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PSEUDO-DIFFERENTIAL OPERATORS WITH ISOTROPIC
SYMBOLS, WICK AND ANTI-WICK OPERATORS, AND
HYPOELLIPTICITY

NENAD TEOFANOV, JOACHIM TOFT, AND PATRIK WAHLBERG

ABSTRACT. We study the link between Wdos and Wick operators via
the Bargmann transform. We deduce a formula for the symbol of the
Wick operator in terms of the short-time Fourier transform of the Weyl
symbol. This gives characterizations of Wick symbols of Wdos of Shubin
type and of infinite order, and results on composition. We prove a
series expansion of Wick operators in anti-Wick operators which leads
to a sharp Garding inequality and transition of hypoellipticity between
Wick and and Shubin symbols. Finally we show continuity results for
anti-Wick operators, and estimates for the Wick symbols of anti-Wick
operators.

0. INTRODUCTION

In the paper we investigate conjugation with the Bargmann transfor-
mation of pseudo-differential and Toeplitz operators on R? with isotropic
symbols, and we explore relations between Wick and anti-Wick operators.
Particularly we consider Shubin operators and operators of infinite order.
This gives rise to analytic type pseudo-differential operators on C? that are
called Wick or Berezin operators because of the fundamental contributions
by F. Berezin [6,7], which in turns goes back to some ideas in [33] by G. C.
Wick.

Let a be a suitable locally bounded function on C?? such that z — a(z, w)
is analytic, z,w € C% Then the Wick operator Opg(a) with symbol a is the
operator which takes an appropriate entire function F' on C¢ into the entire
function

Opy(a)F(2) = 74 ch oz, w) F(w)e=) d\(w), (0.1)

where d) is the Lebesgue measure and (-, -) is the scalar product on C.
(See [19] and Section 1 for notation.) Wick operators appear naturally in
several problems in analysis and its applications, e. g. in quantum mechanics.
For example, the harmonic oscillator, the creation and annihilation operators
take the simple forms

F {2,V )F +cF, Fw zFF and F 0,F,
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respectively, for some constant ¢, in the Wick formulation (see [4]).

An advantage of the Wick calculus compared to corresponding operators
on functions and distributions defined on R? is that in almost all situations,
the involved functions are entire, which admits the use of the powerful tech-
niques of complex analysis. (A more general approach is studied in [30],
where the Wick calculus is formulated in terms of spaces of formal power
series expansions instead of spaces of entire functions.) The possible lack
of analyticity of a(z,w) in (0.1) with respect to the w variable is removable
in the sense that for any Wick symbol a, there is a unique ag such that
(z,w) — ap(z,w) is entire, and Opgy(a) = Opgy(ap). Consequently it is no
restriction to assume that a(z,w) in (0.1) is analytic in z and conjugate
analytic in w, which we do in the introduction henceforth. Any linear and
continuous operator from the Schwartz space, a Fourier invariant Gelfand-
Shilov space or Pilipovi¢ space, to the corresponding distribution spaces,
respectively, is in a unique way transformed into a Wick operator by the
Bargmann transform (see [30]).

Several operators in quantum mechanics are so-called Shubin operators,
i. e. pseudo-differential operators

Op(a)f(a) = (2m)F | ala.6)

~

e de,  fe S (RY,

where the symbol a belongs to the Shubin class Shgw)(Rw), the set of all
a e C°(R2%) such that

0200a(x, )] < w(x,&)(1+ |z + )PPl o, 8e N

Here w is a suitable weight function on R?? and 0 < p < 1. Partial differen-
tial operators with polynomial coefficients, e.g. the creation and annihila-
tion operators or the harmonic oscillator mentioned above, are examples of
Shubin operators. In Section 2 we prove that the Bargmann image of Shubin
operators with symbols in Shf,w) (R2%) is the set of all Wick operators in (0.1)

such that a belongs to ﬁé“;l)p(cm). This means that C%¢ 5 (z,w) — a(z, W)
is an entire function that satisfies

8 a(zw)| < e Pu(VaR) Gz 4wy NG —wy N (0.2)

for every N = 0.

An important subclass of Wick operators are the anti-Wick operators,
which are Wick operators where the symbol a(z,w) does not depend on z.
That is, for an appropriate measurable function ag on C¢, its anti-Wick
operator is given by

Op¥¥ (ag)F(z) = n¢ ch ao(w) F(w)e* ) dX\(w). (0.1

Again F is a suitable entire function on C¢. The anti-Wick operators can
also be described as the Bargmann image of Toeplitz operators on R%. (See
e.g. [22,27,31] for the definition of Toeplitz operators.)

A feature of Toeplitz operators and anti-Wick operators, useful for energy
estimates in quantum mechanics and time-frequency analysis, is that non-
negative symbols give rise to non-negative operators. (Cf. e.g. [20-22].)
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An operator T' = Opgy(a) with a satisfying (0.2) for every N > 0, is called
positive (non-negative), if there is a constant C' > 0 (C' = 0) such that

(TF,F)p2 = C|F|22,

for every analytic polynomial F' on C?, where (-, - )42 is the scalar product
induced by the Hilbert norm

L (T dA(z))é .

The implication from non-negative symbols to non-negative operators is
not relevant for Wick operators in (0.1) when a(z,w) is not constant with
respect to z, since the analyticity of the map z — a(z,w) implies that a(z, w)
is non-real almost everywhere. For such symbols it is instead natural to check
whether positivity of the map w — a(w,w) leads to positive operators (see
e.g. [6,7,13]). By choosing

d=1, a(z,w)=1-22w+2°w> and F(z) =z
we obtain
a(w,w) = (1 — |w?? + |w/* >0 but (Opy(a)F,F)s =—1<0.
Consequently Opg;(a) may fail to be a non-negative operator even though
a(w,w) is positive.

On the other hand, for certain conditions on a, we deduce in Section 3

a weaker positivity result for Wick operators, which is equivalent to the

sharp Garding inequality in isotropic pseudo-differential calculus on R¢ (see
Theorem 18.6.7 and the proof of Theorem 18.6.8 in [19]). That is for a €

/Téoﬁ)’p(CQd) with w(z) = (z)* and p > 0 we prove
Re(Opgy(a)F, F) 4> = —C|F [ (0.3)
and
ITm(Opy(a)F, F) 42| < C||F|%2, when a(w,w) =0 (0.4)

(cf. Theorem 4.2). In particular we obtain energy estimates also for Wick
operators with symbols that are non-negative on the diagonal.

The latter result is obtained by approximating Wick operators by anti-
Wick operators, using for the Wick operator (0.1) with a € jgﬁ) p(C2d) the
remarkable identity

(_1)‘04 aw a %
Opy(a) = Z o Opy' (ba)+Opy(cn) where by (w) = 050,a(w, w),
la|<N )

(0.5)
for some ¢y € Ag‘;ﬁ) (C?%) with wy(z) = w(2){z)~2VP. Here we again assume
p > 0. The decay conditions on b, and cy are, respectively,

|05 00ba(w)] < w(v2w)(wy PRFF o By e N7, (0.6)
and

8w (= w)] < 2l P (VEz) () 2V 4wy PG —wy N, (0.7)
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Consequently, several Wick operators can essentially be expressed as linear
combinations of anti-Wick operators. The expansion (0.5) is deduced in
Section 3 using Taylor expansion and integration by parts, see Proposition
3.1 and Remark 3.2.

The conditions on b, are the same as the conditions on a (0.2), restricted
to the diagonal z = w, and with improved decay. On the diagonal, the
growth term ezlz—wl? disappears, which dominates in (0.2) when |z—w| 2 |#|
or |z —w| 2 |w|. The right-hand side of (0.6) becomes as large as possible
when a = § = v = 0, that is by is the dominating term in the sum (0.5).

The conditions on ¢y are the same as the estimates (0.2) again with
improved decay due to the factor (z)=2Vr.

For polynomial symbols, (0.5) agrees with the integral formula [6, Theo-
rem 3] due to Berezin which carry over Wick operators into anti-Wick opera-
tors. For the general case, (0.5) is analogous to the approximation technique
of pseudo-differential operators on R in terms of Toeplitz operators given
in [27, Theorem 24.1] and its proof, by Shubin.

The anti-Wick symbols in (0.5) be(w) = 020,a(w, w) extend to have the
property that 6?53a(z,w) is entire in z and conjugate entire in w. Note
that restriction to the diagonal also appears in the positivity condition (0.3)
on Wick symbols.

The sharp Garding inequality (0.3) is reached by using the fact that
Opgy’ (bo) is non-negative, and that if T" is either Opy'(ba) or Opg(cn) for
a # 0, then |[TF| 42 < |F| 42 when F € A(CY) is a polynomial.

In Section 5 we deduce links concerning ellipticity, hypoellipticity (in Shu-
bin’s sense) and weak ellipticity between Shubin and Wick symbols. The
notion of hypoelliptic symbol resembles hypoelliptic symbols in Shubin’s
sense (see [27]). More specifically, we say that the symbol a € Sh;w)(RZd) is
hypoelliptic of order py = 0, whenever there is an R > 0 such that

la(z, )] 2 w(z, E){(w, )y and  [0%a(z,E)| < la(z,&)[((x, &)

when |(z,¢)| = R.
A linear operator T from .7/ (R%) to .7’/ (RY) is called globally hypoelliptic
if
Tf=g fe 'R, ge SRY) = [eI (R

(See e.g. [12].) It can be proved that a pseudo-differential operator with
hypoelliptic symbol in Shubin’s sense is globally hypoelliptic as operator
(see e.g. [27, Corollary 25.1]).

We show, similarly to our investigations of the sharp Garding inequality
and for expansion (0.5), that ellipticity, hypoellipticity and to some degree
weak ellipticity for the Shubin symbol a can be characterized by certain
conditions for the corresponding Wick symbol a(z,w) along the diagonal
z = w. For example, let a be a polynomial on R? with principal symbol ap,
and let a(z,w) be a polynomial in z,w € C? with principal part a,. Then
a is elliptic means that a,(x,&) # 0 when (z,&) # (0,0), and a is elliptic
means that a,(z,2) # 0 when z # 0. For such a we prove

a is elliptic < a is elliptic,
4



when a(z, w) is the Wick symbol corresponding to a (which must be a poly-
nomial in z and ).

Our investigations include the Bargmann transform of certain operators
of infinite order, i.e. pseudo-differential operators with ultra-differentiable
symbols that are permitted to grow faster than polynomially at infinity
together with their derivatives. Particularly we consider Wick operators
of infinite order, i.e. the Bargmann images Opg(a) of operators Op(a)
of infinite order in [1], and characterize their images under the Bargmann
transform (see Theorem 2.6). Then we deduce in Subsections 3.2 and 3.3
continuity results for anti-Wick operators which holds for the symbols b, in
(0.5) when Opgy(a) is the Bargmann image of an operator of infinite order.

In fact, in Subsection 3.2 we show that Opg}'(b,) possess several other
continuity properties than what is valid for Opg;(a) in the expansion (0.5)
(see Propositions 3.6 and 3.9). In Subsection 3.3 we deduce estimates of
the Wick symbol 62" to the anti-Wick operator Opg}’(by), i.e. the unique
element b2V e A(C??) such that Opg(b2Y) = Opay(bs). We show that
usually, b2V satisfies stronger conditions than a when Opg(a) is a Wick
operator of infinite order (see Theorems 3.11, 3.14 and 3.13).

The paper is organized as follows. In Section 1 we set the stage by provid-
ing necessary background notions and fixing the notation. It contains useful
properties for weight functions, Gelfand-Shilov spaces, the Bargmann trans-
form, pseudo-differential operators, Wick and anti-Wick operators. There-
after we characterize in Section 2 Shubin operators and operators of infinite
order in terms of appropriate classes of Wick operators on the Bargmann
side. These considerations are based on a formula for the Wick symbol ex-
pressed in terms of a short-time Fourier transform of the Weyl symbol, and
admits characterization of the Wick symbols corresponding to Shubin Weyl
symbols and symbols for operators of infinite order (see Proposition 2.3).

In Section 2 we also study composition and show for example that the
well-known closure under composition of Shubin operators and operators of
infinite orders have simple and natural proofs on the Wick symbol side.

In Section 3 we deduce series expansions of Wick operators in terms of
anti-Wick operators, and between Wick symbols and symbols to correspond-
ing Shubin operators. We also consider anti-Wick operators, and show con-
tinuity results for them. We show that the upper bounds for the Wick
symbols of anti-Wick operators are stricter than for general Wick symbols.

In Section 4 we discuss lower bounds for Wick operators and deduce the
sharp Garding’s inequality. Section 5 concerns ellipticity, hypoellipticity and
weak ellipticity.

Finally we observe in Section 6 that a polynomial bound of a Wick sym-
bol implies that the symbol is a polynomial. For pseudo-differential op-
erators this corresponds to partial differential operators with polynomial
coefficients. This gives a characterization of such operators as those having
polynomially bounded Wick symbols.



Various types of function spaces, distribution spaces, their Bargmann
images, and symbol classes for pseudo-differential, Wick and anti-Wick op-
erators appear frequently in the paper. For the reader’s convenience we
summarize several of these items in an Appendix.
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1. PRELIMINARIES

In this section we recall some facts on function and distribution spaces
as well as on pseudo-differential operators, Wick and anti-Wick operators.
Subsection 1.1 concerns weight functions and Subsection 1.2 treats Gelfand-
Shilov spaces. In Subsection 1.3 we introduce the Bargmann transform and
topological spaces of entire functions on C¢, and in Subsection 1.4 we recall
the definitions and some facts on pseudo-differential operators on R¢ as
well as Wick and anti-Wick operators on C%. Subsection 1.5 defines certain
symbol classes for pseudo-differential operators on R¢.

1.1. Weight functions. A weight on R is a positive function w € L (R%)

loc

such that 1/w € L® (R?). The weight w is called moderate if there is a

loc
positive locally bounded function v such that

w(z +vy) < Cw(z)v(y), =,yeR (1.1)

for some constant C' > 1. If w and v are weights such that (1.1) holds, then
w is also called v-moderate. The set of all moderate weights on R% is denoted
by Z5(R%). The set 2(R?) consists of weights that are v-moderate for a
polynomially bounded weight, that is a weight of the form v(z) = (z)* where
{ry=(1+ |m|2)% and s > 0. The bracket notation is also used for complex
arguments as (z) = (1 + |z|2)% when z € C% In particular, w € Z(R%), if
and only if

w(z +y) < Cw(z)y)", z,yeRY, (1.1)
for some r > 0. If s € R then x — (x)* belongs to Z(R%), due to Peetre’s
inequality [26, Lemma 2.1]

Is|
r+y)’ < (%) <x>3<y>|s| z,y € RY, seR. (1.2)

The weight v is called submultiplicative if it is even and (1.1) holds for
w =v. If (1.1) holds and v is submultiplicative then

o) Sw(z+y) s w(@)v(y), L3)

v(z+y) Sv(@)v(y) and v(z) =v(-z), z,yeR™L

The notation A(f) < B(0), 0 € §2, means that there is a constant ¢ > 0 such
that A(0) < ¢B(0) for all 6 € Q.
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If w is a moderate weight then by [31] there is a submultiplicative weight
v such that (1.1) and (1.3) hold. If v is submultiplicative then

1guv(z) s el (1.4)
for some constant r > 0 (cf. [16]). In particular, if w is moderate, then
wet+y) Sw@)e™ and e gw@) ez yeRT (15)

for some r > 0. If not otherwise specified the symbol v always denote a
submultiplicative weight.

1.2. Gelfand-Shilov spaces. Let s,0 > 0. The Gelfand-Shilov space
S?(RY) (27(RY)) of Roumieu (Beurling) type consists of all f € C*(R?)
such that

_ 207 f ()]
HfHS;,L = Sup m (1.6)
is finite for some (every) h > 0. The supremum refers to all a, 3 € N¢
and z € R%. The seminorms | - || se, induce an inductive limit topology for

the space S7(R%) and a projective limit topology for £J(R¢). The latter
space is a Fréchet space under this topology. The space S?(RY) # {0}
(29(RY) # {0}), ifand only if s+ 0 > 1 (s+0 > 1 and (s,0) # (3,1)). We
write Ss(R%) = S¢(RY) and Z,(RY) = 23(RY).

The Gelfand-Shilov distribution spaces (S?)'(R?) and (X7)'(R?) are the
dual spaces of S7(R?) and £7(RY), respectively.

The embeddings

S7H(RY) — £2(RY) — 82(RY) — #(RY)
— Z'(RY) = (82)(R?) — (£22)(RY) — (S1)'(R),
s1+o1 =1, 51 <89, 01 <09, (1.7)

are dense. For topological spaces A and B, A — B means that the inclusion
A € B is continuous.

The spaces S and X, and their duals spaces, admit characterizations in
terms of coefficients with respect to expansions with respect to the Hermite
functions

_ =t pyleliglal g4 o8 por—lal? d
ho(z) =n"1(=1)“2%al)"2e 27 (0% ™), «ae N

The set of Hermite functions on R? is an orthonormal basis for L?(RY).
We use Ho(R?) to denote the space of finite linear combinations of Hermite
functions. Then Ho(R?) is dense in the Schwartz space .7 (R%), as well as in
S (Rd)7 with respect to its weak* topology. The same conclusion is true for
¥s(R?) when s > 3, S;(R?) when s >  and their distribution dual spaces
Y (RY) and Si(R?). An f in any of these spaces possess an expansion of
the form

f= Z c(f,)ha, c(f,a)=(f ha), aeN< (1.8)

aeNd
Here (-, -) denotes the unique extensions of the L? form, which is linear in
the first variable and conjugate linear in the second variable, from Hg(R%) x
7



Ho(RY) to SL(RY) x Ss(R?) or ¥ (R?) x ¥4(R%). We recall that (cf. [25,
Chapter V.3 ])

fesRY < |e(f,a) <) for every N >0,
1.9
fes'RY < |e(f,a) < ()N for some N > 0. 9

The topology on .#(R%) is equivalent to the Fréchet space topology defined
by the sequence space seminorms

SR s f > aMe(f,))?, N =0.
aeNd

For f € .#'(R%) the sum in (1.8) converges in the weak® topology.
The Hermite functions are eigenfunctions to the harmonic oscillator H =
Hy = |z|?> — A and to the Fourier transform .%, given by

i _d
2

Ff(&) = f(§) = (2)

when f e LY(R%). Here (-, -) denotes the scalar product on R?. In fact
Hghe = (2|a| + d)hg, o€ N9

The Fourier transform .# extends uniquely to homeomorphisms on .7’ (R%),
from (S7)'(R%) to (S2)(R?) and from (£7)(R%) to (¥2)(R?). It also
restricts to homeomorphisms on .7 (R%), from S7(RY) to S:(R?), from
¥7(R%) to ¥2(RY), and to a unitary operator on L*(R%). Similar facts hold
true when the Fourier transform is replaced by a partial Fourier transform.

Let ¢ € .7 (R%)\0 be fixed. We use the transform

Tof (2.6) = (2m) 5 0(1,600(- — )
- O (7 BT (110
= F((- + DO, EeRY
where f €.7/(R%) and ¢ € .7 (R)\0 (cf. [9]). If f, ¢ € .#(RY) then

Tof(2,€) = (2m) " 2el@© JRd F@)oly — 2)e ¥ dy

f(:c)e_i@”’£> de, &€ Rd,
Rd

(1.10)/
ot aie Oy, R

We notice that the short-time Fourier transform Vi f of f is given by

Vol (@,€) = e Ty f(2,), (1.11)
That is, Ty is a modulated short-time Fourier transform. Thus by [31, The-
orem 2.3] it follows that the definition of the map (f,¢) — T4f from
Z(RY) x .Z(RY) to .7 (R?) is uniquely extendable to a continuous map
from S’(R%) x S,(R%) to S.(R2%), and restricts to a continuous map from
Ss(RY) x Sy(R?) to Ss(R??). The same conclusion holds with X in place
of Ss, at each place.

The adjoint 7;* is given by

(T3 F,9)2mey = (F, T69) 12 (m2e)
8



for F e S/(R?!) and g € Ss(R?), and similarly with X4 or with . in place
of 8¢ at each occurrence. When F' is a polynomially bounded measurable
function we write

TP = @n) 4 [[ Fa ooy - o s, (112
R2d
where the integral is defined weakly so that (7} F, g) 2(ra) = (F, T39) L2 (r24)

for g € #(R%). The identity (1.12) is called Moyal’s formula.
We have

(TioTo)f = (W, 0)f,  feSLRY, ¢, v eS(RY, (1.13)

and similarly with 3 or with .% in place of Ss at each occurrence.
Two important features of 7 which distinguish it from the short-time
Fourier transform are the differential identities

BTof(2,€) = Ty f)(@,€),  aeN (1.14)

and

D{Tyf(x,8) = T f(2.6),  BeN®  ¢u(x) = (—2)’¢(z). (1.15)

By (1.11) it follows that characterizations of Gelfand-Shilov spaces and
their distribution spaces in terms of estimates of their short-time Fourier
transforms carry over to estimates on 74 in place of V. For example we
have the following (see e. g. [17,28] for the proof of (1) and [32] for the proof
of (2)). See also [11] for related results.

Proposition 1.1. Let 5,0 > 0, ¢ € ST(RY)\0 (¢ € ZI(RH\0) and let
fe (SO (RY) (f e (29)(RY)). Then the following is true:
(1) feSIRY) (f e XI(RY)) if and only if

1 1
| Tof(x, &) < e "= HE) g e e RY, (1.16)

for some (every) r > 0.
(2) fe(S)RY) (fe(22)(RT)) if and only if

1
I Tof (2,€)] < P2 e RY, (1.17)
for every (some) r > 0.

1.3. The Bargmann transform and spaces of analytic functions. If
Q2 < C%is open then A() consists of all (complex-valued) analytic functions
on ). Complex derivatives are denoted, with z = z + iy € €,

1 _ = 1 .
0. = 3 (O, —i0y,), 0z = 3 (Ox, +1i0y,)
for 1 < j < d, which admits the Cauchy-Riemann equations to be written
as 0, f =0,1<j<d
The Bargmann kernel is defined by

1
Q[d(Z,y) zwf%exp(—§(<z,z>+ |y\2)+21/2<2,y>), ZGCd, yERdv
9



where

d
oy = Y 2wy and (z,w) = (2,m)
j=1
when
z=(21,...,29) €C? and w= (wy,...,wy) € C

Sometimes (-, -) denotes the duality between a test function space and
its dual. The context precludes confusion between its double use. The

Bargmann transform Uy f of f € S /Q(Rd) is the entire function

Vaf(z) ={f,AUyq(z, -)), z€ ce. (1.18)

The right-hand side is a well defined element in A(CY), since y — Aq4(z,y)
belongs to Sl/Q(Rd) for z € C? fixed, and A4(-,y) is entire for all y € R%.
Let pe [1,0] and w e Zg(RY). Then wa)(Rd) consists of all f e L} (RY)

such that HfHL’(’ = |f - w|re is finite. If f e L’(’w) (RY), then

Vaf(z) = f

RAa(2,y) f(y) dy
R4

— i f exp ( — %(<272> +yl?) + 21/2<z,y>>f(y) dy, zeC% (1.19)
R

(Cf. [4,5,31,32].)
For p € (0,0], w e Z5(C?) and wy(z) = w(+/2%), let Al(’w)(Cd) be the set
of all e A(C?%) such that

d
|Flgp, =7 |F ezl P,
and set AP = A’(’w) when w = 1. It was proved by Bargmann [4] that
Uy : L*(RY) — A%(CY) (1.20)

is bijective and isometric. The space A%(C%) is the Hilbert space of entire
functions with scalar product

(F,G) 4o = Ld F()GE) dulz),  F,G e A3(CY,

where du(z) = 7% 11> dA(2) and dA(z) is the Lebesgue measure on C<.
The space A%(C?) is known as the Fock or Segal-Bargmann space in quan-
tum mechanics (see [13,18]).

In [4] it was proved that the Bargmann transform maps the Hermite

functions to monomials as
«

Viha = €aq, eq(z) = %, zeC? aeN< (1.21)
al2
The orthonormal basis {ha}aene € L2(R?) is thus mapped to the orthonor-
mal basis {eq}aene € A2(CY). Bargmann also proved that there is a repro-
ducing formula for A?(C?). Let II4 be the operator from L?(du) to A(CY),
given by
M4F(2) = J F(w)e®™) du(w), =zeC% (1.22)

Cd
10



Then T4 is the orthogonal projection from L2(du) to A%(C9) (cf. [4]).
When we discuss extensions and restrictions of the Bargmann transform
to Gelfand-Shilov spaces and their distribution spaces, we use

2ls0 = |Rez|s + |Imzlz,  zeCY (1.23)
and consider the seminorms
1Flag, = 1F-e 2 P e, |Flay, = F e 2 BT
and
[Fllasg, = |F el Bl Ry, = |2l Pl lor

when F € A(C?), r >0 and s,0 > 3. Then Ag,s(Cd) for s,0 > 3, Ay (C%)

and (A7)'(CY) for s, >  are the sets of all F € A(C?) such that

|Plagg, <0 [Flas, <o and [Fly, <o, (124

respectively, for every r > 0. The spaces are equipped with the projective
limit topology with respect to r > 0, defined by each class of seminorms,

respectively.
In the same way we let AZ(CY) for s,0 > 3, A, (C?) and (A ,)'(C?) for
s,0 > % be the sets of all F € A(C?) such that

1Flagg, <o |Fly,, <o and [Fly, <o, (1.25)
respectively, for some r > 0. Their topologies are the inductive limit topolo-

gies with respect to » > 0, defined by each class of seminorms, respectively.
We also set

Aos = Ajs and As = A;.
Then

Vg : SRY - Ayr(CH, By : SR - A,(CY,

Uy SSTRY - AZ(CY, By (TR - (A () w0z
and
Uy TR - ALCY, Vg (SR (A)(CY, w0 >

are homeomorphisms [32].

From these homeomorphisms, the fact that the map (1.20) is a homeo-
morphism and duality properties for Gelfand-Shilov spaces, it follows that
(-, )az on Aj;p(C%) x Aj;p(C?) is uniquely extendable to a continuous
sesqui-linear form on (AZ)'(C?) x A7(C%). The dual of AJ(C?) can be
identified with (AZ)"(C?) through this form. Similar facts hold for Af s in
place of A at each occurrence. (Cf. e.g. [31,32].)

Finally let A,,..(C%) and A,_.,(C?) for 7 > 0 be the Banach spaces which
consist of all Fe A(C?) such that

p— . . —_ . 2
[Py, = F-e Ve respectively |F|a,, ., =|F e
11



is finite, and let A, (C?) be the inductive limit of A,,..(C?) with respect
to r > 0. Also let Ay) (C?) and A oo (C?%) be the projective respectively

inductive limit topologies of Abw;T(Cd) with respect to r > 0.

It is evident that A, (C?) is densely embedded in AJ(CY) for every

s,0 = %, as well as in A&S(Cd) for every s,0 > 1. The form (-, )42 on

Ay, (C9) x A, (C?) is uniquely extendable to a continuous sesqui-linear form
on A(C?) x Ay, (C%) and the dual of Ay, (C?) can be identified with A(C?).
The Fréchet space topology of A(C?) can be defined by the seminorms

F — sup |F(z)], N=12....
|z|<N

(Cf. [32].)

Remark 1.2. The spaces A,, (C?) and A, (C?) are examples of Bargmann
images of special Pilipovi¢ spaces, a family of Fourier invariant topological
vector spaces which are smaller than any Fourier invariant Gelfand-Shilov
space, and which were introduced and investigated in [32]. For any o > 0,
the Bargmann image of the Pilipovié¢ spaces H, (RY) and Hop, (R%) are
given by

20

A, (CH={FeACY; |F(2)| 17" for some r > 0}

respectively

20
Ay, (CH = {F e A(CY; |F(2)] < "7 for every 1> 0}.

If o > 1, then the (strong) duals of A, (C%) and Ay, (C?) are given by
20

Al (CH ={FeAChH; |Fi)| <" for every r >0}

respectively

20
E),b(,(cd) ={Fe A(Cd); |F(2)] < "7 for some r > 0}

through a unique extension of the A? scalar product on A, (C?) x A, (C%).
In particular, if o tends to o0, it follows that some of these conditions tend
to

Aoy%(Cd) ={Fe A(Cd) V1 F(2)] < em#1” for every r > 0}
respectively
05, (Ch = {F e ACY; [F(2)| < e for some r > 0}.
Note that in [30,32], the set Ay, (C?) is denoted by AO,% (C9), and its dual
67% (C9) is denoted by Agé(cd)_

At many places it will be crucial to use the Gaussian window

o(z) = ﬂ_%e_%lxlz, zeRY, (1.26)
12



in the transform 7,. For this ¢ the relationship between the Bargmann
transform and 7y is

By =UgoTy, and Ugy'oBy=T,, (1.27)
where Uy is the linear, continuous and bijective operator on 2'(R?¢) ~
7'(C%), given by

UgF(z + i€) = (2m)2e2 (TP HEM @O p(/2 2, —\/26), 2,6 e RY, (1.28)
cf. [31] in combination with (1.11).
In analytic operator theory we need subspaces of
A(C) = { OK ; K € A(C*) } ,
where the semi-conjugation operator is

(OK)(z,w) = K(z,w), z,we CL (1.29)

If T is a linear and continuous operator from S; /Z(Rd) to S] /Q(Rd), then

there is a unique K € A(C?%) such that OK € A’1/2(ng) and Yy 0T oV, !

is given by

F(z)— o K(z,w)F(w) du(w). (1.30)

(See e.g. [30].) For these reasons we let

Aos(C¥), A (C*), Ay (C¥), A, (C*), A(CY) and A, (C*)
be the images of

Aos(C*), A (C™), AL (C™),  A(CH), A(C™) and A, (C*)

respectively, under the map ©. We also let AP(C??) and A, (C??) be the

images of AP(C?%) and A,, (C??), respectively, under the map ©. The topolo-

gies of the former spaces are inherited from the corresponding latter spaces.
The semi-conjugated Bargmann (SCB) transform is defined as

Yo,q = O o Yay.
All properties of the Bargmann transform carry over naturally to analogous

properties for the SCB transform.

1.4. Pseudo-differential operators. Let A be a real d x d matrix. The
pseudo-differential operator Op 4(a) with symbol a € SI/Q(RQd) is the linear

and continuous operator on S (R%) given by

Op(a)/(x) = (27) j 0@ — Az — y),€) f(y)e" VO dydg, xR

R2d

(1.31)
For a € S} /2(R2d) the pseudo-differential operator Op4(a) is defined as the

continuous operator from & j (R?) to 8] /2(Rd) with distribution kernel

Koaz,y) = (2m) 275 tale — A(x —y),x —y), @yeR%  (1.32)
13



where 3 F is the partial Fourier transform of F(z,y) € S /2(R2d) with

respect to the y variable. This definition makes sense since the mappings
Fo and F(x,y)— F(r,x—y) (1.33)

are homeomorphisms on S’

1 /2(R2d). The map a — K, 4 is hence a homeo-
morphism on S] /2 (R24).
If A and B are real d x d matrices and a € ] /2(R2d), then there is a unique

be S{/Q(de) such that Op4(a) = Opg(b), and that b can be obtained by

Opa(a) = Opp(b) = “APelrqg(y ¢) = BPeDop(z €)  (1.34)
(see [10,19]).

Remark 1.3. By Fourier’s inversion formula, (1.32) and the kernel theo-
rem [23, Theorem 2.2], [29, Theorem 2.5] for operators from Gelfand-Shilov
spaces to their duals, it follows that the map a — Op4(a) is bijective from
S] /2(R2d) to the set of all linear and continuous operators from S; /Z(Rd) to
S] /Q(RQd).

If A = 0then Opy(a) = Opy(a) = Op(a) = a(z, D) is the Kohn-Nirenberg
or standard representation. If A = %Id where I is the d x d identity matrix
then Opy(a) = Op“(a) is the Weyl quantization. In this paper we use
mainly the Weyl quantization and we put

Ky =Kqr, -

The Weyl product a#b of two Weyl symbols a,b € S; /2(R2d) is defined as
the product of symbols corresponding to operator composition. Thus

Op“(a#b) = Op*“(a) o Op*(b)

and the Weyl product can be extended to larger spaces as long as composi-
tion is well defined.

Next we recall the definition of Wick operators. Suppose that a € A(C??)
satisfies ,

w — a(z,w)evE e L) (1.35)

locally uniformly with respect to z € C¢ for every r > 0. Then the analytic

pseudo-differential operator, or Wick operator Opyg(a) with symbol a and
acting on F € A, (C%), is defined by

Opy(a)F(z) =J a(z, w)F(w)e®™) du(w), ze C% (1.36)
Cd

(Cf. e.g.[6,13,30-32].) The condition (1.35) and F' € A,, (C%) imply that the
integrand on the right-hand side of (1.36) is well defined. The locally uniform
condition (1.35) with respect to z € C¢ implies that Opy(a)F € A(C?).

In [30] several extensions and restrictions of Opy(a) are given. The follow-
ing result follows from [30, Theorems 2.7 and 2.8]. Here L£(A,, (C%), A(C%))
is the space of all linear and continuous operators from A, (C?) to A(CY).

Proposition 1.4. The map a — Opy(a) from A, (C*) to L(A,, (C?), A(C?))
is uniquely extendable to a bijective map from A(C??) to L(A,,(C?), A(C?)).
14



Let L4(C??) be the set of all a € LL (C?9) such that z — a(z,w) is entire
for almost every w € C?% and

a2
0%a(z,w) - erlwl=lvl
w > sup

aeNd h|o“a'

e L(CY (1.37)

for every h,r > 0 and z € CY. If a € A(C??) satisfies (1.35) then a € L4(C??)
as a consequence of Cauchy’s integral formula. Thus L4 (C?%) is a relaxation
of the former condition.

If a € L4(C??) then Opy(a) : Ay, (C?) — Al (C%) = A(C?) is continuous.
Hence the following result is a straight-forward consequence of Proposition
1.4 and the fact that ﬁ’bl(CQd) = A(C?%),

Proposition 1.5. Let a € Lo(C??). Then there is a unique ag € A(C??)
ZUZ; that Opy(a) = Opy(ao) as mappings from A, (C9) to A’bl(Cd). It
olds

Opg(a) = Opy(ao)
where ap(z,w) = ﬂdJ a(z, wy)e” FTULUT) gx (). (1.38)
Cd

Proof. The operator 114 defined in (1.22) is the orthogonal projection from
L?(dp) to A%(C?) which is uniquely extendable to a continuous map from

LoA(CY ={ape LL.(CY; w ao(zu)e”w'*'”““'2 e L}(CY) for every r > 0}

(1.39)
to A(C?) (see e.g. [31]). Hence, if F, G € A, (C%) and ay is given by (1.38)
then

(Opy(a)F, G) a2 = ((Opy(a) o ITA)F, G) 42

= (L, (ot et evetw duun) ) Py dut, G>A2

= <J ao(-,w)e("“’)F(w)d,u(w),G> — (Opy(ag)F, G) a2,
Ccd A2
and thus Opg(a) = Opg(ap) follows. The assertion now follows from Propo-
sition 1.4 and the fact that ap in the integral formula of (1.38) defines an
element in A(C2?). O

We will also consider anti- Wick operators [6,7,13] defined by

Opa¥ (ag)F(z) = j ) ap(w)F(w)e®) dp(w), ze C%, (1.40)
C
when ag € Lo 4(C?) and F belongs to Ag(C?), the space of analytic polyno-
mials on C%. Then ag € Ly 4(C?) if and only if a(z,w) = ag(w) belongs to
LA(C??), and then Opg (ag) = Opg(a). Consequently, all results for Wick
operators with symbols in L 4(C2%) hold for anti-Wick operators. In partic-
ular, if ag € Lo 4(C?), then OpdY (ag) : A, (C?) — A(C?) is continuous. We
15



denote the Wick symbol of the anti-Wick operator Opg*(ag) by ai"¥. Then
(1.38) takes the form

Opg'(ao) = Opy(ag”)
where af"(z,w) = W_dJ ag(wy)e”FmwBwTw) dx (). (1.38)’
Cd

Pseudo-differential operators on R may be transferred to Wick operators
on C? by means of the Bargmann transform.

Definition 1.6. Let a € S} ,(R*).

(1) the Bargmann assignment Sga of a is the unique element a € A(C?9)
which fulfills

Opy(a) =Vy00pY(a)oWV; < a= Sy (1.41)
(2) the Bargmann kernel assignment Kg o of a is the unique element

K € A(C*), which is the kernel of the map U, o Op®(a) o V% with
respect to the sesquilinear A2 form.

By the definitions we have
Ky oz, w) = e Sya(z, w). (1.42)
Example 1.7. The creation and annihilation operators
273 (x; — 0y,) and 273 (xj + 0y,
are transfered to the operators
F—zF and F — 0,F, (1.43)

by the Bargmann transform (see [4]). The Wick symbols of the operators
in (1.43) are z; and w;j, respectively [6,31]. By combining these identities
with the fact that the Weyl symbol of i_lax]. equals &; we get
_1 . _1 . _
Sw(272(z; —i&j)) =z,  Sw(272(z; +1i§))) = wj,
1 1 (1.44)
Sw(zj) =272(z; +w;)  and  Sg(§;) =27 2i(z; —w)).
We need to compare Ky’ and Ky 4. On the one hand we have for f,g e
S (RY)
(Op™(a)f, 9)r2me) = (Ko, 9 ® f)r2meay = (VoaKy', Va9 ® f) az(c2e)
and on the other hand
(Op"(a)f, 9) r2me) = (Opgy(a)Vaf, Vag) a2(cay

= (K%,av Vig ® mdf)AQ(CZd)

= (OKyq, O(Vag ® Vaf)) a2(c2a)-

Since

O(Vag ® Vaf)(z,w) = Vag(2)Vaf (W) = Vaa(g ® f)(z,w)

we obtain
Koo = 00Ky = Ve aKy' (1.45)
16



1.5. Symbol classes for pseudo-differential operators on R%. In order
to define a generalized family of Shubin symbol classes [27], we need to add
a restriction of the involved weights. Let p € [0,1], and let Pg;, ,(R?) be
the set of all w e Z(R%) n C®(RY) such that for every multi-index a € N¢,

10%(2)| < w(@)z)Pl ze R (1.46)

For w € Py, ,(RY) the Shubin symbol class Shgw)(Rd) is the set of all
f € C*(RY) such that for every a € N2¢,

10°f(2)] < w(x)x)Plel, zeR™ (1.47)
Let p € [0,1], w € P ,(R?*)) and A be a real d x d matrix. Then it
follows from 27 or [19, Section 18.5] that ¢XAPe:De) is a homeomorphism

[
on Sh (RQd), which implies that the set
{Op4(a); a e Sh{ (R*)}

is independent of the choice of A, in view of (1.34). If B is another real d x d

matrix and a,b € Shg”) (R2%) satisfy (1.34), then it follows from [19, Section
18.5] that

a— beSh*(R2), where w,(z,8) = w(z,&)((z,6))%.  (1.48)
In particular

la(z,€) = b(z,€)| < w(z,&){(=,£))"*. (1.49)

We also need the symbol classes defined in [1, Definition 1.8] with symbols
satisfying estimates of the form

11
0507 a(x, €)] < hletFla greerlal=+1817) -y e e RY. (1.50)
(See also [10] for the restricted case when s = 0.)

Definition 1.8. Let s,0 > 0. Then

(1) T75%(R24) consists of all a € C*(RY) such that for some r > 0,
(1.50) holds for every h > 0;

(2) T7% (R2?) consists of all a € C®(R?) such that for some h > 0,

s,0;0

(1. 50) holds for every r > 0;

(3) 95 (R?) consists of all a € C*(R?) such that (1.50) holds for some
h > 0 and some r > 0.

Remark 1.9. The symbol classes Sh,()w) (R?9) have isotropic behaviour with
respect to phase space T*R¢ ~ R?? and the same holds for the symbol
classes in Definition 1.8 when o = s. See also [10] for the restricted case
when s = o, and [2] for a bilinear extension. Important classes similar to
those given by Definition 1.8 are considered in [24].

Pseudo-differential operators with symbols in the classes in Definition 1.8
are examples of so called operators of infinite order. These operators are
continuous on appropriate Gelfand-Shilov (distribution) spaces [1,10]. The
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next result characterizes the symbol classes in Definition 1.8 by means of
estimates of form

Toa(e, €, m,y)| < (=l +HED=ranle+Wl ) 4 ey e RE (151)

We omit the proof since the result is a special case of [1, Proposition 2.1'].
We refer to [1, Subsection 1.1] for the definition of the Gelfand-Shilov spaces
S75 (R, ¥35(R?4) and their distribution spaces.

Proposition 1.10. Let s,0 > 0 and let a € C*(R??). Then the following

18 true:
(1) if ¢ € SI5(R2*H\0, then a € T'7,.,(R*) if and only if (1.51) holds
for some ro > 0 and every r1 > 0;

(2) if ¥ € LTSRN, then a € TTEO(R2Y) if and only if (1.51) holds
for some r1 > 0 and all ro > 0;

(3) if v € 35 (R2H\0, then a € T (R?*) if and only if (1.51) holds for
some r1 > 0 and some ro > 0.

1.6. Elliptic, weakly elliptic and hypoelliptic elements in Sh,()w) (RY).
Let p > 0 and w € Pg, ,(R?). Then f € Shg”)(Rd) is called weakly elliptic
of order pyp = 0, (in Sh,()w) (R%)), or po-weakly elliptic, if there is an R > 0
such that
[f(@)| % (@) w(x),  [z]=R.
A weakly elliptic function of order 0 is called elliptic.
Let A and B be real d x d matrices, p > 0, pg € [0,2p), w € @sm)(RQd)

and suppose that a,b € Shgw)(RQd) satisfy (1.34). It follows from (1.48) that
a is weakly elliptic of order py, if and only if b is weakly elliptic of order py.
In particular, a is elliptic, if and only if b is elliptic.

Next we define Shubin hypoelliptic symbols (cf. Definitions 5.1 and 25.1
in [27]).

Definition 1.11. Let p > 0, pp = 0, wp € Pgy,(R) and f € Shi™ (R9).
Then f is called hypoelliptic (in Shubin’s sense in Shgwo)(Rd)) of order po,
if there is an R > 0 such that for every o € N¢, it holds

0°f (@)] < |f(@)a)~), 2| = R,

and

[ (2)] 2 wolx){x)™", 7| > R.

Elliptic and hypoelliptic symbols are important since they give rise to
parametrices. For p, w as above and a € Shgw)(Rw) elliptic, there is an
elliptic symbol b € Shgl/ u})(R2d) such that

Opa(a) oOpy(b) =1+ Opy(er) and Opy(b) o Opy(a) =1+ Opy(ce2)

for some ¢, c2 € #(R??). An operator Op(c) with ¢ € .7 (R??) is regular-
izing in the sense that Op(c) is continuous from .#/(RY) to .#(R%). (Cf.
e.g. [8,27].)

18



2. REFORMULATION OF PSEUDO-DIFFERENTIAL CALCULUS USING THE
BARGMANN TRANSFORM

In this section we characterize the Bargmann assignment of pseudo-diffe-
rential operator symbols from Subsection 1.5, using estimates of complex
derivatives. In Subsection 2.1 we show how pseudo-differential operators
on R? with Shubin symbols are transformed to Wick operators by the
Bargmann transform. In Subsection 2.3 we deduce similar links between
pseudo-differential operators of infinite order, given in the second part of
Subsection 1.5, and suitable classes of Wick operators. Subsection 2.4 treats
composition formulae for symbols of Wick operators, which leads to alge-
braic properties for operators in Subsection 2.1 and 2.3. As an application
we obtain short proofs of composition results for pseudo-differential opera-
tors on R? from Subsection 1.5.

2.1. Wick symbols of Shubin pseudo-differential operators. The fol-
lowing proposition is essential in the characterization of Shubin type pseudo-
differential operators on R? by means of the corresponding Wick symbols.
The Shubin classes can be characterized using the transform 7y by means
of estimates of the form

1020¢ T f (2,€)| S w(w)(a)yrlele)y™, (2.1)
02 To f (@, €)| < w(w)(ay~rlel(ey= (2.2)

and
I Tof (@,6)] < w(@)E)™. (2.3)

The proof of the following result is similar to the proof of [9, Proposi-
tion 3.2].

Proposition 2.1. Let 0 < p < 1, let w € WShyp(Rd), and suppose [ €
' (RY and ¢ € S (RH\0. The following conditions are equivalent:

(1) f e Shy” (R,
(2) (2.1) holds true for any N =0 and o, f € N9,
(3) (2.2) holds true for any N =0 and a € N,

and the following conditions are equivalent:
(1)’ f e Shg” (R,
(2)" (2.3) holds true for any N = 0.

Proof. First we prove that (1) implies (2). Suppose f € Sh;w) (R%) and let
a, 3,7 € N? be arbitrary. We will show

€020 T f (2, €)] < wla){ay~Flel.
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By (1.14), (1.15) and integration by parts we get

€70000 Ty f (2, €)] = €7 Tg, (0°f) (2, )]

d

= (2m)" 2

JRd <(26 )Ye & y>) 3a0) & f(z + y) dy’

< | 10y os(w) 0 flz+y)|| dy
Rd

2

K<Y

<L ( ) | o5 e+ )i+ i,

K<Y

( >07 “op(y) 0T f (w +y)| dy

Since w is polynomially moderate, Peetre’s inequality (1.2) and the fact that
¢ € .S give

1670500 Ty f (,€)]

z )y~ ple Z < )j m “os(y ]w <y>|m|+p|a+fi| dy

K<y

= w(z)(x)rll.

Thus f € Shg”) (RY) implies implies (2.1), and as a special case (2.2), and
fe Sh[()w) (RY) implies (2.3). We have proved that (1) implies (2) which in
turn implies (3), and that (1)’ implies (2)’.

Conversely, suppose (3), that is f € .#/(R?) and (2.2) holds for all N >0

and all o € N9, which is a weaker assumption than (2). We obtain from
(1.13)

F(@) = 1812 T 755 (=)

— [6]2 (2m)8 ﬂ T (4, €) €659 (o — ) dyde,

R2d

which is an absolutely convergent integral due to (2.2) and the fact that

¢ € Z(R%). We may differentiate under the integral, so integration by

parts, (2.2) and Peetre’s inequality give for some Ny = 0, any a € N¢ and
20



any = € R?

0 4(a)| = 19133 2% | [[ Tor(w.€) 05 (665 ol — ) dye

R2d

_ 9|72 (2m)4 j j 0T f (4, €) X650 §( — ) dyde

R2d

— |2 (2m)% ﬂ Ty f (2 — 3, ) X6 g(y) dyde

R2d
< f f Wiz — y)e — )P €y~ 41 [p(y) | dyde
R2d
< wla)ay el [yt iofy)] dyde
R2d

= w(z)(x)~rll.

Thus f € Shg)w) (R%) and we have proved the equivalence of (1), (2) and (3).
It remains to show that (2)" implies (1)’, that is (2.3) for all N > 0 implies

fe Sh(()w)(Rd). We have for some Ny > 0, any v € N? 2z € R and N > 0,

0 5(a)| = 19133 2% | [[ Tor(w. € 08 (<65 ot — )

R2d

<% (3) [[17s0 210

R2d

<3 (5) [Jemor
wlz) M( ) j j (N (g — yyNo

S w(@)

0° P p(w — y)| dydg

0" o(a—y)| dyd

2\

0" p(w — y)| dydg

provided N is sufficiently large, since ¢ € .. This shows that f € Sh(()w) (RY).
O
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We may now characterize the Shubin classes Shgw)(RM) by estimates on
their Bargmann (kernel) assignments of the forms

|(é’z + 0u) (02 — 0w)”Sya(z, w)|

s 2P Pu(V2E)e )G —w) TN, (24)

w

8356 Sya(z, w)‘ < e%‘sz‘zw(\/éE)@ +w)y PPl —w)y N (2.5)
Spa(z, w)| < ezl w(v27)(z — wy™N (2.6)

and

|Kapa(z,w0)] < w(vV27)z — wy Vez (2P +ul?) (2.7)

Theorem 2.2. Let 0 < p < 1, w € Py, ,(R*) and a € 7' (R*). The
following conditions are equivalent:

(1) a e S (R),
(2) (2.4) holds true for every N =0, z,w e C% and a, 3 € N¢,
(3) (2.5) holds true for every N =0, z,w e C? and a, 3 € N9,

and the following conditions are equivalent:

(1) ae Sh' (R24),

(2)" (2.6) holds true for any N € N and z,w € C,
(3)" (2.7) holds true for any N € N and z,w € C.

For the proof we need the following proposition of independent interest.

Here we recall that Sy is bijective from S} /2(R2d) to the set

{ae A(CH); |a(z,w)| < ez tnlz—wl gor every r > 0 }. (2.8)

Proposition 2.3. Let ¢(z,£) = (%)%e*(mz*'&m, z,£eR? ae S{/Q(RQd)
and a belongs to the set in (2.8). Then

Swalz,0) = (2m) el P Ty (220 €0 VB - 9, Vel - )
(209)

and

(Sgla)(z, —€) = (i)dfcd a (\% —w, \% + w> 2 g\(w),  (2.10)

with z = x +i&, w =y + in and x,y,&,n e RL.

Proof. Let ¢p(x,y) = 75 e~ 32+ for z,y € RY, and let K¥ be the kernel
of Op¥(a). Then ¢ = Fa(¢ o k), where k(z,y) = (x + y/2,2 — y/2). By
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(1.27) (or [30, Eq. (1.35)]) and [9, Lemma 4.1] we have
Vo aKy (2, w) = VK (2,0) = VoK' ((w,y) +i(, —n))

_ (27T)d€%(\ZI2+\w\2)+i(<m,§>*<yvn>)% KY (\@(% Y), —V2(E, —77))

_ (277)%e%(Izl2+|w|2)+i(<y,£>—<$,n>)ma <$\J/r§y E\J}n V2(n—€),V2(y — )>,

_ (27T)%e%(|z|2+|w|2)+i1m(z,w)7:pa <$\‘/|'§y 5}77 \/>(77 g) \/>( )) .

Together with the identity
12 + |w|? 4 2iIm(z,w) = |z — w|* + 2(2, w)

this gives
Vo aKy (2, w)
(27—[-)% %|Z*1U|2+(Z,w)7:ba (.’1}' +y g + n \/7( \/7(3/ . x)) ) (211)

V2 oV2

A combination of this identity with (1.42) and (1.45) gives (2.9).
In order to prove (2.10), we use Moyal’s formula (1.12), (1.13) and the

fact that 9|2 = 1. This implies that the inverse of 7y, is given by
(T5 ' F)(,€) = (T)F)(,€)
= (|| P, ) D g deranan.
R
Writing
G(z,w)zF(:B,ﬁ,n,y), Z:l‘+@f,w:y+i77,
we obtain

TrF(z,€) =2%(2m)~ f G(wy, w e~ 17wl giméz=wiwa) gy (4 ) A\ (ws).

C2d
(2.12)
If a = 7;F and a = Sya, then (2.9) shows that

a(z,w) = (2m)5esll G (Z;i“’, V2w - z))

which gives

d _11,2 (2Z—w 2Z4+w
G(z,w) = (27 i a< , >
(z,w) = (27) RN
Inserting this into (2.12) we get

Ty F(x, =¢)

2d - JJ <2w1 271127 2w21}w2> e—\E—uﬂ|2€_%|w2\26i1m<2—w1,w2> d)\(wl)d)\(,u)2)7

C2d
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and by taking

2wW1 — wo z 2w + wo z
——— — — and

2V2 2 22 W2

as new variables of integration, we obtain using (1.22)

mF(l'a _f)

2d z z 2 2 ;

_ = il —(Jw1 |#+|w2]?) ,2iIm(w1 ,w2)

- + ywg + —= e e d)\(wl)d/\(wg)

w%ﬂ“@lx@ ¢Q
C2d

=2 H ¢ (wl ’ \% w2t ji) M) dpu(wy ) dpa(ws)
C2d

= de (ch ¢ <w1 i %,u@ i ji) el ety du(w1)> diliwz)

= QdJ ) a (—wg + %,wQ + \%) e~ w2l? du(wa)
C

() LGz
(|

Proof of Theorem 2.2. Combining Propositions 2.1 and 2.3, writing z+w =

22 + w — 2z, we obtain that a € Sh{)(R29) if and only if for all o, 8 € N¢
and NV € N we have

(0a + 0,)° (0 +0,)° (72 Sa(z,w) )|

Sw <Z\J/F;> (2 +wy PlotBly — )N

< w(V22)(z + w)y PletBl(y — )~ N+k

for some k € N that can be absorbed into N.
Note that multi-index powers of the differential operators 0, + 0, and

0O¢ + 0Oy acting on the factor e=3lz=wl? = =3 (le=yP+le=n) are gero. Thus
we obtain the equivalent condition

(0 + 0y)*(0 + 0)°Sypa(z, w)
S w(V22)z + wyPlathl — w>_Ne%|Z_“’|2.
Using the (conjugate) analyticity of Sya(z,w) with respect to z € CY
(w € C%) we can formulate this as (2.4). We have now shown the equivalence

between (1) and (2).
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The equivalence between (2) and (3) follows from the binomial formulae

(0 +t0w)* = ), (j)tlvlag@z,, te{—1,1},

<o
— 9 la Z:a < > 0u)? (0, — Ow)?
and
_ 9 ﬁgﬁ( ) D@, + 30)P=7(0 — By,

It remains to consider the case p = 0. We obtain from Propositions 2.1
and 2.3 that a € Sh') (R?9) if and only if for all N € N we have

ISywa(z, w)] S w(v/2%)(z — w>_Ne%|z_w|2, z,( e CY.

This shows the equivalence between (1) and (2)’.
Finally the equivalence of (2)" and (3)" is an immediate consequence of
(1.42) and

|e(\zl2+IWI2)/2e—(sz)| — lzP=2Re(zw)+w[?)/2 _ le—w[?/2 O

Let ﬂgﬁ?p(Cw), be the set of all a € A(C??) such that

ag@fja(z, w)} < Cezl P y(v22) (2 + wyPlotBle — YN N 0.
(2.13)
The smallest constant C' > 0 defines a semi-norm parameterized by «,

and N, and we equip /T(Sbfl) p(CQd) with the Fréchet space topology defined
by these semi-norms. The following result is an immediate consequence of
Theorem 2.2 and its proof.

Proposition 2.4. Let 0 < p < 1 and w € WSh,p(RQd). Then Sg; is a
homeomorphism from Sh(w) (RQd) to ASh p(CQd).

2.2. Extensions and variations. There are several extensions and varia-
tions of Theorem 2.2. First we observe that by playing with N in (2.4) and

(2.5) and using Peetre’s inequality, it follows that (z + w) in (2.4) and (2.5)
can be replaced by ¥, where

U(z,w) € {(z +w),{(z),{w), max({z), (w)), min({z),{w))} . (2.14)
In particular (2.5) in Theorem 2.2 can be replaced by
0970 Sya(z, w)| < e3P Pu(V22) T (2, w)PHBI G — )N, (2.5)

where ¥ is given by (2.14).
Secondly, let

Qk,M:{(al,...,ak)eNdx---deszd;]al—i—---—i-ak]:M},.

where k > 1 and M > 0 are integers.
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If a € A(C?*¥) and a € Q4 5, then

001 903 502 pa i|a3|*|a4|aa1+a350‘2+0‘4a?
vy o (2.15)
z=x+1, w=y+1in,

because of the analyticity with respect to z and conjugate analyticity with
respect to w for a(z,w). In particular, (2.5)" implies

021022 052 031 Sega (2, w)

< e P L2 U (2 w) MG —w)y N, ae Quan (25)"
On the other hand, if we let a3 = a4 = 0 in (2.15), (2.5)"” implies (2.5)".
Hence (2.5)" and (2.5)" are equivalent.
Let M > 0 be an integer and let T" be the operator
T = Z ()01 a5, c(a) e C, a = (aq,a2) € Qo . (2.16)

OCGQQJ\/[

Then (2.5)" implies that
IT(Swa)(z,w)| S e Fw(v22) (2, w) M —wy™N,  (2.5)"
holds for every M > 0 and and every operator 7" of the form (2.16). On the

other hand, the operators 635§ in (2.5)" are special cases of the operators

T in (2.5)"”. This shows that 62‘55 in (2.5)" can be replaced by operators T
in (2.16).

In the same way it follows that (2.5)” is equivalent to (2.5)”, after T in
(2.16) is replaced by

T= ) Cla)dyogsogont,  z=z+i, w=y+in,
0469471\4 (217)
C(a) € C, a= (o1, 09, a3,04) € Q0.
Finally we observe that we may replace the set of operators in (2.16) by
the set of operators
T= ) C@)dd;’d, o,  z=x+if, w=y+in,
0469471\4 (218)
C(a) € C, a = (ag, a2, a3,04) € Qq 1,
in the estimate (2.5)"”. In fact, obviously the operators of form (2.18) con-
tains the operators of form (2.16). Hence if (2.5)" holds true for operators
of form (2.18), it also holds for operators of form (2.16). On the other hand,
if g # 0 or aig # 0 in (2.18), then
M0 0% a = 0
because of the analyticity in z and conjugate analyticity in w for a(z,w).
Consequently, it suffices to consider operators in (2.18) where all C(«) =0
when ag # 0 or ay # 0, when investigating the condition (2.5)”. This set
of operators is exactly the set of operators in (2.16). This implies that the
set of operators in (2.16) can be replaced by the set of operators in (2.18)

when checking the condition (2.5)".
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From these observations Theorem 2.2 gives the following conclusion.

Theorem 2.5. Suppose that p = 0, w € Py, ,(C?), a € A(C*?) and VU is
given by (2. 14) Then the following conditions are equivalent:

(1) ae Sh (R2d)

(2) (2.5) holds true for every N =0, a, 3 € N¢ and z,w € C¢;

(3) for every M =0, (2.5)" holds true for every N =0, and z,w € C%;
(4)

4) for every M =0, (2.5)" holds true for every N =0, T in (2.16) and
z,we C%;

(5) for every M =0, (2.5)" holds true for every N >0, T in (2.17) and
z,we C;
(6) for every M =0, (2.5)" holds true for every N =0, T in (2.18) and
z,we Ce.
2.3. Wick operators corresponding to Gevrey type pseudo-differential

operators. Using (2.9) and (1.23) we obtain the following theorem ex-
pressed with estimates of the form

1
la(z, w)| < exp (2]2 —w? + 71|z + wlse — rolz — w|s7a> (2.19)

(cf. Definition 1.8). The verification is left for the reader.

Theorem 2.6. The following is true:
(1) if s,0 = %, then Sy is homeomorphic from FSUO(RQd) to the set

of all a € A(C??) such that for some 3 > 0, (2.19) holds for every
ry > 0,’

(2) if s,0 > 5, then Sy is homeomorphic from FUSO(RQd) to the set of
all a € A(C2d) such that for some ri > 0, (2.19) holds for every
ro > 0,’

(3) if s,0 > %, then Sy is homeomorphic from T35 (R2?) to the set of all
a € A(C??) such that (2.19) holds for some r1 > 0 and some ry > 0.

Remark 2.7. The restrictions on s and ¢ in Theorem 2.6 are needed since we
must choose ¢ in (1.51) as the Gauss function in Proposition 2.3. According
to the proof of Theorem 2.2 this is necessary for the use of the formula (1.27)
that relates 75Ky and the Bargmann transform oy K. For this ¢ we have

Y e SI(RY) (v e £I(RY)), if and only if s,0 > 3 (s,0 > 3).

Theorem 2.6 can be combined with continuity results in [1] to deduce
continuity of Wick operators acting on the Bargmann images of Eg(Rd),
S?(RY), (S7)(RY) and (X7)'(R?), respectively. The following result follows
by a straight-forward combination of Theorems 3.8, 3.15 and 3.16 in [1],
(1.41) and Theorem 2.6.

Proposition 2.8. Let a € A(C?%). Then the following is true:
(1) if s,0 = % and some ro > 0, (2.19) holds for every r1 > 0, then
Opy(a) is continuous on AZ(C?) and on (AZ)'(C%);
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(2) if s,0 > % and for some ry > 0, (2.19) holds for every ro > 0, then
Opy(a) is continuous on A&S(Cd) and on ( 8}8)'(Cd);

(3) if s,0 > 5 and (2.19) holds for some r1 > 0 and some ro > 0, then
Opgy(a) is continuous from A87S(Cd) to A7(C%), and from (A7)'(C%)
to (AF,)'(C?).

2.4. Composition of Wick operators. Let aj,as € A(C??). If compo-
sition is well defined then the complex twisted product ai#gas is defined
by
Opy(a1) o Opy(az) = Opy(ar#yaz)-
By straight-forward computations it follows that the product #g is given
by
al#‘BQQ(Zv w) = ﬂ_df al(za U)CLQ (uv w)e—(z—u,w—u) d)‘(u)7 Z,we Cd7
Cd

(2.20)
provided the integral is well defined. Inserting derivatives, (2.20) takes the
form

(02100t ar) g (02202 az) (2, w)

= W_df (82‘155161,1)(2,u)(@jj‘?g%ag)(u,w)e_(z_“’w_“) dA\(u), z,we ce.
Cd
(2.20)’
The following lemma is a product rule for the complex twisted product.

Lemma 2.9. Let a1, ay € A(C??) and suppose the integral in (2.20) is well
defined for all z,w € C* and all a1, oo, 1, f2 € N such that

lan + ao + By + Po| < 1.
Suppose also that the integrand in (2.20) is zero at infinity. Then
8Zj (al#mag) = ((9Zja1)#c1]a2 + al#m(ﬁzjag), 7=1,....d (2.21)

and

6wj (al#mag) = (61”].(11)#;17@2 + al#m(ﬁwjag), 7=1,...,d. (2.22)
Proof. If

Fo, a0 (z,w,u) = a1(z,u)as(u, w)e(z’“_w)+(“’w)

then
(a1 #ga2)(z, w) = ch Fop ay (2w, u)e_lu‘rz d\(u).
This gives
ﬁdﬁzj(al#mag)(z,w) = bi(z,w) + ba(z,w) — b3(z,w),
where

by (Z, U}) = J;;d Fézjal,a2 (27 w, U)6_|“|2 d)\(u),

ba(z, w) =J Falm(z,w,u)ﬂje_|“|2 d\(u)
Cd
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and
b3(z,w) = wjf Fah@(z,u),u)ef'“‘2 dA(u)
Cd

= ijd(al#mag)(z, w).

The conjugate analyticity of u — ai(z,u) and u — (%) implies
Ou;a1(z,u) = auje(z’“_“’) = 0 which gives

anFal,az (Z7 w, u)
= (@12, u)ay, s, w) + a1 (2 w)ag (u, w)) e )

= Fal,azjaz (vavu) + ijalyCLQ(Z’w’u)‘

Consider by(z,w). Integration by parts gives
ba(z,w) = f FahaQ(z,w,u)ﬂje_w2 dA(u)
Cd
= — f Fop 0y (2, w,u) aujef|“|2 d\(u)
Cd

= Ou; Fay 0z (z,w,u)e_|““|2 d\(u)
Cd

- Ld Fay . ar (2w, w)e ™" dA(u) + Ld Foy 0y (2w, u)e "™ d(u)

= de Fay . (2w, u)e ™ dA(u) + by(z,w).
A combination of these identities now gives
wdazj (a1#ga2)(z,w)
= ch(Fazja1,a2 (z,w,u) + Fal,azj@(z, w, u))e"“‘2 d\(u)

= Wd(ﬁzjm)#maQ(Z, w) + Wda1#m(5zja2)(zy w),

and (2.21) follows.
The assertion (2.22) is proved by similar arguments. O

The characterization in Theorem 2.2 (3) can be applied to prove the
following composition result, which is a generalization of [27, Theorem 23.6]
to include the case when p = 0.

Proposition 2.10. Let 0 < p < 1 and w; € P ,(R*) for j = 1,2. If

a; € S (R24) for j = 1,2, then ai#ay € Sh''“?) (R24),
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Proof. If ag = ai#az and a; = Sga;, j = 0,1,2, then ap = a1#gaz. From
Lemma 2.9 and (2.20) we obtain for a, 8 € N¢,

023 4o (2, w)

=2 2 (:) <i> ((5?_755%@1)#%(835;&2)) (z,w)

TSa kB

-2 2 ()0 [ m e natie e ).

TSar<f

Since wy € Z(R??) ~ 22(C?) is moderate, Theorem 2.2 gives for some
Ny = 0 and any N1, Ny =0

\53_75?“@1(2, w)| < w1 (V272) z + uyPlatBmr=nrl, u>_Nle%‘z_“|2
and
0775 an(at, 0)] < wa (VIR — wpNoCu + wy el — gy bl

This gives
0200 (z, w)

Swl(\/gz)wg(\/iz)eé|z—w2f F(z,w,u)e®@w%) gx(u)  (2.23)
Ca

where for any Ny > 0
F(z,w,u) = (z + u) PlotB=r=ml sy yNo=Nugy )y =Pnldy — )=
and

1
2+ Sfu— wf — fuf

+ Re(z,u — w) + Re(u, w) = 0.

1 1
D(z,w,u) = 7§|Z*w|2+§|z—u

By Peetre’s inequality and the facts that v < a and k < 8 we get
(2 4wy + w) PRl < (o — )P
< (2 — u)Pr ey — )Pl
< (z —uylotBliy — )rletsl
and
(2 4wy P8l < (o )y PlatBliy — )yelotBl
wherefrom

F(z,w,u) < {z+w)y PlatBliy — yplatBlENo=Nigy _g\2rlatBl=Na (9 94)
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Hence a combination of (2.23) and (2.24) gives for any N > 0
(1 (V22)(v22)) "z ) 00T o (2, w)

Cd

< <Z _ w>—Ne%|z—w\2 j <Z _ u>p|a+ﬂ\+No+N—N1<u . w>2p|a+ﬂ|+N—N2 d)\(u)
Ca

By letting
Nizpla+pB]|+No+N and N> 2pla+ |+ N +2d
we obtain

02 ao(2. w)\ < w1 (V22)wa (V22)(z + wyPlotBl(y — )y Nezle—ul®,

According to Theorem 2.2 (3) this estimate implies that ag € Sh,()wle)(RQd).
U

Remark 2.11. Eq. (2.20) combined with Theorem 2.6 can be used to show
composition results for pseudo-differential operators with symbols in F;’i;o (R29).
In fact we may use an argument similar to the proof of Proposition 2.10,

but simpler since derivatives can be avoided. We obtain

1
aj#as € I‘;’j;o(RQd) when aj, a9 € F;’;O(RZd), 5,0 = 3
and similarly with I'75° in place of I, provided o > 3. Thereby we

regain parts of [1, Theorem 3.18] for certain restrictions on s and o.

3. RELATIONS AND ESTIMATES FOR WICK AND ANTI-WICK OPERATORS

In this section we first show how to approximate a Wick operator by means
of a sum of anti-Wick operators. Then we prove continuity results for anti-
Wick operators with symbols having exponential type bounds. Finally we
deduce estimates for the Wick symbol of these anti-Wick operators.

3.1. Expansion of Shubin type Wick operators with respect to anti-
Wick operators. The first result can be stated for semi-conjugate analytic
symbols on C2¢,

Proposition 3.1. Suppose s = %, ae A (C?D), let N = 0 be an integer,
and let

ao(w) = %0, a(w,w), ae N9,

1
bo(z,w) = |af | (1—)710080 a(w + t(z — w), w) dt, e NA.
0

OpQ](Uz): Z (_1)|o¢| Op%W(aa) + Z (_1)‘04 Opm(ba) (31)

o! o!
la|l<N la|=N+1
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Proof. Taylor expansion gives

Z (—1)'0“ca(z,w)+ Z (—1)'0“00,01(2,10)

a!
la|<N |a|=N+1

where
Ca(z,w) = (—1)|°‘|(z —w)*0%a(w,w)

and

1
co.a(z,w) = (=1)1¥a](z — w)afo (1 — )l =10%(w + t(z — w), w) dt.

Hence

—1)le c _1\lal c
Opm(a)z Z ( 1) O'pm( a)+ Z (—1) Z!pm( 07a)

[0 )
la|<N lo]=N+1

9

and the result follows if we prove

Opy(ca) = Opy'(an) and  Opyg(co.a) = Opgy(ba). (3.2)
It follows from (1.38) that

Opgy(ba) = Op‘n(cl,a) and OpQ}(CO,a) = OPQJ(C?,Oa)

where
1
iz w) = (—1)alw—da\f0 (1= ), (ast, 2, w) dt, (3.3)
j=1,2, with

hyalast, z,w) = (—1) 0900 a(wy + t(z — wy), wy )e” FTPLWTW) G) (1)
Cd
(3.4)

and

hoa(ast, z,w) = J (z —w1)%0a(wy + t(z —wy), wl)e_(z_wl’w_wl) dA(wy).
Cd
Since

a,—(z—wi,w—wi) _ A% —(z—wi,w—w
(z —wp)e~ Gw U= O, © (zwy )

integration by parts yields

hoo(ast, z,w) = f o7a(wy + t(z — wl),wl)gﬁile*(z*wl’w*wl) dA(wy)
Cd

= (=)l | 02T0 a(wi+t(z—w1 ), wy)e” ETVIYTE) gX(wy) = hy o(ast, z,w),
Cd

and the second equality in (3.2) follows. The first equality in (3.2) follows
by similar arguments. The details are left for the reader. U
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Remark 3.2. Proposition 3.1 and its proof show that

(=) Opg*(aa) (=D Opg(e1,a)
Opy(a) = ), T Y e N C RV
la|<N |a|=N+1
where ¢ o is defined by (3.3) and (3.4).

In the following result we estimate a, in Proposition 3.1 and ¢ o in (3.3)
when a = Sya satisfies (2.5) for every N > 0 and «a, 8 € N¢. By Theorem
2.2 this means that Opg(a) is the Bargmann transform of a Shubin type
operator.

Proposition 3.3. Let 0 < p < 1, we Py, ,(R*), a e ﬂgﬁ)p(CQd), and let
ao and by be as in Proposition 3.1 for a € N%. Then Opgy(ba) = Opg(ci.a)
for a unique c1 o € A(C?),

10830 a(w)| < w(VEDwy PEHEAD, o 5y e N, (3.5)
and

10880 c1a(z,w)| < e3P Pw(v22)(z + wy PRHBD G )N o, 8y e N7
(3.6)

Remark 3.4. The Wick symbol ¢; , in Proposition 3.3 is uniquely defined
and given by (3.3) in view of Proposition 1.5, when h; 4 is defined by (3.4).

The conditions in Proposition 3.3 imply that ¢ € fl(szap) (C24) where w, =
(H72elel Ly,

Proof of Proposition 3.3. The estimate (3.5) is an immediate consequence
of

0 0na0(w) = 0378, a(w, w)

and (2.5).

In order to prove (3.6) we first note that the uniqueness assertion for ¢; o
is a consequence of Remark 3.4. Let hy o(a; z, w) be the same as in the proof
of Proposition 3.1. Integration by parts gives

afgz)hl,a(a; i, 2, ’LU) = hl,a(azﬁgzua; t,z, ’LU),

which reduce the problem to prove that (3.6) holds for g =~ = 0.
The assumption a € ﬁgﬁ) p(CQd) combined with w and (- )~/%l being mod-
erate imply

05T a(z,w)| < e3P w(V2w) W) PG — wy ™

for every N = 0. This gives
eRe(z’w)|h17a(a;t,z,w)|

2
< f w(ﬁw—l)e%\z—w1|2<w1>—2p\a|<t(z o w1)>—N€Re(z+w—w1,w1) d/\(wl),
cd
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that is

e 1P By o (st 2, w)]

t2
s f w(vam)e 7 o)y 20tz — )y TNe T2 g (wy)
Cd

- J ) w(V2(z T w0)e TP Gyt y 210tz )y~ N e da(un)
© (3.7)

for every N > 0, where z; = 1(z — w) and 2z = 3(z + w).
If t € [0, %], then the last estimate together with the moderateness of w
give

e_|21‘2|h17a(a; t, 2, w)| S w(v273) zg) 2Pl f ] esluiPesla—wilf o=t dA(w1)
C

< w(V25)(zo) 2ol el J ) etlorle=ghwil® gy ()
C

< w(V25)(zo) 2ol eal1 P (4 N
for every N = 0. The moderateness of w again gives
|1 a(a;t, z,w)| < e%|27w|2w(\/§§)<z + w>72p|°“<z —w) N (3.8)
or every N >0, when ¢ € [0, ].
Suppose instead ¢ € [5,1]. Then (t(z1 — w1))™" = (21 —w1)~". Moder-
ateness again gives

w(V2(z2 + w1z + wi) N — w) TN S w(v2E) ()

for some Ny. Hence (3.7) gives

€*|21\2w(\/§z)71<2>2p‘a| |h17a(a; t,z, w)’

< f ez =Py )y NeTlol g (wy)
Cd

_ €Z1|2J (o — w1>—Ne—%\w1+z1|2 dA(wy) = €|Zl|2<21>—N
Cd

for every N > 0. This gives (3.8) also for ¢ € [3,1].
The result now follows by using (3.8) when estimating |¢1 o(z, w)| in (3.3)
and evaluating the arising integral. O

The next result, analogous to Proposition 3.3, will be useful in Section 5
when we discuss hypoellipticity for Shubin operators in the Wick setting.

Proposition 3.5. Let p > 0, w € Py, ,(C?), wy = w - (- )72 when t > 0,
a€ A\gi}l)p(CQd)y a= Sila and N = 0 be an integer. Then

—1)ll(02d,a _%z _%z
a(‘r)_g): Z ( 1) (azaw )(2 72 )

2lalgl +en(2), z=x+i€ (3.9)
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where

000 e AL(CM) and (2,€) = en(w — i€) € ShEN ) (R). (3.10)

Proof. The first claim in (3.10) 0%0;,a € ﬁéﬁ‘;‘)(czd) is an immediate con-
sequence of the definition (2.13) and Peetre’s inequality.
By Taylor expanding the right-hand side of (2.10) we obtain

2/m), 5 - 8?5&@ 27%2,27%2

a(z, - = D (&/m) Loy , ,)( )+cN(z), (3.11)
!Bl
lo+B|<2N+1
where
Inp = J (—w)o‘ﬁﬁe_mw‘2 d\(w),
Cd
and

vz =2N+1) Y (=) fu C 0PN, 4(2,0)d0 (3.12)
la+B|=2N+2 alflt Jo 7
with

2 I a7 z Z a—f,—2w|?
H,p5(z2,0) = (77) de(ﬁz Oy @) <\/§ Ow, NG +0w> ww’e d\(w).
(3.13)
The orthonormality of {eq}aene S A%(CY) (cf. (1.21)) yields I, 5 = 0 if
o # B and

Ino = f (—w)*w*e 2 gx(w)
Cd

_ (—1)lelg=d=lal g1 ch lea(w)[2 dps(w)

= (—1)lelg=d=lalg17d,

Comparing (3.11) with (3.9) we see that the sum in the latter formula has
been proven correct.
It remains to study the remainder c¢y. We need to prove that ¢(x,§) =

en(x — i€) belongs to ShI(DwN“)(RQd)_ If
ha,ﬁ(% w,0) = (Q?éia) (\ji — Ow, % + Qw> waﬁﬁe_2|w|2

then

Ho(2,6) = <2>d Ld w2, 0, 6) dA(w).

s

First we notice that

=3 (=it 2N +1 03B
EPen(z)=2AN+1) Y > f (1= 02N 023 1 5(2,0) do,
y+sl—2n42 1O Do

_ 2\ ¢ _
62‘6§H%5(z,9)=(> f 028 hey (2, w,0) dA\(w)
Cd

™
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and

la+8]
2

028 hy (5w, 0) = 2775 (20470 ) ( —fw, =+ 9w> wipde 2t

V2 V2
From the definition (2.13) this implies that for every M > 0 and some
My = 0 we have

020252, 0)
< e’2(1’92)|w|2w(§— \/59@)<Z>fp(\a+5|+2N+2)<0w>7M7M0|w’2N+2
< 672(179)|w|2w(§)<Z>fp(|a+5|+2N+2)<9w>fM|w’2N+2‘
This gives
0907 Hy 5(2,0)| < wi(z)(2) Pl Ple2he2) (),

where

J(6) = f e 2001wl gy =M |4y 2N H2 g\ (w).
Cd
For 6 € [0, 3] we get

7(0) = f e o PNF2 (),
Cd

1

which is finite and independent of ¢. If instead 6 € [3,

M > 2d + 2N + 2, then

J(0) < Ld<9w>—M|w\2N+2 d\(w),

1], and choosing

which is again finite and independent of 6.
A combination of these estimates give

0202 5(2,0)] S w(Z) () Pl PIeaNT2),
which in turn implies
020 en(2)] S w(E)(zyPleroeanNT),
This means that ¢ € Sh,()wN“)(RQd). O

3.2. Continuity of anti-Wick operators with exponentially bounded
symbols. Next we consider anti-Wick symbols that satisfy exponential bounds
of the form

1
lag(w)] < e~roll”, (3.14)
or

1
lao(w)| < el (3.15)

In order to formulate our results we introduce new spaces of entire func-
tions. Let s > %, to,m > 0, and let A, -(C?) be the Banach space of all
F e A(C?) such that

1
|F ) Ay, = IE - el P12 ) o < oo,
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Set

(s to) ﬂ As 1, r( d and -A (s to) ﬂ As o, —( Cd)

r>0 r>0

equipped with the projective limit topology. Likewise we set

A(S tO U AS tO: d and A/ S to d) = U Asyth_T(Cd)

r>0 r>0

equipped with the inductive limit topology.
Referring to Section 1.3 it is clear that the spaces Ag, (.4, (

.A( )(Cd) and Aj Sto)( 4) are generalizations of

Ay (5,11 (C?) = Ba(Ss(RY)) = Ag,s(C?)
A(,1)(CY) = Ta(S:(R7)) = A(C)
A, 1)(CY) = Ta(S((R)) = A(CY)
2
and
Ap (o1 (C1) = Ba(ZL(RT)) = A (C7),
respectively.
Proposition 3.6. Let ag € L?gc(Cd), s> %, 0<tg<1 and
L]
YT =)

Then the following is true:
(1) if (3.15) holds for some ro > 0 then

OP%W(G'O) :AO,(s,tO (Cd) - -AO (s,t1) (Cd)v
OPg' (a0) 2AG (4.10)(C?) = Af (5.11)(CY)

are continuous;
(2) if (3.15) holds for every ro > 0 then
Opamw(a()) :A(s to)(cd) - "4(8 t1)(Cd)7
Opg' (a) A, ) (C?) = Al 1,y (C)

s,t1

are continuous.

C9), A(s10)(Ch),

(3.16)

(3.17)

(3.18)

Proof. We only prove that the first map in (3.17) is continuous. The other
continuity assertions follow by similar arguments and are left for the reader.
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Let r2 > 0 be given, 1 > 79 and F' € Ay (5 ) (Cd). We have for z € C¢
|08y (ao) F (2) eI +73F1*

1
< el ralzls J Jag (w)] [ F (w)] eReE)=10F g (w)
Cd

2 1 1 2 1 2
< 67t1|z| +ro|z]s HFHA J er0|w|3+t0\w| —r1|w|s +Re(z,w)—|w| d)\(w)
~ s,tO,'rl d

= T2|Z‘ 1 A g f 6_(7“1—7"0)|w|%—(l—to)|w|2+RB(Z,w)—tl|Z‘2 dA(w)
1 (ri-rolfol |5 A=
1 —(r1—7o s —|v1= S A

_ ol ”FyAsytmf e TV A (w)

— rzlz\ ”FHAé o dee (ri— m))erm‘ (1—to)|w|? d)\( )

< e(rzfcl(rlfro))\zﬁHFHA J ecz(rrm)lwl%f(lfto)lwIQ d\(w)
= s,t0,T1 Cd
1

- (ra—c1(ri—ro))lz|s

- ”FHAS,tO,Tle ? H 0
for some constants c¢q, co > 0. By choosing r; sufficiently large we get

” Opamw(ao)FHAs,tl,TQ S HF”As,to,rl'

The estimates and (1.40) imply Opgy (ag)F € A(C?). O
Remark 3.7. Note that (3.16) implies t; > } and #y < t; with equality if

and only if tg = % Hence A07(57t0)(Cd) c AO,(&tl)(Cd), and similarly for the
other spaces.

The particular case tg = % gives

Corollary 3.8. Let ag € L (C?) and s > 5. If (3.15) holds for some
(every) ro > 0 then OpgY (ag) is continuous on Ags(C?%) (on As(C?)).

With a technique similar to the proof of Proposition 3.6 one shows the
following result.

Proposition 3.9. Let ag € L, (C%), s > 3, 0 < to < 1 and suppose (3.16)
holds. Then the following is true:

(1) if (3.14) holds for all ro > 0 then
Opiy" (a0) : Af (s.10) (C) = Ap 1) (C) (3.19)

18 continuous;
(2) if (3.14) holds for some ro > 0 then
by (a0) 1 Al 1) (C1) = Ay (CY) (3.20)
15 continuous.

Again the particular case tg = % gives
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Corollary 3.10. Let ag € L;fc(Cd) and s > % Then the following is true:
(1) if (3.14) holds for all 1o > O then

Opiy’(ag) : Aj (C7) — Aos(CY)

18 continuous;

(2) if (3.14) holds for some ro > 0 then
Opg (ag) : AL(C?) — As(CY)
18 CONtInuous.

3.3. Estimates of Wick symbols of anti-Wick operators with expo-
nentially bounded symbols. For anti-Wick operators in [13, Eq. (2.94)]
we have the following result.

Theorem 3.11. If ag € L¥ (C?) satisfies

loc
lag(w)| < el wecd, for some 1 <1, (3.21)
then ag € Lo 4(C?%) and (1.38) holds for some a@¥ € A(C??) with
|a%W(Z,w)’ < €r0|z+w|2_Re(z,w), ro = 4—1(1 _ 7“)_1.

Proof. The claim ag € Ly, A(C%) is an immediate consequence of the assump-
tion (3.21) and the definition (1.39). The integral in (1.38)" can be estimated
as

f ao(wl)e_(z_wl’w_wl) dX\(w)
Cd

< er\w1|2 ‘6—(z—w1,w—w1)
cd

dX(wy)
— e Re(z,w) f 67(1—r)|w1‘28Re(z+w,w1) d)\(w1)
Cd

i el Rew) | (=)= (w)/ A=) gy ()
Cd

=€

rolz+w|?2—Re(z,w) 0

= e .
Remark 3.12. The condition on af" in Theorem 3.11 implies that af" be-
longs to /Tg %(C2d) (see [30]). In particular it follows that Opg'(ag) =
Opg(ag™) is continuous from A, %(Cd) to A 1 (C%) (cf. [30, Theorem 2.10]
) 'S
and Remark 1.2).

The following result concerns exponentially moderate weight functions.
Theorem 3.13. Let ag € Lo A(C?), ad¥ € A(C??) is given by (1.38)" and
w € @E(Cd) If

lag(w)| < w(2w), we CY
then

lag” (2, w)| < €i|z_w|2w(z +w), zweC
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Proof. Let 7 = 0 be chosen such that w(z +w) < w(z)e’™!, z,w e C%. From
(1.38)" we get

|ag™ (2, w)| $f w(2wy e ReETwLw=) g ()
Cd
= ) [ gt g )
Cd

— e Re(z,w)+i2+w2f w(2w1)€_|w1_(z+w)/2|2 dA(w1)
Cd

_ ehleul? J w2y + 2 + w)e P dA(wy)
Cd

= ei"z_w‘Qw(z + w) J e2rlwn|=lwnl? d\(wy) = eilz_w‘rzw(z +w). O
Ca

The anti-Wick operators in Propositions 3.6 and 3.9 can also be described
as Wick operators with symbols that have smaller growth bounds than
A, (C??) and its dual. The following result extends Theorem 3.13 for weights

1
of the form e¢*I* with ce R from s > 1 to s > %

Theorem 3.14. Let s > § (s > 3), ag € Lo a(C?) and let af™ be given by
(1.38)". Then the following is true:
(1) if (3.14) holds for some (every) ro > 0 then

1
‘CLSW(Z, w)| < e%|z—w\2_r|z+w|s (3.22)
for some (every) r > 0;

(2) if (3.15) holds for every (some) ro > 0 then

63 (2, w)| < edleulrlstol (3.23)
for every (some) r > 0.

Remark 3.15. Thanks to the parameter i in the factor e*=vI° rather than
3. the estimates (3.23) are much stronger than the estimates (2.19) with

o = s. Corollary 3.8 can thus be seen as a consequence of Theorems 2.6 and
3.14, and [10, Definition 2.4, and Theorems 4.10 and 4.11].

Remark 3.16. The estimates for af" in Theorem 3.14 may seem weak since

the dominating factor etl>=v* i3 present in (3.22) and (3.23) but absent in
the original estimates (3.14) and (3.15) for ag.

On the other hand, Wick symbols for operators with continuity involving
the spaces As(C?) and AL(CY), as well as Ag (C?) and A{)’S(Cd), usually
satisfies conditions of the form

la(z, w)| < 6%|Z—w|2i7"1|2+w|%i\z—w|%
in view of [30, Theorems 2.9 and 2.10], and Theorem 2.6. Here the domi-

nating factor is e%|z_w‘2, which is larger than the factor eil#=l” in Theorem

3.14.
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This factor has a large impact on functions on R? that are transformed
back by the inverse of the Bargmann transform. For instance, if € > 0,
then the Bargmann image of any non-trivial Gelfand-Shilov space and its
distribution space contain

(FeACY: ()] s el
and are contained in
(F e ACY: |F(z)] 5 ek,
The same holds true for the Bargmann images of .#(R%) and .#/(R4).

‘ 2

Theorem 3.14 is a straight-forward consequence of the following two propo-

sitions, which give more details on the relationships between r and rg in
(3.14), (3.15), (3.22) and (3.23).

Proposition 3.17. Let s > 1 and let ro,r € (0,90) be such that

ro € (0,00) and r< ﬁ, when s =3, (3.24)
and
ro € (0,00) and r< 2757, when s € (3,0), (3.25)

with strict inequality in (3.25) when s < 1. If ag € L (CY) satisfies (3.14)
and a3" € A(C??) is given by (1.38), then (3.22) holds.

Proposition 3.18. Let s > % and ro,r € (0,00) be such that

70

et , (3.24)'

ro€ (0,1) and r> when s =

N[

and
ro € (0,00) and 1= 2_%7“0, when s € (3,), (3.25)

with strict inequality in (3.25)" when s < 1. If ag € L. (C?) satisfies (3.15)
and a3" € A(C??) is given by (1.38), then (3.23) holds.

For the proofs of Propositions 3.17 and 3.18 we use the inequalities
12)? = Jw]? <)z +w|? < |2 + |w|’, 0e(0,1], z,we CT  (3.26)
lz+wl’ <@ +e)|zP + (1 +e Hw’, 0e[l,2], z,we C% (3.27)
and
lz+wl’ =1 -zl + 1 —e Hwl’, 0€][1,2], z,we C? (3.28)
for every € > 0.

Proof of Proposition 3.17. Suppose that ag satisfies (3.14) for some 79 > 0.
First we consider the case s > % Ifs<lleteg >0 andey = 51_1, and if
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s>1lete; =0andey =2, and let ¢ = 275. Then (1.38)’, (3.26) and (3.28)
give

|GSW(ij)| < f 6—r0|w1\%6— Re(z—w1,w—w1) d)\(wl)
Cd

_ 6‘11Z+w|2_Re(Z’w)J e—To\w1|%_‘w1_(z+w)/2|2 d(w1)
Cd

L 1
— eilz—wl? J e rolwi+(z4w)/2]s —|wi|? dA(wy)
Cd

1 1
1, 02 _ 1 (1 o2
< 64|z w| e cro(l—er)|z4wl|s J de ro(1—e2)|wi|s —|wi | dA(’UJl)
C

_ ei|Z_w|2€_cro(1_€l)‘z+w|%' (329)

If s > 1, then 1 = 0 and €2 = 2, and the result follows from (3.29). If
instead s < 1, then the result follows by choosing 1 > 0 small enough, and
we have proved the result in the case s > %

Next suppose that s = % For €1 > 0 and &9 = Efl (3.29) gives

laf" (z,w)] < ei|zw|26ir0(151)z+w|2f e~ (ro(1=e2)+ D |? dA(wy).
Cd

1479

0 it follows that the integral converges, and
0

For any g2 <

1—6121—651<(1+T0)_1.

By the assumptions there is § > 0 such that

1”0(1 — 6)
4(1 + 7‘0) ’
Since
1+
1—51/(1+T0)_1 as 52/' TTO
0
we may pick 0 < g9 < 1;’% such that
1-94
<1-
1+ °1
and the result follows in the case s = . O

2

Proof of Proposition 3.18. First we consider the case when s > % Suppose
that ag satisfies (3.15) for some ro > 0, let 1,62 = 0 be such that e; =e3 =0

when s > 1 and €169 = 1 when s < 1, and let ¢ = 2=%. Then (1.38)’, (3.26)
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and (3.27) give

’(ISW(Z,’LU)’ < J erg\wﬂ%e—Re(z—wl,w—wl) d)\(wl)
cd

= ei|z+w\27Re(z,w) f €r0|w1|%7‘w1*(2+w)/2‘2 dA(wy)
Cd

_eilwl [ grolwnt G205~ gy ()
Cd
< eiz—w2ecro(1+sl)z+w|§J eroLre)lunl T =url? gy ()
Ca
:e%\z—w\260r0(1+£1)\z+w|%' (3_30)
If s > 1, then ¢; = €2 = 0, and the result follows from (3.30). If instead
s < 1, then the result follows by choosing €7 > 0 small enough, and the

result follows in the case s > %
Next suppose that s = % Then (3.30) gives

1y 2 1 2 2—|w |2
a3 (2, w)| < ealF7vl"garoli+er)lztu f ero(re)lonF=hunl® g (wy ).
Cd

"0 the integral converges, and

For any 2 < .

1—
T

l+er=1+e'>(1—r)" "

Since
1 —To

1—1—51\(1—7“0)*1 as &9

)
To

the result follows in the case s = % by letting r = W. O

4. A LOWER BOUND FOR WICK OPERATORS

In this section we apply the asymptotic expansions in the previous section
for Shubin-Wick operators to deduce a sharp Garding inequality.
First we have the following result. We put Agy, ,(C??) = ﬁgﬁ) p(CQd) when

w=1.

Proposition 4.1. Let w € 2(C%), p € [1,0], a € Agy0(C?*?) and ag €
L*(C%). Then Opgy(a) and Opgy (ag) are both continuous on Afw)(Cd).

The claimed continuity of Opy(a) is a straight-forward consequence of
[30, Theorem 3.3], in combination with Proposition 2.1 and the relationship
K(z,w) = a(z,w)e®®) between the kernel and symbol of a Wick operator
(cf. (0.1)). In order to be self-contained we include an alternative and
shorter proof.

Proof. Let F e AY (C9), G(2) = 72| F(2)w(v27)],

(w
Hi(2) = ¢ | Opg(a) F(2)w(v2z)| and

Ha(z) = e~ 21°| Op@Y (a0) F(2)w(v22)).
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We have
w(V22) < w(V2w)(z — w)™
for some Ny = 0. By Theorem 2.2 and (2.6) we get

Hi(z) s e 2 [ ealmP e — )y N | F(w)w(v22)[eReEw) 1wl gy (w)
Cd

= (M G)(2),
for every N = 0. By choosing N > 2d + Ny and using Young’s inequality
we get |Hi|rr < |G| which means | Opm(a)FHA? : < HFHAz(J . and the

asserted continuity for Opy(a) follows.
In the same way we get

Ma(2) 5 Jaolee | 1P (hw(vED)[G: =) oeeem=1oF ax)

= (((-YNe2l )2 G)(2),
and another application of Young’s inequality shows that | Ha|| Ly, < |G| L2,
that is | Opy'(a0)Far < [£]ar, - O

We have finally a version of the sharp Garding inequality.

Theorem 4.2. Let p > 0, w(z) = (2)*" and let a € ﬁgﬁ)p(CQd) be such that
a(w,w) = —Cy for all w e C¢, for some constant Cy = 0. Then

Re((Opy(a)F, F) 42) = —C|F |32, Fe Ay (CY (4.1)
and

[Im (Opg(a)F. F)a2)| < C|F|%2,  FedAgs(Ch)  (42)
for some constant C = 0.

Proof. Let bp(w) = a(w,w). Then Opy(a) = Opd'(by) + Opylar) for
some aj € .%TShyp(CQd) - ﬁShg(CZd), in view of Proposition 3.3. Since
I F = F for F e A%2(C%) (cf. (1.22)), the assumption by > —Cp im-
plies (Opd’ (bo)F, F) 42 = —Co| F[?; for every F € Ay (C?). The operator
Opg;(a1) is continuous on A%(CY) in view of Proposition 4.1. A combination
of these facts gives the result. O

5. ELLIPTICITY AND HYPOELLIPTICITY FOR SHUBIN AND WICK
OPERATORS

In this section we show that the Bargmann assignment Sy maps the
sets of hypoelliptic symbols and weakly elliptic symbols in the Shubin class
Shg‘j) (R2?%) bijectively into the sets of hypoelliptic symbols and weakly el-
liptic Wick symbols in ﬁgﬁ) p(C2d), respectively. Then we explain some con-

sequences for polynomial symbols.
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5.1. Transition of weakly elliptic symbols. For symbols in ./Tgﬁ) p(CQd)
we define ellipticity and weak ellipticity as follows.

Definition 5.1. Let p > 0, w € Pq, ,(C?) and a € flgﬁ)p(cw). Then a is
called weakly elliptic of order pg = 0, or pg-weakly elliptic, if for some R > 0
la(z,2)| 2 () "w(V2z), 2| = R.

If a is weakly elliptic of order 0 then a is called elliptic.

Theorem 5.2. Letwe Z(R?*?) ~ 2(C%),p>0andac Sh,(,w) (R?). Then
the following is true:

(1) if z = x + i€, z,& € RY, then
Swa(z,2) — a(vV2z, —v28)| S w(V22)(2)"; (5.1)

(2) if po € [0,2p), then Sy is bijective from the set of weakly elliptic
symbols in Shf)w) (R2) of order pg to the set of weakly elliptic symbols
in flgﬁ)p(CQd) of order py.

As a consequence of (2) in the previous theorem we get the following.

Corollary 5.3. Let a be as in Theorem 5.2. Then the following is true:
(1) if po € [0,2p), then a € Shf,w)(RQd) is weakly elliptic of order po, if

and only if Sypa € Aé“;l?p((:?d) is weakly elliptic of order py;

(2) ae Shgw)(Rw) is elliptic if and only if Sya € flgﬁ?p(CQd) is elliptic.

For the proof of Theorem 5.2 we need the following proposition, related
to Propositions 3.1 and 3.5.

Proposition 5.4. Let N = 0 be an integer, p = 0, w € (@ShW(RQd) ~
Ponp(CY), wile,§) = w(e,(x,)™>* and a e Shi”(R¥). Then for
some ¢ € Shng“)(RQd) and constants {ca}|a|<an With co = 1, it holds

N
Sya(2722,2722) = O ap(z, —€) + en(z,—€),  m= Y cad®a. (5.2)
k=0 || =2k

Proof. Let ¢ be as in Proposition 2.3. If we put z = w, then (2.9) and
Taylor’s formula give

(2m)%Sypa(2722,2722) = (21) 3 Tya(z, —£,0,0)

2N+1

_ o f f alt + a7 — e+ gy = by, —€) + c(w, —€) (5.3)
R2d k=0
where
24 22
0u(0€) = 21 [[@0,8)5 1,71, 1,70

R2d
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and
1
(@.6) = Gy ), (=0 el €)db
with

co(x, &) = 2¢ f @PNFD (2 4 0t, € + 07); (t,7), ..., (¢, 7')>e_(|t|2+‘7‘2) dtdr.
R2d
If k£ is odd, then

(t,7) = a®) (2, ) (¢, 7), ..., (7)) I+

is odd which implies that the integral is zero. Hence by(x,£) = 0 when £ is
odd. For k = 0 we observe that the integral for by becomes

24 ff e~ P+ grar = (2m)4,

R2d
and it follows from these relations that
2N+1 N

@2m) > br =)
k=0 k

=0
with ay as in (5.2) and ¢y = 1. Hence the result follows if we prove that the

last term in (5.3) satisfies ¢y € Shg‘)N“)(RM).
For 0 € [0,1] and a € N?? we have

|0%¢o(z,€)| < ﬂ 10%a®ND (2 4 61, € + O7)[((t, 7))2N 2~ IPHT) grar

R2d

< f f (@408, E+07) (a0t E4+07)y~ CN T2+l (4 P\ 2N+2~(H+17P) gy

R2d

< w(a, E)(x, €)y BN 2+l ”<(t, )yNoe= () grar
R2d
= w(x, ){(x, &)y~ BN 2Hlebe

for some Ny > 0. In the last inequality we have used the fact that w is
polynomially moderate.
This implies

1
|0%(x,8)| < JO 0% (2, )] d < wlx, &){(x, &)y~ PN+2+lahp,

which shows that ¢, cy € Shi“¥+1) (R24). 0

Proof of Theorem 5.2. Let ¥ be as in Proposition 2.3 and N = 0 in Propo-
sition 5.4. Then

ISpa(2722,2722) — a(z, —£)| < wlz, —){(x,—€))%, (5.1

and (1) follows.
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Suppose pg € [0,2p). Then it follows from the latter inequality that
Swa(z,2)| 2 () Pw(v2z), |2|>R
for some R > 0, if and only if

|Cl(CL‘,f)| e <(x,§)>_p°w(:c,§), |Z| >R

for some R > 0, and the asserted equivalence in (2) follows. O
5.2. Shubin hypoellipticity in a Wick setting.

Definition 5.5. Let p > 0, pg = 0, w € P, ,(C?) and a € AShp(CQd).

Then a is called hypoelliptic (in the Shubin- Wick sense in ASh,p(C2d)) of
order po, if there is an R > 0 such that for every «, € N¢, it holds

10900 (2, 2)| < |alz, 2)|z)FetBl 2| > R. (5.4)
and

la(z, 2)| = wo(vV22)(z)~"°, |z| = R. (5.5)

According to Definition 1.11, if w, p and py are as in the definition, then
ae Shgw) (R?9) is hypoelliptic of order pg means that there is an R > 0 such
that for every a € N?¢, it holds

0%a(z, )| < la(z, O (w, )77, |(x,¢)] = R. (5.6)
and
la(z, §)| 2 w(z, (=, €))7, |(z,8)| = R. (5.7)
Similar to Theorem 5.2 we have the following.

Theorem 5.6. Let p > 0, pg = 0, w € QSh,p(RZd) ~ (ngh,p(Cd), ace
Shg”) (R??) and a = Sya. Then a is hypoelliptic of order py in Sh,()w) (R24),
if and only if a is hypoelliptic of order pg in .%Tgfl),p(CQd).

Proof. Suppose that a € Sh,(ow) (R2d) is hypoelliptic of order pg, and choose
N = 0 such that 2Np > pg. Suppose that R > 0 is chosen such that (5.6)
and (5.7) are fulfilled. Then Proposition 5.4 gives for z = z+14¢ with |z| > R
where R > 0 is sufficiently large

N
ra<2-%z,2-%z>|z\a<x,—§>r—2 Z (|0%a(z, —&)| + |e(z, —€)|)
k=1 =

R la(z, =€)| — |a(z, _5)’<(x7_£)>_2p — w(z, =&){(w, =€)y
2 la(z, —€)| — la(z, —)[{(z, —€))~
R la(z, =€) 2 wlz, =&)<(x, =)™,

and (5.5) follows. In particular it follows from the previous estimates that

a(2722,2722)| 2 [a(z, =€), || = R (5.8)
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For fixed a, 8 € N9, let Q. be the set of all (7,8) € N?¢ x N?¢ such that
|v| = 2k and |§] = |o + B|. By Proposition 5.4 and (5.8) we have for some
R large enough and |z| > R,

N
(0205 a)(2722,2722)| < 2 Z (|07 0a(z, —€)| + [e(w, —€)])
k=0 (v,8)e

N
<2 (Ja(a, =€) (r, =€)y PCRHHBD iy, —£)((ar, — )y~ PN+l D)
k=0 (’Y?(S)EQk

= |a(z, =&)|{(z, —&))y A + w(z, —){(w, —&)y PN Hatbl)
< la(z, —€)|((@, —€))P1oBl 4 |a(z, —€)|((x, —€))Po— PN +latB])

= la(e, ~&)(, ~€) 1 5 a2 22,27 72) (2, €)1,
which implies that (5.4) holds.
This shows that a is hypoelliptic of order py in ﬁ(si) p(CQd) when a is
hypoelliptic of order pg in Shgw) (R24).
Suppose instead that a is hypoelliptic of order pg in ﬁgﬁ) p(CQd). By

using Proposition 3.5, (3.12) and (3.13) instead of Proposition 5.4, similar
computations as in the first part of the proof shows that (5.6) and (5.7) hold

for some R > 0. This shows that a is hypoelliptic of order pg in Shg”) (R?)
when a is hypoelliptic of order pgy in ﬁgﬁ) p(CQd), and the result follows. [

5.3. Ellipticity in the case of polynomial symbols. Next we discuss
ellipticity for polynomial symbols, i.e.

a(z,§) = > el B¢, z,¢eR (5.9)
la+B|<N
and
a(z,w) = Z cla, B) 20", z,we CY (5.10)
|a+B|<N

The corresponding principal symbols are

a(z,8) = > cla, B¢’ xR (5.11)
|a+8|=N
and
ap(z,w) = Z c(a,ﬂ)zaﬁﬁ, z,we C, (5.12)
|a+8|=N
respectively.

First we relate polynomials on R?? to Shubin classes.

Proposition 5.7. Let a and a,, be as in (5.9) and (5.11) for some c(«, B) €
C, a,8e N and N =0, and let wy(x, &) = {(z,6)YN, x,& e RL. Then the
following is true:
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(1) a e Shy™ (R¥);
(2) a is elliptic with respect to wn, if and only if a,(x,&) # 0 when
(x,§) # 0.

The result can be considered folklore. In order to be self-contained we
present the arguments.

Proof. First we prove (1). Let t = max(|z1|,...,|zaql,|&1], -, [&a]) when
= (x1,...,1q9) e R and € = (&,...,&) € R% Then

a(z, o)l < Y lela, A s 14+ Y < (@, )Y,
lo+B|<No

which gives the desired bound for |a(z,&)|. Since the degree of a polynomial
is lowered by at least one for every differentiation we get

o%a(, )| < (@, )N
for every o € N2, which gives (1).
In order to prove (2) we let a, be as in (5.11). First suppose that a,(z,§) #
0 when (z,¢) # (0,0), and let g be the continuous function on R24\0 given
by
|Clp(£(}, 5)’
g.T,é. = T AN mvg # 070
@6 = TEERL @94 0.0)
Since g is continuous and positive, and the sphere
S¥71 = {(2,8) e R*; [a)* + ¢ = 1}

is compact, it follows that there are constants ¢y, co > 0 such that

a<g@é) <c, (2,6 e
By homogeneity it now follows
al(@ O <o)l < cal (@, O, 2,6 RY
Hence, if
b(.ﬁlf,f) = Cl(.’,E,f) - ap(xag) = Z c(a75)xa£ﬁ>
la+B|<N-1

then the first part of the proof implies that for some constants C > 0 and
R > 0 we have

la(z,€)| = [ap(2, )] = [b(z,6)] > c1l(z, ™ — O, )N 2 ((, €)Y

when |(z,£)| = R. Hence a is elliptic with respect to wy.
Suppose instead a,(zo, &) = 0 for some (29, &) # (0,0). For any (z,§) =
(txo,t&) we have

la(z, €)| < |ap(z, )| + [b(z, )| = [tV ap(wo, &)| + [b(z, &)
= [b(z,&)| < (2, )",
giving that |a(z, &)| = ((z, €)YV, |(z,€)| = R, cannot hold for any R > 0. O

By Theorems 5.2, 5.6 and Proposition 5.7 we get the following. The
details are left for the reader.
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Proposition 5.8. Let a and a, be as in (5.10) and (5.12) for some c(«, B) €
C, a,8eN? and N =0, and let wy(x, &) = {(z,6)YN, x,& e RL. Then the
following is true:

(1) ae AGY (C*);
(2) a is elliptic in Asﬁj\i (C?d) if and only if ay(z,2) # 0 when z # 0.

Remark 5.9. Let a, ap, a and a,, be as in (5.9)—(5.12). Then it follows from
Propositions 5.7 and Proposition 5.8 that a is elliptic, if and only if a, is
elliptic, and that a is elliptic, if and only if a,, is elliptic.

We have now the following.

Theorem 5.10. Let a € Sh(wN)(RQd) and a, be as in (5.9) and (5.11) for
some c(a, B) € C, a, € N® and N > 0. Then the following is true:

(1) the principal symbol ay(z, w) of Sya is given by
ap(zw) =277 Y e(a, Bz + @) (2 — w); (5.13)
la+B|=N
(2) a is elliptic in Shng)(RQd) if and only if a, is elliptic in AS";Nl (C24);

(3) ap(z,&) > 0 for every (x,&) # (0,0), if and only if ap(z,2) > 0 for
every z # 0.

Proof. Let z =z + i€, z,6 e R4, 1. e. o = %(z +7Zz) and £ = %(z —Z%). By
Theorem 5.2 we get

ap(2722,2722) = ay(x, —£). (5.14)
This implies

ap(z,2) =27 Y cla,fa(—¢)°

la+Bl=N
=27 (. 827z +2)°(20) W (—(z =),
|a+8|=N
which gives
ap(z2) =272 Y e, B)i%(z +2)%(2 — 7). (5.13)
lat+pBl=N

The formula (5.13) now follows from (5.13)" and analytic continuation, using
the fact that a,(z,w) is analytic in z and conjugate analytic in w.

The assertion (2) follows by a combination of Corollary 5.3, Propositions
5.7 and 5.8, and the assertion (3) is a direct consequence of (5.14). O

6. A NECESSARY CONDITION FOR POLYNOMIALLY BOUNDED WICK
SYMBOLS

In [13, Section 2.7] Folland shows that polynomial symbols for pseudo-
differential operators correspond to polynomial Wick and anti-Wick sym-
bols. Thus partial differential operators with polynomial coefficients corre-
sponds to polynomial Wick symbols.
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Here we show that a Wick symbol that is polynomially bounded must be
a polynomial. This gives a characterization of Wick symbols corresponding
to polynomial symbols for pseudo-differential operators.

Cauchy’s integral formula implies that an entire function which is poly-
nomially bounded must be a polynomial:

Proposition 6.1. Let F € A(C?%) have Maclaurin series

F(z) = Z c(a)eq(z), zeC

aeNd

Suppose that for some j € {1,...,d}, C > 0, N = 0, and an open neigh-
bourhood I = C of the origin we have

|F(2)| < O™, z€C,
provided z, € I, ke {1,...,d}\{j}. Then c(a) =0 when oj > N.

Proof. By interchanging the variables, we may assume that j = d. Let R > 1
and € > 0 be chosen such that
D.={z€eC; |z <e}cI.
Take a € N? such that ag > N, let 8 = (a1 + 1,...,aq + 1) € N% and
~ve € C be the boundary circle of D.. Then Cauchy’s integral formula gives

“F(0
()] _[¢ < ’ (o) f PO 1) ey
al? A=t \J|z¢|=R *
(2m)- f J f O gl )tz 21
|za|=R | ‘
<R ad<R>N (a1+-+ag_1) -0
as R — oo. O

Corollary 6.2. Let a € A(C??) and suppose

la(z, w)| < {(z,w)) (6.1)
for some N = 0. Then a is a polynomial in z € C* and w e C? of degree at
most N.

Proof. By Proposition 6.1 it follows that a is a polynomial of degree at most
2dN. We need to prove that the degree is at most V. In order to do this
we may assume that a has degree at least one.

For some integer M > 1 we have

a(z,w) = ap(z,w) + apr—1(z,w),
where

av(zw) = Y ela,B):07
la+B|=M
is non-trivial and
ap—1(z,w) = Z c(a, B)z°w".
lo+Bl<M -1
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Since ayy is non-trivial, there are zg, wp € C? such that |2o|? + |wp|?> = 1 and
lans (20, wo)| = co # 0. By homogeneity we get

lans(tz0, two)| = colt|™,  teR.
In the same way we get
lanr—1(tzo, two)| < C(1+ [¢)M 1, teR

for some constant C which is independent of t.
Suppose contrary to the assumption that M > N. For t € R with || > 1
we have

a(tzo, twp)
<(t20, tw0)>N

\ 2 1 (Jaas(t2o, )| — lans1(tz0, tuwo) )

>t (o[t —C(L+ )M ) > 0 as Jt| — oo

This contradicts (6.1), and the hence our assumption that M > N must be
false. g

APPENDIX

In this appendix we present some tables on weights, operators, spaces of
entire functions on C? and Wick symbol classes.
In the first two tables we review weight classes, transforms, and operators.
Recall
@ =1+ [e)2,  duw) = 7% dA(w),

where d\(w) is the Lebesgue measure on C?, and let dy = (27)%dy.

Weight class Features Eq. ref.
ZeRY || we LERERY), wiz+y) Sw@e™ | (15)
2R we LP. (RERY), wlz +y) Sw()d™ | (1.1
Psn.,(RY) we PRY A |0°w(z)| < w(m)<x>7‘”|a‘ (1.46)

Table 1: Weight classes.

Operator Notation Features Eq. ref.
Modul. STFT T f§fly+x)o(y)e vV dy (1.10)
Bargm. transf. Va f— 4 Se_%(<z’z>+‘y|2)+21/2<z’y>f(y) dy (1.19)
Semi-conj. op. ) K(z,w) — K(z,W) (1.29)
Pseudo-diff. op. || Opy(a) | f— (fa(z — Az —y), &) f(y)e ™ ¥&dyde | (1.31)
Wick op. Opy(a) F—f{a a(z, w)F(w)e®™) du(w) (1.36)
Anti-Wick op. Opy' (a) FS{aa a(w)F(w)e®™) du(w) (1.40)
Bargm. assignm. Sy Opy(Swa) = Va0 O0p,(a)oVE, A= %[ (1.41)

Table 2: Operators and transforms.
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The next two tables deal with properties of the Bargmann images of
Gelfand-Shilov function spaces, the Schwartz space, and their distribution
spaces. Recall

1 1 d
|z|s,0 = |Rez|s + |Im 2|7, z e C
Function Bargmann Vaf(z)] < Eq. ref.
space image

1212 _

AZ(CY) | ez mElse 3> 0| (1.6), (1.24), (1.25)

S(RY), 5,0 >

=

212
»7(RY),s,0 > Ag L (Ch T —rlEles e > 0| (1.6), (1.24), (1.25)

D=

S (RY) Az (C% e@@*N,VN >0 | (1.6), (1.24), (1.25)

Table 3: The Bargmann images of test function spaces.

Distribution Bargmann Vaf(2)] < Eq. ref.

space image
2|2

(ST)Y(RY),s,0 = 1 || (A2)(C?) | ez Tl wvr >0 | (1.6), (1.24), (1.25)
2 2

(22)(RY),s,0 > % || (A45,)(Ch T +rlElee 3050 | (1.6), (1.24), (1.25)
2 2

' (RY) AL (C?) | (N AN =0 | (L6), (1.24), (1.25)

Table 4: The Bargmann images of distribution spaces.

For the links between the Shubin class Shg‘)) (R2) (see (1.47)), and the
symbol classes T75(R24), T7% (R24) and I'75 (R24) (see Definition 1.8) we

5,030

have the following table. Here
0%a = 03" 0g° 0, d*a,
z=w+if, w=y+in, a= (041,()[2,043,044) € N2d7

when a € A(C?9) (see (2.15)), and w,(2) = w(2){z)™" when w ee Py, ,(C?)
and r € R.

Wick class |0%a(z, w)| < Ref.

Sw(Sh{) (R2)) ezl P (v2Ez —w)y N YN >0, a =0 Thm. 2.2
Sw(Sh) (R24)) ezl 0 (V2R 2 —wy N, a e N4 Thm. 2.5
Su(T75,0(R2)) || ezlewlHrilztwlso—ralz=vlso 3p, 5 0,Vr > 0, = 0 | Thm. 2.6
Sy (TS0 (R2Y)) || e2ls—wlPHrlztwlso—ralz=wloo 30 5 0 Vpy >0, @ = 0 | Thm. 2.6
Sy(T73(R*™)) ezlzmulanlztulsorali=vlse 30 1) 50,0 =0 Thm. 2.6

Table 5: Estimates for Wick symbol classes
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In Table 5, recall that AS) = Sy(Shy” (R*)). For Sy(I'75,(R) it

5,030

is assumed that s,0 > 1, while for Sq(I75°(R24)) and Sgy(I'75(R24)) it is
assumed that s, > %

1]
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[4]
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(17]
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20]
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23]

(24]
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