨x,ξ⟩ dx, ξ ∈ Rd,

for f ∈ S (Rd) (the Schwartz space), where ⟨ · , · ⟩ denotes the scalar product on Rd.
The conjugate linear action of a (ultra-)distribution u on a test function ϕ is written
(u, ϕ), consistent with the L2 inner product ( · , · ) = ( · , · )L2 which is conjugate linear
in the second argument.

Denote translation by Txf(y) = f(y− x) and modulation by Mξf(y) = ei⟨y,ξ⟩f(y) for

x, y, ξ ∈ Rd where f is a function or distribution defined on Rd. The composed operator
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is denoted Π(x, ξ) = MξTx. Let φ ∈ S (Rd) \ {0}. The short-time Fourier transform

(STFT) of a tempered distribution u ∈ S ′(Rd) is defined by

Vφu(x, ξ) = (2π)−
d
2 (u,MξTxφ) = F (uTxφ)(ξ), x, ξ ∈ Rd.

Then Vφu is smooth and polynomially bounded [7, Theorem 11.2.3], that is there exists
k ⩾ 0 such that

(2.1) |Vφu(x, ξ)| ≲ ⟨(x, ξ)⟩k, (x, ξ) ∈ T ∗Rd.

We have u ∈ S (Rd) if and only if

(2.2) |Vφu(x, ξ)| ≲ ⟨(x, ξ)⟩−N , (x, ξ) ∈ T ∗Rd, ∀N ⩾ 0.

The inverse transform is given by

(2.3) u = (2π)−
d
2

∫∫
R2d

Vφu(x, ξ)MξTxφdx dξ

provided ∥φ∥L2 = 1, with action under the integral understood, that is

(2.4) (u, f) = (Vφu, Vφf)L2(R2d)

for u ∈ S ′(Rd) and f ∈ S (Rd), cf. [7, Theorem 11.2.5].

2.1. Spaces of functions and ultradistributions. In this paper we work with Beurl-
ing type Gelfand–Shilov spaces and their dual ultradistribution spaces [6].

Let s, t, h > 0. The space denoted Sst,h(Rd) is the set of all f ∈ C∞(Rd) such that

(2.5) ∥f∥Ss
t,h

≡ sup
|xαDβf(x)|
h|α+β|α!t β!s

is finite, where the supremum is taken over all α, β ∈ Nd and x ∈ Rd. The function space
Sst,h is a Banach space which increases with h, s and t, and Sst,h ⊆ S . The topological

dual (Sst,h)′(Rd) is a Banach space such that S ′(Rd) ⊆ (Sst,h)′(Rd).

The Beurling type Gelfand–Shilov space Σst (R
d) is the projective limit of Sst,h(Rd)

with respect to h [6]. This means

(2.6) Σst (R
d) =

⋂
h>0

Sst,h(Rd)

and the Fréchet space topology of Σst (R
d) is defined by the seminorms ∥ · ∥Ss

t,h
for h > 0.

We have Σst (R
d) ̸= {0} if and only if s + t > 1 [16]. The topological dual of Σst (R

d)
is the space of (Beurling type) Gelfand–Shilov ultradistributions [6, Section I.4.3]

(2.6)′ (Σst )
′(Rd) =

⋃
h>0

(Sst,h)′(Rd).

The dual space (Σst )
′(Rd) may be equipped with several topologies: the weak∗ topol-

ogy, the strong topology, the Mackey topology, and the topology defined by the union
(2.6)′ as an inductive limit topology [24]. The latter topology is the strongest such that
the inclusion (Sst,h)′(Rd) ⊆ (Σst )

′(Rd) is continuous for all h > 0. We use the weak∗

topology on (Σst )
′(Rd) in this paper.
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The Roumieu type Gelfand–Shilov space is the union

Sst (Rd) =
⋃
h>0

Sst,h(Rd)

equipped with the inductive limit topology [24], that is the strongest topology such that
each inclusion Sst,h(Rd) ⊆ Sst (Rd) is continuous. Then Sst (Rd) ̸= {0} if and only if

s+ t ⩾ 1 [6]. The corresponding (Roumieu type) Gelfand–Shilov ultradistribution space
is

(Sst )′(Rd) =
⋂
h>0

(Sst,h)′(Rd).

For every s, t > 0 such that s+ t > 1, and for any ε > 0 we have

Σst (R
d) ⊆ Sst (Rd) ⊆ Σs+εt+ε (R

d).

We will not use the Roumieu type spaces in this article but mention them as a service
to a reader interested in a wider context.

We write Σss(R
d) = Σs(R

d) and (Σss)
′(Rd) = Σ′

s(R
d). Then Σs(R

d) ̸= {0} if and only
if s > 1

2 .
The Gelfand–Shilov (ultradistribution) spaces enjoy invariance properties, with re-

spect to translation, dilation, tensorization, coordinate transformation and (partial)
Fourier transformation. The Fourier transform extends uniquely to homeomorphisms
on S ′(Rd), from (Sst )′(Rd) to (Sts)′(Rd), and from (Σst )

′(Rd) to (Σts)
′(Rd), and restricts

to homeomorphisms on S (Rd), from Sst (Rd) to Sts(Rd), and from Σst (R
d) to Σts(R

d),
and to a unitary operator on L2(Rd).

Let u ∈ (Σst )
′(Rd) with s+ t > 1. If ψ ∈ Σst (R

d) \ 0 then

(2.7) |Vψu(x, ξ)| ≲ er(|x|
1
t +|ξ|

1
s )

for some r > 0, and u ∈ Σst (R
d) if and only if

(2.8) |Vψu(x, ξ)| ≲ e−r(|x|
1
t +|ξ|

1
s )

for all r > 0. See e.g. [26, Theorems 2.4 and 2.5]. If u ∈ (Σst )
′(Rd), f ∈ Σst (R

d),
φ ∈ Σst (R

d) and ∥φ∥L2 = 1 then (2.4) holds true.
Working with Gelfand–Shilov spaces we will often use the inequality (cf. [1])

|x+ y|
1
s ⩽ κ(s−1)(|x|

1
s + |y|

1
s ), x, y ∈ Rd, s > 0,

where

κ(t) =

{
1 if 0 < t ⩽ 1
2t−1 if t > 1

,

which implies

(2.9)
er|x+y|

1
s ⩽ eκ(s

−1)r|x|
1
s eκ(s

−1)r|y|
1
s , x, y ∈ Rd, r > 0,

e−rκ(s
−1)|x+y|

1
s ⩽ e−r|x|

1
s eκ(s

−1)r|y|
1
s , x, y ∈ Rd, r > 0.
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We will use the following estimate based on |α|! ⩽ α!d|α| for α ∈ Nd [14, Eq. (0.3.3)].
For any s > 0, h > 0 and any α ∈ Nd we have

(2.10) α!−sh−|α| =

(
h−

|α|
s

α!

)s
⩽


(
dh−

1
s

)|α|
|α|!


s

⩽ esdh
− 1

s .

3. Seminorms on Beurling type Gelfand–Shilov spaces

We need the following result on seminorms in the space Σst (R
d) when t+ s > 1. The

result appears implicitly in the literature (cf. [26, Theorem 2.4]) but we give a detailed
proof as a service to the reader.

Lemma 3.1. Let t, s > 0 satisfy t + s > 1, and let φ ∈ Σst (R
d) \ 0. The collection of

seminorms

(3.1) Σst (R
d) ∋ f 7→ sup

(x,ξ)∈R2d

e
r
(
|x|

1
t +|ξ|

1
s

)
|Vφf(x, ξ)|, r > 0,

defines the same topology on Σst (R
d) as does the collection of seminorms (2.5) for h > 0.

Proof. Due to the continuity of the Fourier transform F : Σst (R
d) → Σts(R

d) we have:
For every h1 > 0 there exists h2 > 0 such that for f ∈ Σst (R

d)

(3.2) ∥f̂∥St
s,h1

≲ ∥f∥Ss
t,h2

.

Set for r > 0

∥f∥′t,r = sup
x∈Rd

er|x|
1
t |f(x)|

and for φ ∈ Σst (R
d) \ 0

∥f∥′′r = sup
(x,ξ)∈R2d

e
r
(
|x|

1
t +|ξ|

1
s

)
|Vφf(x, ξ)|.

We start by showing

(3.3) ∀r > 0 ∃h > 0 : ∥f∥′t,r + ∥f̂∥′s,r ≲ ∥f∥Ss
t,h
, f ∈ Σst (R

d).

Using

|x|n ⩽ d
n
2 max
|α|=n

|xα|, x ∈ Rd,
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we obtain for f ∈ Σst (R
d), for any r > 0 and any h > 0,

e
r
t
|x|

1
t |f(x)|

1
t =

∞∑
n=0

2−nn!−1

(
2r

t
|x|

1
t

)n
|f(x)|

1
t

⩽ 2

(
sup
n⩾0

n!−t

((
2r

t

)t
|x|

)n
|f(x)|

) 1
t

≲

(
sup
n⩾0

((
2r

t

)t
d

1
2

)n
max
|α|=n

|xαf(x)|
n!t

) 1
t

⩽ ∥f∥
1
t
Ss
t,h

(
sup
n⩾0

((
2r

t

)t
d

1
2h

)n) 1
t

≲ ∥f∥
1
t
Ss
t,h
, x ∈ Rd,

provided h = h(r, t, d) > 0 is sufficiently small. This shows

∀r > 0 ∃h > 0 : ∥f∥′t,r ≲ ∥f∥Ss
t,h
.

As a byproduct, since f̂ ∈ Σts(R
d), this gives using (3.2) the following conclusion. If

f ∈ Σst (R
d) and r > 0 then there exist h1, h2 > 0 such that

∥f∥′t,r + ∥f̂∥′s,r ≲ ∥f∥Ss
t,h1

+ ∥f̂∥St
s,h1

≲ ∥f∥Ss
t,h2

.

We have proved (3.3).
Next we show the opposite estimate, that is

(3.4) ∀h > 0 ∃r > 0 : ∥f∥Ss
t,h

≲ ∥f∥′t,r + ∥f̂∥′s,r, f ∈ Σst (R
d).

The argument is quite long. It resembles the proof of [14, Theorem 6.1.6]. For complete-
ness’ sake we give the details.

First we deduce two estimates that are needed. From (3.3) it follows that ∥f∥′t,r <∞
and ∥f̂∥′s,r <∞ for any r > 0 when f ∈ Σst (R

d). Thus for any r > 0 we have

∞∑
n=0

|x|
n
t |f(x)|

1
t

n!

(r
t

)n
= e

r
t
|x|

1
t |f(x)|

1
t ⩽ (∥f∥′t,r)

1
t , x ∈ Rd,

which gives the estimate

|x|n|f(x)| ⩽ ∥f∥′t,r(n!)t
(
t

r

)tn
, x ∈ Rd, n ∈ N,

and further

|xαf(x)| ⩽ ∥f∥′t,r(α!)t
(
dt

r

)t|α|
, x ∈ Rd, α ∈ Nd.
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Finally we take the L2 norm and estimate for an integer k > d/4 with ε = 4k−d > 0:

(3.5)

∥xαf∥L2 ≲ sup
x∈Rd

⟨x⟩
d+ε
2 |xαf(x)| ≲ sup

x∈Rd, |γ|⩽2k

|xα+γf(x)|

⩽ ∥f∥′t,r((α+ γ)!)t
(
dt

r

)t|α+γ|
≲ ∥f∥′t,rα!t

(
2dt

r

)t|α|
, α ∈ Nd,

using (α+ γ)! ⩽ 2|α+γ|α!γ! (cf. [14]) and considering k a fixed parameter.

From (3.5), ∥f̂∥′s,r <∞ for any r > 0, and Parseval’s theorem we obtain

(3.6) ∥Dβf∥L2 = ∥ξβ f̂∥L2 ≲ ∥f̂∥′s,rβ!s
(
2ds

r

)s|β|
, β ∈ Nd.

We now start to prove (3.4). It suffices to assume 0 < h ⩽ 1. We have for α, β ∈ Nd

arbitrary and f ∈ Σst (R
d), using the Cauchy–Schwarz inequality, Parseval’s theorem and

the Leibniz rule

(3.7)

|xαDβf(x)| = (2π)−
d
2

∣∣∣∣∫
Rd

x̂αDβf(ξ)ei⟨x,ξ⟩dξ

∣∣∣∣ ≲ ∥⟨·⟩
d+ε
2 x̂αDβf∥L2

≲ max
|γ|⩽2k

∥Dγ(xαDβf)∥L2

≲ max
|γ|⩽2k

∑
µ⩽min(α,γ)

(
γ

µ

)(
α

µ

)
µ!∥xα−µDβ+γ−µf∥L2 , x ∈ Rd.

In the next intermediate step we rewrite the expression for the L2 norm squared using
integration by parts and estimate it as

∥xα−µDβ+γ−µf∥2L2

= |(Dβ+γ−µf, x2(α−µ)Dβ+γ−µf)|

= |(f,Dβ+γ−µ(x2(α−µ)Dβ+γ−µf))|

⩽
∑

κ⩽min(β+γ−µ,2(α−µ))

(
β + γ − µ

κ

)(
2(α− µ)

κ

)
κ!|(x2(α−µ)−κf,D2(β+γ−µ)−κf)|

⩽
∑

κ⩽min(β+γ−µ,2(α−µ))

(
β + γ − µ

κ

)(
2(α− µ)

κ

)
κ!∥x2(α−µ)−κf∥L2∥D2(β+γ−µ)−κf∥L2 .

Set σ = max(t, s), τ = min(t, s) and note that for δ > 0 we have by (2.10) for any
r > 0

κ!−δ ⩽ Cd,δ,r,t,s

(
2dτ

r

)2σ|κ|
, κ ∈ Nd.
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From (3.5), (3.6) and κ! = κ!t+s−δ where δ = t+ s− 1 > 0, we get if r ⩾ 2dσ

∥xα−µDβ+γ−µf∥2L2

≲ 22|α+β|
(
2dσ

r

)2τ |α+β+γ−2µ|
∥f∥′t,r∥f̂∥′s,r

∑
κ⩽min(β+γ−µ,2(α−µ))

κ!

(
2dτ

r

)−2σ|κ|

× (((2(α− µ)− κ)!)t ((2(β + γ − µ)− κ)!)s

≲ 22|α+β|
( r

2dσ

)4τ |µ|(2dσ

r

)2τ |α+β|
∥f∥′t,r∥f̂∥′s,r

∑
κ⩽min(β+γ−µ,2(α−µ))

(κ!)−δ
(
2dτ

r

)−2σ|κ|

× ((2(α− µ))!)t((2(β + γ − µ))!)s

≲ 22|α+β|
( r

2dσ

)8σk (2dσ

r

)2τ |α+β|
∥f∥′t,r∥f̂∥′s,r

∑
κ⩽min(β+γ−µ,2(α−µ))

((2(α− µ))!)t((2(β + γ − µ))!)s

⩽ Cr,k 2
4|α+β|

(
2dσ

r

)2τ |α+β|
∥f∥′t,r∥f̂∥′s,r((2(α− µ))!)t((2(β + γ − µ))!)s.

We insert this into (3.7) which gives, using µ! ⩽ µ!t+s and

(2(α− µ))! ⩽ 22|α|((α− µ)!)2,

|xαDβf(x)|

≲ 22|α+β|
(
2dσ

r

)τ |α+β| (
∥f∥′t,r∥f̂∥′s,r

) 1
2
max
|γ|⩽2k

∑
µ⩽min(α,γ)

(
γ

µ

)(
α

µ

)
µ!((2(α− µ))!)

t
2 ((2(β − µ))!))

s
2

≲ 2(2+t+s)|α+β|
(
2dσ

r

)τ |α+β| (
∥f∥′t,r∥f̂∥′s,r

) 1
2
max
|γ|⩽2k

∑
µ⩽min(α,γ)

(
α

µ

)
α!tβ!s

≲

(
23+t+s

(
2dσ

r

)τ)|α+β|
α!tβ!s(∥f∥′t,r + ∥f̂∥′s,r), x ∈ Rd, α, β ∈ Nd.

Given 0 < h ⩽ 1 we may pick r ⩾ 2dσ such that

h = 23+t+s
(
2dσ

r

)τ
.

This finally proves (3.4).
Next we use (3.3) in order to prove

(3.8) ∀r > 0 ∃h > 0 : ∥f∥′′r ≲ ∥f∥Ss
t,h
, f ∈ Σst (R

d).



10 P. WAHLBERG

Let r > 0 and φ ∈ Σst (R
d) \ 0, and set κ = max(κ(t−1), κ(s−1)). Then (2.8) and (2.9)

give for f ∈ Σst (R
d)

|Vφf(x, ξ)| = |f̂Txφ(ξ)| ≲ |f̂ | ∗ |T̂xφ|(ξ) =
∫
Rd

|f̂(ξ − η)| |φ̂(−η)| dη

≲ ∥f̂∥′s,2rκ∥φ̂∥′s,3rκ
∫
Rd

e−2rκ|ξ−η|
1
s −3rκ|η|

1
s dη

≲ ∥f̂∥′s,2rκ e−2r|ξ|
1
s

∫
Rd

e(2−3)rκ|η|
1
s dη

≲ ∥f̂∥′s,2rκ e−2r|ξ|
1
s , x, ξ ∈ Rd.

From this estimate and |Vφf(x, ξ)| = |Vφ̂f̂(ξ,−x)| we also obtain

|Vφf(x, ξ)| ≲ ∥f∥′t,2rκe−2r|x|
1
t , x, ξ ∈ Rd.

We may conclude

e
2r

(
|x|

1
t +|ξ|

1
s

)
|Vφf(x, ξ)|2 = e2r|x|

1
t |Vφf(x, ξ)| e2r|ξ|

1
s |Vφf(x, ξ)|

≲ ∥f∥′t,2rκ ∥f̂∥′s,2rκ
which gives

∥f∥′′r ≲
(
∥f∥′t,2rκ ∥f̂∥′s,2rκ

) 1
2
≲ ∥f∥′t,2rκ + ∥f̂∥′s,2rκ.

Combining with (3.3) we have proved (3.8).
It remains to prove

(3.9) ∀h > 0 ∃r > 0 : ∥f∥Ss
t,h

≲ ∥f∥′′r , f ∈ Σst (R
d).

which we do by means of (3.4).
We use the strong version of the STFT inversion formula (2.3) and its Fourier trans-

form, that is

f(x) = (2π)−
d
2

∫
R2d

Vφf(y, η)MηTyφ(x) dy dη,(3.10)

f̂(ξ) = (2π)−
d
2

∫
R2d

Vφf(y, η)TηM−yφ̂(ξ) dy dη,(3.11)

where f ∈ Σst (R
d) and φ ∈ Σst (R

d) satisfies ∥φ∥L2 = 1.
Set again κ = max(κ(t−1), κ(s−1)). From (3.3) and (3.10) we obtain for any r > 0

er|x|
1
t |f(x)| ≲

∫
R2d

|Vφf(y, η)| er|x|
1
t |φ(x− y)|dy dη

≲ ∥f∥′′2rκ
∫
R2d

e
−2rκ

(
|y|

1
t +|η|

1
s

)
er|x|

1
t −rκ|x−y|

1
t dy dη,

≲ ∥f∥′′2rκ
∫
R2d

e
−2rκ

(
|y|

1
t +|η|

1
s

)
erκ|y|

1
t dy dη,

≲ ∥f∥′′2rκ, x ∈ Rd,

which gives ∥f∥′t,r ≲ ∥f∥′′2rκ.
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From (3.11) we obtain for any r > 0

er|ξ|
1
s |f̂(ξ)| ≲

∫
R2d

|Vφf(y, η)| er|ξ|
1
s |φ̂(ξ − η)| dy dη,

≲ ∥f∥′′2rκ
∫
R2d

e
−2rκ

(
|y|

1
t +|η|

1
s

)
er|ξ|

1
s −rκ|ξ−η|

1
s dy dη,

≲ ∥f∥′′2rκ, ξ ∈ Rd,

which gives ∥f̂∥′s,r ≲ ∥f∥′′2rκ. Thus ∥f∥′t,r + ∥f̂∥′s,r ≲ ∥f∥′′2rκ so combining with (3.4) we
have proved (3.9).

Finally we note that the seminorms {∥f∥′′r , r > 0} are equivalent to the same family
of seminorms when the window function φ ∈ Σst (R

d) \ 0 is replaced by another function
ψ ∈ Σst (R

d) \ 0. Indeed this is an immediate consequence of (3.8) and (3.9). □

4. Anisotropic Gelfand–Shilov wave front sets

4.1. s-conic subsets. For s > 0 we use subsets of T ∗Rd \ 0 that are s-conic, that is
subsets closed under the operation T ∗Rd \ 0 ∋ (x, ξ) 7→ (λx, λsξ) for all λ > 0. Thus
1-conic is the same as the usual definition of conic.

Let t, s > 0 be fixed. We need the following simplified version of a tool taken from [15]
and its references. Given (x, ξ) ∈ R2d \ 0 there is a unique λ = λ(x, ξ) = λt,s(x, ξ) > 0
such that

λ(x, ξ)−2t|x|2 + λ(x, ξ)−2s|ξ|2 = 1.

Then (x, ξ) ∈ S2d−1 if and only if λ(x, ξ) = 1. By the implicit function theorem the
function λ : R2d \ 0 → R+ is smooth [12].

If µ > 0 and (x, ξ) ∈ S2d−1 then λ(µtx, µsξ) = µ = µλ(x, ξ). In fact

(4.1) λ(µtx, µsξ) = µλ(x, ξ)

holds for any (x, ξ) ∈ R2d\0 and µ > 0 by the following argument. Given (x, ξ) ∈ R2d\0
set µ1 = λ(x, ξ) so that (x/µt1, ξ/µ

s
1) ∈ S2d−1. Then for µ > 0

λ(µtx, µsξ) = λ((µµ1)
tx/µt1, (µµ1)

sξ/µs1) = µµ1 = µλ(x, ξ).

The projection p(x, ξ) = pt,s(x, ξ) of (x, ξ) ∈ R2d \ 0 along the curve R+ ∋ µ 7→
(µtx, µsξ) onto S2d−1 is defined as

(4.2) p(x, ξ) =
(
λ(x, ξ)−tx, λ(x, ξ)−sξ

)
, (x, ξ) ∈ R2d \ 0.

Then p(µtx, µsξ) = p(x, ξ) does not depend on µ > 0. The function p : R2d \ 0 → S2d−1

is smooth since λ ∈ C∞(R2d \ 0) and λ(x, ξ) > 0 for all (x, ξ) ∈ R2d \ 0.
Note that λt,s(x, ξ) = λ1, s

t
(x, ξ)

1
t , and thus pt,s(x, ξ) = p1, s

t
(x, ξ) depends only on s

t .

From [15], or by straightforward arguments, we have the bounds

|x|
1
t + |ξ|

1
s ≲ λ(x, ξ) ≲ |x|

1
t + |ξ|

1
s , (x, ξ) ∈ R2d \ 0,

and

⟨(x, ξ)⟩min(1, 1t )min(1, 1s ) ≲ 1 + λ(x, ξ) ≲ ⟨(x, ξ)⟩max(1, 1t )max(1, 1s ), (x, ξ) ∈ R2d \ 0.
We will use two types of s-conic neighborhoods. The first type is defined as follows.
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Definition 4.1. Suppose s, ε > 0 and z0 ∈ S2d−1. Then

Γs,z0,ε = {(x, ξ) ∈ R2d \ 0, |z0 − p1,s(x, ξ)| < ε} ⊆ T ∗Rd \ 0.

We write Γz0,ε = Γs,z0,ε when s is fixed and understood from the context. If ε > 2

then Γz0,ε = T ∗Rd \ 0 so we usually restrict to ε ⩽ 2.
The second type of s-conic neighborhood is defined as follows.

Definition 4.2. Suppose s, ε > 0 and (x0, ξ0) ∈ S2d−1. Then

Γ̃(x0,ξ0),ε = Γ̃s,(x0,ξ0),ε = {(y, η) ∈ R2d \ 0 : (y, η) = (λ(x0 + x), λs(ξ0 + ξ), λ > 0, (x, ξ) ∈ Bε}

= {(y, η) ∈ R2d \ 0 : ∃λ > 0 : (λy, λsη) ∈ (x0, ξ0) + Bε}.

By [22, Lemma 3.7] the two types of s-conic neighborhoods are equivalent. This means

that if z0 ∈ S2d−1 then for each ε > 0 there exists δ > 0 such that Γz0,δ ⊆ Γ̃z0,ε and

Γ̃z0,δ ⊆ Γz0,ε.

4.2. Anisotropic Gelfand–Shilov wave front sets. For u ∈ (Σst )
′(Rd) the t, s-

Gelfand–Shilov wave front set WFt,s(u) was defined in [21] as a closed subset of the
phase space T ∗Rd \ 0 as follows.

Definition 4.3. Let s, t > 0 satisfy s + t > 1, and suppose ψ ∈ Σst (R
d) \ 0 and

u ∈ (Σst )
′(Rd). Then (x0, ξ0) ∈ T ∗Rd \ 0 satisfies (x0, ξ0) /∈ WFt,s(u) if there exists an

open set U ⊆ T ∗Rd \ 0 containing (x0, ξ0) such that

(4.3) sup
λ>0, (x,ξ)∈U

erλ|Vψu(λtx, λsξ)| <∞, ∀r > 0.

Due to (2.7) it is clear that it suffices to check (4.3) for λ ⩾ L where L > 0 can be
arbitrarily large, for each r > 0.

A consequence of Definition 4.3 is that WFt,s(u) is an s
t -conic closed subset of T ∗Rd\0.

If t = s > 1
2 and u ∈ Σ′

s(R
d) then WFs,s(u) = WFs(u), so we recapture the s-Gelfand–

Shilov wave front set WFs(u) (which is a slightly modified version of Cappiello’s and
Schulz’s [4, Definition 2.1]), as defined originally in [3, Definition 4.1]:

Definition 4.4. Let s > 1/2, ψ ∈ Σs(R
d) \ 0 and u ∈ Σ′

s(R
d). Then z0 ∈ T ∗Rd \ 0

satisfies z0 /∈ WFs(u) if there exists an open conic set Γz0 ⊆ T ∗Rd \ 0 containing z0 such
that

sup
z∈Γz0

er|z|
1
s |Vψu(z)| <∞, ∀r > 0.

In Definition 4.3 we ask for exponential decay with arbitrary parameter r > 0 (super-
exponential) of Vψu along the curve Cx,ξ ∈ T ∗Rd defined by R+ ∋ λ→ (λtx, λsξ) which

passes through (x, ξ) ∈ U ⊆ T ∗Rd \0. This power type curve reduces to a straight line if
t = s. By (2.7) a generic point (x, ξ) ∈ T ∗Rd \0 has an exponential growth upper bound
along the curve Cx,ξ. Due to (2.8) we have WFt,s(u) = ∅ if and only if u ∈ Σst (R

d).

Thus WFt,s(u) ⊆ T ∗Rd \ 0 can be seen as a measure of singularities of u ∈ (Σst )
′(Rd):

It records the phase space points (x, ξ) ∈ T ∗Rd \ 0 such that Vψu does not decay super-

exponentially along the curve Cx,ξ, that is, does not behave like an element in Σst (R
d)

there.
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The t, s-Gelfand–Shilov wave front set is related to the anisotropic Gabor wave front
set [22,27] where the functional framework is the Schwartz space and tempered distribu-
tions, and the decay and growth in phase space are polynomial rather than exponential.

By [21, Proposition 3.5], Definition 4.3 does not depend on the window function
ψ ∈ Σst (R

d) \ 0. If ǔ(x) = u(−x) then

(4.4) Vψ̌ǔ(x, ξ) = Vψu(−x,−ξ).

If u is even or odd we thus have the following symmetry:

(4.5) ǔ = ±u =⇒ WFt,s(u) = −WFt,s(u).

We also have

(4.6) Vψu(x, ξ) = Vψu(x,−ξ).

By [21, Remark 3.4] we have WFtp,sp(u) ⊆ WFt,s(u) if p ⩾ 1, t + s > 1 and u ∈
(Σsptp )

′(Rd).

If (y, η) ∈ Γ̃ s
t
,(x0,ξ0),ε for 0 < ε < 1 then for some λ > 0 and (x, ξ) ∈ Bε we have

(y, η) = (λt(x0+x), λ
s(ξ0+ξ)). Thus |y|

1
t +|η|

1
s ≍ λ, which gives the following equivalent

criterion to the condition (4.3) in Definition 4.3. The point (x0, ξ0) ∈ S2d−1 satisfies
(x0, ξ0) /∈ WFt,s(u) if and only if for some ε > 0 we have

(4.7) sup
(x,ξ)∈Γ s

t ,(x0,ξ0),ε

e
r
(
|x|

1
t +|ξ|

1
s

)
|Vφu(x, ξ)| < +∞ ∀r > 0.

We will use the following result on the anisotropic Gelfand–Shilov wave front set of a
tensor product. Here we use the notation x = (x′, x′′) ∈ Rm+n, x′ ∈ Rm, x′′ ∈ Rn.

Proposition 4.5. If t, s > 0, t+ s > 1, u ∈ (Σst )
′ (Rm), and v ∈ (Σst )

′ (Rn) then

WFt,s(u⊗ v) ⊆
(
(WFt,s(u) ∪ {0})× (WFt,s(v) ∪ {0})

)
\ 0

= {(x, ξ) ∈ T ∗Rm+n \ 0 : (x′, ξ′) ∈ WFt,s(u) ∪ {0}, (x′′, ξ′′) ∈ WFt,s(v) ∪ {0}} \ 0.

Proof. Let φ ∈ Σst (R
m) \ 0 and ψ ∈ Σst (R

n) \ 0. Suppose (x0, ξ0) ∈ T ∗Rm+n \ 0 does
not belong to the set on the right hand side. Then either (x′0, ξ

′
0) /∈ WFt,s(u) ∪ {0} or

(x′′0, ξ
′′
0 ) /∈ WFt,s(v)∪{0}. For reasons of symmetry we may assume (x′0, ξ

′
0) /∈ WFt,s(u)∪

{0}.
Thus there exists ε > 0 such that

sup
(x′,ξ′)∈(x′0,ξ′0)+Bε, λ>0

erλ|Vφu(λtx′, λsξ′)| <∞ ∀r > 0.

Let (x′, ξ′) ∈ (x′0, ξ
′
0) + Bε, (x

′′, ξ′′) ∈ (x′′0, ξ
′′
0 ) + Bε, let r > 0 be arbitrary, and let

λ ⩾ 1. We obtain using (2.7), for some r1 > 0

erλ|Vφ⊗ψu⊗ v(λtx, λsξ)| = erλ|Vφu(λtx′, λsξ′)| |Vψv(λtx′′, λsξ′′)|

≲ e(r+r1)λ|Vφu(λtx′, λsξ′)| <∞.

It follows that (x0, ξ0) /∈ WFt,s(u⊗ v). □
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5. Propagation of anisotropic Gelfand–Shilov wave front sets

Let t, s > 0 and t+ s > 1. Define for K ∈ (Σst )
′ (R2d)

WFt,s1 (K) = {(x, ξ) ∈ T ∗Rd : (x, 0, ξ, 0) ∈ WFt,s(K)} ⊆ T ∗Rd \ 0,

WFt,s2 (K) = {(y, η) ∈ T ∗Rd : (0, y, 0,−η) ∈ WFt,s(K)} ⊆ T ∗Rd \ 0.

We will use the assumption

(5.1) WFt,s1 (K) = WFt,s2 (K) = ∅.

It is clear that if (5.1) holds for K ∈ (Σst )
′ (R2d) then WFtp,sp1 (K) = WFtp,sp2 (K) = ∅

if K ∈
(
Σsptp
)′
(R2d), for any p ⩾ 1.

The following lemma is an s
t -conic version of [3, Lemma 6.1] which treats the isotropic

Gelfand–Shilov wave front set.

Lemma 5.1. If t, s > 0, K ∈ (Σst )
′ (R2d) and (5.1) holds, then there exists c > 1 such

that
(5.2)

WFt,s(K) ⊆ Γ1 :=
{
(x, y, ξ, η) ∈ T ∗R2d : c−1

(
|x|

1
t + |ξ|

1
s

)
< |y|

1
t + |η|

1
s < c

(
|x|

1
t + |ξ|

1
s

)}
.

Proof. Suppose

WFt,s(K) ⊆
{
(x, y, ξ, η) ∈ T ∗R2d : |y|

1
t + |η|

1
s < c

(
|x|

1
t + |ξ|

1
s

)}
does not hold for any c > 0. Then for each n ∈ N there exists (xn, yn, ξn, ηn) ∈ WFt,s(K)
such that

(5.3) |yn|
1
t + |ηn|

1
s ⩾ n

(
|xn|

1
t + |ξn|

1
s

)
.

By rescaling (xn, yn, ξn, ηn) as

(xn, yn, ξn, ηn) 7→ (λtxn, λ
tyn, λ

sξn, λ
sηn)

we obtain for a unique λ = λ(xn, yn, ξn, ηn) > 0 a vector in S4d−1 [22]. This s
t -conic

rescaling leaves (5.3) invariant. Abusing notation we still denote the rescaled vector
(xn, yn, ξn, ηn) ∈ WFt,s(K) ∩ S4d−1.

From (5.3) it follows that (xn, ξn) → 0 as n→ ∞. Passing to a subsequence (without
change of notation) and using the closedness of WFt,s(K) gives

(xn, yn, ξn, ηn) → (0, y, 0, η) ∈ WFt,s(K), n→ ∞,

for some (y, η) ∈ S2d−1. This implies (y,−η) ∈ WFt,s2 (K) which contradicts the assump-
tion (5.1).

Similarly one shows

WFt,s(K) ⊆
{
(x, y, ξ, η) ∈ T ∗R2d : |x|

1
t + |ξ|

1
s < c

(
|y|

1
t + |η|

1
s

)}
for some c > 0 using WFt,s1 (K) = ∅. □
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The set Γ1 ⊆ R4d \ 0 in (5.2) is open, and s
t -conic in the sense that it is closed with

respect to (x, y, ξ, η) 7→ (λt(x, y), λs(ξ, η)) for any λ > 0. Hence (R4d \ Γ1) is s
t -conic

and (R4d \ Γ1) ∩ S4d−1 is compact. From (4.7) we then obtain if Φ ∈ Σst (R
2d) \ 0

(5.4) |VΦK(x, y, ξ,−η)| ≲ e
−r

(
|(x,y)|

1
t +|(ξ,η)|

1
s

)
, r > 0, (x, y, ξ,−η) ∈ R4d \ Γ1.

A kernel K ∈ (Σst )
′ (R2d) defines a continuous linear map K : Σst (R

d) → (Σst )
′ (Rd)

by

(5.5) (K f, g) = (K, g ⊗ f), f, g ∈ Σst (R
d).

The following result says that (5.1) implies continuity of K on Σst (R
d) and admits

a unique extension to a continuous operator on (Σst )
′(Rd). This is the basis for the

forthcoming result on propagation of the t, s-Gelfand–Shilov wave front sets Theorem
5.5. In the proof we use the conventional notation (cf. [10,11]) for the reflection operator
in the fourth Rd coordinate in R4d

(5.6) (x, y, ξ, η)′ = (x, y, ξ,−η), x, y, ξ, η ∈ Rd.

Proposition 5.2. Let t, s > 0 satisfy t + s > 1, and let K : Σst (R
d) → (Σst )

′ (Rd) be
the continuous linear operator (5.5) defined by the Schwartz kernel K ∈ (Σst )

′ (R2d). If
(5.1) holds then

(i) K : Σst (R
d) → Σst (R

d) is continuous;
(ii) K extends uniquely to a continuous linear operator K : (Σst )

′ (Rd) → (Σst )
′ (Rd);

(iii) if φ ∈ Σst (R
d), ∥φ∥L2 = 1, Φ = φ⊗ φ ∈ Σst (R

2d), u ∈ (Σst )
′ (Rd) and ψ ∈ Σst (R

d),
then

(5.7) (K u, ψ) =

∫
R4d

VΦK(x, y, ξ,−η)Vφψ(x, ξ)Vφu(y, η) dx dy dξ dη.

Proof. By [25, Lemma 5.1] the formula (5.7) holds for u, ψ ∈ Σst (R
d).

Let φ ∈ Σst (R
d) satisfy ∥φ∥L2 = 1 and set Φ = φ⊗ φ ∈ Σst (R

2d). Since

VφΠ(x, ξ)φ(y, η) = ei⟨y,η−ξ⟩Vφφ(x− y, ξ − η)

we get from (5.7) for u ∈ Σst (R
d) and (x, ξ) ∈ T ∗Rd

(5.8)
Vφ(K u)(x, ξ) = (2π)−

d
2 (K u,Π(x, ξ)φ)

= (2π)−
d
2

∫
R4d

ei⟨y,η−ξ⟩VΦK(y, z, η,−θ)Vφφ(x− y, ξ − η)Vφu(z, θ) dy dz dη dθ.

This gives

(5.9) |Vφ(K u)(x, ξ)| ≲
∫
R4d

|VΦK(y, z, η,−θ)| |Vφφ(x−y, ξ−η)| |Vφu(z, θ)| dy dz dη dθ.

We use the seminorms (3.1), denoted ∥ · ∥′′r for r > 0 as in the proof of Lemma 3.1.
Let r > 0, set κ = max(κ(t−1), κ(s−1)), and consider first the right hand side integral of
(5.9) over (y, z, η,−θ) ∈ R4d \ Γ1 where Γ1 is defined by (5.2) with c > 1 chosen so that



16 P. WAHLBERG

WFt,s(K) ⊆ Γ1. By Lemma 5.1 we may use the estimates (5.4). Using (2.8) and (2.9)
we obtain for any r1 > 0

(5.10)

∫
R4d\Γ′

1

|VΦK(y, z, η,−θ)| |Vφφ(x− y, ξ − η)| |Vφu(z, θ)| dy dz dη dθ

≲
∫
R4d\Γ′

1

e
−r1

(
|(y,z)|

1
t +|(η,θ)|

1
s

)
e
−rκ

(
|x−y|

1
t +|ξ−η|

1
s

)
|Vφu(z, θ)|dy dz dη dθ

≲ ∥u∥′′0 e
−r

(
|x|

1
t +|ξ|

1
s

) ∫
R4d

e
(rκ−r1)

(
|(y,z)|

1
t +|(η,θ)|

1
s

)
dy dz dξ dη

≲ ∥u∥′′0 e
−r

(
|x|

1
t +|ξ|

1
s

)

provided r1 > rκ.
Next we consider the right hand side integral (5.9) over (y, z, η,−θ) ∈ Γ1. Then we

may by Lemma 5.1 use (5.2). Using (2.7) and (2.8) we obtain for some r1 > 0 and any
r2 > 0
(5.11)∫

Γ′
1

|VΦK(y, z, η,−θ)| |Vφφ(x− y, ξ − η)| |Vφu(z, θ)|dy dz dη dθ

≲ ∥u∥′′r2 e
−r

(
|x|

1
t +|ξ|

1
s

) ∫
Γ′
1

e
r1

(
|(y,z)|

1
t +|(η,θ)|

1
s

)
e
rκ

(
|y|

1
t +|η|

1
s

)
e
−r2

(
|z|

1
t +|θ|

1
s

)
dx dy dξ dη

⩽ ∥u∥′′r2 e
−r

(
|x|

1
t +|ξ|

1
s

) ∫
Γ′
1

e
−
(
|(y,z)|

1
t +|(η,θ)|

1
s

)
e
(r1+1)κ

(
|y|

1
t +|z|

1
t +|η|

1
s +|θ|

1
s

)

× e
(rκc−r2)

(
|z|

1
t +|θ|

1
s

)
dx dy dξ dη

⩽ ∥u∥′′r2 e
−r

(
|x|

1
t +|ξ|

1
s

) ∫
Γ′
1

e
−
(
|(y,z)|

1
t +|(η,θ)|

1
s

)
e
((r1+1)κ(1+c)+rκc−r2)

(
|z|

1
t +|θ|

1
s

)
dx dy dξ dη

≲ ∥u∥′′r2 e
−r

(
|x|

1
t +|ξ|

1
s

)

provided r2 > 0 is sufficiently large.
Combining (5.10) and (5.11) we obtain from (5.9) ∥K u∥′′r ≲ ∥u∥′′r2 , which proves claim

(i).
To show claims (ii) and (iii) let u ∈ (Σst )

′ (Rd) and set for n ∈ N

un = (2π)−
d
2

∫
|(y,η)|⩽n

Vφu(y, η)Π(y, η)φdy dη.
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Let r > 0. From (2.7) and (2.8) we obtain for some r1 > 0

e
r
(
|x|

1
t +|ξ|

1
s

)
|Vφun(x, ξ)| ≲

∫
|(y,η)|⩽n

|Vφu(y, η)| e
r
(
|x|

1
t +|ξ|

1
s

)
|Vφφ(x− y, ξ − η)|dy dη

≲
∫
|(y,η)|⩽n

e
r1

(
|y|

1
t +|η|

1
s

)
e
r
(
|x|

1
t +|ξ|

1
s

)
e
−κr

(
|x−y|

1
t +|ξ−η|

1
s

)
dy dη

≲
∫
|(y,η)|⩽n

e
r1

(
|y|

1
t +|η|

1
s

)
+rκ

(
|y|

1
t +|η|

1
s

)
dy dη

⩽ Cn,r,r1 , (x, ξ) ∈ R2d.

It follows that un ∈ Σst (R
d) for n ∈ N.

The fact that un → u in (Σst )
′(Rd) as n → ∞ is a consequence of (2.4), (2.7), (2.8)

and dominated convergence.
We also need the estimate (cf. [7, Eq. (11.29)])

|Vφun(y, η)| ⩽ (2π)−
d
2 |Vφu| ∗ |Vφφ|(y, η), (y, η) ∈ R2d,

which in view of (2.7) and (2.8) gives the bound

(5.12) |Vφun(y, η)| ≲ e
κ(1+r1)

(
|y|

1
t +|η|

1
s

)
, (y, η) ∈ R2d, n ∈ N,

for some r1 > 0, that holds uniformly over n ∈ N.
We are now in a position to assemble the arguments into a proof of formula (5.7) for

u ∈ (Σst )
′(Rd) and ψ ∈ Σst (R

d). Set
(5.13)

(K u, ψ) = lim
n→∞

(K un, ψ) = lim
n→∞

∫
R4d

VΦK(x, y, ξ,−η)Vφψ(x, ξ)Vφun(y, η) dx dy dξ dη.

We have Vφun(y, η) → Vφu(y, η) as n → ∞ for all (y, η) ∈ R2d. In order to show
that the right hand side of (5.13) is well defined and (5.7) holds, it thus suffices by
dominated convergence to show that the modulus of the integrand in (5.13) is bounded
by an integrable function that does not depend on n ∈ N.

Consider first the right hand side integral (5.13) over (x, y, ξ,−η) ∈ R4d \ Γ1 where
Γ1 is defined by (5.2) with c > 1 again chosen so that WFt,s(K) ⊆ Γ1. By Lemma 5.1
we may use the estimates (5.4). Using (5.12) we obtain for any r2 > 0

(5.14)

∫
R4d\Γ′

1

|VΦK(x, y, ξ,−η)| |Vφψ(x, ξ)| |Vφun(y, η)|dx dy dξ dη

≲
∫
R4d\Γ′

1

e
−r2

(
|(x,y)|

1
t +|(ξ,η)|

1
s

)
|Vφψ(x, ξ)| e

κ(1+r1)
(
|y|

1
t +|η|

1
s

)
dx dy dξ dη

≲ ∥ψ∥′′0
∫
R4d

e
(κ(1+r1)−r2)

(
|(x,y)|

1
t +|(ξ,η)|

1
s

)
dx dy dξ dη

≲ ∥ψ∥′′0 <∞

provided r2 > κ(1 + r1).



18 P. WAHLBERG

Next we consider the right hand side integral (5.13) over (x, y, ξ,−η) ∈ Γ1. Then we
may by Lemma 5.1 use (5.2). From (2.7) and again (5.12) we obtain for some r2 > 0
(5.15)∫
Γ′
1

|VΦK(x, y, ξ,−η)| |Vφψ(x, ξ)| |Vφun(y, η)| dx dy dξ dη

≲
∫
Γ′
1

e
r2

(
|(x,y)|

1
t +|(ξ,η)|

1
s

)
|Vφψ(x, ξ)| e

κ(1+r1)
(
|y|

1
t +|η|

1
s

)
dx dy dξ dη

⩽
∫
Γ′
1

e
−
(
|(x,y)|

1
t +|(ξ,η)|

1
s

)
e
κ(1+r2)

(
|x|

1
t +|y|

1
t +|ξ|

1
s +|η|

1
s

)
+κ(1+r1)

(
|y|

1
t +|η|

1
s

)
|Vφψ(x, ξ)|dx dy dξ dη

⩽
∫
Γ′
1

e
−
(
|(x,y)|

1
t +|(ξ,η)|

1
s

)
e
(κ(1+r2)(1+c)+κ(1+r1)c)

(
|x|

1
t +|ξ|

1
s

)
|Vφψ(x, ξ)|dx dy dξ dη

≲ ∥ψ∥′′κ((1+r2)(1+c)+(1+r1)c)
<∞.

The estimates (5.14) and (5.15) prove our claim that the modulus of the integrand in
right hand side of (5.13) is bounded by an L1(R4d) function uniformly over N ∈ N.
Thus (5.13) extends the domain of K from Σst (R

d) to (Σst )
′ (Rd). We have shown claim

(iii).
From (5.14) and (5.15) we also see that K u extended to the domain u ∈ (Σst )

′ (Rd)
satisfies K u ∈ (Σst )

′ (Rd). To prove claim (ii) it remains to show the continuity of the
extension (5.13) on (Σst )

′ (Rd). The uniqueness of the extension is a consequence of the
continuity.

Let (un)
∞
n=1 ⊆ (Σst )

′ (Rd) be a sequence such that un → 0 in (Σst )
′ (Rd) as n → ∞.

Then Vφun(y, η) → 0 as n→ ∞ for all (y, η) ∈ R2d. By the Banach–Steinhaus theorem
[18, Theorem V.7], (un)

∞
n=1 is equicontinuous. This means that there exists r > 0 such

that

|(un, ψ)| ≲ ∥ψ∥′′r = sup
(x,ξ)∈R2d

e
r
(
|x|

1
t +|ξ|

1
s

)
|Vφψ(x, ξ)|, ψ ∈ Σst (R

d), n ∈ N.

Hence

|Vφun(y, η)| = (2π)−
d
2 |(un,Π(y, η)φ)| ≲ sup

(x,ξ)∈R2d

e
r
(
|x|

1
t +|ξ|

1
s

)
|Vφ(Π(y, η)φ)(x, ξ)|

= sup
(x,ξ)∈R2d

e
r
(
|x|

1
t +|ξ|

1
s

)
|Vφφ(x− y, ξ − η)|

≲ sup
(x,ξ)∈R2d

e
r
(
|x|

1
t +|ξ|

1
s

)
e
−rκ

(
|x−y|

1
t +|ξ−η|

1
s

)
≲ e

rκ
(
|y|

1
t +|η|

1
s

)
, (y, η) ∈ R2d,

uniformly for all n ∈ N. From (5.7), the estimates (5.14), (5.15), and dominated con-
vergence it follows that (K un, ψ) → 0 as n → ∞ for all ψ ∈ Σst (R

d), that is K un → 0
in (Σst )

′ (Rd). This finally proves claim (ii). □

Now we start to prepare for the main result Theorem 5.5. We will use the relation
mapping between a subset A ⊆ X × Y of the Cartesian product of two sets X, Y , and
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a subset B ⊆ Y ,

A ◦B = {x ∈ X : ∃y ∈ B : (x, y) ∈ A} ⊆ X.

When X = Y = R2d we use the convention

A′ ◦B = {(x, ξ) ∈ R2d : ∃(y, η) ∈ B : (x, y, ξ,−η) ∈ A}.
Note that we use (5.6), and there is a swap of the second and third variables.

If we denote by

p1,3(x, y, ξ, η) = (x, ξ),

p2,−4(x, y, ξ, η) = (y,−η), x, y, ξ, η ∈ Rd,

the projections R4d → R2d onto the first and the third Rd coordinate, and onto the
second and the fourth Rd coordinate with a change of sign in the latter, respectively,
then we may write

(5.16) WFt,s(K)′ ◦WFt,s(u) = p1,3

(
WFt,s(K) ∩ p−1

2,−4WFt,s(u)
)
.

Lemma 5.3. If t, s > 0, t+ s > 1, K ∈ (Σst )
′ (R2d), (5.1) holds and u ∈ (Σst )

′ (Rd) then

WFt,s(K)′ ◦WFt,s(u) ⊆ T ∗Rd \ 0

is s
t -conic and closed in T ∗Rd \ 0.

Proof. Let (x, ξ) ∈ WFt,s(K)′ ◦WFt,s(u). Then there exists (y, η) ∈ WFt,s(u) such that
(x, y, ξ,−η) ∈ WFt,s(K).

Let λ > 0. Since WFt,s(K) and WFt,s(u) are s
t -conic we have (λtx, λty, λsξ,−λsη) ∈

WFt,s(K) and (λty, λsη) ∈ WFt,s(u). It follows that (λtx, λsξ) ∈ WFt,s(K)′ ◦WFt,s(u)
which shows that WFt,s(K)′ ◦WFt,s(u) is s

t -conic.

Next we assume that (xn, ξn) ∈ WFt,s(K)′ ◦ WFt,s(u) for n ∈ N and (xn, ξn) →
(x, ξ) ̸= 0 as n → +∞. For each n ∈ N there exists (yn, ηn) ∈ WFt,s(u) such that
(xn, yn, ξn,−ηn) ∈ WFt,s(K).

Since the sequence {(xn, ξn)n} ⊆ T ∗Rd is bounded it follows from Lemma 5.1 that
also the sequence {(yn, ηn)n} ⊆ T ∗Rd is bounded. Passing to a subsequence (without
change of notation) we get convergence

lim
n→+∞

(xn, yn, ξn,−ηn) = (x, y, ξ,−η) ∈ R4d \ 0.

Here (x, y, ξ,−η) ∈ WFt,s(K) since WFt,s(K) ⊆ T ∗R2d \ 0 is closed, and (y, η) ̸= 0

due to the assumption WFt,s1 (K) = ∅. Since WFt,s(u) ⊆ T ∗Rd \ 0 is closed we have
(y, η) ∈ WFt,s(u). We have proved that (x, ξ) ∈ WFt,s(K)′ ◦WFt,s(u) which shows that
WFt,s(K)′ ◦WFt,s(u) is closed in T ∗Rd \ 0. □

Let s > 0, let G ⊆ T ∗Rd \ 0 be a closed s-conic subset, and let ε > 0. In the next
result we use the notation

(5.17) ΓG,ε = {z ∈ T ∗Rd \ 0 : inf
w∈G∩S2d−1

|p1,s(z)− w| < ε}.

This generalizes Definition 4.1 since ΓG,ε = Γ(x0,ξ0),ε if G = {(λx0, λsξ0) ∈ T ∗Rd \ 0 :

λ > 0} and (x0, ξ0) ∈ S2d−1. Note that ΓG,ε is an open s-conic set, and G ⊆ ΓG,ε.
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Lemma 5.4. Suppose Gj ⊆ T ∗R2d \ 0 is closed s-conic for j = 1, 2, suppose G3 ⊆
T ∗Rd \ 0 is closed s-conic, and suppose

G1 ∩G2 ∩ p−1
2,−4 (G3 ∪ {0}) \ 0 = ∅.

Define Γj,ε = ΓGj ,ε for ε > 0 and j = 1, 2, 3. Then for some ε > 0 we have

Γ1,ε ∩ Γ2,ε ∩ p−1
2,−4 (Γ3,ε ∪ {0}) \ 0 = ∅.

Proof. Note that p−1
2,−4 (G3 ∪ {0})\0 is closed s-conic in T ∗R2d\0, and p−1

2,−4 (Γ3,ε ∪ {0})\0
is s-conic in T ∗R2d \ 0 for any ε > 0.

Suppose that for each n ∈ N we have

Xn = (xn, yn, ξn, ηn) ∈ Γ1, 1
n
∩ Γ2, 1

n
∩ p−1

2,−4

(
Γ3, 1

n
∪ {0}

)
\ 0.

Since Γj, 1
n
for j = 1, 2, as well as p−1

2,−4

(
Γ3, 1

n
∪ {0}

)
\ 0, are s-conic in T ∗R2d \ 0, we

may assume that |Xn| = 1 for all n ∈ N. Passing to a subsequence (without change of
notation) we get Xn → X = (x, y, ξ, η) ∈ S4d−1 as n→ +∞.

For each n ∈ N and j = 1, 2 there exists Yj,n ∈ Gj ∩ S4d−1 such that |Xn − Yj,n| < 1
n .

Thus |X−Yj,n| ⩽ |X−Xn|+ |Xn−Yj,n| → 0 as n→ +∞. Since Gj is closed for j = 1, 2,
it follows that X ∈ G1 ∩G2.

Suppose (y, η) = 0. Then X ∈ p−1
2,−4 (G3 ∪ {0}) \ 0 and thus

X ∈ G1 ∩G2 ∩ p−1
2,−4 (G3 ∪ {0}) \ 0

which contradicts the assumption. Hence (y, η) ̸= 0 must hold, and therefore (yn,−ηn) ∈
Γ3, 1

n
if n ⩾ N for N > 0 sufficiently large.

For each n ⩾ N there exists Yn ∈ G3 ∩ S2d−1 such that |p1,s(yn,−ηn) − Yn| < 1
n .

This gives |p1,s(y,−η) − Yn| ⩽ |p1,s(y,−η) − p1,s(yn,−ηn)| + |p1,s(yn,−ηn) − Yn| → 0
as n → +∞, taking into account the fact that p1,s is continuous. Since G3 is closed
it follows that p1,s(y,−η) ∈ G3. This implies (y,−η) ∈ G3 using the fact that G3 is

s-conic. We arrive at the conclusion X ∈ p−1
2,−4 (G3 ∪ {0}) \ 0 which again contradicts

the assumption.
We may conclude that for some n ∈ N we must have

Γ1, 1
n
∩ Γ2, 1

n
∩ p−1

2,−4

(
Γ3, 1

n
∪ {0}

)
\ 0 = ∅.

□

Finally we may state and prove our main result on propagation of singularities.

Theorem 5.5. Let t, s > 0 satisfy t + s > 1, and let K : Σst (R
d) → (Σst )

′ (Rd) be
the continuous linear operator (5.5) defined by the Schwartz kernel K ∈ (Σst )

′ (R2d),
and suppose that (5.1) holds. Then K is continuous on Σst (R

d), extends uniquely to a
continuous operator on (Σst )

′ (Rd), and for u ∈ (Σst )
′ (Rd) we have

WFt,s(K u) ⊆ WFt,s(K)′ ◦WFt,s(u).

Proof. By Proposition 5.2 K : Σst (R
d) → Σst (R

d) is continuous and extends uniquely
to a continuous linear operator K : (Σst )

′ (Rd) → (Σst )
′ (Rd).
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Let φ ∈ Σst (R
d) satisfy ∥φ∥L2 = 1 and set Φ = φ ⊗ φ ∈ Σst (R

2d). Proposition 5.2,
(5.7) and (5.8) give for u ∈ (Σst )

′ (Rd) and (x, ξ) ∈ T ∗Rd and λ > 0
(5.18)

|Vφ(K u)(λtx, λsξ)| ≲
∫
R4d

|VΦK(y, z, η,−θ)| |Vφφ(λtx−y, λsξ−η)| |Vφu(z, θ)|dy dz dη dθ.

We may assume that WFt,s(K)′ ◦WFt,s(u) ̸= T ∗Rd \ 0 since the conclusion is trivial
otherwise. Suppose z0 = (x0, ξ0) ∈ T ∗Rd \ 0 and

(5.19) z0 /∈ WFt,s(K)′ ◦WFt,s(u).

To prove the theorem we show z0 /∈ WFt,s(K u).
By Lemma 5.3 the set WFt,s(K)′ ◦ WFt,s(u) is s

t -conic and closed. Thus we may

assume that z0 ∈ S2d−1. Moreover, with Γ̃z0,2ε = Γ̃ s
t
,z0,2ε, there exists ε > 0 such that

Γ̃z0,2ε ∩
(
WFt,s(K)′ ◦WFt,s(u)

)
= ∅.

Here Γ̃z0,2ε denotes the closure of Γ̃z0,2ε in T
∗Rd \ 0. Using (5.16) we may write this as

Γ̃z0,2ε ∩ p1,3
(
WFt,s(K) ∩ p−1

2,−4WFt,s(u)
)
= ∅

or equivalently

p−1
1,3Γ̃z0,2ε ∩WFt,s(K) ∩ p−1

2,−4WFt,s(u) = ∅.
Due to assumption (5.1) we may strengthen this into

p−1
1,3 (Γ̃z0,2ε ∪ {0}) \ 0 ∩WFt,s(K) ∩ p−1

2,−4 (WFt,s(u) ∪ {0}) \ 0 = ∅.

Note that p−1
1,3 (Γ̃z0,2ε ∪ {0}) \ 0, WFt,s(K), and p−1

2,−4 (WFt,s(u) ∪ {0}) \ 0 are all closed

and s
t -conic subsets of T ∗R2d \ 0.

Now Lemma 5.4 gives the following conclusion. There exists open s
t -conic subsets

Γ1 ⊆ T ∗R2d \ 0 and Γ2 ⊆ T ∗Rd \ 0 such that

WFt,s(K) ⊆ Γ1, WFt,s(u) ⊆ Γ2

and

(5.20) p−1
1,3Γ̃z0,2ε ∩ Γ1 ∩ p−1

2,−4Γ2 = ∅.

By intersecting Γ1 with the set Γ1 defined in (5.2), we may by Lemma 5.1 assume that
(5.2) holds true.

Let r > 0. We will now start to estimate the integral (5.18) when (x, ξ) ∈ (x0, ξ0)+Bε
for some 0 < ε ⩽ 1

2 and λ ⩾ 1.

We split the domainR4d of the integral (5.18) into three pieces. Set κ = max(κ(t−1), κ(s−1))
and

δ = inf
(x,ξ)∈(x0,ξ0)+Bε

|x|
1
t + |ξ|

1
s > 0,

∆ = sup
(x,ξ)∈(x0,ξ0)+Bε

|x|
1
t + |ξ|

1
s < +∞.
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First we integrate over R4d \Γ′
1 where we may use (5.4). Combined with (2.7) and (2.8)

this gives if (x, ξ) ∈ (x0, ξ0) + Bε for some r1 > 0 and any r2 > 0
(5.21)∫
R4d\Γ′

1

|VΦK(y, z, η,−θ)| |Vφφ(λtx− y, λsξ − η)| |Vφu(z, θ)| dy dz dη dθ

≲
∫
R4d\Γ′

1

e
−r2

(
|(y,z)|

1
t +|(η,θ)|

1
s

)
e
−rδ−1κ

(
|λtx−y|

1
t +|λsξ−η|

1
s

)
e
r1

(
|z|

1
t +|θ|

1
s

)
dy dz dη dθ

⩽ e
−rδ−1λ

(
|x|

1
t +|ξ|

1
s

) ∫
R4d\Γ′

1

e
−r2

(
|(y,z)|

1
t +|(η,θ)|

1
s

)
+rδ−1κ

(
|y|

1
t +|η|

1
s

)
+r1

(
|z|

1
t +|θ|

1
s

)
dy dz dη dθ

⩽ e−rλ
∫
R4d

e
(r1+rδ−1κ−r2)

(
|(y,z)|

1
t +|(η,θ)|

1
s

)
dy dz dη dθ

≲ e−rλ

provided r2 > r1 + rδ−1κ.
It remains to estimate the integral (5.18) over (y, z, η,−θ) ∈ Γ1 where we may use

(5.2). By (5.20) we have

(5.22) Γ1 ⊆ Ω0 ∪ Ω2

where

Ω0 = Γ1 \ p−1
1,3Γ̃z0,2ε, Ω2 = Γ1 \ p−1

2,−4Γ2.

First we estimate the integral over (y, z, η,−θ) ∈ Ω2. Then (z, θ) ∈ R2d \ Γ2 which
is a closed s

t -conic set. By WFt,s(u) ⊆ Γ2, the compactness of S2d−1 \ Γ2 and (4.7) we
obtain the estimates

|Vφu(z, θ)| ≲ e
−r2

(
|z|

1
t +|θ|

1
s

)
, (z, θ) ∈ R2d \ Γ2, ∀r2 > 0.

Together with (5.2) and (2.7) this gives if (x, ξ) ∈ (x0, ξ0) + Bε for some r1 > 0
(5.23)∫
Ω′

2

|VΦK(y, z, η,−θ)| |Vφφ(λtx− y, λsξ − η)| |Vφu(z, θ)| dy dz dη dθ

≲
∫
Ω′

2

e
r1

(
|(y,z)|

1
t +|(η,θ)|

1
s

)
−rδ−1κ

(
|λtx−y|

1
t +|λsξ−η|

1
s

)
|Vφu(z, θ)| dy dz dη dθ

⩽ e
−rδ−1λ

(
|x|

1
t +|ξ|

1
s

) ∫
Ω′

2

e
r1

(
|(y,z)|

1
t +|(η,θ)|

1
s

)
+rδ−1κ

(
|y|

1
t +|η|

1
s

)
|Vφu(z, θ)|dy dz dη dθ

⩽ e−rλ
∫
Ω′

2

e
−
(
|(y,z)|

1
t +|(η,θ)|

1
s

)
e
(1+r1)κ

(
|y|

1
t +|z|

1
t +|η|

1
s +|θ|

1
s

)
+rδ−1κ

(
|y|

1
t +|η|

1
s

)
|Vφu(z, θ)|dy dz dη dθ

⩽ e−rλ sup
(z,θ)∈R2d\Γ2

e
κ((1+r1)(1+c)+rδ−1c)

(
|z|

1
t +|θ|

1
s

)
|Vφu(z, θ)|

∫
R4d

e
−
(
|(y,z)|

1
t +|(η,θ)|

1
s

)
dy dz dη dθ

≲ e−rλ.
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Finally we need to estimate the integral over (y, z, η,−θ) ∈ Ω0. Then (y, η) ∈ R2d \
Γ̃z0,2ε. Hence ∣∣z0 − (λ−ty, λ−sη)∣∣ ⩾ 2ε ∀λ > 0 ∀(y, η) ∈ R2d \ Γ̃z0,2ε

and we have for (x, ξ) ∈ z0 +Bε∣∣(x, ξ)− (λ−ty, λ−sη)∣∣ ⩾ ε ∀λ > 0 ∀(y, η) ∈ R2d \ Γ̃z0,2ε.

It follows that there exists α > 0 such that for λ ⩾ 1, (x, ξ) ∈ z0 + Bε and (y, η) ∈
R2d \ Γ̃z0,2ε we have

|λtx− y|
1
t + |λsξ − η|

1
s = λ

(
|x− λ−ty|

1
t + |ξ − λ−sη|

1
s

)
⩾ λα.

Together with (5.2) and (2.7) this gives if (x, ξ) ∈ (x0, ξ0)+Bε for some r1, r2 > 0 and
any r3, r4 > 0
(5.24)∫
Ω′

0

|VΦK(y, z, η,−θ)| |Vφφ(λtx− y, λsξ − η)| |Vφu(z, θ)| dy dz dη dθ

≲
∫
Ω′

0

e
r1

(
|(y,z)|

1
t +|(η,θ)|

1
s

)
+r2

(
|z|

1
t +|θ|

1
s

)
e
−( r3

α
+r4κ)

(
|λtx−y|

1
t +|λsξ−η|

1
s

)
dy dz dη dθ

⩽ e−r3λ
∫
Ω′

0

e
−
(
|(y,z)|

1
t +|(η,θ)|

1
s

)
+(1+r1+r2)κ

(
|y|

1
t +|z|

1
t +|η|

1
s +|θ|

1
s

)
e
−r4κ

(
|λtx−y|

1
t +|λsξ−η|

1
s

)
dy dz dη dθ

⩽ e
−r3λ+r4κλ

(
|x|

1
t +|ξ|

1
t

) ∫
Ω′

0

e
−
(
|(y,z)|

1
t +|(η,θ)|

1
s

)
+(1+r1+r2)(1+c)κ

(
|y|

1
t +|η|

1
s

)
e
−r4

(
|y|

1
t +|η|

1
s

)
dy dz dη dθ

⩽ e−λ(r3−r4κ∆)

∫
Ω′

0

e
−
(
|(y,z)|

1
t +|(η,θ)|

1
s

)
+((1+r1+r2)(1+c)κ−r4)

(
|y|

1
t +|η|

1
s

)
dy dz dη dθ

≲ e−rλ

if we first pick r4 ⩾ (1 + r1 + r2)(1 + c)κ and then r3 ⩾ r + r4κ∆.
Combining (5.21), (5.23) and (5.24) and taking into account (5.22), we have by (5.18)

shown

sup
(x,ξ)∈(x0,ξ0)+Bε, λ>0

erλ|Vφ(K u)(λtx, λsξ)| < +∞ ∀r > 0

which finally proves the claim z0 /∈ WFt,s(K u). □

6. The t, s-Gelfand–Shilov wave front set of oscillatory functions

An important reason for the introduction of the t, s-Gelfand–Shilov anisotropic wave
front set is that it describes accurately the phase space singularities of oscillatory func-
tions known generically as chirp signals.

Let φ : Rd → R be a real polynomial of order m ⩾ 2

(6.1) φ(x) = φm(x) + p(x)
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where

(6.2) p(x) =
∑

0⩽|α|<m

cαx
α, cα ∈ R,

and

(6.3) φm(x) =
∑

|α|=m

cαx
α, cα ∈ R, ∃α ∈ Nd : |α| = m, cα ∈ R \ 0,

is the principal part.
In [21] we investigate the t, s-Gelfand–Shilov wave front set of chirp functions defined

on R. Here we generalize this into the domain Rd. Thus we study chirp functions of
the form

(6.4) u(x) = eiφ(x), x ∈ Rd.

First we note that for any λ > 0, any t > 0 and any 1 ⩽ j ⩽ d we have

(6.5) λ−tm∂j
(
φ(λty)

)
= ∂jφm(y) + λt(1−m)∂jp(λ

ty)

and if |y| ⩽ R and λ ⩾ 1 then

(6.6) λt(1−m)|∂jp(λty)| =

∣∣∣∣∣∣
∑

0⩽|α|⩽m−1

αjcαy
α−ejλt(|α|−m)

∣∣∣∣∣∣ ⩽ CRλ
−t.

The following result generalizes [21, Theorem 4.2 (i)] and shows that only the principal

part φm(x) of φ is recorded in WFt,t(m−1)(u), and the wave front set is contained in
the (m − 1)-conic set in phase space which is the graph of its gradient, that is 0 ̸=
x 7→ (x,∇φm(x)). The gradient of the phase function is known as the instantaneous
frequency [2].

Theorem 6.1. If m ⩾ 2, φ is a real polynomial defined by (6.1), (6.2), (6.3), u is
defined by (6.4), and t > 1

m−1 then

(6.7) WFt,t(m−1)(u) ⊆ {(x,∇φm(x)) ∈ R2d : x ̸= 0}.

If d = 1 and φ is even or odd then

(6.8) WFt,t(m−1)(u) = {(x, φ′
m(x)) ∈ R2 : x ̸= 0}.

Proof. Set s = t(m − 1) > 1. This implies that there are compactly supported Gevrey
functions [19] of order s in the space Σst (R

d) which is a crucial ingredient in the proof.
Set

W = {(x,∇φm(x)) ∈ R2d : x ∈ Rd \ 0} ⊆ T ∗Rd \ 0.

Then W is an (m− 1)-conic subset in T ∗Rd \ 0.
Suppose (x0, ξ0) ∈ R2d \ 0 and (x0, ξ0) /∈ W . Then there exists 1 ⩽ j ⩽ d such that

ξ0,j ̸= ∂jφm(x0). Thus there exist an open set U such that (x0, ξ0) ∈ U , and 0 < ε ⩽ 1,
δ > 0, such that

(x, ξ) ∈ U, |x− y| ⩽ δ
√
2 =⇒ |ξj − ∂jφm(x)| ⩾ 2ε, |∂j(φm(x)− φm(y))| ⩽

ε

2
.
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By (6.6) we have

λt(1−m)|∂jp(λty)| ⩽
ε

2
if (x, ξ) ∈ U , |x− y| ⩽ δ

√
2 and λ ⩾ L where L ⩾ 1 is sufficiently large.

Using (6.5) we obtain if (x, ξ) ∈ U , |x− y| ⩽ δ
√
2 and λ ⩾ L

(6.9)∣∣ξj − λ−tm∂j
(
φ(λty)

)∣∣ ⩾ |ξj−∂jφm(x)|−
(
|∂j(φm(y)− φm(x))|+ λt(1−m)|∂jp(λty)|

)
⩾ ε.

Let ψ ∈ Σst (R
d) \ 0 have suppψ ⊆ Bδ. We denote by y′ ∈ Rd−1 the vector y ∈ Rd

except coordinate j. The stationary phase theorem [9, Theorem 7.7.1] gives, for any
k ∈ N, any h > 0, and any λ ⩾ L, if (x, ξ) ∈ U , using (6.9) and (2.10),

|Vψu(λtx, λt(m−1)ξ)|

= (2π)−
d
2

∣∣∣∣∫
Rd

ei(φ(y)−λ
t(m−1)⟨y,ξ⟩)ψ(λt(λ−ty − x)) dy

∣∣∣∣
= (2π)−

d
2λtd

∣∣∣∣∣
∫
|x−y|⩽δ

eiλ
tm(λ−tmφ(λty)−⟨y,ξ⟩)ψ(λt(y − x)) dy

∣∣∣∣∣
⩽ Cλtd

∫
|x′−y′|⩽δ

k∑
n=0

λtn sup
|xj−yj |⩽δ

|(∂nj ψ)(λt(y − x))| |ξj − λ−tm∂j
(
φ(λty)

)
|n−2k

× λtm(n−2k) dy′

⩽ Cλtdε−2k

∫
|x′−y′|⩽δ

k∑
n=0

sup
|xj−yj |⩽δ

|(∂nj ψ)(λt(y − x))|dy′λ−tk(m−1)λt(1+m)(n−k)

⩽ Chλ
tdε−2kλ−sk

k∑
n=0

hnn!s

= Chλ
tdε−2kλ−skhk

k∑
n=0

h−(k−n)n!s

⩽ Chλ
tdε−2kλ−skhkesh

− 1
s

k∑
n=0

(n!(k − n)!)s

⩽ Cs,hλ
tdε−2kλ−sk(2h)kk!s.

Since h > 0 is arbitrary we obtain

(6.10) λskε2k|Vψu(λtx, λsξ)| ⩽ Chλ
tdhkk!s, (x, ξ) ∈ U,

for all h > 0, all λ ⩾ L and all k ∈ N. Appealing to [21, Lemma 4.1] we may conclude

that that (x0, ξ0) /∈ WFt,t(m−1)(u) and the inclusion (6.7) follows.
Next let d = 1. If φ is even then u is even, and W = −W since m is even, so by (4.5)

we have either WFt,t(m−1)(u) = ∅ or WFt,t(m−1)(u) = W . The former is not true since
u /∈ Σst (R

d). Thus we have proved (6.8) when φ is even.

If φ is odd then m is odd and ǔ(x) = u(x) = e−iφ(x). Again WFt,t(m−1)(u) = ∅
cannot hold since u /∈ Σst (R

d). If we assume that the inclusion (6.7) is strict we get a
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contradiction from (4.4) and (4.6). Indeed suppose e.g.

WFt,t(m−1)(u) = {(x, φ′
m(x)) ∈ R2 : x > 0}.

By (4.4) and (4.6) we then get the contradiction

WFt,t(m−1)(ǔ) = {(x,−φ′
m(x)) ∈ R2 : x < 0}

= {(x,−φ′
m(x)) ∈ R2 : x > 0} = WFt,t(m−1)(u).

This proves (6.8) when φ is odd. □

We would also like to determine WFt,s(u) when s ̸= t(m − 1). The following two
results treat this question.

Proposition 6.2. If m ⩾ 2, φ is a real polynomial defined by (6.1), (6.2), (6.3), u is
defined by (6.4), and s > t(m− 1) > 1 then

(6.11) WFt,s(u) ⊆ (Rd \ 0)× {0}.
If d = 1 and φ is even or odd then

(6.12) WFt,s(u) = (R \ 0)× {0}.

Proof. Suppose (x0, ξ0) ∈ T ∗Rd and ξ0 ̸= 0, that is ξ0,j ̸= 0 for some 1 ⩽ j ⩽ d. From
(6.5) we obtain

λ−t−s∂j
(
φ(λty)

)
= λt(m−1)−s

(
∂jφm(y) + λt(1−m)∂jp(λ

ty)
)
.

Thus from s > t(m − 1), using (6.6), it follows that there exist U ⊆ R2d such that
(x0, ξ0) ∈ U , and 0 < ε ⩽ 1, L ⩾ 1 such that

|ξj − λ−t−s∂j
(
φ(λty)

)
| ⩾ ε

when (x, ξ) ∈ U , |x− y| ⩽
√
2 and λ ⩾ L.

Let ψ ∈ Σst (R
d) \ 0 be such that suppψ ⊆ B1. The stationary phase theorem [9,

Theorem 7.7.1] yields, for any k ∈ N, any h > 0, and any λ ⩾ L, if (x, ξ) ∈ U ,

|Vψu(λtx, λsξ)| = (2π)−
d
2

∣∣∣∣∫
Rd

ei(φ(y)−λ
s⟨y,ξ⟩)ψ(λt(λ−ty − x)) dy

∣∣∣∣
= (2π)−

d
2λtd

∣∣∣∣∫
Rd

eiλ
t+s(λ−t−sφ(λty)−⟨y,ξ⟩)ψ(λt(y − x)) dy

∣∣∣∣
⩽ Cλtd

∫
|x′−y′|⩽1

k∑
n=0

λtn sup
|xj−yj |⩽1

|(∂nj ψ)(λt(y − x))| |ξj − λ−t−s∂j
(
φ(λty)

)
|n−2k

× λ(t+s)(n−2k) dy′

⩽ Chλ
tdε−2kλ−sk

k∑
n=0

hnn!sλ(s+2t)(n−k)

⩽ Chλ
tdε−2kλ−sk

k∑
n=0

hnn!s

⩽ Cs,hλ
tdε−2kλ−sk(2h)kk!s.
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Again using [21, Lemma 4.1] we may conclude that that (x0, ξ0) /∈ WFt,s(u) and the
inclusion (6.11) follows.

When d = 1 and φ is either even or odd then (6.12) follows as in the proof of Theorem
6.1. □

In our final result on the t, s-Gelfand–Shilov wave front set of a chirp function we
strengthen the assumption on the polynomial φm to be elliptic.

Proposition 6.3. Let m ⩾ 2, let φ be a real polynomial defined by (6.1), (6.2), (6.3),
suppose φm(x) ̸= 0 for all x ∈ Rd \ 0, and let u be defined by (6.4). If t(m− 1) > s > 1
then

(6.13) WFt,s(u) ⊆ {0} × (Rd \ 0).

If d = 1 and φ is even then

(6.14) WFt,s(u) = {0} × (R \ 0).

Proof. Suppose (x0, ξ0) ∈ T ∗Rd and x0 ̸= 0. The assumption φm(x) ̸= 0 for all x ∈
Rd \ 0 and Euler’s homogeneous function theorem imply that ∇φm(x0) ̸= 0, that is
∂jφm(x0) ̸= 0 for some 1 ⩽ j ⩽ d. From (6.5) and (6.6) and t(m− 1) > s > 1 it follows

that there exist U ⊆ R2d such that (x0, ξ0) ∈ U , 1 ⩽ j ⩽ d and 0 < ε ⩽ 1, L ⩾ 1 such
that

|λt+s−tmξj − λ−tm∂j
(
φ(λty)

)
| ⩾ ε

when (x, ξ) ∈ U , |x− y| ⩽ ε
√
2 and λ ⩾ L.

Let ψ ∈ Σst (R
d) \ 0 be such that suppψ ⊆ Bε. Again by the stationary phase

theorem [9, Theorem 7.7.1] we obtain, for any k ∈ N, any h > 0, and any λ ⩾ L, if
(x, ξ) ∈ U ,

|Vψu(λtx, λsξ)| = (2π)−
d
2

∣∣∣∣∫
Rd

ei(φ(y)−λ
s⟨y,ξ⟩)ψ(λt(λ−ty − x)) dy

∣∣∣∣
= (2π)−

d
2λtd

∣∣∣∣∫
Rd

eiλ
tm(λ−tmφ(λty)−λt(1−m)+s⟨y,ξ⟩)ψ(λt(y − x)) dy

∣∣∣∣
⩽ Cλtd

∫
|x′−y′|⩽ε

k∑
n=0

λtn sup
|xj−yj |⩽ε

|(∂nj ψ)(λt(y − x))|

× |λt(1−m)+sξj − λ−tm∂j
(
φ(λty)

)
|n−2kλtm(n−2k) dy′

⩽ Chλ
tdε−2kλ−sk

k∑
n=0

hnn!sλsk+t(n−mk)

⩽ Chλ
tdε−2kλ−sk

k∑
n=0

hnn!sλt((m−1)k+n−mk)

⩽ Cs,hλ
tdε−2kλ−sk(2h)kk!s.

As before this shows that (x0, ξ0) /∈ WFt,s(u) and (6.11) follows.
When d = 1 and φ is even then (6.14) follows as in the proof of Theorem 6.1. □
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7. Propagation of the t, s-Gelfand–Shilov wave front set for a
particular evolution equation

In [21, Remark 4.7] we discuss the initial value Cauchy problem for the evolution
equation in dimension d = 1{

∂tu(t, x) + iDm
x u(t, x) = 0, m ∈ N \ 0, x ∈ R, t ∈ R,
u(0, ·) = u0.

It is a generalization of the Schrödinger equation for the free particle where m = 2.
Here we generalize this equation into

(7.1)

{
∂tu(t, x) + ip(Dx)u(t, x) = 0, x ∈ Rd, t ∈ R,

u(0, ·) = u0

where p : Rd → R is a polynomial with real coefficients of order m ⩾ 2, that is

(7.2) p(ξ) =
∑

|α|⩽m

cαξ
α, cα ∈ R.

The principal part is

(7.3) pm(ξ) =
∑

|α|=m

cαξ
α

and there exists α ∈ Nd such that |α| = m and cα ̸= 0.
The Hamiltonian is p(ξ), and the Hamiltonian flow of the principal part pm(ξ) is given

by

(7.4) (x(t), ξ(t)) = χt(x0, ξ0) = (x0 + t∇pm(ξ0), ξ0), t ∈ R, (x0, ξ0) ∈ T ∗Rd \ 0.
The explicit solution to (7.1) is

u(t, x) = e−itp(Dx)u0 = (2π)−
d
2

∫
Rd

ei⟨x,ξ⟩−itp(ξ)û0(ξ)dξ

for u0 ∈ S (Rd). Thus u(t, x) = Ktu0(x) where Kt is the operator with Schwartz kernel

Kt(x, y) = (2π)−d
∫
Rd

ei⟨x−y,ξ⟩−itp(ξ)dξ

= (2π)−
d
2 F−1(e−itp)(x− y)

which may be considered an element in S ′(R2d). Thus Kt is a convolution operator
with convolution kernel

(7.5) kt = (2π)−
d
2 F−1(e−itp) ∈ S ′(Rd)

and we may write

(7.6) Kt(x, y) = (1⊗ kt) ◦ κ−1(x, y)

where κ ∈ R2d×2d is the matrix defined by κ(x, y) = (x+ y
2 , x− y

2 ) for x, y ∈ Rd.

Since Kt ∈ S ′(R2d) ⊆ (Σsr)
′(R2d) if r+s > 1, the operator Kt : Σ

s
r(R

d) → (Σsr)
′(Rd)

is continuous for all t ∈ R.
The next result shows that Kt acts continuously on Σsr(R

d) if r ⩾ s(m − 1) > 1,
and the (s(m− 1), s)-Gelfand–Shilov wave front set of the solution propagates along the
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Hamiltonian flow of pm, whereas the (r, s)–Gelfand–Shilov wave front set is invariant
when r > s(m− 1).

Theorem 7.1. Suppose m ⩾ 2 and let p be defined by (7.2), (7.3), and denote by (7.4)
the Hamiltonian flow of the principal part pm. Let r, s > 0 satisfy r ⩾ s(m − 1) > 1,
suppose Kt : S (Rd) → S ′(Rd) is the continuous linear operator with Schwartz kernel
(7.6) where kt is defined by (7.5). Then Kt : Σ

s
r(R

d) → Σsr(R
d) is continuous, extends

uniquely to a continuous operator Kt : (Σ
s
r)

′(Rd) → (Σsr)
′(Rd), and is invertible with

inverse K −1
t = K−t. For t ∈ R we have

WFs(m−1),s(Ktu) = χt

(
WFs(m−1),s(u)

)
, u ∈ (Σss(m−1))

′(Rd),(7.7)

WFr,s(Ktu) = WFr,s(u), u ∈ (Σsr)
′(Rd), r > s(m− 1).(7.8)

Proof. First we let r = s(m− 1) > 1. By Theorem 6.1 we have

WFs,r(e−itp) ⊆ {(x,−t∇pm(x)) ∈ T ∗Rd : x ̸= 0}
and from (4.4) and [21, Proposition 3.6 (i)] we obtain

WFr,s(kt) = WFr,s(F−1e−itp) = −WFr,s(Fe−itp)

= −JWFs,r(e−itp)

⊆ {(t∇pm(x), x) ∈ T ∗Rd : x ̸= 0}.

Now (7.6), [21, Proposition 3.6 (ii)], Proposition 4.5 and [21, Proposition 7.1 (iii)]
yield

WFr,s(Kt) = WFr,s((1⊗ kt) ◦ κ−1)

=

(
κ 0
0 κ−T

)
WFr,s (1⊗ kt)

⊆ {(κ(x1, x2), κ−T (ξ1, ξ2)) ∈ T ∗R2d :

(x1, ξ1) ∈ WFr,s(1) ∪ {0}, (x2, ξ2) ∈ WFr,s(kt) ∪ {0}} \ 0

⊆ {(κ(x1, t∇pm(x2)), κ−T (0, x2) ∈ T ∗R2d : x1, x2 ∈ Rd} \ 0

=

{(
x1 + t

1

2
∇pm(x2), x1 − t

1

2
∇pm(x2), x2,−x2

)
∈ T ∗R2d : x1, x2 ∈ Rd

}
\ 0

=
{
(x1 + t∇pm(x2), x1, x2,−x2) ∈ T ∗R2d : x1, x2 ∈ Rd

}
\ 0.

Since m ⩾ 2 we have ∇pm(0) = 0 and WFr,s1 (Kt) = WFr,s2 (Kt) = ∅ follows. Thus
we may apply Theorem 5.5. This gives the continuity statements on Σsr(R

d) and on
(Σsr)

′(Rd). It also follows that Kt is invertible with inverse K −1
t = K−t on Σsr(R

d) as
well as on (Σsr)

′(Rd). Moreover Theorem 5.5 gives for u ∈ (Σsr)
′ (Rd)

WFr,s(Ktu) ⊆ WFr,s(Kt)
′ ◦WFr,s(u)

= {(x, ξ) ∈ T ∗Rd : ∃(y, η) ∈ WFr,s(u), (x, y, ξ,−η) ∈ WFr,s(Kt)}
⊆ {(x1 + t∇pm(x2), x2) : (x1, x2) ∈ WFr,s(u)}
= χt (WFr,s(u)) .
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The opposite inclusion follows from K −1
t = K−t,

WFr,s(u) = WFr,s(K−tKtu) ⊆ χ−t (WFr,s(Ktu))

and χ−t = χ−1
t . We have proved the result when r = s(m− 1) and (7.7).

It remains to consider the case r > s(m− 1) > 1. By Proposition 6.2 we have

WFs,r(e−itp) ⊆ (Rd \ 0)× {0}
and from (4.4) and [21, Proposition 3.6 (i)] we obtain

WFr,s(kt) = −JWFs,r(e−itp) ⊆ {0} × (Rd \ 0).
Again (7.6), [21, Proposition 3.6 (ii)], Proposition 4.5 and [21, Proposition 7.1 (iii)]

yield

WFr,s(Kt) ⊆ {(κ(x1, x2), κ−T (ξ1, ξ2)) ∈ T ∗R2d :

(x1, ξ1) ∈ WFr,s(1) ∪ {0}, (x2, ξ2) ∈ WFr,s(kt) ∪ {0}} \ 0

⊆ {(κ(x1, 0), κ−T (0, x2) ∈ T ∗R2d : x1, x2 ∈ Rd} \ 0

=
{
(x1, x1, x2,−x2) ∈ T ∗R2d : x1, x2 ∈ Rd

}
\ 0.

Again we have WFr,s1 (Kt) = WFr,s2 (Kt) = ∅, and Theorem 5.5 gives the continuity

statements on Σsr(R
d) and on (Σsr)

′(Rd). Again Kt is invertible with inverse K −1
t = K−t

on Σsr(R
d) as well as on (Σsr)

′(Rd). Now Theorem 5.5 gives u ∈ (Σsr)
′ (Rd)

WFr,s(Ktu) ⊆ WFr,s(Kt)
′ ◦WFr,s(u) ⊆ WFr,s(u).

The opposite inclusion again follows from K −1
t = K−t and χ−t = χ−1

t . We have
proved the result when r > s(m− 1) > 1 and (7.8). □

Remark 7.2. In the proof of Theorem 7.1 the continuity of Kt : Σ
s
r(R

d) → Σsr(R
d) when

r ⩾ s(m−1) > 1 is proved by means of the observation WFr,s1 (Kt) = WFr,s2 (Kt) = ∅ and
Proposition 5.2. It seems much more complicated to try to show this using seminorms
on Ktu for u ∈ Σsr(R

d).

Remark 7.3. If s(m− 1) > r > 1 and pm(x) ̸= 0 for all x ∈ Rd \ 0 then Proposition 6.3
gives

WFs,r(e−itp) ⊆ {0} × (Rd \ 0)
so (4.4) and [21, Proposition 3.6 (i)] give

WFr,s(kt) = −JWFs,r(e−itp) ⊆ (Rd \ 0)× {0}.
Again (7.6), [21, Proposition 3.6 (ii)], Proposition 4.5 and [21, Proposition 7.1 (iii)]

yield

WFr,s(Kt) ⊆ {(κ(x1, x2), κ−T (ξ1, ξ2)) ∈ T ∗R2d :

(x1, ξ1) ∈ WFr,s(1) ∪ {0}, (x2, ξ2) ∈ WFr,s(kt) ∪ {0}} \ 0

⊆ {(κ(x1, x2), κ−T (0, 0) ∈ T ∗R2d : x1, x2 ∈ Rd} \ 0

= (R2d \ 0)× {0}.

In this case we cannot conclude that WFr,s1 (Kt) and WFr,s2 (Kt) are empty.
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Thus we cannot conclude any continuity statement from Theorem 5.5. It is an open
problem to prove or disprove continuity of Kt on Σsr(R

d) when s(m − 1) > r > 1.
Likewise continuity on Σsr(R

d) is not known when r + s > 1 and r ⩽ 1, nor when
r + s > 1 and s(m− 1) ⩽ 1.
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[11] L. Hörmander, Symplectic classification of quadratic forms, and general Mehler formulas, Math.

Z. 219, 413–449, 1995.
[12] S. G. Krantz and H. R. Parks, The Implicit Function Theorem. History, Theory, and Applications,

Birkhäuser, Boston, 2003.
[13] S. Nakamura, Propagation of the homogeneous wave front set for Schrödinger equations, Duke

Math. J. 126 (2) (2005), 349–367.
[14] F. Nicola and L. Rodino, Global Pseudo-Differential Calculus on Euclidean Spaces, Birkhäuser,
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