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PSEUDO-DIFFERENTIAL OPERATORS WITH ISOTROPIC

SYMBOLS, WICK AND ANTI-WICK OPERATORS, AND

HYPOELLIPTICITY

NENAD TEOFANOV, JOACHIM TOFT, AND PATRIK WAHLBERG

Abstract. We study the link between Ψdos and Wick operators via
the Bargmann transform. We deduce a formula for the symbol of the
Wick operator in terms of the short-time Fourier transform of the Weyl
symbol. This gives characterizations of Wick symbols of Ψdos of Shubin
type and of infinite order, and results on composition. We prove a
series expansion of Wick operators in anti-Wick operators which leads
to a sharp G̊arding inequality and transition of hypoellipticity between
Wick and and Shubin symbols. Finally we show continuity results for
anti-Wick operators, and estimates for the Wick symbols of anti-Wick
operators.

0. Introduction

In the paper we investigate conjugation with the Bargmann transfor-
mation of pseudo-differential and Toeplitz operators on Rd with isotropic
symbols, and we explore relations between Wick and anti-Wick operators.
Particularly we consider Shubin operators and operators of infinite order.
This gives rise to analytic type pseudo-differential operators on Cd that are
called Wick or Berezin operators because of the fundamental contributions
by F. Berezin [6,7], which in turns goes back to some ideas in [33] by G. C.
Wick.

Let a be a suitable locally bounded function on C2d such that z ÞÑ apz, wq

is analytic, z, w P Cd. Then the Wick operator OpVpaq with symbol a is the
operator which takes an appropriate entire function F on Cd into the entire
function

OpVpaqF pzq “ π´d

ż

Cd

apz, wqF pwqepz´w,wq dλpwq, (0.1)

where dλ is the Lebesgue measure and p ¨ , ¨ q is the scalar product on Cd.
(See [19] and Section 1 for notation.) Wick operators appear naturally in
several problems in analysis and its applications, e. g. in quantummechanics.
For example, the harmonic oscillator, the creation and annihilation operators
take the simple forms

F ÞÑ xz,∇zyF ` cF, F ÞÑ zjF and F ÞÑ BzjF,
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respectively, for some constant c, in the Wick formulation (see [4]).
An advantage of the Wick calculus compared to corresponding operators

on functions and distributions defined on Rd is that in almost all situations,
the involved functions are entire, which admits the use of the powerful tech-
niques of complex analysis. (A more general approach is studied in [30],
where the Wick calculus is formulated in terms of spaces of formal power
series expansions instead of spaces of entire functions.) The possible lack
of analyticity of apz, wq in (0.1) with respect to the w variable is removable
in the sense that for any Wick symbol a, there is a unique a0 such that
pz, wq ÞÑ a0pz, wq is entire, and OpVpaq “ OpVpa0q. Consequently it is no
restriction to assume that apz, wq in (0.1) is analytic in z and conjugate
analytic in w, which we do in the introduction henceforth. Any linear and
continuous operator from the Schwartz space, a Fourier invariant Gelfand-
Shilov space or Pilipović space, to the corresponding distribution spaces,
respectively, is in a unique way transformed into a Wick operator by the
Bargmann transform (see [30]).

Several operators in quantum mechanics are so-called Shubin operators,
i. e. pseudo-differential operators

Oppaqfpxq “ p2πq´ d
2

ż

Rd

apx, ξq pfpξqeixx,ξy dξ, f P S pRdq,

where the symbol a belongs to the Shubin class Sh
pωq
ρ pR2dq, the set of all

a P C8pR2dq such that

|BαxB
β
ξ apx, ξq| À ωpx, ξqp1 ` |x| ` |ξ|q´ρ|α`β|, α, β P Nd.

Here ω is a suitable weight function on R2d and 0 ď ρ ď 1. Partial differen-
tial operators with polynomial coefficients, e. g. the creation and annihila-
tion operators or the harmonic oscillator mentioned above, are examples of
Shubin operators. In Section 2 we prove that the Bargmann image of Shubin

operators with symbols in Sh
pωq
ρ pR2dq is the set of all Wick operators in (0.1)

such that a belongs to uApωq

Sh,ρpC2dq. This means that C2d Q pz, wq ÞÑ apz, wq

is an entire function that satisfies

|Bβz B
γ
wapz, wq| À e

1
2

|z´w|2ωp
?
2zqxz ` wy´ρ|β`γ|xz ´ wy´N (0.2)

for every N ě 0.
An important subclass of Wick operators are the anti-Wick operators,

which are Wick operators where the symbol apz, wq does not depend on z.
That is, for an appropriate measurable function a0 on Cd, its anti-Wick
operator is given by

OpawV pa0qF pzq “ π´d

ż

Cd

a0pwqF pwqepz´w,wq dλpwq. (0.1)1

Again F is a suitable entire function on Cd. The anti-Wick operators can
also be described as the Bargmann image of Toeplitz operators on Rd. (See
e. g. [22, 27,31] for the definition of Toeplitz operators.)

A feature of Toeplitz operators and anti-Wick operators, useful for energy
estimates in quantum mechanics and time-frequency analysis, is that non-
negative symbols give rise to non-negative operators. (Cf. e. g. [20–22].)
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An operator T “ OpVpaq with a satisfying (0.2) for every N ě 0, is called
positive (non-negative), if there is a constant C ą 0 (C ě 0) such that

pTF, F qA2 ě C}F }2A2 ,

for every analytic polynomial F on Cd, where p ¨ , ¨ qA2 is the scalar product
induced by the Hilbert norm

}F }A2 “ π´ d
2

ˆ
ż

Cd

|F pzq|2e´|z|2 dλpzq

˙
1
2

.

The implication from non-negative symbols to non-negative operators is
not relevant for Wick operators in (0.1) when apz, wq is not constant with
respect to z, since the analyticity of the map z ÞÑ apz, wq implies that apz, wq

is non-real almost everywhere. For such symbols it is instead natural to check
whether positivity of the map w ÞÑ apw,wq leads to positive operators (see
e. g. [6, 7, 13]). By choosing

d “ 1, apz, wq “ 1 ´ 2zw ` 2z2w2 and F pzq “ z

we obtain

apw,wq “ p1 ´ |w|2q2 ` |w|4 ą 0 but pOpVpaqF, F qA2 “ ´1 ă 0.

Consequently OpVpaq may fail to be a non-negative operator even though
apw,wq is positive.

On the other hand, for certain conditions on a, we deduce in Section 3
a weaker positivity result for Wick operators, which is equivalent to the
sharp G̊arding inequality in isotropic pseudo-differential calculus on Rd (see
Theorem 18.6.7 and the proof of Theorem 18.6.8 in [19]). That is for a P

uApωq

Sh,ρpC2dq with ωpzq “ xzy2ρ and ρ ą 0 we prove

RepOpVpaqF, F qA2 ě ´C}F }2A2 (0.3)

and

|ImpOpVpaqF, F qA2 | ď C}F }2A2 , when apw,wq ě 0 (0.4)

(cf. Theorem 4.2). In particular we obtain energy estimates also for Wick
operators with symbols that are non-negative on the diagonal.

The latter result is obtained by approximating Wick operators by anti-

Wick operators, using for the Wick operator (0.1) with a P uApωq

Sh,ρpC2dq the

remarkable identity

OpVpaq “
ÿ

|α|ăN

p´1q|α|

α!
OpawV pbαq`OpVpcN q where bαpwq “ Bαz B

α
wapw,wq,

(0.5)

for some cN P ApωN q

Sh,ρ pC2dq with ωN pzq “ ωpzqxzy´2Nρ. Here we again assume

ρ ą 0. The decay conditions on bα and cN are, respectively,

|BβwB
γ
wbαpwq| À ωp

?
2wqxwy´ρ|2α`β`γ|, α, β, γ P Nd, (0.6)

and

|Bβz B
γ
wcN pz, wq| À e

1
2

|z´w|2ωp
?
2zqxzy´2Nρxz ` wy´ρ|β`γ|xz ´ wy´N . (0.7)
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Consequently, several Wick operators can essentially be expressed as linear
combinations of anti-Wick operators. The expansion (0.5) is deduced in
Section 3 using Taylor expansion and integration by parts, see Proposition
3.1 and Remark 3.2.

The conditions on bα are the same as the conditions on a (0.2), restricted
to the diagonal z “ w, and with improved decay. On the diagonal, the

growth term e
1
2

|z´w|2 disappears, which dominates in (0.2) when |z´w| Á |z|

or |z ´ w| Á |w|. The right-hand side of (0.6) becomes as large as possible
when α “ β “ γ “ 0, that is b0 is the dominating term in the sum (0.5).

The conditions on cN are the same as the estimates (0.2) again with
improved decay due to the factor xzy´2Nρ.

For polynomial symbols, (0.5) agrees with the integral formula [6, Theo-
rem 3] due to Berezin which carry over Wick operators into anti-Wick opera-
tors. For the general case, (0.5) is analogous to the approximation technique
of pseudo-differential operators on Rd in terms of Toeplitz operators given
in [27, Theorem 24.1] and its proof, by Shubin.

The anti-Wick symbols in (0.5) bαpwq “ Bαz B
α
wapw,wq extend to have the

property that Bαz B
α
wapz, wq is entire in z and conjugate entire in w. Note

that restriction to the diagonal also appears in the positivity condition (0.3)
on Wick symbols.

The sharp G̊arding inequality (0.3) is reached by using the fact that
OpawV pb0q is non-negative, and that if T is either OpawV pbαq or OpVpcN q for
α ‰ 0, then }TF }A2 À }F }A2 when F P ApCdq is a polynomial.

In Section 5 we deduce links concerning ellipticity, hypoellipticity (in Shu-
bin’s sense) and weak ellipticity between Shubin and Wick symbols. The
notion of hypoelliptic symbol resembles hypoelliptic symbols in Shubin’s

sense (see [27]). More specifically, we say that the symbol a P Sh
pωq
ρ pR2dq is

hypoelliptic of order ρ0 ě 0, whenever there is an R ą 0 such that

|apx, ξq| Á ωpx, ξqxpx, ξqy´ρ0 and |Bαapx, ξq| À |apx, ξq|xpx, ξqy´ρ|α|

when |px, ξq| ě R.
A linear operator T from S 1pRdq to S 1pRdq is called globally hypoelliptic

if

Tf “ g, f P S 1pRdq, g P S pRdq ñ f P S pRdq.

(See e. g. [12].) It can be proved that a pseudo-differential operator with
hypoelliptic symbol in Shubin’s sense is globally hypoelliptic as operator
(see e. g. [27, Corollary 25.1]).

We show, similarly to our investigations of the sharp G̊arding inequality
and for expansion (0.5), that ellipticity, hypoellipticity and to some degree
weak ellipticity for the Shubin symbol a can be characterized by certain
conditions for the corresponding Wick symbol apz, wq along the diagonal
z “ w. For example, let a be a polynomial on Rd with principal symbol ap,

and let apz, wq be a polynomial in z, w P Cd with principal part ap. Then
a is elliptic means that appx, ξq ‰ 0 when px, ξq ‰ p0, 0q, and a is elliptic
means that appz, zq ‰ 0 when z ‰ 0. For such a we prove

a is elliptic ô a is elliptic,
4



when apz, wq is the Wick symbol corresponding to a (which must be a poly-
nomial in z and w).

Our investigations include the Bargmann transform of certain operators
of infinite order, i. e. pseudo-differential operators with ultra-differentiable
symbols that are permitted to grow faster than polynomially at infinity
together with their derivatives. Particularly we consider Wick operators
of infinite order, i. e. the Bargmann images OpVpaq of operators Oppaq

of infinite order in [1], and characterize their images under the Bargmann
transform (see Theorem 2.6). Then we deduce in Subsections 3.2 and 3.3
continuity results for anti-Wick operators which holds for the symbols bα in
(0.5) when OpVpaq is the Bargmann image of an operator of infinite order.

In fact, in Subsection 3.2 we show that OpawV pbαq possess several other
continuity properties than what is valid for OpVpaq in the expansion (0.5)
(see Propositions 3.6 and 3.9). In Subsection 3.3 we deduce estimates of
the Wick symbol bawα to the anti-Wick operator OpawV pbαq, i. e. the unique
element bawα P uApC2dq such that OpVpbawα q “ OpawV pbαq. We show that
usually, bawα satisfies stronger conditions than a when OpVpaq is a Wick
operator of infinite order (see Theorems 3.11, 3.14 and 3.13).

The paper is organized as follows. In Section 1 we set the stage by provid-
ing necessary background notions and fixing the notation. It contains useful
properties for weight functions, Gelfand-Shilov spaces, the Bargmann trans-
form, pseudo-differential operators, Wick and anti-Wick operators. There-
after we characterize in Section 2 Shubin operators and operators of infinite
order in terms of appropriate classes of Wick operators on the Bargmann
side. These considerations are based on a formula for the Wick symbol ex-
pressed in terms of a short-time Fourier transform of the Weyl symbol, and
admits characterization of the Wick symbols corresponding to Shubin Weyl
symbols and symbols for operators of infinite order (see Proposition 2.3).

In Section 2 we also study composition and show for example that the
well-known closure under composition of Shubin operators and operators of
infinite orders have simple and natural proofs on the Wick symbol side.

In Section 3 we deduce series expansions of Wick operators in terms of
anti-Wick operators, and between Wick symbols and symbols to correspond-
ing Shubin operators. We also consider anti-Wick operators, and show con-
tinuity results for them. We show that the upper bounds for the Wick
symbols of anti-Wick operators are stricter than for general Wick symbols.

In Section 4 we discuss lower bounds for Wick operators and deduce the
sharp G̊arding’s inequality. Section 5 concerns ellipticity, hypoellipticity and
weak ellipticity.

Finally we observe in Section 6 that a polynomial bound of a Wick sym-
bol implies that the symbol is a polynomial. For pseudo-differential op-
erators this corresponds to partial differential operators with polynomial
coefficients. This gives a characterization of such operators as those having
polynomially bounded Wick symbols.
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Various types of function spaces, distribution spaces, their Bargmann
images, and symbol classes for pseudo-differential, Wick and anti-Wick op-
erators appear frequently in the paper. For the reader’s convenience we
summarize several of these items in an Appendix.
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1. Preliminaries

In this section we recall some facts on function and distribution spaces
as well as on pseudo-differential operators, Wick and anti-Wick operators.
Subsection 1.1 concerns weight functions and Subsection 1.2 treats Gelfand-
Shilov spaces. In Subsection 1.3 we introduce the Bargmann transform and
topological spaces of entire functions on Cd, and in Subsection 1.4 we recall
the definitions and some facts on pseudo-differential operators on Rd as
well as Wick and anti-Wick operators on Cd. Subsection 1.5 defines certain
symbol classes for pseudo-differential operators on Rd.

1.1. Weight functions. A weight on Rd is a positive function ω P L8
locpR

dq

such that 1{ω P L8
locpR

dq. The weight ω is called moderate if there is a
positive locally bounded function v such that

ωpx` yq ď Cωpxqvpyq, x, y P Rd, (1.1)

for some constant C ě 1. If ω and v are weights such that (1.1) holds, then
ω is also called v-moderate. The set of all moderate weights on Rd is denoted
by PEpRdq. The set PpRdq consists of weights that are v-moderate for a
polynomially bounded weight, that is a weight of the form vpxq “ xxy

s where

xxy “ p1 ` |x|2q
1
2 and s ě 0. The bracket notation is also used for complex

arguments as xzy “ p1 ` |z|2q
1
2 when z P Cd. In particular, ω P PpRdq, if

and only if
ωpx` yq ď Cωpxqxyyr, x, y P Rd, (1.1)1

for some r ě 0. If s P R then x ÞÑ xxys belongs to PpRdq, due to Peetre’s
inequality [26, Lemma 2.1]

xx` yys ď

ˆ

2
?
3

˙|s|

xxysxyy|s| x, y P Rd, s P R. (1.2)

The weight v is called submultiplicative if it is even and (1.1) holds for
ω “ v. If (1.1) holds and v is submultiplicative then

ωpxq

vpyq
À ωpx` yq À ωpxqvpyq,

vpx` yq À vpxqvpyq and vpxq “ vp´xq, x, y P Rd.

(1.3)

The notation Apθq À Bpθq, θ P Ω, means that there is a constant c ą 0 such
that Apθq ď cBpθq for all θ P Ω.
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If ω is a moderate weight then by [31] there is a submultiplicative weight
v such that (1.1) and (1.3) hold. If v is submultiplicative then

1 À vpxq À er|x| (1.4)

for some constant r ą 0 (cf. [16]). In particular, if ω is moderate, then

ωpx` yq À ωpxqer|y| and e´r|x| À ωpxq À er|x|, x, y P Rd (1.5)

for some r ą 0. If not otherwise specified the symbol v always denote a
submultiplicative weight.

1.2. Gelfand-Shilov spaces. Let s, σ ą 0. The Gelfand-Shilov space
Sσs pRdq (Σσs pRdq) of Roumieu (Beurling) type consists of all f P C8pRdq

such that

}f}Sσ
s,h

” sup
|xαBβfpxq|

h|α`β|α!s β!σ
(1.6)

is finite for some (every) h ą 0. The supremum refers to all α, β P Nd

and x P Rd. The seminorms } ¨ }Sσ
s,h

induce an inductive limit topology for

the space Sσs pRdq and a projective limit topology for Σσs pRdq. The latter
space is a Fréchet space under this topology. The space Sσs pRdq ‰ t0u

(Σσs pRdq ‰ t0u), if and only if s` σ ě 1 (s` σ ě 1 and ps, σq ‰ p12 ,
1
2q). We

write SspRdq “ Sss pRdq and ΣspR
dq “ ΣsspR

dq.
The Gelfand-Shilov distribution spaces pSσs q1pRdq and pΣσs q1pRdq are the

dual spaces of Sσs pRdq and Σσs pRdq, respectively.
The embeddings

Sσ1s1 pRdq ãÑ Σσ2s2 pRdq ãÑ Sσ2s2 pRdq ãÑ S pRdq

ãÑ S 1pRdq ãÑ pSσ2s2 q1pRdq ãÑ pΣσ2s2 q1pRdq ãÑ pSσ1s1 q1pRdq,

s1 ` σ1 ě 1, s1 ă s2, σ1 ă σ2, (1.7)

are dense. For topological spaces A and B, A ãÑ B means that the inclusion
A Ď B is continuous.

The spaces Ss and Σs, and their duals spaces, admit characterizations in
terms of coefficients with respect to expansions with respect to the Hermite
functions

hαpxq “ π´ d
4 p´1q|α|p2|α|α!q´ 1

2 e
|x|2

2 pBαe´|x|2q, α P Nd.

The set of Hermite functions on Rd is an orthonormal basis for L2pRdq.
We use H0pRdq to denote the space of finite linear combinations of Hermite
functions. Then H0pRdq is dense in the Schwartz space S pRdq, as well as in
S 1pRdq, with respect to its weak˚ topology. The same conclusion is true for
ΣspR

dq when s ą 1
2 , SspR

dq when s ě 1
2 and their distribution dual spaces

Σ1
spR

dq and S 1
spR

dq. An f in any of these spaces possess an expansion of
the form

f “
ÿ

αPNd

cpf, αqhα, cpf, αq “ pf, hαq, α P Nd. (1.8)

Here p ¨ , ¨ q denotes the unique extensions of the L2 form, which is linear in
the first variable and conjugate linear in the second variable, from H0pRdqˆ
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H0pRdq to S 1
spR

dq ˆ SspRdq or Σ1
spR

dq ˆ ΣspR
dq. We recall that (cf. [25,

Chapter V.3 ])

f P S pRdq ô |cpf, αq| À xαy´N for every N ě 0,

f P S 1pRdq ô |cpf, αq| À xαyN for some N ě 0.
(1.9)

The topology on S pRdq is equivalent to the Fréchet space topology defined
by the sequence space seminorms

S pRdq Q f ÞÑ
ÿ

αPNd

xαy2N |cpf, αq|2, N ě 0.

For f P S 1pRdq the sum in (1.8) converges in the weak˚ topology.
The Hermite functions are eigenfunctions to the harmonic oscillator H “

Hd ” |x|2 ´ ∆ and to the Fourier transform F , given by

Ffpξq “ pfpξq ” p2πq´ d
2

ż

Rd

fpxqe´ixx,ξy dx, ξ P Rd,

when f P L1pRdq. Here x ¨ , ¨ y denotes the scalar product on Rd. In fact

Hdhα “ p2|α| ` dqhα, α P Nd.

The Fourier transform F extends uniquely to homeomorphisms on S 1pRdq,
from pSσs q1pRdq to pSsσq1pRdq and from pΣσs q1pRdq to pΣsσq1pRdq. It also
restricts to homeomorphisms on S pRdq, from Sσs pRdq to SsσpRdq, from
Σσs pRdq to ΣsσpRdq, and to a unitary operator on L2pRdq. Similar facts hold
true when the Fourier transform is replaced by a partial Fourier transform.

Let ϕ P S pRdqz0 be fixed. We use the transform

Tϕfpx, ξq “ p2πq´ d
2 eixx,ξypf, eix ¨ ,ξyϕp ¨ ´ xqq

“ eixx,ξyF pf ¨ ϕp ¨ ´ xqqpξq

“ F pfp ¨ ` xqϕqpξq, x, ξ P Rd,

(1.10)

where f P S 1pRdq and ϕ P S pRdqz0 (cf. [9]). If f, ϕ P S pRdq then

Tϕfpx, ξq “ p2πq´ d
2 eixx,ξy

ż

Rd

fpyqϕpy ´ xqe´ixy,ξy dy

“ p2πq´ d
2

ż

Rd

fpy ` xqϕpyqe´ixy,ξy dy, x, ξ P Rd.

(1.10)1

We notice that the short-time Fourier transform Vϕf of f is given by

Vϕfpx, ξq “ e´ixx,ξyTϕfpx, ξq. (1.11)

That is, Tϕ is a modulated short-time Fourier transform. Thus by [31, The-
orem 2.3] it follows that the definition of the map pf, ϕq ÞÑ Tϕf from

S pRdq ˆ S pRdq to S pR2dq is uniquely extendable to a continuous map
from S 1

spR
dq ˆ S 1

spR
dq to S 1

spR
2dq, and restricts to a continuous map from

SspRdq ˆ SspRdq to SspR2dq. The same conclusion holds with Σs in place
of Ss, at each place.

The adjoint T ˚
ϕ is given by

pT ˚
ϕ F, gqL2pRdq “ pF, TϕgqL2pR2dq

8



for F P S 1
spR

2dq and g P SspRdq, and similarly with Σs or with S in place
of Ss at each occurrence. When F is a polynomially bounded measurable
function we write

T ˚
ϕ F pyq “ p2πq´ d

2

ĳ

R2d

F px, ξq eixy´x,ξyϕpy ´ xq dxdξ, (1.12)

where the integral is defined weakly so that pT ˚
ϕ F, gqL2pRdq “ pF, TϕgqL2pR2dq

for g P S pRdq. The identity (1.12) is called Moyal’s formula.
We have

pT ˚
ψ ˝ Tϕqf “ pψ, ϕqf, f P S 1

spR
dq, ϕ, ψ P SspRdq, (1.13)

and similarly with Σs or with S in place of Ss at each occurrence.
Two important features of Tϕ which distinguish it from the short-time

Fourier transform are the differential identities

BαxTϕfpx, ξq “ TϕpBαfqpx, ξq, α P Nd (1.14)

and

Dβ
ξ Tϕfpx, ξq “ Tgβfpx, ξq, β P Nd, ϕβpxq “ p´xqβϕpxq. (1.15)

By (1.11) it follows that characterizations of Gelfand-Shilov spaces and
their distribution spaces in terms of estimates of their short-time Fourier
transforms carry over to estimates on Tϕ in place of Vϕ. For example we
have the following (see e. g. [17,28] for the proof of (1) and [32] for the proof
of (2)). See also [11] for related results.

Proposition 1.1. Let s, σ ą 0, ϕ P Sσs pRdqz0 (ϕ P Σσs pRdqz0) and let
f P pSσs q1pRdq (f P pΣσs q1pRdq). Then the following is true:

(1) f P Sσs pRdq (f P Σσs pRdq) if and only if

|Tϕfpx, ξq| À e´rp|x|
1
s `|ξ|

1
σ q, x, ξ P Rd, (1.16)

for some (every) r ą 0.
(2) f P pSσs q1pRdq (f P pΣσs q1pRdq) if and only if

|Tϕfpx, ξq| À erp|x|
1
s `|ξ|

1
σ q, x, ξ P Rd, (1.17)

for every (some) r ą 0.

1.3. The Bargmann transform and spaces of analytic functions. If
Ω Ď Cd is open then ApΩq consists of all (complex-valued) analytic functions
on Ω. Complex derivatives are denoted, with z “ x` iy P Ω,

Bzj “
1

2

`

Bxj ´ iByj
˘

, Bzj “
1

2

`

Bxj ` iByj
˘

for 1 ď j ď d, which admits the Cauchy-Riemann equations to be written
as Bzjf “ 0, 1 ď j ď d.

The Bargmann kernel is defined by

Adpz, yq “ π´ d
4 exp

´

´
1

2
pxz, zy ` |y|2q ` 21{2xz, yy

¯

, z P Cd, y P Rd,
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where

xz, wy “

d
ÿ

j“1

zjwj and pz, wq “ xz, wy

when

z “ pz1, . . . , zdq P Cd and w “ pw1, . . . , wdq P Cd.

Sometimes x ¨ , ¨ y denotes the duality between a test function space and
its dual. The context precludes confusion between its double use. The
Bargmann transform Vdf of f P S 1

1{2pRdq is the entire function

Vdfpzq “ xf,Adpz, ¨ qy, z P Cd. (1.18)

The right-hand side is a well defined element in ApCdq, since y ÞÑ Adpz, yq

belongs to S1{2pRdq for z P Cd fixed, and Adp ¨ , yq is entire for all y P Rd.

Let p P r1,8s and ω P PEpRdq. Then Lp
pωq

pRdq consists of all f P L1
locpR

dq

such that }f}Lp
pωq

” }f ¨ ω}Lp is finite. If f P Lp
pωq

pRdq, then

Vdfpzq “

ż

Rd

Adpz, yqfpyq dy

“ π´ d
4

ż

Rd

exp
´

´
1

2
pxz, zy ` |y|2q ` 21{2xz, yy

¯

fpyq dy, z P Cd. (1.19)

(Cf. [4, 5, 31,32].)
For p P p0,8s, ω P PEpCdq and ω0pzq “ ωp

?
2zq, let Ap

pωq
pCdq be the set

of all F P ApCdq such that

}F }Ap
pωq

” π
´ d

p }F ¨ e´ 1
2

| ¨ |2 ¨ ω0}Lp ,

and set Ap “ Ap
pωq

when ω “ 1. It was proved by Bargmann [4] that

Vd : L
2pRdq Ñ A2pCdq (1.20)

is bijective and isometric. The space A2pCdq is the Hilbert space of entire
functions with scalar product

pF,GqA2 ”

ż

Cd

F pzqGpzq dµpzq, F,G P A2pCdq,

where dµpzq “ π´de´|z|2 dλpzq and dλpzq is the Lebesgue measure on Cd.
The space A2pCdq is known as the Fock or Segal-Bargmann space in quan-
tum mechanics (see [13,18]).

In [4] it was proved that the Bargmann transform maps the Hermite
functions to monomials as

Vdhα “ eα, eαpzq “
zα

α!
1
2

, z P Cd, α P Nd. (1.21)

The orthonormal basis thαuαPNd Ď L2pRdq is thus mapped to the orthonor-
mal basis teαuαPNd Ď A2pCdq. Bargmann also proved that there is a repro-
ducing formula for A2pCdq. Let ΠA be the operator from L2pdµq to ApCdq,
given by

ΠAF pzq “

ż

Cd

F pwqepz,wq dµpwq, z P Cd. (1.22)
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Then ΠA is the orthogonal projection from L2pdµq to A2pCdq (cf. [4]).
When we discuss extensions and restrictions of the Bargmann transform

to Gelfand-Shilov spaces and their distribution spaces, we use

|z|s,σ “ |Re z|
1
s ` | Im z|

1
σ , z P Cd, (1.23)

and consider the seminorms

}F }AS ;r
” }F ¨ e´ 1

2
| ¨ |2x ¨ yr}L8 , }F }A1

S ;r
” }F ¨ e´ 1

2
| ¨ |2x ¨ y´r}L8

and

}F }ASσ
s;r

” }F ¨ e´ 1
2

| ¨ |2`r| ¨ |s,σ}L8 , }F }A1
Sσ
s;r

” }F ¨ e´ 1
2

| ¨ |2´r| ¨ |s,σ}L8

when F P ApCdq, r ą 0 and s, σ ě 1
2 . Then Aσ

0,spC
dq for s, σ ą 1

2 , AS pCdq

and pAσ
s q1pCdq for s, σ ě 1

2 are the sets of all F P ApCdq such that

}F }ASσ
s;r

ă 8, }F }AS ;r
ă 8 and }F }A1

Sσ
s;r

ă 8, (1.24)

respectively, for every r ą 0. The spaces are equipped with the projective
limit topology with respect to r ą 0, defined by each class of seminorms,
respectively.

In the same way we let Aσ
s pCdq for s, σ ě 1

2 , A
1
S pCdq and pAσ

0,sq
1pCdq for

s, σ ą 1
2 be the sets of all F P ApCdq such that

}F }ASσ
s;r

ă 8, }F }A1
S ;r

ă 8 and }F }A1
Sσ
s;r

ă 8, (1.25)

respectively, for some r ą 0. Their topologies are the inductive limit topolo-
gies with respect to r ą 0, defined by each class of seminorms, respectively.
We also set

A0,s “ As
0,s and As “ As

s.

Then

Vd : S pRdq Ñ AS pCdq, Vd : S 1pRdq Ñ A1
S pCdq,

Vd : Sσs pRdq Ñ Aσ
s pCdq, Vd : pSσs q1pRdq Ñ pAσ

s q1pCdq s, σ ě
1

2

and

Vd : Σσs pRdq Ñ Aσ
0,spC

dq, Vd : pΣσs q1pRdq Ñ pAσ
0,sq

1pCdq, s, σ ą
1

2

are homeomorphisms [32].
From these homeomorphisms, the fact that the map (1.20) is a homeo-

morphism and duality properties for Gelfand-Shilov spaces, it follows that
p ¨ , ¨ qA2 on A1{2pCdq ˆ A1{2pCdq is uniquely extendable to a continuous

sesqui-linear form on pAσ
s q1pCdq ˆ Aσ

s pCdq. The dual of Aσ
s pCdq can be

identified with pAσ
s q1pCdq through this form. Similar facts hold for Aσ

0,s in

place of Aσ
s at each occurrence. (Cf. e. g. [31, 32].)

Finally let A51;rpC
dq and A58;rpC

dq for r ą 0 be the Banach spaces which

consist of all F P ApCdq such that

}F }A51;r
” }F ¨ e´r| ¨ |}L8 respectively }F }A58;r

” }F ¨ e´r| ¨ |2}L8
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is finite, and let A51pCdq be the inductive limit of A51;rpC
dq with respect

to r ą 0. Also let A0,58
pCdq and A1

0,58
pCdq be the projective respectively

inductive limit topologies of A58;rpC
dq with respect to r ą 0.

It is evident that A51pCdq is densely embedded in Aσ
s pCdq for every

s, σ ě 1
2 , as well as in Aσ

0,spC
dq for every s, σ ą 1

2 . The form p ¨ , ¨ qA2 on

A51pCdqˆA51pCdq is uniquely extendable to a continuous sesqui-linear form

on ApCdq ˆA51pCdq and the dual of A51pCdq can be identified with ApCdq.

The Fréchet space topology of ApCdq can be defined by the seminorms

F ÞÑ sup
|z|ďN

|F pzq|, N “ 1, 2, . . . .

(Cf. [32].)

Remark 1.2. The spaces A51pCdq and A0,58
pCdq are examples of Bargmann

images of special Pilipović spaces, a family of Fourier invariant topological
vector spaces which are smaller than any Fourier invariant Gelfand-Shilov
space, and which were introduced and investigated in [32]. For any σ ą 0,
the Bargmann image of the Pilipović spaces H5σpRdq and H0,5σpRdq are
given by

A5σpCdq ” tF P ApCdq ; |F pzq| À er|z|
2σ
σ`1

for some r ą 0 u

respectively

A0,5σpCdq ” tF P ApCdq ; |F pzq| À er|z|
2σ
σ`1

for every r ą 0 u.

If σ ą 1, then the (strong) duals of A5σpCdq and A0,5σpCdq are given by

A1
5σ

pCdq ” tF P ApCdq ; |F pzq| À er|z|
2σ
σ´1

for every r ą 0 u

respectively

A1
0,5σ

pCdq ” tF P ApCdq ; |F pzq| À er|z|
2σ
σ´1

for some r ą 0 u

through a unique extension of the A2 scalar product on A51pCdq ˆA51pCdq.
In particular, if σ tends to 8, it follows that some of these conditions tend
to

A0,58
pCdq ” tF P ApCdq ; |F pzq| À er|z|2 for every r ą 0 u

respectively

A1
0,58

pCdq ” tF P ApCdq ; |F pzq| À er|z|2 for some r ą 0 u.

Note that in [30,32], the set A0,58
pCdq is denoted by A0, 1

2
pCdq, and its dual

A1
0,58

pCdq is denoted by A1

0, 1
2

pCdq.

At many places it will be crucial to use the Gaussian window

ϕpxq “ π´ d
4 e´ 1

2
|x|2 , x P Rd, (1.26)
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in the transform Tϕ. For this ϕ the relationship between the Bargmann
transform and Tϕ is

Vd “ UV ˝ Tϕ, and U´1
V ˝ Vd “ Tϕ, (1.27)

where UV is the linear, continuous and bijective operator on D 1pR2dq »

D 1pCdq, given by

UVF px` iξq “ p2πq
d
2 e

1
2

p|x|2`|ξ|2qeixx,ξyF p
?
2x,´

?
2 ξq, x, ξ P Rd, (1.28)

cf. [31] in combination with (1.11).
In analytic operator theory we need subspaces of

uApC2dq ”

!

ΘK ; K P ApC2dq

)

,

where the semi-conjugation operator is

pΘKqpz, wq “ Kpz, wq, z, w P Cd. (1.29)

If T is a linear and continuous operator from S1{2pRdq to S 1
1{2pRdq, then

there is a unique K P uApC2dq such that ΘK P A1
1{2pC2dq and Vd ˝ T ˝ V´1

d

is given by

F pzq ÞÑ

ż

Cd

Kpz, wqF pwq dµpwq. (1.30)

(See e. g. [30].) For these reasons we let

uA0,spC
2dq, uAspC

2dq, uAS pC2dq, uA1
S pC2dq, uA1

spC
2dq and uA1

0,spC
2dq

be the images of

A0,spC
2dq, AspC

2dq, AS pC2dq, A1
S pC2dq, A1

spC
2dq and A1

0,spC
2dq

respectively, under the map Θ. We also let uAppC2dq and uA51pC2dq be the

images ofAppC2dq andA51pC2dq, respectively, under the map Θ. The topolo-
gies of the former spaces are inherited from the corresponding latter spaces.

The semi-conjugated Bargmann (SCB) transform is defined as

VΘ,d “ Θ ˝ V2d.

All properties of the Bargmann transform carry over naturally to analogous
properties for the SCB transform.

1.4. Pseudo-differential operators. Let A be a real d ˆ d matrix. The
pseudo-differential operator OpApaq with symbol a P S1{2pR2dq is the linear

and continuous operator on S1{2pRdq given by

OpApaqfpxq “ p2πq´d

ĳ

R2d

apx´Apx´ yq, ξqfpyqeixx´y,ξy dydξ, x P Rd.

(1.31)
For a P S 1

1{2pR2dq the pseudo-differential operator OpApaq is defined as the

continuous operator from S1{2pRdq to S 1
1{2pRdq with distribution kernel

Ka,Apx, yq “ p2πq´ d
2 F ´1

2 apx´Apx´ yq, x´ yq, x, y P Rd, (1.32)
13



where F2F is the partial Fourier transform of F px, yq P S 1
1{2pR2dq with

respect to the y variable. This definition makes sense since the mappings

F2 and F px, yq ÞÑ F px, x´ yq (1.33)

are homeomorphisms on S 1
1{2pR2dq. The map a ÞÑ Ka,A is hence a homeo-

morphism on S 1
1{2pR2dq.

If A and B are real dˆdmatrices and a P S 1
1{2pR2dq, then there is a unique

b P S 1
1{2pR2dq such that OpApaq “ OpBpbq, and that b can be obtained by

OpApaq “ OpBpbq ô eixADξ,Dxyapx, ξq “ eixBDξ,Dxybpx, ξq (1.34)

(see [10,19]).

Remark 1.3. By Fourier’s inversion formula, (1.32) and the kernel theo-
rem [23, Theorem 2.2], [29, Theorem 2.5] for operators from Gelfand-Shilov
spaces to their duals, it follows that the map a ÞÑ OpApaq is bijective from
S 1
1{2pR2dq to the set of all linear and continuous operators from S1{2pRdq to

S 1
1{2pR2dq.

If A “ 0 then OpApaq “ Op0paq “ Oppaq “ apx,Dq is the Kohn-Nirenberg
or standard representation. If A “ 1

2Id where Id is the dˆ d identity matrix
then OpApaq “ Opwpaq is the Weyl quantization. In this paper we use
mainly the Weyl quantization and we put

Kw
a “ Ka,Id{2 .

The Weyl product a#b of two Weyl symbols a, b P S1{2pR2dq is defined as
the product of symbols corresponding to operator composition. Thus

Opwpa#bq “ Opwpaq ˝ Opwpbq

and the Weyl product can be extended to larger spaces as long as composi-
tion is well defined.

Next we recall the definition of Wick operators. Suppose that a P uApC2dq

satisfies
w ÞÑ apz, wqer|w|´|w|2 P L1pCdq (1.35)

locally uniformly with respect to z P Cd for every r ą 0. Then the analytic
pseudo-differential operator, or Wick operator OpVpaq with symbol a and
acting on F P A51pCdq, is defined by

OpVpaqF pzq “

ż

Cd

apz, wqF pwqepz,wq dµpwq, z P Cd. (1.36)

(Cf. e. g. [6,13,30–32].) The condition (1.35) and F P A51pCdq imply that the
integrand on the right-hand side of (1.36) is well defined. The locally uniform
condition (1.35) with respect to z P Cd implies that OpVpaqF P ApCdq.

In [30] several extensions and restrictions of OpVpaq are given. The follow-
ing result follows from [30, Theorems 2.7 and 2.8]. Here LpA51pCdq, ApCdqq

is the space of all linear and continuous operators from A51pCdq to ApCdq.

Proposition 1.4. The map a ÞÑ OpVpaq from uA51pC2dq to LpA51pCdq, ApCdqq

is uniquely extendable to a bijective map from uApC2dq to LpA51pCdq, ApCdqq.
14



Let LApC2dq be the set of all a P L1
locpC

2dq such that z ÞÑ apz, wq is entire

for almost every w P Cd and

w ÞÑ sup
αPNd

ˇ

ˇ

ˇ

ˇ

ˇ

Bαz apz, wq ¨ er|w|´|w|2

h|α|α!

ˇ

ˇ

ˇ

ˇ

ˇ

P L1pCdq (1.37)

for every h, r ą 0 and z P Cd. If a P uApC2dq satisfies (1.35) then a P LApC2dq

as a consequence of Cauchy’s integral formula. Thus LApC2dq is a relaxation
of the former condition.

If a P LApC2dq then OpVpaq : A51pCdq Ñ A1
51

pCdq “ ApCdq is continuous.
Hence the following result is a straight-forward consequence of Proposition
1.4 and the fact that uA1

51
pC2dq “ uApC2dq.

Proposition 1.5. Let a P LApC2dq. Then there is a unique a0 P uApC2dq

such that OpVpaq “ OpVpa0q as mappings from A51pCdq to A1
51

pCdq. It
holds

OpVpaq “ OpVpa0q

where a0pz, wq “ π´d

ż

Cd

apz, w1qe´pz´w1,w´w1q dλpw1q. (1.38)

Proof. The operator ΠA defined in (1.22) is the orthogonal projection from
L2pdµq to A2pCdq which is uniquely extendable to a continuous map from

L0,ApCdq ” t a0 P L1
locpC

dq ; w ÞÑ a0pwqer|w|´|w|2 P L1pCdq for every r ą 0 u

(1.39)
to ApCdq (see e. g. [31]). Hence, if F,G P A51pCdq and a0 is given by (1.38)
then

pOpVpaqF,GqA2 “ ppOpVpaq ˝ ΠAqF,GqA2

“

ˆ
ż

Cd

ˆ
ż

Cd

ap ¨ , w1qep ¨ ,w1qepw1,wq dµpw1q

˙

F pwq dµpwq, G

˙

A2

“

ˆ
ż

Cd

a0p ¨ , wqep ¨ ,wqF pwq dµpwq, G

˙

A2

“ pOpVpa0qF,GqA2 ,

and thus OpVpaq “ OpVpa0q follows. The assertion now follows from Propo-
sition 1.4 and the fact that a0 in the integral formula of (1.38) defines an
element in uApC2dq. □

We will also consider anti-Wick operators [6, 7, 13] defined by

OpawV pa0qF pzq “

ż

Cd

a0pwqF pwqepz,wq dµpwq, z P Cd, (1.40)

when a0 P L0,ApCdq and F belongs to A0pCdq, the space of analytic polyno-

mials on Cd. Then a0 P L0,ApCdq if and only if apz, wq ” a0pwq belongs to

LApC2dq, and then OpawV pa0q “ OpVpaq. Consequently, all results for Wick
operators with symbols in LApC2dq hold for anti-Wick operators. In partic-
ular, if a0 P L0,ApCdq, then OpawV pa0q : A51pCdq Ñ ApCdq is continuous. We
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denote the Wick symbol of the anti-Wick operator OpawV pa0q by aaw0 . Then
(1.38) takes the form

OpawV pa0q “ OpVpaaw0 q

where aaw0 pz, wq “ π´d

ż

Cd

a0pw1qe´pz´w1,w´w1q dλpw1q. (1.38)1

Pseudo-differential operators on Rd may be transferred to Wick operators
on Cd by means of the Bargmann transform.

Definition 1.6. Let a P S 1
1{2pR2dq.

(1) the Bargmann assignment SVa of a is the unique element a P uApC2dq

which fulfills

OpVpaq “ Vd ˝ Opwpaq ˝ V˚
d ô a “ SVa; (1.41)

(2) the Bargmann kernel assignment KV,a of a is the unique element

K P uApC2dq, which is the kernel of the map Vd ˝ Opwpaq ˝ V˚
d with

respect to the sesquilinear A2 form.

By the definitions we have

KV,apz, wq “ epz,wqSVapz, wq. (1.42)

Example 1.7. The creation and annihilation operators

2´ 1
2 pxj ´ Bxj q and 2´ 1

2 pxj ` Bxj q,

are transfered to the operators

F ÞÑ zjF and F ÞÑ BzjF, (1.43)

by the Bargmann transform (see [4]). The Wick symbols of the operators
in (1.43) are zj and wj , respectively [6, 31]. By combining these identities
with the fact that the Weyl symbol of i´1Bxj equals ξj we get

SVp2´ 1
2 pxj ´ iξjqq “ zj , SVp2´ 1

2 pxj ` iξjqq “ wj ,

SVpxjq “ 2´ 1
2 pzj ` wjq and SVpξjq “ 2´ 1

2 ipzj ´ wjq.
(1.44)

We need to compare Kw
a and KV,a. On the one hand we have for f, g P

S pRdq

pOpwpaqf, gqL2pRdq “ pKw
a , g b fqL2pR2dq “ pV2dK

w
a ,V2dpg b fqA2pC2dq

and on the other hand

pOpwpaqf, gqL2pRdq “ pOpVpaqVdf,VdgqA2pCdq

“ pKV,a,Vdg b VdfqA2pC2dq

“ pΘKV,a,ΘpVdg b VdfqqA2pC2dq.

Since

ΘpVdg b Vdfqpz, wq “ VdgpzqVdfpwq “ V2dpg b fqpz, wq

we obtain
KV,a “ ΘV2dK

w
a “ VΘ,dK

w
a . (1.45)
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1.5. Symbol classes for pseudo-differential operators on Rd. In order
to define a generalized family of Shubin symbol classes [27], we need to add
a restriction of the involved weights. Let ρ P r0, 1s, and let PSh,ρpRdq be

the set of all ω P PpRdq XC8pRdq such that for every multi-index α P Nd,

|Bαωpxq| À ωpxqxxy´ρ|α|, x P Rd. (1.46)

For ω P PSh,ρpRdq the Shubin symbol class Sh
pωq
ρ pRdq is the set of all

f P C8pRdq such that for every α P N2d,

|Bαfpxq| À ωpxqxxy´ρ|α|, x P Rd. (1.47)

Let ρ P r0, 1s, ω P PSh,ρpR2dq and A be a real d ˆ d matrix. Then it

follows from [27] or [19, Section 18.5] that eixADξ,Dxy is a homeomorphism

on Sh
pωq
ρ pR2dq, which implies that the set

tOpApaq ; a P Shpωq
ρ pR2dq u

is independent of the choice of A, in view of (1.34). If B is another real dˆd

matrix and a, b P Sh
pωq
ρ pR2dq satisfy (1.34), then it follows from [19, Section

18.5] that

a ´ b P Sh
pωρq
ρ pR2dq, where ωρpx, ξq “ ωpx, ξqxpx, ξqy´2ρ. (1.48)

In particular

|apx, ξq ´ bpx, ξq| À ωpx, ξqxpx, ξqy´2ρ. (1.49)

We also need the symbol classes defined in [1, Definition 1.8] with symbols
satisfying estimates of the form

|BαxB
β
ξ apx, ξq| À h|α`β|α!σβ!serp|x|

1
s `|ξ|

1
σ q, x, ξ P Rd. (1.50)

(See also [10] for the restricted case when s “ σ.)

Definition 1.8. Let s, σ ą 0. Then

(1) Γσ,s;0s,σ pR2dq consists of all a P C8pRdq such that for some r ą 0,
(1.50) holds for every h ą 0;

(2) Γσ,ss,σ;0pR2dq consists of all a P C8pRdq such that for some h ą 0,

(1.50) holds for every r ą 0;

(3) Γσ,ss,σpR2dq consists of all a P C8pRdq such that (1.50) holds for some
h ą 0 and some r ą 0.

Remark 1.9. The symbol classes Sh
pωq
ρ pR2dq have isotropic behaviour with

respect to phase space T ˚Rd » R2d, and the same holds for the symbol
classes in Definition 1.8 when σ “ s. See also [10] for the restricted case
when s “ σ, and [2] for a bilinear extension. Important classes similar to
those given by Definition 1.8 are considered in [24].

Pseudo-differential operators with symbols in the classes in Definition 1.8
are examples of so called operators of infinite order. These operators are
continuous on appropriate Gelfand-Shilov (distribution) spaces [1, 10]. The
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next result characterizes the symbol classes in Definition 1.8 by means of
estimates of form

|Tψapx, ξ, η, yq| À er1p|x|
1
s `|ξ|

1
σ q´r2p|η|

1
σ `|y|

1
s q, x, ξ, y, η P Rd. (1.51)

We omit the proof since the result is a special case of [1, Proposition 2.11].
We refer to [1, Subsection 1.1] for the definition of the Gelfand-Shilov spaces
Sσ,ss,σpR2dq, Σσ,ss,σpR2dq and their distribution spaces.

Proposition 1.10. Let s, σ ą 0 and let a P C8pR2dq. Then the following
is true:

(1) if ψ P Sσ,ss,σpR2dqz0, then a P Γσ,ss,σ;0pR2dq if and only if (1.51) holds
for some r2 ą 0 and every r1 ą 0;

(2) if ψ P Σσ,ss,σpR2dqz0, then a P Γσ,s;0s,σ pR2dq if and only if (1.51) holds
for some r1 ą 0 and all r2 ą 0;

(3) if ψ P Σσ,ss,σpR2dqz0, then a P Γσ,ss,σpR2dq if and only if (1.51) holds for
some r1 ą 0 and some r2 ą 0.

1.6. Elliptic, weakly elliptic and hypoelliptic elements in Sh
pωq
ρ pRdq.

Let ρ ě 0 and ω P PSh,ρpRdq. Then f P Sh
pωq
ρ pRdq is called weakly elliptic

of order ρ0 ě 0, (in Sh
pωq
ρ pRdq), or ρ0-weakly elliptic, if there is an R ą 0

such that

|fpxq| Á xxy´ρ0ωpxq, |x| ě R.

A weakly elliptic function of order 0 is called elliptic.
Let A and B be real d ˆ d matrices, ρ ą 0, ρ0 P r0, 2ρq, ω P PSh,ρpR2dq

and suppose that a, b P Sh
pωq
ρ pR2dq satisfy (1.34). It follows from (1.48) that

a is weakly elliptic of order ρ0, if and only if b is weakly elliptic of order ρ0.
In particular, a is elliptic, if and only if b is elliptic.

Next we define Shubin hypoelliptic symbols (cf. Definitions 5.1 and 25.1
in [27]).

Definition 1.11. Let ρ ą 0, ρ0 ě 0, ω0 P PSh,ρpRdq and f P Sh
pω0q
ρ pRdq.

Then f is called hypoelliptic (in Shubin’s sense in Sh
pω0q
ρ pRdq) of order ρ0,

if there is an R ą 0 such that for every α P Nd, it holds

|Bαfpxq| À |fpxq|xxy´ρ|α|, |x| ě R,

and

|fpxq| Á ω0pxqxxy´ρ0 , |x| ě R.

Elliptic and hypoelliptic symbols are important since they give rise to

parametrices. For ρ, ω as above and a P Sh
pωq
ρ pR2dq elliptic, there is an

elliptic symbol b P Sh
p1{ωq
ρ pR2dq such that

OpApaq ˝ OpApbq “ I ` OpApc1q and OpApbq ˝ OpApaq “ I ` OpApc2q

for some c1, c2 P S pR2dq. An operator Oppcq with c P S pR2dq is regular-
izing in the sense that Oppcq is continuous from S 1pRdq to S pRdq. (Cf.
e. g. [8, 27].)

18



2. Reformulation of pseudo-differential calculus using the
Bargmann transform

In this section we characterize the Bargmann assignment of pseudo-diffe-
rential operator symbols from Subsection 1.5, using estimates of complex
derivatives. In Subsection 2.1 we show how pseudo-differential operators
on Rd with Shubin symbols are transformed to Wick operators by the
Bargmann transform. In Subsection 2.3 we deduce similar links between
pseudo-differential operators of infinite order, given in the second part of
Subsection 1.5, and suitable classes of Wick operators. Subsection 2.4 treats
composition formulae for symbols of Wick operators, which leads to alge-
braic properties for operators in Subsection 2.1 and 2.3. As an application
we obtain short proofs of composition results for pseudo-differential opera-
tors on Rd from Subsection 1.5.

2.1. Wick symbols of Shubin pseudo-differential operators. The fol-
lowing proposition is essential in the characterization of Shubin type pseudo-
differential operators on Rd by means of the corresponding Wick symbols.
The Shubin classes can be characterized using the transform Tϕ by means
of estimates of the form

|BαxB
β
ξ Tϕfpx, ξq| À ωpxqxxy´ρ|α|xξy´N , (2.1)

|BαxTϕfpx, ξq| À ωpxqxxy´ρ|α|xξy´N (2.2)

and

|Tϕfpx, ξq| À ωpxqxξy´N . (2.3)

The proof of the following result is similar to the proof of [9, Proposi-
tion 3.2].

Proposition 2.1. Let 0 ď ρ ď 1, let ω P PSh,ρpRdq, and suppose f P

S 1pRdq and ϕ P S pRdqz0. The following conditions are equivalent:

(1) f P Sh
pωq
ρ pRdq,

(2) (2.1) holds true for any N ě 0 and α, β P Nd,

(3) (2.2) holds true for any N ě 0 and α P Nd,

and the following conditions are equivalent:

(1)1 f P Sh
pωq

0 pRdq,

(2)1 (2.3) holds true for any N ě 0.

Proof. First we prove that (1) implies (2). Suppose f P Sh
pωq
ρ pRdq and let

α, β, γ P Nd be arbitrary. We will show

|ξγBαxB
β
ξ Tϕfpx, ξq| À ωpxqxxy´ρ|α|.
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By (1.14), (1.15) and integration by parts we get

|ξγBαxB
β
ξ Tϕfpx, ξq| “

ˇ

ˇξγTϕβ pBαfqpx, ξq
ˇ

ˇ

“ p2πq´ d
2

ˇ

ˇ

ˇ

ˇ

ż

Rd

´

piByqγe´ixξ,yy
¯

ϕβpyq Bαfpx` yq dy

ˇ

ˇ

ˇ

ˇ

À

ż

Rd

ˇ

ˇ

ˇ
Bγy

”

ϕβpyq Bαfpx` yq

ı
ˇ

ˇ

ˇ
dy

“

ż

Rd

ˇ

ˇ

ˇ

ˇ

ˇ

ÿ

κďγ

ˆ

γ

κ

˙

Bγ´κϕβpyq Bα`κfpx` yq

ˇ

ˇ

ˇ

ˇ

ˇ

dy

À
ÿ

κďγ

ˆ

γ

κ

˙
ż

Rd

ˇ

ˇBγ´κϕβpyq
ˇ

ˇ ωpx` yqxx` yy´ρ|α`κ| dy.

Since ω is polynomially moderate, Peetre’s inequality (1.2) and the fact that
ϕ P S give

|ξγBαxB
β
ξ Tϕfpx, ξq|

À ωpxqxxy´ρ|α|
ÿ

κďγ

ˆ

γ

κ

˙
ż

Rd

ˇ

ˇBγ´κϕβpyq
ˇ

ˇ ωpyq xyy|m|`ρ|α`κ| dy

— ωpxqxxy´ρ|α|.

Thus f P Sh
pωq
ρ pRdq implies implies (2.1), and as a special case (2.2), and

f P Sh
pωq

0 pRdq implies (2.3). We have proved that (1) implies (2) which in
turn implies (3), and that (1)1 implies (2)1.

Conversely, suppose (3), that is f P S 1pRdq and (2.2) holds for all N ě 0
and all α P Nd, which is a weaker assumption than (2). We obtain from
(1.13)

fpxq “ }ϕ}
´2
L2 T ˚

ϕ Tϕfpxq

“ }ϕ}
´2
L2 p2πq´ d

2

ĳ

R2d

Tϕfpy, ξq eixξ,x´yy ϕpx´ yq dydξ,

which is an absolutely convergent integral due to (2.2) and the fact that
ϕ P S pRdq. We may differentiate under the integral, so integration by
parts, (2.2) and Peetre’s inequality give for some N0 ě 0, any α P Nd and
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any x P Rd

|Bαfpxq| “ }ϕ}
´2
L2 p2πq´ d

2

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ĳ

R2d

Tϕfpy, ξq Bαy

´

eixξ,x´yy ϕpx´ yq

¯

dydξ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

“ }ϕ}
´2
L2 p2πq´ d

2

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ĳ

R2d

Bαy Tϕfpy, ξq eixξ,x´yy ϕpx´ yq dydξ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

“ }ϕ}
´2
L2 p2πq´ d

2

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ĳ

R2d

Bαy Tϕfpx´ y, ξq eixξ,yy ϕpyq dydξ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

À

ĳ

R2d

ωpx´ yqxx´ yy´ρ|α| xξy´d´1 |ϕpyq| dydξ

À ωpxqxxy´ρ|α|

ĳ

R2d

xξy´d´1xyyN0`ρ|α| |ϕpyq| dydξ

— ωpxqxxy´ρ|α|.

Thus f P Sh
pωq
ρ pRdq and we have proved the equivalence of (1), (2) and (3).

It remains to show that (2)1 implies (1)1, that is (2.3) for all N ě 0 implies

f P Sh
pωq

0 pRdq. We have for some N0 ě 0, any α P Nd, x P Rd and N ě 0,

|Bαfpxq| “ }ϕ}
´2
L2 p2πq´ d

2

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ĳ

R2d

Tϕfpy, ξq Bαx

´

eixξ,x´yy ϕpx´ yq

¯

dydξ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

À
ÿ

βďα

ˆ

α

β

˙
ĳ

R2d

|Tϕfpy, ξq| xξy|β|
ˇ

ˇ

ˇ
Bα´βϕpx´ yq

ˇ

ˇ

ˇ
dydξ

À
ÿ

βďα

ˆ

α

β

˙
ĳ

R2d

ωpyqxξy|α|´N
ˇ

ˇ

ˇ
Bα´βϕpx´ yq

ˇ

ˇ

ˇ
dydξ

À ωpxq
ÿ

βďα

ˆ

α

β

˙
ĳ

R2d

xξy|α|´Nxx´ yyN0

ˇ

ˇ

ˇ
Bα´βϕpx´ yq

ˇ

ˇ

ˇ
dydξ

À ωpxq

provided N is sufficiently large, since ϕ P S . This shows that f P Sh
pωq

0 pRdq.
□
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We may now characterize the Shubin classes Sh
pωq
ρ pR2dq by estimates on

their Bargmann (kernel) assignments of the forms
ˇ

ˇpBz ` BwqαpBz ´ BwqβSVapz, wq
ˇ

ˇ

À e
1
2

|z´w|2ωp
?
2 zqxz ` wy´ρ|α`β|xz ´ wy´N , (2.4)

ˇ

ˇ

ˇ
Bαz B

β
wSVapz, wq

ˇ

ˇ

ˇ
À e

1
2

|z´w|2ωp
?
2 zqxz ` wy´ρ|α`β|xz ´ wy´N , (2.5)

|SVapz, wq| À e
1
2

|z´w|2ωp
?
2 zqxz ´ wy´N (2.6)

and

|KV,apz, wq| À ωp
?
2 zqxz ´ wy´Ne

1
2p|z|2`|w|2q. (2.7)

Theorem 2.2. Let 0 ď ρ ď 1, ω P PSh,ρpR2dq and a P S 1pR2dq. The
following conditions are equivalent:

(1) a P Sh
pωq
ρ pR2dq,

(2) (2.4) holds true for every N ě 0, z, w P Cd and α, β P Nd,

(3) (2.5) holds true for every N ě 0, z, w P Cd and α, β P Nd,

and the following conditions are equivalent:

(1)1 a P Sh
pωq

0 pR2dq,

(2)1 (2.6) holds true for any N P N and z, w P Cd,

(3)1 (2.7) holds true for any N P N and z, w P Cd.

For the proof we need the following proposition of independent interest.
Here we recall that SV is bijective from S 1

1{2pR2dq to the set

t a P uApC2dq ; |apz, wq| À ep 1
2

`rq|z´w|2 for every r ą 0 u. (2.8)

Proposition 2.3. Let ψpx, ξq “ p 2
π q

d
2 e´p|x|2`|ξ|2q, x, ξ P Rd, a P S 1

1{2pR2dq

and a belongs to the set in (2.8). Then

SVapz, wq “ p2πq
d
2 e

1
2

|z´w|2Tψa
ˆ

x` y
?
2
,´

ξ ` η
?
2
,
?
2pη ´ ξq,

?
2py ´ xq

˙

,

(2.9)

and

pS´1
V aqpx,´ξq “

ˆ

2

π

˙d ż

Cd

a

ˆ

z
?
2

´ w,
z

?
2

` w

˙

e´2|w|2 dλpwq, (2.10)

with z “ x` iξ, w “ y ` iη and x, y, ξ, η P Rd.

Proof. Let ϕpx, yq “ π´ d
2 e´ 1

2
p|x|2`|y|2q for x, y P Rd, and letKw

a be the kernel
of Opwpaq. Then ψ “ F2pϕ ˝ κq, where κpx, yq “ px ` y{2, x ´ y{2q. By
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(1.27) (or [30, Eq. (1.35)]) and [9, Lemma 4.1] we have

VΘ,dK
w
a pz, wq “ V2dK

w
a pz, wq “ V2dK

w
a ppx, yq ` ipξ,´ηqq

“ p2πqde
1
2p|z|2`|w|2q`ipxx,ξy´xy,ηyqTϕKw

a

´?
2px, yq,´

?
2pξ,´ηq

¯

“ p2πq
d
2 e

1
2p|z|2`|w|2q`ipxy,ξy´xx,ηyqTψa

ˆ

x` y
?
2
,´

ξ ` η
?
2
,
?
2pη ´ ξq,

?
2py ´ xq

˙

,

“ p2πq
d
2 e

1
2p|z|2`|w|2q`i Impz,wqTψa

ˆ

x` y
?
2
,´

ξ ` η
?
2
,
?
2pη ´ ξq,

?
2py ´ xq

˙

.

Together with the identity

|z|2 ` |w|2 ` 2i Impz, wq “ |z ´ w|2 ` 2pz, wq

this gives

VΘ,dK
w
a pz, wq

“ p2πq
d
2 e

1
2

|z´w|2`pz,wqTψa
ˆ

x` y
?
2
,´

ξ ` η
?
2
,
?
2pη ´ ξq,

?
2py ´ xq

˙

. (2.11)

A combination of this identity with (1.42) and (1.45) gives (2.9).
In order to prove (2.10), we use Moyal’s formula (1.12), (1.13) and the

fact that }ψ}L2 “ 1. This implies that the inverse of Tψ is given by

pT ´1
ψ F qpx, ξq “ pT ˚

ψ F qpx, ξq

“ p2πq´d

żżżż

R4d

F px1, ξ1, η1, y1qψpx´x1, ξ´ξ1qeipxx´x1,η1y`xy1,ξ´ξ1y dx1dξ1dη1dy1.

Writing

Gpz, wq “ F px, ξ, η, yq, z “ x` iξ, w “ y ` iη,

we obtain

T ˚
ψ F px, ξq “ 2dp2πq´ 3d

2

ĳ

C2d

Gpw1, w2qe´|z´w1|2eiImxz´w1,w2y dλpw1qdλpw2q.

(2.12)
If a “ T ˚

ψ F and a “ SVa, then (2.9) shows that

apz, wq “ p2πq
d
2 e

1
2

|z´w|2G

ˆ

z ` w
?
2
,
?
2pw ´ zq

˙

which gives

Gpz, wq “ p2πq´ d
2 e´ 1

4
|w|2a

ˆ

2z ´ w

2
?
2
,
2z ` w

2
?
2

˙

.

Inserting this into (2.12) we get

T ˚
ψ F px,´ξq

“
1

2dπ2d

ĳ

C2d

a

ˆ

2w1 ´ w2

2
?
2

,
2w1 ` w2

2
?
2

˙

e´|z´w1|2e´ 1
4

|w2|2eiImxz´w1,w2y dλpw1qdλpw2q,
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and by taking

2w1 ´ w2

2
?
2

´
z

?
2

and
2w1 ` w2

2
?
2

´
z

?
2

as new variables of integration, we obtain using (1.22)

T ˚
ψ F px,´ξq

“
2d

π2d

ĳ

C2d

a

ˆ

w1 `
z

?
2
, w2 `

z
?
2

˙

e´p|w1|2`|w2|2qe2iImpw1,w2q dλpw1qdλpw2q

“ 2d
ĳ

C2d

a

ˆ

w1 `
z

?
2
, w2 `

z
?
2

˙

e2iImpw1,w2q dµpw1qdµpw2q

“ 2d
ż

Cd

ˆ
ż

Cd

a

ˆ

w1 `
z

?
2
, w2 `

z
?
2

˙

epw1,w2q ep´w2,w1q dµpw1q

˙

dµpw2q

“ 2d
ż

Cd

a

ˆ

´w2 `
z

?
2
, w2 `

z
?
2

˙

e´|w2|2 dµpw2q

“

ˆ

2

π

˙d ż

Cd

a

ˆ

z
?
2

´ w,
z

?
2

` w

˙

e´2|w|2 dλpwq.

□

Proof of Theorem 2.2. Combining Propositions 2.1 and 2.3, writing z`w “

2z ` w ´ z, we obtain that a P Sh
pωq
ρ pR2dq if and only if for all α, β P Nd

and N P N we have

ˇ

ˇ

ˇ
pBx ` ByqαpBξ ` Bηqβ

´

e´ 1
2

|z´w|2SVapz, wq

¯
ˇ

ˇ

ˇ

À ω

ˆ

z ` w
?
2

˙

xz ` wy´ρ|α`β|xz ´ wy´N

À ωp
?
2 zqxz ` wy´ρ|α`β|xz ´ wy´N`k

for some k P N that can be absorbed into N .
Note that multi-index powers of the differential operators Bx ` By and

Bξ ` Bη acting on the factor e´ 1
2

|z´w|2 “ e´ 1
2p|x´y|2`|ξ´η|2q are zero. Thus

we obtain the equivalent condition

ˇ

ˇ

ˇ
pBx ` ByqαpBξ ` BηqβSVapz, wq

ˇ

ˇ

ˇ

À ωp
?
2 zqxz ` wy´ρ|α`β|xz ´ wy´Ne

1
2

|z´w|2 .

Using the (conjugate) analyticity of SVapz, wq with respect to z P Cd

(w P Cd) we can formulate this as (2.4). We have now shown the equivalence
between (1) and (2).
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The equivalence between (2) and (3) follows from the binomial formulae

pBz ` tBwqα “
ÿ

γďα

ˆ

α

γ

˙

t|γ|Bα´γ
z B

γ
w, t P t´1, 1u,

Bαz “ 2´|α|
ÿ

γďα

ˆ

α

γ

˙

pBz ` Bwqα´γpBz ´ Bwqγ

and

B
β
w “ 2´|β|

ÿ

γďβ

ˆ

β

γ

˙

p´1q|γ|pBz ` Bwqβ´γpBz ´ Bwqγ .

It remains to consider the case ρ “ 0. We obtain from Propositions 2.1

and 2.3 that a P Sh
pωq

0 pR2dq if and only if for all N P N we have

|SVapz, wq| À ωp
?
2 zqxz ´ wy´Ne

1
2

|z´w|2 , z, ζ P Cd.

This shows the equivalence between (1)1 and (2)1.
Finally the equivalence of (2)1 and (3)1 is an immediate consequence of

(1.42) and

|ep|z|2`|w|2q{2e´pz,wq| “ ep|z|2´2Repz,wq`|w|2q{2 “ e|z´w|2{2. □

Let uApωq

Sh,ρpC2dq, be the set of all a P uApC2dq such that
ˇ

ˇ

ˇ
Bαz B

β
wapz, wq

ˇ

ˇ

ˇ
ď Ce

1
2

|z´w|2ωp
?
2 zqxz ` wy´ρ|α`β|xz ´ wy´N , N ě 0.

(2.13)
The smallest constant C ě 0 defines a semi-norm parameterized by α, β

and N , and we equip uApωq

Sh,ρpC2dq with the Fréchet space topology defined

by these semi-norms. The following result is an immediate consequence of
Theorem 2.2 and its proof.

Proposition 2.4. Let 0 ď ρ ď 1 and ω P PSh,ρpR2dq. Then SV is a

homeomorphism from Sh
pωq
ρ pR2dq to uApωq

Sh,ρpC2dq.

2.2. Extensions and variations. There are several extensions and varia-
tions of Theorem 2.2. First we observe that by playing with N in (2.4) and
(2.5) and using Peetre’s inequality, it follows that xz`wy in (2.4) and (2.5)
can be replaced by Ψ, where

Ψpz, wq P txz ` wy, xzy, xwy,maxpxzy, xwyq,minpxzy, xwyqu . (2.14)

In particular (2.5) in Theorem 2.2 can be replaced by
ˇ

ˇ

ˇ
Bαz B

β
wSVapz, wq

ˇ

ˇ

ˇ
À e

1
2

|z´w|2ωp
?
2 zqΨpz, wq´ρ|α`β|xz ´ wy´N , (2.5)1

where Ψ is given by (2.14).
Secondly, let

Ωk,M “ t pα1, . . . , αkq P Nd ˆ ¨ ¨ ¨ ˆ Nd » Nkd ; |α1 ` ¨ ¨ ¨ ` αk| “ M u, .

where k ě 1 and M ě 0 are integers.
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If a P uApC2dq and α P Ω4,M , then

Bα1
x B

α3
ξ Bα2

y Bα4
η a “ i|α3|´|α4|Bα1`α3

z B
α2`α4

w a,

z “ x` iξ, w “ y ` iη,
(2.15)

because of the analyticity with respect to z and conjugate analyticity with
respect to w for apz, wq. In particular, (2.5)1 implies

ˇ

ˇ

ˇ
Bα1
x B

α3
ξ Bα2

y Bα4
η SVapz, wq

ˇ

ˇ

ˇ

À e
1
2

|z´w|2ωp
?
2 zqΨpz, wq´ρMxz ´ wy´N , α P Ω4,M . (2.5)2

On the other hand, if we let α3 “ α4 “ 0 in (2.15), (2.5)2 implies (2.5)1.
Hence (2.5)1 and (2.5)2 are equivalent.

Let M ě 0 be an integer and let T be the operator

T “
ÿ

αPΩ2,M

cpαqBα1
z B

α2

w , cpαq P C, α “ pα1, α2q P Ω2,M . (2.16)

Then (2.5)1 implies that

|T pSVaqpz, wq| À e
1
2

|z´w|2ωp
?
2 zqΨpz, wq´ρMxz ´ wy´N , (2.5)3

holds for every M ě 0 and and every operator T of the form (2.16). On the

other hand, the operators Bαz B
β
w in (2.5)1 are special cases of the operators

T in (2.5)3. This shows that Bαz B
β
w in (2.5)1 can be replaced by operators T

in (2.16).
In the same way it follows that (2.5)2 is equivalent to (2.5)3, after T in

(2.16) is replaced by

T “
ÿ

αPΩ4,M

CpαqBα1
x B

α3
ξ Bα2

y Bα4
η , z “ x` iξ, w “ y ` iη,

Cpαq P C, α “ pα1, α2, α3, α4q P Ω4,M .

(2.17)

Finally we observe that we may replace the set of operators in (2.16) by
the set of operators

T “
ÿ

αPΩ4,M

CpαqBα1
z B

α3

z B
α2

w Bα4
w , z “ x` iξ, w “ y ` iη,

Cpαq P C, α “ pα1, α2, α3, α4q P Ω4,M ,

(2.18)

in the estimate (2.5)3. In fact, obviously the operators of form (2.18) con-
tains the operators of form (2.16). Hence if (2.5)3 holds true for operators
of form (2.18), it also holds for operators of form (2.16). On the other hand,
if α3 ‰ 0 or α4 ‰ 0 in (2.18), then

Bα1
z B

α3

z B
α2

w Bα4
w a “ 0

because of the analyticity in z and conjugate analyticity in w for apz, wq.
Consequently, it suffices to consider operators in (2.18) where all Cpαq “ 0
when α3 ‰ 0 or α4 ‰ 0, when investigating the condition (2.5)3. This set
of operators is exactly the set of operators in (2.16). This implies that the
set of operators in (2.16) can be replaced by the set of operators in (2.18)
when checking the condition (2.5)3.
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From these observations Theorem 2.2 gives the following conclusion.

Theorem 2.5. Suppose that ρ ě 0, ω P PSh,ρpCdq, a P uApC2dq and Ψ is
given by (2.14). Then the following conditions are equivalent:

(1) a P Sh
pωq
ρ pR2dq,

(2) (2.5)1 holds true for every N ě 0, α, β P Nd and z, w P Cd;

(3) for every M ě 0, (2.5)2 holds true for every N ě 0, and z, w P Cd;

(4) for every M ě 0, (2.5)3 holds true for every N ě 0, T in (2.16) and
z, w P Cd;

(5) for every M ě 0, (2.5)3 holds true for every N ě 0, T in (2.17) and
z, w P Cd;

(6) for every M ě 0, (2.5)3 holds true for every N ě 0, T in (2.18) and
z, w P Cd.

2.3. Wick operators corresponding to Gevrey type pseudo-differential
operators. Using (2.9) and (1.23) we obtain the following theorem ex-
pressed with estimates of the form

|apz, wq| À exp

ˆ

1

2
|z ´ w|2 ` r1|z ` w|s,σ ´ r2|z ´ w|s,σ

˙

(2.19)

(cf. Definition 1.8). The verification is left for the reader.

Theorem 2.6. The following is true:

(1) if s, σ ě 1
2 , then SV is homeomorphic from Γσ,ss,σ;0pR2dq to the set

of all a P uApC2dq such that for some r2 ą 0, (2.19) holds for every
r1 ą 0;

(2) if s, σ ą 1
2 , then SV is homeomorphic from Γσ,s;0s,σ pR2dq to the set of

all a P uApC2dq such that for some r1 ą 0, (2.19) holds for every
r2 ą 0;

(3) if s, σ ą 1
2 , then SV is homeomorphic from Γσ,ss,σpR2dq to the set of all

a P uApC2dq such that (2.19) holds for some r1 ą 0 and some r2 ą 0.

Remark 2.7. The restrictions on s and σ in Theorem 2.6 are needed since we
must choose ψ in (1.51) as the Gauss function in Proposition 2.3. According
to the proof of Theorem 2.2 this is necessary for the use of the formula (1.27)
that relates TϕKw

a and the Bargmann transform V2dK
w
a . For this ψ we have

ψ P Sσs pRdq (ψ P Σσs pRdq), if and only if s, σ ě 1
2 (s, σ ą 1

2).

Theorem 2.6 can be combined with continuity results in [1] to deduce
continuity of Wick operators acting on the Bargmann images of Σσs pRdq,
Sσs pRdq, pSσs q1pRdq and pΣσs q1pRdq, respectively. The following result follows
by a straight-forward combination of Theorems 3.8, 3.15 and 3.16 in [1],
(1.41) and Theorem 2.6.

Proposition 2.8. Let a P uApC2dq. Then the following is true:

(1) if s, σ ě 1
2 and some r2 ą 0, (2.19) holds for every r1 ą 0, then

OpVpaq is continuous on Aσ
s pCdq and on pAσ

s q1pCdq;
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(2) if s, σ ą 1
2 and for some r1 ą 0, (2.19) holds for every r2 ą 0, then

OpVpaq is continuous on Aσ
0,spC

dq and on pAσ
0,sq

1pCdq;

(3) if s, σ ą 1
2 and (2.19) holds for some r1 ą 0 and some r2 ą 0, then

OpVpaq is continuous from Aσ
0,spC

dq to Aσ
s pCdq, and from pAσ

s q1pCdq

to pAσ
0,sq

1pCdq.

2.4. Composition of Wick operators. Let a1, a2 P uApC2dq. If compo-
sition is well defined then the complex twisted product a1#Va2 is defined
by

OpVpa1q ˝ OpVpa2q “ OpVpa1#Va2q.

By straight-forward computations it follows that the product #V is given
by

a1#Va2pz, wq “ π´d

ż

Cd

a1pz, uqa2pu,wqe´pz´u,w´uq dλpuq, z, w P Cd,

(2.20)
provided the integral is well defined. Inserting derivatives, (2.20) takes the
form

pBα1
z B

β1
w a1q#VpBα2

z B
β2
w a2qpz, wq

“ π´d

ż

Cd

pBα1
z B

β1
u a1qpz, uqpBα2

u B
β2
w a2qpu,wqe´pz´u,w´uq dλpuq, z, w P Cd.

(2.20)1

The following lemma is a product rule for the complex twisted product.

Lemma 2.9. Let a1, a2 P uApC2dq and suppose the integral in (2.20)1 is well
defined for all z, w P Cd and all α1, α2, β1, β2 P Nd such that

|α1 ` α2 ` β1 ` β2| ď 1.

Suppose also that the integrand in (2.20) is zero at infinity. Then

Bzj pa1#Va2q “ pBzja1q#Va2 ` a1#VpBzja2q, j “ 1, . . . , d (2.21)

and

Bwj pa1#Va2q “ pBwja1q#Va2 ` a1#VpBwja2q, j “ 1, . . . , d. (2.22)

Proof. If

Fa1,a2pz, w, uq “ a1pz, uqa2pu,wqepz,u´wq`pu,wq

then

πdpa1#Va2qpz, wq “

ż

Cd

Fa1,a2pz, w, uqe´|u|2 dλpuq.

This gives

πdBzj pa1#Va2qpz, wq “ b1pz, wq ` b2pz, wq ´ b3pz, wq,

where

b1pz, wq “

ż

Cd

FBzja1,a2
pz, w, uqe´|u|2 dλpuq,

b2pz, wq “

ż

Cd

Fa1,a2pz, w, uquje
´|u|2 dλpuq
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and

b3pz, wq “ wj

ż

Cd

Fa1,a2pz, w, uqe´|u|2 dλpuq

“ wjπ
dpa1#Va2qpz, wq.

The conjugate analyticity of u ÞÑ a1pz, uq and u ÞÑ epz,u´wq implies

Buja1pz, uq “ Buje
pz,u´wq “ 0 which gives

BujFa1,a2pz, w, uq

“
`

a1pz, uqBuja2pu,wq ` wja1pz, uqa2pu,wq
˘

epz,u´wq`pu,wq

“ Fa1,Bzja2pz, w, uq ` wjFa1,a2pz, w, uq.

Consider b2pz, wq. Integration by parts gives

b2pz, wq “

ż

Cd

Fa1,a2pz, w, uquje
´|u|2 dλpuq

“ ´

ż

Cd

Fa1,a2pz, w, uq Buje
´|u|2 dλpuq

“

ż

Cd

BujFa1,a2pz, w, uqe´|u|2 dλpuq

“

ż

Cd

Fa1,Bzja2pz, w, uqe´|u|2 dλpuq ` wj

ż

Cd

Fa1,a2pz, w, uqe´|u|2 dλpuq

“

ż

Cd

Fa1,Bzja2pz, w, uqe´|u|2 dλpuq ` b3pz, wq.

A combination of these identities now gives

πdBzj pa1#Va2qpz, wq

“

ż

Cd

pFBzja1,a2
pz, w, uq ` Fa1,Bzja2pz, w, uqqe´|u|2 dλpuq

“ πdpBzja1q#Va2pz, wq ` πda1#VpBzja2qpz, wq,

and (2.21) follows.
The assertion (2.22) is proved by similar arguments. □

The characterization in Theorem 2.2 (3) can be applied to prove the
following composition result, which is a generalization of [27, Theorem 23.6]
to include the case when ρ “ 0.

Proposition 2.10. Let 0 ď ρ ď 1 and ωj P PSh,ρpR2dq for j “ 1, 2. If

aj P Sh
pωjq
ρ pR2dq for j “ 1, 2, then a1#a2 P Sh

pω1ω2q
ρ pR2dq.
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Proof. If a0 “ a1#a2 and aj “ SVaj , j “ 0, 1, 2, then a0 “ a1#Va2. From

Lemma 2.9 and (2.20) we obtain for α, β P Nd,

Bαz B
β
wa0pz, wq

“
ÿ

γďα

ÿ

κďβ

ˆ

α

γ

˙ˆ

β

κ

˙

´

pBα´γ
z B

β´κ
w a1q#VpBγz B

κ
wa2q

¯

pz, wq

“ π´d
ÿ

γďα

ÿ

κďβ

ˆ

α

γ

˙ˆ

β

κ

˙
ż

Cd

Bα´γ
z B

β´κ
u a1pz, uqBγuB

κ
wa2pu,wqepz,u´wq`pu,wqdµpuq.

Since ω2 P PpR2dq » PpCdq is moderate, Theorem 2.2 gives for some
N0 ě 0 and any N1, N2 ě 0

|Bα´γ
u B

β´κ
w a1pz, uq| À ω1p

?
2 zqxz ` uy´ρ|α`β´γ´κ|xz ´ uy´N1e

1
2

|z´u|2

and

|BγuB
κ
wa2pu,wq| À ω2p

?
2 zqxz ´ uyN0xu` wy´ρ|γ`κ|xu´ wy´N2e

1
2

|u´w|2 .

This gives

ˇ

ˇ

ˇ
Bαz B

β
wa0pz, wq

ˇ

ˇ

ˇ

À ω1p
?
2 zqω2p

?
2 zqe

1
2

|z´w|2
ż

Cd

F pz, w, uqeΦpz,w,uq dλpuq (2.23)

where for any N1 ě 0

F pz, w, uq “ xz ` uy´ρ|α`β´γ´κ|xz ´ uyN0´N1xu` wy´ρ|γ`κ|xu´ wy´N2

and

Φpz, w, uq “ ´
1

2
|z ´ w|2 `

1

2
|z ´ u|2 `

1

2
|u´ w|2 ´ |u|2

` Repz, u´ wq ` Repu,wq “ 0.

By Peetre’s inequality and the facts that γ ď α and κ ď β we get

xz ` uyρ|γ`κ|xu` wy´ρ|γ`κ| À xz ´ wyρ|γ`κ|

À xz ´ uyρ|γ`κ|xu´ wyρ|γ`κ|

ď xz ´ uyρ|α`β|xu´ wyρ|α`β|

and

xz ` uy´ρ|α`β| À xz ` wy´ρ|α`β|xu´ wyρ|α`β|

wherefrom

F pz, w, uq ď xz ` wy´ρ|α`β|xz ´ uyρ|α`β|`N0´N1xu´ wy2ρ|α`β|´N2 . (2.24)
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Hence a combination of (2.23) and (2.24) gives for any N ě 0

pω1p
?
2 zqω2p

?
2 zqq´1xz ` wyρ|α`β|

ˇ

ˇ

ˇ
Bαz B

β
wa0pz, wq

ˇ

ˇ

ˇ

À e
1
2

|z´w|2
ż

Cd

xz ´ uyρ|α`β|`N0´N1xu´ wy2ρ|α`β|´N2 dλpuq

À xz ´ wy´Ne
1
2

|z´w|2
ż

Cd

xz ´ uyρ|α`β|`N0`N´N1xu´ wy2ρ|α`β|`N´N2 dλpuq.

By letting

N1 ě ρ|α ` β| `N0 `N and N2 ą 2ρ|α ` β| `N ` 2d

we obtain
ˇ

ˇ

ˇ
Bαz B

β
wa0pz, wq

ˇ

ˇ

ˇ
À ω1p

?
2 zqω2p

?
2 zqxz ` wy´ρ|α`β|xz ´ wy´Ne

1
2

|z´w|2 .

According to Theorem 2.2 (3) this estimate implies that a0 P Sh
pω1ω2q
ρ pR2dq.

□

Remark 2.11. Eq. (2.20) combined with Theorem 2.6 can be used to show
composition results for pseudo-differential operators with symbols in Γσ,ss,σ;0pR2dq.
In fact we may use an argument similar to the proof of Proposition 2.10,
but simpler since derivatives can be avoided. We obtain

a1#a2 P Γσ,ss,σ;0pR2dq when a1, a2 P Γσ,ss,σ;0pR2dq, s, σ ě
1

2
,

and similarly with Γσ,s;0s,σ in place of Γσ,ss,σ;0, provided σ ą 1
2 . Thereby we

regain parts of [1, Theorem 3.18] for certain restrictions on s and σ.

3. Relations and estimates for Wick and anti-Wick operators

In this section we first show how to approximate aWick operator by means
of a sum of anti-Wick operators. Then we prove continuity results for anti-
Wick operators with symbols having exponential type bounds. Finally we
deduce estimates for the Wick symbol of these anti-Wick operators.

3.1. Expansion of Shubin type Wick operators with respect to anti-
Wick operators. The first result can be stated for semi-conjugate analytic
symbols on C2d.

Proposition 3.1. Suppose s ě 1
2 , a P uA1

spC
2dq, let N ě 0 be an integer,

and let

aαpwq “ Bαz B
α
wapw,wq, α P Nd,

and

bαpz, wq “ |α|

ż 1

0
p1 ´ tq|α|´1Bαz B

α
wapw ` tpz ´ wq, wq dt, α P Ndz0.

Then

OpVpaq “
ÿ

|α|ďN

p´1q|α| OpawV paαq

α!
`

ÿ

|α|“N`1

p´1q|α| OpVpbαq

α!
. (3.1)
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Proof. Taylor expansion gives

apz, wq “
ÿ

|α|ďN

p´1q|α|cαpz, wq

α!
`

ÿ

|α|“N`1

p´1q|α|c0,αpz, wq

α!
,

where

cαpz, wq “ p´1q|α|pz ´ wqαBαz apw,wq

and

c0,αpz, wq “ p´1q|α||α|pz ´ wqα
ż 1

0
p1 ´ tq|α|´1Bαz apw ` tpz ´ wq, wq dt.

Hence

OpVpaq “
ÿ

|α|ďN

p´1q|α| OpVpcαq

α!
`

ÿ

|α|“N`1

p´1q|α| OpVpc0,αq

α!
,

and the result follows if we prove

OpVpcαq “ OpawV paαq and OpVpc0,αq “ OpVpbαq. (3.2)

It follows from (1.38) that

OpVpbαq “ OpVpc1,αq and OpVpc0,αq “ OpVpc2,αq

where

cj,αpz, wq “ p´1q|α|π´d|α|

ż 1

0
p1 ´ tq|α|´1hj,αpa; t, z, wq dt, (3.3)

j “ 1, 2, with

h1,αpa; t, z, wq “ p´1q|α|

ż

Cd

Bαz B
α
wapw1 ` tpz ´ w1q, w1qe´pz´w1,w´w1q dλpw1q

(3.4)

and

h2,αpa; t, z, wq “

ż

Cd

pz ´ w1qαBαz apw1 ` tpz ´ w1q, w1qe´pz´w1,w´w1q dλpw1q.

Since

pz ´ w1qαe´pz´w1,w´w1q “ B
α
w1
e´pz´w1,w´w1q

integration by parts yields

h2,αpa; t, z, wq “

ż

Cd

Bαz apw1 ` tpz ´ w1q, w1qB
α
w1
e´pz´w1,w´w1q dλpw1q

“ p´1q|α|

ż

Cd

Bαz B
α
wapw1`tpz´w1q, w1qe´pz´w1,w´w1q dλpw1q “ h1,αpa; t, z, wq,

and the second equality in (3.2) follows. The first equality in (3.2) follows
by similar arguments. The details are left for the reader. □

32



Remark 3.2. Proposition 3.1 and its proof show that

OpVpaq “
ÿ

|α|ďN

p´1q|α| OpawV paαq

α!
`

ÿ

|α|“N`1

p´1q|α| OpVpc1,αq

α!
(3.1)1

where c1,α is defined by (3.3) and (3.4).

In the following result we estimate aα in Proposition 3.1 and c1,α in (3.3)

when a “ SVa satisfies (2.5) for every N ě 0 and α, β P Nd. By Theorem
2.2 this means that OpVpaq is the Bargmann transform of a Shubin type
operator.

Proposition 3.3. Let 0 ď ρ ď 1, ω P PSh,ρpR2dq, a P uApωq

Sh,ρpC2dq, and let

aα and bα be as in Proposition 3.1 for α P Nd. Then OpVpbαq “ OpVpc1,αq

for a unique c1,α P uApC2dq,

|BβwB
γ
waαpwq| À ωp

?
2wqxwy´ρp2|α|`|β`γ|q, α, β, γ P Nd, (3.5)

and

|Bβz B
γ
wc1,αpz, wq| À e

1
2

|z´w|2ωp
?
2zqxz ` wy´ρp2|α|`|β`γ|qxz ´ wy´N , α, β, γ P Nd.

(3.6)

Remark 3.4. The Wick symbol c1,α in Proposition 3.3 is uniquely defined
and given by (3.3) in view of Proposition 1.5, when h1,α is defined by (3.4).

The conditions in Proposition 3.3 imply that c1,α P uApωαq

Sh,ρ pC2dq where ωα “

x ¨ y´2ρ|α| ¨ ω.

Proof of Proposition 3.3. The estimate (3.5) is an immediate consequence
of

BβwB
γ
waαpwq “ Bα`β

w B
α`γ
w apw,wq

and (2.5).
In order to prove (3.6) we first note that the uniqueness assertion for c1,α

is a consequence of Remark 3.4. Let h1,αpa; z, wq be the same as in the proof
of Proposition 3.1. Integration by parts gives

Bβz B
γ
wh1,αpa; t, z, wq “ h1,αpBβz B

γ
wa; t, z, wq,

which reduce the problem to prove that (3.6) holds for β “ γ “ 0.

The assumption a P uApωq

Sh,ρpC2dq combined with ω and x ¨ y´|α| being mod-

erate imply

|Bαz B
β
wapz, wq| À e

1
2

|z´w|2ωp
?
2wqxwy´ρ|α`β|xz ´ wy´N

for every N ě 0. This gives

eRepz,wq|h1,αpa; t, z, wq|

À

ż

Cd

ωp
?
2w1qe

t2

2
|z´w1|2xw1y´2ρ|α|xtpz ´ w1qy´NeRepz`w´w1,w1q dλpw1q,
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that is

e´ 1
4

|z´w|2 |h1,αpa; t, z, wq|

À

ż

Cd

ωp
?
2w1qe

t2

2
|z´w1|2xw1y´2ρ|α|xtpz ´ w1qy´Ne´|w1´z2|2 dλpw1q

“

ż

Cd

ωp
?
2pz2 ` w1qqe

t2

2
|z1´w1|2xz2`w1y´2ρ|α|xtpz1´w1qy´Ne´|w1|2 dλpw1q

(3.7)

for every N ě 0, where z1 “ 1
2pz ´ wq and z2 “ 1

2pz ` wq.

If t P r0, 12 s, then the last estimate together with the moderateness of ω
give

e´|z1|2 |h1,αpa; t, z, wq| À ωp
?
2z2qxz2y´2ρ|α|

ż

Cd

e
1
8

|w1|2e
1
8

|z1´w1|2e´|w1|2 dλpw1q

À ωp
?
2z2qxz2y´2ρ|α|e

1
4

|z1|2
ż

Cd

e
1
4

|w1|2e´ 7
8

|w1|2 dλpw1q

À ωp
?
2z2qxz2y´2ρ|α|e

1
2

|z1|2xz1y´N ,

for every N ě 0. The moderateness of ω again gives

|h1,αpa; t, z, wq| À e
1
2

|z´w|2ωp
?
2zqxz ` wy´2ρ|α|xz ´ wy´N (3.8)

or every N ě 0, when t P r0, 12 s.

Suppose instead t P r12 , 1s. Then xtpz1 ´ w1qy´N — xz1 ´ w1y´N . Moder-
ateness again gives

ωp
?
2pz2 ` w1qqxz2 ` w1y´2ρ|α|xz1 ´ w1y´N0 À ωp

?
2zqxzy´2ρ|α|

for some N0. Hence (3.7) gives

e´|z1|2ωp
?
2zq´1xzy2ρ|α||h1,αpa; t, z, wq|

À

ż

Cd

e
1
2

|z1´w1|2xz1 ´ w1y´Ne´|w1|2 dλpw1q

“ e|z1|2
ż

Cd

xz1 ´ w1y´Ne´ 1
2

|w1`z1|2 dλpw1q — e|z1|2xz1y´N

for every N ě 0. This gives (3.8) also for t P r12 , 1s.
The result now follows by using (3.8) when estimating |c1,αpz, wq| in (3.3)

and evaluating the arising integral. □

The next result, analogous to Proposition 3.3, will be useful in Section 5
when we discuss hypoellipticity for Shubin operators in the Wick setting.

Proposition 3.5. Let ρ ě 0, ω P PSh,ρpCdq, ωt “ ω ¨ x ¨ y´2ρt when t ě 0,

a P uApωq

Sh,ρpC2dq, a “ S´1
V a and N ě 0 be an integer. Then

apx,´ξq “
ÿ

|α|ďN

p´1q|α|pBαz B
α
waqp2´ 1

2 z, 2´ 1
2 zq

2|α|α!
` cN pzq, z “ x` iξ, (3.9)
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where

Bαz B
α
wa P uApω|α|q

Sh,ρ pC2dq and px, ξq ÞÑ cN px´ iξq P Sh
pωN`1q
ρ pR2dq. (3.10)

Proof. The first claim in (3.10) Bαz B
α
wa P uApω|α|q

Sh,ρ pC2dq is an immediate con-

sequence of the definition (2.13) and Peetre’s inequality.
By Taylor expanding the right-hand side of (2.10) we obtain

apx,´ξq “
ÿ

|α`β|ď2N`1

p2{πqdIα,β ¨ pBαz B
β
waqp2´ 1

2 z, 2´ 1
2 zq

α!β!
` cN pzq, (3.11)

where

Iα,β “

ż

Cd

p´wqαwβe´2|w|2 dλpwq,

and

cN pzq “ 2pN ` 1q
ÿ

|α`β|“2N`2

p´1q|β|

α!β!

ż 1

0
p1 ´ θq2N`1Hα,βpz, θq dθ (3.12)

with

Hα,βpz, θq “

ˆ

2

π

˙d ż

Cd

pBαz B
β
waq

ˆ

z
?
2

´ θw,
z

?
2

` θw

˙

wαwβe´2|w|2 dλpwq.

(3.13)
The orthonormality of teαuαPNd Ď A2pCdq (cf. (1.21)) yields Iα,β “ 0 if

α ‰ β and

Iα,α “

ż

Cd

p´wqαwαe´2|w|2 dλpwq

“ p´1q|α|2´d´|α|α!πd
ż

Cd

|eαpwq|2 dµpwq

“ p´1q|α|2´d´|α|α!πd.

Comparing (3.11) with (3.9) we see that the sum in the latter formula has
been proven correct.

It remains to study the remainder cN . We need to prove that cpx, ξq “

cN px´ iξq belongs to Sh
pωN`1q
ρ pR2dq. If

hα,βpz, w, θq “ pBαz B
β
waq

ˆ

z
?
2

´ θw,
z

?
2

` θw

˙

wαwβe´2|w|2

then

Hα,βpz, θq “

ˆ

2

π

˙d ż

Cd

hα,βpz, w, θq dλpwq.

First we notice that

Bαz B
β
z cN pzq “ 2pN ` 1q

ÿ

|γ`δ|“2N`2

p´1q|δ|

γ!δ!

ż 1

0
p1 ´ θq2N`1Bαz B

β
zHγ,δpz, θq dθ,

Bαz B
β
zHγ,δpz, θq “

ˆ

2

π

˙d ż

Cd

Bαz B
β
zhγ,δpz, w, θq dλpwq
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and

Bαz B
β
zhγ,δpz, w, θq “ 2´

|α`β|

2 pBα`γ
z B

β`δ
z aq

ˆ

z
?
2

´ θw,
z

?
2

` θw

˙

wγwδe´2|w|2 .

From the definition (2.13) this implies that for every M ě 0 and some
M0 ě 0 we have

|Bαz B
β
zhγ,δpz, w, θq|

À e´2p1´θ2q|w|2ωpz ´
?
2θwqxzy´ρp|α`β|`2N`2qxθwy´M´M0 |w|2N`2

À e´2p1´θq|w|2ωpzqxzy´ρp|α`β|`2N`2qxθwy´M |w|2N`2.

This gives

|Bαz B
β
zHγ,δpz, θq| À ωpzqxzy´ρp|α`β|`2N`2q ¨ Jpθq,

where

Jpθq “

ż

Cd

e´2p1´θq|w|2xθwy´M |w|2N`2 dλpwq.

For θ P r0, 12 s we get

Jpθq “

ż

Cd

e´|w|2 |w|2N`2 dλpwq,

which is finite and independent of θ. If instead θ P r12 , 1s, and choosing
M ą 2d` 2N ` 2, then

Jpθq ď

ż

Cd

xθwy´M |w|2N`2 dλpwq,

which is again finite and independent of θ.
A combination of these estimates give

|Bαz B
β
zHγ,δpz, θq| À ωpzqxzy´ρp|α`β|`2N`2q,

which in turn implies

|Bαz B
β
z cN pzq| À ωpzqxzy´ρp|α`β|`2N`2q.

This means that c P Sh
pωN`1q
ρ pR2dq. □

3.2. Continuity of anti-Wick operators with exponentially bounded
symbols. Next we consider anti-Wick symbols that satisfy exponential bounds
of the form

|a0pwq| À e´r0|w|
1
s , (3.14)

or

|a0pwq| À er0|w|
1
s . (3.15)

In order to formulate our results we introduce new spaces of entire func-
tions. Let s ą 1

2 , t0, r ą 0, and let As,t0,rpC
dq be the Banach space of all

F P ApCdq such that

}F }As,t0,r
” }F ¨ e´t0| ¨ |2`r| ¨ |

1
s

}L8 ă 8.
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Set

A0,ps,t0qpC
dq “

č

rą0

As,t0,rpC
dq and A1

ps,t0qpC
dq “

č

rą0

As,t0,´rpC
dq

equipped with the projective limit topology. Likewise we set

Aps,t0qpC
dq “

ď

rą0

As,t0,rpC
dq and A1

0,ps,t0qpC
dq “

ď

rą0

As,t0,´rpC
dq

equipped with the inductive limit topology.
Referring to Section 1.3 it is clear that the spacesA0,ps,t0qpC

dq, Aps,t0qpC
dq,

A1
ps,t0q

pCdq and A1
0,ps,t0q

pCdq are generalizations of

A0,ps, 1
2

qpC
dq “ VdpΣspR

dqq “ A0,spC
dq

Aps, 1
2

qpC
dq “ VdpSspRdqq “ AspC

dq

A1

ps, 1
2

q
pCdq “ VdpS 1

spR
dqq “ A1

spC
dq

and

A1

0,ps, 1
2

q
pCdq “ VdpΣ1

spR
dqq “ A1

0,spC
dq,

respectively.

Proposition 3.6. Let a0 P L8
locpC

dq, s ą 1
2 , 0 ă t0 ă 1 and

t1 “
1

4p1 ´ t0q
. (3.16)

Then the following is true:

(1) if (3.15) holds for some r0 ą 0 then

OpawV pa0q :A0,ps,t0qpC
dq Ñ A0,ps,t1qpC

dq,

OpawV pa0q :A1
0,ps,t0qpC

dq Ñ A1
0,ps,t1qpC

dq

(3.17)

are continuous;

(2) if (3.15) holds for every r0 ą 0 then

OpawV pa0q :Aps,t0qpC
dq Ñ Aps,t1qpC

dq,

OpawV pa0q :A1
ps,t0qpC

dq Ñ A1
ps,t1qpC

dq

(3.18)

are continuous.

Proof. We only prove that the first map in (3.17) is continuous. The other
continuity assertions follow by similar arguments and are left for the reader.

37



Let r2 ą 0 be given, r1 ą r0 and F P A0,ps,t0qpC
dq. We have for z P Cd

|OpawV pa0qF pzq|e´t1|z|2`r2|z|
1
s

À e´t1|z|2`r2|z|
1
s

ż

Cd

|a0pwq| |F pwq| eRepz,wq´|w|2 dλpwq

À e´t1|z|2`r2|z|
1
s

}F }As,t0,r1

ż

Cd

er0|w|
1
s `t0|w|2´r1|w|

1
s `Repz,wq´|w|2 dλpwq

“ er2|z|
1
s

}F }As,t0,r1

ż

Cd

e´pr1´r0q|w|
1
s ´p1´t0q|w|2`Repz,wq´t1|z|2 dλpwq

“ er2|z|
1
s

}F }As,t0,r1

ż

Cd

e
´pr1´r0q|w|

1
s ´

ˇ

ˇ

ˇ

ˇ

?
1´t0w´ 1

2
?

1´t0
z

ˇ

ˇ

ˇ

ˇ

2

dλpwq

“ er2|z|
1
s

}F }As,t0,r1

ż

Cd

e
´pr1´r0q

ˇ

ˇ

ˇ
w` 1

2p1´t0q
z

ˇ

ˇ

ˇ

1
s

´p1´t0q|w|
2

dλpwq

ď epr2´c1pr1´r0qq|z|
1
s

}F }As,t0,r1

ż

Cd

ec2pr1´r0q|w|
1
s ´p1´t0q|w|

2

dλpwq

— }F }As,t0,r1
epr2´c1pr1´r0qq|z|

1
s

for some constants c1, c2 ą 0. By choosing r1 sufficiently large we get

}OpawV pa0qF }As,t1,r2
À }F }As,t0,r1

.

The estimates and (1.40) imply OpawV pa0qF P ApCdq. □

Remark 3.7. Note that (3.16) implies t1 ą 1
4 and t0 ď t1 with equality if

and only if t0 “ 1
2 . Hence A0,ps,t0qpC

dq Ď A0,ps,t1qpC
dq, and similarly for the

other spaces.

The particular case t0 “ 1
2 gives

Corollary 3.8. Let a0 P L8
locpC

dq and s ą 1
2 . If (3.15) holds for some

(every) r0 ą 0 then OpawV pa0q is continuous on A0,spC
dq (on AspC

dq).

With a technique similar to the proof of Proposition 3.6 one shows the
following result.

Proposition 3.9. Let a0 P L8
locpC

dq, s ą 1
2 , 0 ă t0 ă 1 and suppose (3.16)

holds. Then the following is true:

(1) if (3.14) holds for all r0 ą 0 then

OpawV pa0q : A1
0,ps,t0qpC

dq Ñ A0,ps,t1qpC
dq (3.19)

is continuous;

(2) if (3.14) holds for some r0 ą 0 then

OpawV pa0q : A1
ps,t0qpC

dq Ñ Aps,t1qpC
dq (3.20)

is continuous.

Again the particular case t0 “ 1
2 gives
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Corollary 3.10. Let a0 P L8
locpC

dq and s ą 1
2 . Then the following is true:

(1) if (3.14) holds for all r0 ą 0 then

OpawV pa0q : A1
0,spC

dq Ñ A0,spC
dq

is continuous;
(2) if (3.14) holds for some r0 ą 0 then

OpawV pa0q : A1
spC

dq Ñ AspC
dq

is continuous.

3.3. Estimates of Wick symbols of anti-Wick operators with expo-
nentially bounded symbols. For anti-Wick operators in [13, Eq. (2.94)]
we have the following result.

Theorem 3.11. If a0 P L8
locpC

dq satisfies

|a0pwq| À er|w|2 , w P Cd, for some r ă 1, (3.21)

then a0 P L0,ApCdq and (1.38)1 holds for some aaw0 P uApC2dq with

|aaw0 pz, wq| À er0|z`w|2´Repz,wq, r0 “ 4´1p1 ´ rq´1.

Proof. The claim a0 P L0,ApCdq is an immediate consequence of the assump-
tion (3.21) and the definition (1.39). The integral in (1.38)1 can be estimated
as

ˇ

ˇ

ˇ

ˇ

ż

Cd

a0pw1qe´pz´w1,w´w1q dλpw1q

ˇ

ˇ

ˇ

ˇ

À

ż

Cd

er|w1|2
ˇ

ˇ

ˇ
e´pz´w1,w´w1q

ˇ

ˇ

ˇ
dλpw1q

“ e´Repz,wq

ż

Cd

e´p1´rq|w1|2eRepz`w,w1q dλpw1q

“ e
1

4p1´rq
|z`w|2´Repz,wq

ż

Cd

e´p1´rq|w1´pz`wq{p2p1´rqq|2 dλpw1q

— er0|z`w|2´Repz,wq. □

Remark 3.12. The condition on aaw0 in Theorem 3.11 implies that aaw0 be-
longs to uA1

0, 1
2

pC2dq (see [30]). In particular it follows that OpawV pa0q “

OpVpaaw0 q is continuous from A0, 1
2
pCdq to A1

0, 1
2

pCdq (cf. [30, Theorem 2.10]

and Remark 1.2).

The following result concerns exponentially moderate weight functions.

Theorem 3.13. Let a0 P L0,ApCdq, aaw0 P uApC2dq is given by (1.38)1 and

ω P PEpCdq. If

|a0pwq| À ωp2wq, w P Cd,

then

|aaw0 pz, wq| À e
1
4

|z´w|2ωpz ` wq, z, w P Cd.
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Proof. Let r ě 0 be chosen such that ωpz`wq À ωpzqer|w|, z, w P Cd. From
(1.38)1 we get

|aaw0 pz, wq| À

ż

Cd

ωp2w1qe´Repz´w1,w´w1q dλpw1q

“ e´Repz,wq

ż

Cd

ωp2w1qeRepz`w,w1q´|w1|2 dλpw1q

“ e´Repz,wq` 1
4

|z`w|2
ż

Cd

ωp2w1qe´|w1´pz`wq{2|2 dλpw1q

“ e
1
4

|z´w|2
ż

Cd

ωp2w1 ` z ` wqe´|w1|2 dλpw1q

À e
1
4

|z´w|2ωpz ` wq

ż

Cd

e2r|w1|´|w1|2 dλpw1q — e
1
4

|z´w|2ωpz ` wq. □

The anti-Wick operators in Propositions 3.6 and 3.9 can also be described
as Wick operators with symbols that have smaller growth bounds than
uAspC

2dq and its dual. The following result extends Theorem 3.13 for weights

of the form ec|z|
1
s with c P R from s ě 1 to s ě 1

2 .

Theorem 3.14. Let s ě 1
2 (s ą 1

2), a0 P L0,ApCdq and let aaw0 be given by
(1.38)1. Then the following is true:

(1) if (3.14) holds for some (every) r0 ą 0 then

|aaw0 pz, wq| À e
1
4

|z´w|2´r|z`w|
1
s (3.22)

for some (every) r ą 0;

(2) if (3.15) holds for every (some) r0 ą 0 then

|aaw0 pz, wq| À e
1
4

|z´w|2`r|z`w|
1
s (3.23)

for every (some) r ą 0.

Remark 3.15. Thanks to the parameter 1
4 in the factor e

1
4

|z´w|2 rather than
1
2 , the estimates (3.23) are much stronger than the estimates (2.19) with
σ “ s. Corollary 3.8 can thus be seen as a consequence of Theorems 2.6 and
3.14, and [10, Definition 2.4, and Theorems 4.10 and 4.11].

Remark 3.16. The estimates for aaw0 in Theorem 3.14 may seem weak since

the dominating factor e
1
4

|z´w|2 is present in (3.22) and (3.23) but absent in
the original estimates (3.14) and (3.15) for a0.

On the other hand, Wick symbols for operators with continuity involving
the spaces AspC

dq and A1
spC

dq, as well as A0,spC
dq and A1

0,spC
dq, usually

satisfies conditions of the form

|apz, wq| À e
1
2

|z´w|2˘r1|z`w|
1
2 ˘|z´w|

1
s

in view of [30, Theorems 2.9 and 2.10], and Theorem 2.6. Here the domi-

nating factor is e
1
2

|z´w|2 , which is larger than the factor e
1
4

|z´w|2 in Theorem
3.14.
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This factor has a large impact on functions on Rd that are transformed
back by the inverse of the Bargmann transform. For instance, if ε ą 0,
then the Bargmann image of any non-trivial Gelfand-Shilov space and its
distribution space contain

tF P ApCdq ; |F pzq| À ep 1
2

´εq|z|2 u

and are contained in

tF P ApCdq ; |F pzq| À ep 1
2

`εq|z|2 u.

The same holds true for the Bargmann images of S pRdq and S 1pRdq.

Theorem 3.14 is a straight-forward consequence of the following two propo-
sitions, which give more details on the relationships between r and r0 in
(3.14), (3.15), (3.22) and (3.23).

Proposition 3.17. Let s ě 1
2 and let r0, r P p0,8q be such that

r0 P p0,8q and r ă
r0

4p1 ` r0q
, when s “ 1

2 , (3.24)

and

r0 P p0,8q and r ď 2´ 1
s r0, when s P p12 ,8q, (3.25)

with strict inequality in (3.25) when s ă 1. If a0 P L8
locpC

dq satisfies (3.14)

and aaw0 P uApC2dq is given by (1.38)1, then (3.22) holds.

Proposition 3.18. Let s ě 1
2 and r0, r P p0,8q be such that

r0 P p0, 1q and r ą
r0

4p1 ´ r0q
, when s “ 1

2 , (3.24)1

and

r0 P p0,8q and r ě 2´ 1
s r0, when s P p12 ,8q, (3.25)1

with strict inequality in (3.25)1 when s ă 1. If a0 P L8
locpC

dq satisfies (3.15)

and aaw0 P uApC2dq is given by (1.38)1, then (3.23) holds.

For the proofs of Propositions 3.17 and 3.18 we use the inequalities

|z|θ ´ |w|θ ď |z ` w|θ ď |z|θ ` |w|θ, θ P p0, 1s, z, w P Cd (3.26)

|z ` w|θ ď p1 ` εq|z|θ ` p1 ` ε´1q|w|θ, θ P r1, 2s, z, w P Cd, (3.27)

and

|z ` w|θ ě p1 ´ εq|z|θ ` p1 ´ ε´1q|w|θ, θ P r1, 2s, z, w P Cd, (3.28)

for every ε ą 0.

Proof of Proposition 3.17. Suppose that a0 satisfies (3.14) for some r0 ą 0.
First we consider the case s ą 1

2 . If s ă 1 let ε1 ą 0 and ε2 “ ε´1
1 , and if
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s ě 1 let ε1 “ 0 and ε2 “ 2, and let c “ 2´ 1
s . Then (1.38)1, (3.26) and (3.28)

give

|aaw0 pz, wq| À

ż

Cd

e´r0|w1|
1
s e´Repz´w1,w´w1q dλpw1q

“ e
1
4

|z`w|2´Repz,wq

ż

Cd

e´r0|w1|
1
s ´|w1´pz`wq{2|2 dλpw1q

“ e
1
4

|z´w|2
ż

Cd

e´r0|w1`pz`wq{2|
1
s ´|w1|2 dλpw1q

ď e
1
4

|z´w|2e´cr0p1´ε1q|z`w|
1
s

ż

Cd

e´r0p1´ε2q|w1|
1
s ´|w1|2 dλpw1q

— e
1
4

|z´w|2e´cr0p1´ε1q|z`w|
1
s . (3.29)

If s ě 1, then ε1 “ 0 and ε2 “ 2, and the result follows from (3.29). If
instead s ă 1, then the result follows by choosing ε1 ą 0 small enough, and
we have proved the result in the case s ą 1

2 .

Next suppose that s “ 1
2 . For ε1 ą 0 and ε2 “ ε´1

1 (3.29) gives

|aaw0 pz, wq| À e
1
4

|z´w|2e´ 1
4
r0p1´ε1q|z`w|2

ż

Cd

e´pr0p1´ε2q`1q|w1|2 dλpw1q.

For any ε2 ă 1`r0
r0

it follows that the integral converges, and

1 ´ ε1 “ 1 ´ ε´1
2 ă p1 ` r0q´1.

By the assumptions there is δ ą 0 such that

r “
r0p1 ´ δq

4p1 ` r0q
.

Since

1 ´ ε1 Õ p1 ` r0q´1 as ε2 Õ
1 ` r0
r0

we may pick 0 ă ε2 ă 1`r0
r0

such that

1 ´ δ

1 ` r0
ď 1 ´ ε1

and the result follows in the case s “ 1
2 . □

Proof of Proposition 3.18. First we consider the case when s ą 1
2 . Suppose

that a0 satisfies (3.15) for some r0 ą 0, let ε1, ε2 ě 0 be such that ε1 “ ε2 “ 0

when s ě 1 and ε1ε2 “ 1 when s ă 1, and let c “ 2´ 1
s . Then (1.38)1, (3.26)
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and (3.27) give

|aaw0 pz, wq| À

ż

Cd

er0|w1|
1
s e´Repz´w1,w´w1q dλpw1q

“ e
1
4

|z`w|2´Repz,wq

ż

Cd

er0|w1|
1
s ´|w1´pz`wq{2|2 dλpw1q

“ e
1
4

|z´w|2
ż

Cd

er0|w1`pz`wq{2|
1
s ´|w1|2 dλpw1q

ď e
1
4

|z´w|2ecr0p1`ε1q|z`w|
1
s

ż

Cd

er0p1`ε2q|w1|
1
s ´|w1|2 dλpw1q

— e
1
4

|z´w|2ecr0p1`ε1q|z`w|
1
s . (3.30)

If s ě 1, then ε1 “ ε2 “ 0, and the result follows from (3.30). If instead
s ă 1, then the result follows by choosing ε1 ą 0 small enough, and the
result follows in the case s ą 1

2 .

Next suppose that s “ 1
2 . Then (3.30) gives

|aaw0 pz, wq| À e
1
4

|z´w|2e
1
4
r0p1`ε1q|z`w|2

ż

Cd

er0p1`ε2q|w1|2´|w1|2 dλpw1q.

For any ε2 ă 1´r0
r0

the integral converges, and

1 ` ε1 “ 1 ` ε´1
2 ą p1 ´ r0q´1.

Since

1 ` ε1 Œ p1 ´ r0q´1 as ε2 Õ
1 ´ r0
r0

,

the result follows in the case s “ 1
2 by letting r “

r0p1`ε1q

4 . □

4. A lower bound for Wick operators

In this section we apply the asymptotic expansions in the previous section
for Shubin-Wick operators to deduce a sharp G̊arding inequality.

First we have the following result. We put uASh,ρpC2dq “ uApωq

Sh,ρpC2dq when
ω “ 1.

Proposition 4.1. Let ω P PpCdq, p P r1,8s, a P uASh,0pC2dq and a0 P

L8pCdq. Then OpVpaq and OpawV pa0q are both continuous on Ap
pωq

pCdq.

The claimed continuity of OpVpaq is a straight-forward consequence of
[30, Theorem 3.3], in combination with Proposition 2.1 and the relationship

Kpz, wq “ apz, wqepz,wq between the kernel and symbol of a Wick operator
(cf. (0.1)). In order to be self-contained we include an alternative and
shorter proof.

Proof. Let F P Ap
pωq

pCdq, Gpzq “ e´ 1
2

|z|2 |F pzqωp
?
2zq|,

H1pzq “ e´ 1
2

|z|2 |OpVpaqF pzqωp
?
2zq| and

H2pzq “ e´ 1
2

|z|2 |OpawV pa0qF pzqωp
?
2zq|.
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We have

ωp
?
2zq À ωp

?
2wqxz ´ wyN0

for some N0 ě 0. By Theorem 2.2 and (2.6) we get

H1pzq À e´ 1
2

|z|2
ż

Cd

e
1
2

|z´w|2xz ´ wy´N |F pwqωp
?
2zq|eRepz,wq´|w|2 dλpwq

“ px ¨ yN0´N ˚Gqpzq,

for every N ě 0. By choosing N ą 2d ` N0 and using Young’s inequality
we get }H1}Lp À }G}Lp which means }OpVpaqF }Ap

pωq
À }F }Ap

pωq
, and the

asserted continuity for OpVpaq follows.
In the same way we get

H2pzq À }a0}L8e´ 1
2

|z|2
ż

Cd

|F pwqωp
?
2wq|xz ´ wyN0eRepz,wq´|w|2 dλpwq

— ppx ¨ yN0e´ 1
2

| ¨ |2q ˚Gqpzq,

and another application of Young’s inequality shows that }H2}Lp
pωq

À }G}Lp
pωq

that is }OpawV pa0qF }Ap
pωq

À }F }Ap
pωq

. □

We have finally a version of the sharp G̊arding inequality.

Theorem 4.2. Let ρ ą 0, ωpzq “ xzy2ρ and let a P uApωq

Sh,ρpC2dq be such that

apw,wq ě ´C0 for all w P Cd, for some constant C0 ě 0. Then

Re
`

pOpVpaqF, F qA2

˘

ě ´C}F }2A2 , F P AS pCdq (4.1)

and

ˇ

ˇ Im
`

pOpVpaqF, F qA2

˘
ˇ

ˇ ď C}F }2A2 , F P AS pCdq (4.2)

for some constant C ě 0.

Proof. Let b0pwq “ apw,wq. Then OpVpaq “ OpawV pb0q ` OpVpa1q for
some a1 P uASh,ρpC2dq Ď uASh,0pC2dq, in view of Proposition 3.3. Since

ΠAF “ F for F P A2pCdq (cf. (1.22)), the assumption b0 ě ´C0 im-
plies pOpawV pb0qF, F qA2 ě ´C0}F }2A2 for every F P AS pCdq. The operator

OpVpa1q is continuous on A2pCdq in view of Proposition 4.1. A combination
of these facts gives the result. □

5. Ellipticity and hypoellipticity for Shubin and Wick
operators

In this section we show that the Bargmann assignment SV maps the
sets of hypoelliptic symbols and weakly elliptic symbols in the Shubin class

Sh
pωq
ρ pR2dq bijectively into the sets of hypoelliptic symbols and weakly el-

liptic Wick symbols in uApωq

Sh,ρpC2dq, respectively. Then we explain some con-

sequences for polynomial symbols.
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5.1. Transition of weakly elliptic symbols. For symbols in uApωq

Sh,ρpC2dq

we define ellipticity and weak ellipticity as follows.

Definition 5.1. Let ρ ą 0, ω P PSh,ρpCdq and a P uApωq

Sh,ρpC2dq. Then a is

called weakly elliptic of order ρ0 ě 0, or ρ0-weakly elliptic, if for some R ą 0

|apz, zq| Á xzy´ρ0ωp
?
2zq, |z| ě R.

If a is weakly elliptic of order 0 then a is called elliptic.

Theorem 5.2. Let ω P PpR2dq » PpCdq, ρ ą 0 and a P Sh
pωq
ρ pR2dq. Then

the following is true:

(1) if z “ x` iξ, x, ξ P Rd, then

|SVapz, zq ´ ap
?
2x,´

?
2 ξq| À ωp

?
2 zqxzy´2ρ; (5.1)

(2) if ρ0 P r0, 2ρq, then SV is bijective from the set of weakly elliptic

symbols in Sh
pωq
ρ pR2dq of order ρ0 to the set of weakly elliptic symbols

in uA
pωq

Sh,ρpC2dq of order ρ0.

As a consequence of (2) in the previous theorem we get the following.

Corollary 5.3. Let a be as in Theorem 5.2. Then the following is true:

(1) if ρ0 P r0, 2ρq, then a P Sh
pωq
ρ pR2dq is weakly elliptic of order ρ0, if

and only if SVa P uA
pωq

Sh,ρpC2dq is weakly elliptic of order ρ0;

(2) a P Sh
pωq
ρ pR2dq is elliptic if and only if SVa P uA

pωq

Sh,ρpC2dq is elliptic.

For the proof of Theorem 5.2 we need the following proposition, related
to Propositions 3.1 and 3.5.

Proposition 5.4. Let N ě 0 be an integer, ρ ě 0, ω P PSh,ρpR2dq »

PSh,ρpCdq, ωkpx, ξq “ ωpx, ξqxpx, ξqy´2ρk and a P Sh
pωq
ρ pR2dq. Then for

some cN P Sh
pωN`1q
ρ pR2dq and constants tcαu|α|ď2N with c0 “ 1, it holds

SVap2´ 1
2 z, 2´ 1

2 zq “

N
ÿ

k“0

akpx,´ξq ` cN px,´ξq, ak “
ÿ

|α|“2k

cαBαa. (5.2)

Proof. Let ψ be as in Proposition 2.3. If we put z “ w, then (2.9) and
Taylor’s formula give

p2πqdSVap2´ 1
2 z, 2´ 1

2 zq “ p2πq
3d
2 Tψapx,´ξ, 0, 0q

“ 2d
ĳ

R2d

apt` x, τ ´ ξqe´p|t|2`|τ |2q dtdτ “

2N`1
ÿ

k“0

bkpx,´ξq ` cpx,´ξq (5.3)

where

bkpx, ξq “
2d

k!

ĳ

R2d

xapkqpx, ξq; pt, τq, . . . , pt, τqye´p|t|2`|τ |2q dtdτ
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and

cpx, ξq “
1

p2N ` 1q!

ż 1

0
p1 ´ θq2N`1cθpx, ξq dθ,

with

cθpx, ξq “ 2d
ĳ

R2d

xap2N`2qpx` θt, ξ ` θτq; pt, τq, . . . , pt, τqye´p|t|2`|τ |2q dtdτ.

If k is odd, then

pt, τq ÞÑ xapkqpx, ξq; pt, τq, . . . , pt, τqye´p|t|2`|τ |2q

is odd which implies that the integral is zero. Hence bkpx, ξq “ 0 when k is
odd. For k “ 0 we observe that the integral for b0 becomes

2d
ĳ

R2d

e´p|t|2`|τ |2q dtdτ “ p2πqd,

and it follows from these relations that

p2πq´d
2N`1
ÿ

k“0

bk “

N
ÿ

k“0

ak,

with ak as in (5.2) and c0 “ 1. Hence the result follows if we prove that the

last term in (5.3) satisfies cN P Sh
pωN`1q
ρ pR2dq.

For θ P r0, 1s and α P N2d we have

|Bαcθpx, ξq| À

ĳ

R2d

|Bαap2N`2qpx` θt, ξ ` θτq|xpt, τqy2N`2e´p|t|2`|τ |2q dtdτ

À

ĳ

R2d

ωpx`θt, ξ`θτqxpx`θt, ξ`θτqy´p2N`2`|α|qρxpt, τqy2N`2e´p|t|2`|τ |2q dtdτ

À ωpx, ξqxpx, ξqy´p2N`2`|α|qρ

ĳ

R2d

xpt, τqyN0e´p|t|2`|τ |2q dtdτ

— ωpx, ξqxpx, ξqy´p2N`2`|α|qρ

for some N0 ą 0. In the last inequality we have used the fact that ω is
polynomially moderate.

This implies

|Bαcpx, ξq| À

ż 1

0
|Bαcθpx, ξq| dθ À ωpx, ξqxpx, ξqy´p2N`2`|α|qρ,

which shows that c, cN P Sh
pωN`1q
ρ pR2dq. □

Proof of Theorem 5.2. Let ψ be as in Proposition 2.3 and N “ 0 in Propo-
sition 5.4. Then

|SVap2´ 1
2 z, 2´ 1

2 zq ´ apx,´ξq| À ωpx,´ξqxpx,´ξqy´2ρ, (5.1)1

and (1) follows.
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Suppose ρ0 P r0, 2ρq. Then it follows from the latter inequality that

|SVapz, zq| Á xzy´ρ0ωp
?
2 zq, |z| ě R

for some R ą 0, if and only if

|apx, ξq| Á xpx, ξqy´ρ0ωpx, ξq, |z| ě R

for some R ą 0, and the asserted equivalence in (2) follows. □

5.2. Shubin hypoellipticity in a Wick setting.

Definition 5.5. Let ρ ą 0, ρ0 ě 0, ω P PSh,ρpCdq and a P uApωq

Sh,ρpC2dq.

Then a is called hypoelliptic (in the Shubin-Wick sense in uApωq

Sh,ρpC2dq) of

order ρ0, if there is an R ą 0 such that for every α, β P Nd, it holds

|Bαz B
β
wapz, zq| À |apz, zq|xzy´ρ|α`β|, |z| ě R. (5.4)

and

|apz, zq| Á ω0p
?
2zqxzy´ρ0 , |z| ě R. (5.5)

According to Definition 1.11, if ω, ρ and ρ0 are as in the definition, then

a P Sh
pωq
ρ pR2dq is hypoelliptic of order ρ0 means that there is an R ą 0 such

that for every α P N2d, it holds

|Bαapx, ξq| À |apx, ξq|xpx, ξqy´ρ|α|, |px, ξq| ě R. (5.6)

and

|apx, ξq| Á ωpx, ξqxpx, ξqy´ρ0 , |px, ξq| ě R. (5.7)

Similar to Theorem 5.2 we have the following.

Theorem 5.6. Let ρ ą 0, ρ0 ě 0, ω P PSh,ρpR2dq » PSh,ρpCdq, a P

Sh
pωq
ρ pR2dq and a “ SVa. Then a is hypoelliptic of order ρ0 in Sh

pωq
ρ pR2dq,

if and only if a is hypoelliptic of order ρ0 in uApωq

Sh,ρpC2dq.

Proof. Suppose that a P Sh
pωq
ρ pR2dq is hypoelliptic of order ρ0, and choose

N ě 0 such that 2Nρ ą ρ0. Suppose that R ą 0 is chosen such that (5.6)
and (5.7) are fulfilled. Then Proposition 5.4 gives for z “ x`iξ with |z| ě R
where R ą 0 is sufficiently large

|ap2´ 1
2 z, 2´ 1

2 zq| Á |apx,´ξq| ´

N
ÿ

k“1

ÿ

|α|“2k

p|Bαapx,´ξq| ` |cpx,´ξq|q

Á |apx,´ξq| ´ |apx,´ξq|xpx,´ξqy´2ρ ´ ωpx,´ξqxpx,´ξqy´ρp2N`2q

Á |apx,´ξq| ´ |apx,´ξq|xpx,´ξqy´2ρ

Á |apx,´ξq| Á ωpx,´ξqxpx,´ξqy´ρ0 ,

and (5.5) follows. In particular it follows from the previous estimates that

|ap2´ 1
2 z, 2´ 1

2 zq| Á |apx,´ξq|, |z| ě R. (5.8)
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For fixed α, β P Nd, let Ωk be the set of all pγ, δq P N2d ˆ N2d such that
|γ| “ 2k and |δ| “ |α ` β|. By Proposition 5.4 and (5.8) we have for some
R large enough and |z| ě R,

|pBαz B
β
waqp2´ 1

2 z, 2´ 1
2 zq| À

N
ÿ

k“0

ÿ

pγ,δqPΩk

p|Bγ`δapx,´ξq| ` |Bδcpx,´ξq|q

À

N
ÿ

k“0

ÿ

pγ,δqPΩk

`

|apx,´ξq|xpx,´ξqy´ρp2k`|α`β|q`ωpx,´ξqxpx,´ξqy´ρp2N`|α`β|q
˘

— |apx,´ξq|xpx,´ξqy´ρ|α`β| ` ωpx,´ξqxpx,´ξqy´ρp2N`|α`β|q

À |apx,´ξq|xpx,´ξqy´ρ|α`β| ` |apx,´ξq|xpx,´ξqyρ0´ρp2N`|α`β|q

— |apx,´ξq|xpx,´ξqy´ρ|α`β| À |ap2´ 1
2 z, 2´ 1

2 zq|xpx,´ξqy´ρ|α`β|,

which implies that (5.4) holds.

This shows that a is hypoelliptic of order ρ0 in uApωq

Sh,ρpC2dq when a is

hypoelliptic of order ρ0 in Sh
pωq
ρ pR2dq.

Suppose instead that a is hypoelliptic of order ρ0 in uApωq

Sh,ρpC2dq. By

using Proposition 3.5, (3.12) and (3.13) instead of Proposition 5.4, similar
computations as in the first part of the proof shows that (5.6) and (5.7) hold

for some R ą 0. This shows that a is hypoelliptic of order ρ0 in Sh
pωq
ρ pR2dq

when a is hypoelliptic of order ρ0 in uApωq

Sh,ρpC2dq, and the result follows. □

5.3. Ellipticity in the case of polynomial symbols. Next we discuss
ellipticity for polynomial symbols, i. e.

apx, ξq “
ÿ

|α`β|ďN

cpα, βqxαξβ, x, ξ P Rd, (5.9)

and

apz, wq “
ÿ

|α`β|ďN

cpα, βqzαwβ, z, w P Cd. (5.10)

The corresponding principal symbols are

appx, ξq “
ÿ

|α`β|“N

cpα, βqxαξβ, x, ξ P Rd, (5.11)

and

appz, wq “
ÿ

|α`β|“N

cpα, βqzαwβ, z, w P Cd, (5.12)

respectively.
First we relate polynomials on R2d to Shubin classes.

Proposition 5.7. Let a and ap be as in (5.9) and (5.11) for some cpα, βq P

C, α, β P Nd and N ě 0, and let ωN px, ξq “ xpx, ξqyN , x, ξ P Rd. Then the
following is true:
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(1) a P Sh
pωN q

1 pR2dq;

(2) a is elliptic with respect to ωN , if and only if appx, ξq ‰ 0 when
px, ξq ‰ 0.

The result can be considered folklore. In order to be self-contained we
present the arguments.

Proof. First we prove (1). Let t “ maxp|x1|, . . . , |xd|, |ξ1|, . . . , |ξd|q when
x “ px1, . . . , xdq P Rd and ξ “ pξ1, . . . , ξdq P Rd. Then

|apx, ξq| ď
ÿ

|α`β|ďN0

|cpα, βq|t|α`β| À 1 ` tN ď xpx, ξqyN ,

which gives the desired bound for |apx, ξq|. Since the degree of a polynomial
is lowered by at least one for every differentiation we get

|Bαapx, ξq| À xpx, ξqyN´|α|

for every α P N2d, which gives (1).
In order to prove (2) we let ap be as in (5.11). First suppose that appx, ξq ‰

0 when px, ξq ‰ p0, 0q, and let g be the continuous function on R2dz0 given
by

gpx, ξq “
|appx, ξq|

|px, ξq|N
, px, ξq ‰ p0, 0q.

Since g is continuous and positive, and the sphere

S2d´1 “ t px, ξq P R2d ; |x|2 ` |ξ|2 “ 1 u

is compact, it follows that there are constants c1, c2 ą 0 such that

c1 ď gpx, ξq ď c2, px, ξq P S2d´1.

By homogeneity it now follows

c1|px, ξq|N ď |appx, ξq| ď c2|px, ξq|N , x, ξ P Rd.

Hence, if

bpx, ξq “ apx, ξq ´ appx, ξq “
ÿ

|α`β|ďN´1

cpα, βqxαξβ,

then the first part of the proof implies that for some constants C ą 0 and
R ą 0 we have

|apx, ξq| ě |appx, ξq| ´ |bpx, ξq| ě c1|px, ξq|N0 ´ Cxpx, ξqyN´1 Á xpx, ξqyN

when |px, ξq| ě R. Hence a is elliptic with respect to ωN0 .
Suppose instead appx0, ξ0q “ 0 for some px0, ξ0q ‰ p0, 0q. For any px, ξq “

ptx0, tξ0q we have

|apx, ξq| ď |appx, ξq| ` |bpx, ξq| “ |tNappx0, ξ0q| ` |bpx, ξq|

“ |bpx, ξq| À xpx, ξqyN´1,

giving that |apx, ξq| Á xpx, ξqyN , |px, ξq| ě R, cannot hold for any R ą 0. □

By Theorems 5.2, 5.6 and Proposition 5.7 we get the following. The
details are left for the reader.
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Proposition 5.8. Let a and ap be as in (5.10) and (5.12) for some cpα, βq P

C, α, β P Nd and N ě 0, and let ωN px, ξq “ xpx, ξqyN , x, ξ P Rd. Then the
following is true:

(1) a P ApωN q

Sh,1 pC2dq;

(2) a is elliptic in ApωN q

Sh,1 pC2dq if and only if appz, zq ‰ 0 when z ‰ 0.

Remark 5.9. Let a, ap, a and ap be as in (5.9)–(5.12). Then it follows from
Propositions 5.7 and Proposition 5.8 that a is elliptic, if and only if ap is
elliptic, and that a is elliptic, if and only if ap is elliptic.

We have now the following.

Theorem 5.10. Let a P Sh
pωN q

1 pR2dq and ap be as in (5.9) and (5.11) for

some cpα, βq P C, α, β P Nd and N ě 0. Then the following is true:

(1) the principal symbol appz, wq of SVa is given by

appz, wq “ 2´N
2

ÿ

|α`β|“N

cpα, βqi|β|pz ` wqαpz ´ wqβ; (5.13)

(2) a is elliptic in Sh
pωN q

1 pR2dq if and only if ap is elliptic in ApωN q

Sh,1 pC2dq;

(3) appx, ξq ą 0 for every px, ξq ‰ p0, 0q, if and only if appz, zq ą 0 for
every z ‰ 0.

Proof. Let z “ x ` iξ, x, ξ P Rd, i. e. x “ 1
2pz ` zq and ξ “ 1

2ipz ´ zq. By
Theorem 5.2 we get

app2
´ 1

2 z, 2´ 1
2 zq “ appx,´ξq. (5.14)

This implies

appz, zq “ 2
N
2

ÿ

|α`β|“N

cpα, βqxαp´ξqβ

“ 2
N
2

ÿ

|α`β|“N

cpα, βq2´|α|pz ` zqαp2iq´|β|p´pz ´ zqqβ,

which gives

appz, zq “ 2´N
2

ÿ

|α`β|“N

cpα, βqi|β|pz ` zqαpz ´ zqβ. (5.13)1

The formula (5.13) now follows from (5.13)1 and analytic continuation, using
the fact that appz, wq is analytic in z and conjugate analytic in w.

The assertion (2) follows by a combination of Corollary 5.3, Propositions
5.7 and 5.8, and the assertion (3) is a direct consequence of (5.14). □

6. A necessary condition for polynomially bounded Wick
symbols

In [13, Section 2.7] Folland shows that polynomial symbols for pseudo-
differential operators correspond to polynomial Wick and anti-Wick sym-
bols. Thus partial differential operators with polynomial coefficients corre-
sponds to polynomial Wick symbols.
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Here we show that a Wick symbol that is polynomially bounded must be
a polynomial. This gives a characterization of Wick symbols corresponding
to polynomial symbols for pseudo-differential operators.

Cauchy’s integral formula implies that an entire function which is poly-
nomially bounded must be a polynomial:

Proposition 6.1. Let F P ApCdq have Maclaurin series

F pzq “
ÿ

αPNd

cpαqeαpzq, z P Cd.

Suppose that for some j P t1, . . . , du, C ą 0, N ě 0, and an open neigh-
bourhood I Ď C of the origin we have

|F pzq| ď Cxzjy
N , zj P C,

provided zk P I, k P t1, . . . , duztju. Then cpαq “ 0 when αj ą N .

Proof. By interchanging the variables, we may assume that j “ d. Let R ě 1
and ε ą 0 be chosen such that

Dε ” t z0 P C ; |z0| ď ε u Ď I.

Take α P Nd such that αd ą N , let β “ pα1 ` 1, . . . , αd ` 1q P Nd and
γε Ď C be the boundary circle of Dε. Then Cauchy’s integral formula gives

|cpαq|

α!
1
2

“

ˇ

ˇ

ˇ

ˇ

BαF p0q

α!

ˇ

ˇ

ˇ

ˇ

“ p2πq´d

ˇ

ˇ

ˇ

ˇ

ˇ

ż

¨ ¨ ¨

ż

γd´1
ε

˜

ż

|zd|“R

F pzq

zβ
dzd

¸

dz1 ¨ ¨ ¨ dzd´1

ˇ

ˇ

ˇ

ˇ

ˇ

ď p2πq´d

ż

¨ ¨ ¨

ż

γd´1
ε

˜

ż

|zd|“R

|F pzq|

|zβ|
|dzd|

¸

|dz1| ¨ ¨ ¨ |dzd´1|

À R´αdxRyNε´pα1`¨¨¨`αd´1q Ñ 0

as R Ñ 8. □

Corollary 6.2. Let a P uApC2dq and suppose

|apz, wq| À xpz, wqyN (6.1)

for some N ě 0. Then a is a polynomial in z P Cd and w P Cd of degree at
most N .

Proof. By Proposition 6.1 it follows that a is a polynomial of degree at most
2dN . We need to prove that the degree is at most N . In order to do this
we may assume that a has degree at least one.

For some integer M ě 1 we have

apz, wq “ aM pz, wq ` aM´1pz, wq,

where

aM pz, wq “
ÿ

|α`β|“M

cpα, βqzαwβ

is non-trivial and

aM´1pz, wq “
ÿ

|α`β|ďM´1

cpα, βqzαwβ.
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Since aM is non-trivial, there are z0, w0 P Cd such that |z0|2 ` |w0|2 “ 1 and
|aM pz0, w0q| “ c0 ‰ 0. By homogeneity we get

|aM ptz0, tw0q| “ c0|t|M , t P R.

In the same way we get

|aM´1ptz0, tw0q| ď Cp1 ` |t|qM´1, t P R

for some constant C which is independent of t.
Suppose contrary to the assumption that M ą N . For t P R with |t| ě 1

we have
ˇ

ˇ

ˇ

ˇ

aptz0, tw0q

xptz0, tw0qyN

ˇ

ˇ

ˇ

ˇ

Á |t|´N p|aM ptz0, tw0q| ´ |aM´1ptz0, tw0q|q

ě |t|´N
`

c0|t|M ´ Cp1 ` |t|qM´1
˘

Ñ 8 as |t| Ñ 8.

This contradicts (6.1), and the hence our assumption that M ą N must be
false. □

Appendix

In this appendix we present some tables on weights, operators, spaces of
entire functions on Cd and Wick symbol classes.

In the first two tables we review weight classes, transforms, and operators.
Recall

xxy “ p1 ` |x|2q
1
2 , dµpwq “ π´de´|w|2 dλpwq,

where dλpwq is the Lebesgue measure on Cd, and let ´dy “ p2πq´ddy.

Weight class Features Eq. ref.

PEpRd
q ω P L8

locpRd;R`q, ωpx ` yq À ωpxqer|y| (1.5)

PpRd
q ω P L8

locpRd;R`q, ωpx ` yq À ωpxqxyy
N (1.1)1

PSh,ρpRd
q ω P PpRd

q ^ |B
αωpxq| À ωpxqxxy

´ρ|α| (1.46)

Table 1: Weight classes.

Operator Notation Features Eq. ref.

Modul. STFT T f ÞÑ
ş

fpy ` xqϕpyqe´ixy,ξy ´dy (1.10)1

Bargm. transf. Vd f ÞÑ π´ d
4

ş

e´ 1
2

pxz,zy`|y|2q`21{2xz,yyfpyq dy (1.19)

Semi-conj. op. Θ Kpz, wq ÞÑ Kpz, wq (1.29)

Pseudo-diff. op. OpApaq f ÞÑ
ť

apx ´ Apx ´ yq, ξqfpyqeixx´y,ξy ´dydξ (1.31)

Wick op. OpVpaq F ÞÑ
ş

Cd apz, wqF pwqepz,wq dµpwq (1.36)

Anti-Wick op. Opaw
V paq F ÞÑ

ş

Cd apwqF pwqepz,wq dµpwq (1.40)

Bargm. assignm. SV OpVpSVaq “ Vd ˝ OpApaq ˝ V˚
d , A “ 1

2
I (1.41)

Table 2: Operators and transforms.
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The next two tables deal with properties of the Bargmann images of
Gelfand-Shilov function spaces, the Schwartz space, and their distribution
spaces. Recall

|z|s,σ “ |Re z|
1
s ` | Im z|

1
σ , z P Cd.

Function Bargmann |Vdfpzq| À Eq. ref.
space image

Sσ
s pRd

q, s, σ ě 1
2

Aσ
s pCd

q e
|z|2

2
´r|z|s,σ , Dr ą 0 (1.6), (1.24), (1.25)

Σσ
s pRd

q, s, σ ą 1
2

Aσ
0,spCd

q e
|z|2

2
´r|z|s,σ ,@r ą 0 (1.6), (1.24), (1.25)

S pRd
q AS pCd

q e
|z|2

2 xzy
´N ,@N ě 0 (1.6), (1.24), (1.25)

Table 3: The Bargmann images of test function spaces.

Distribution Bargmann |Vdfpzq| À Eq. ref.
space image

pSσ
s q

1
pRd

q, s, σ ě 1
2

pAσ
s q

1
pCd

q e
|z|2

2
`r|z|s,σ ,@r ą 0 (1.6), (1.24), (1.25)

pΣσ
s q

1
pRd

q, s, σ ą 1
2

pAσ
0,sq

1
pCd

q e
|z|2

2
`r|z|s,σ , Dr ą 0 (1.6), (1.24), (1.25)

S 1
pRd

q A1
S pCd

q e
|z|2

2 xzy
N , DN ě 0 (1.6), (1.24), (1.25)

Table 4: The Bargmann images of distribution spaces.

For the links between the Shubin class Sh
pωq
ρ pR2dq (see (1.47)), and the

symbol classes Γσ,s;0s,σ pR2dq, Γσ,ss,σ;0pR2dq and Γσ,ss,σpR2dq (see Definition 1.8) we
have the following table. Here

Bαa “ Bα1
x B

α3
ξ Bα2

y Bα4
η a,

z “ x` iξ, w “ y ` iη, α “ pα1, α2, α3, α4q P N2d,

when a P uApC2dq (see (2.15)), and ωrpzq “ ωpzqxzy´r when ω PP PSh,ρpCdq

and r P R.

Wick class |B
αapz, wq| À Ref.

SVpSh
pωq

0 pR2d
qq e

1
2

|z´w|2ωp
?
2 zqxz ´ wy

´N
@N ě 0, α “ 0 Thm. 2.2

SVpSh
pωq
ρ pR2d

qq e
1
2

|z´w|2ωρ|α|p
?
2 zqxz ´ wy

´N , α P N4d Thm. 2.5

SVpΓσ,s
s,σ;0pR2d

qq e
1
2

|z´w|2`r1|z`w|s,σ´r2|z´w|s,σ , Dr2 ą 0,@r1 ą 0, α “ 0 Thm. 2.6

SVpΓσ,s;0
s,σ pR2d

qq e
1
2

|z´w|2`r1|z`w|s,σ´r2|z´w|s,σ , Dr1 ą 0,@r2 ą 0, α “ 0 Thm. 2.6

SVpΓσ,s
s,σpR2d

qq e
1
2

|z´w|2`r1|z`w|s,σ´r2|z´w|s,σ , Dr1, r2 ą 0, α “ 0 Thm. 2.6

Table 5: Estimates for Wick symbol classes
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In Table 5, recall that uApωq

Sh,ρ “ SVpSh
pωq
ρ pR2dqq. For SVpΓσ,ss,σ;0pR2dqq it

is assumed that s, σ ě 1
2 , while for SVpΓσ,s;0s,σ pR2dqq and SVpΓσ,ss,σpR2dqq it is

assumed that s, σ ą 1
2 .
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[15] K. Gröchenig, Foundations of time-frequency analysis, Birkhäuser, Boston, 2001.
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