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We study the link between Ψdos and Wick operators via the Bargmann transform. 
We deduce a formula for the symbol of the Wick operator in terms of the short-time 
Fourier transform of the Weyl symbol. This gives characterizations of Wick symbols 
of Ψdos of Shubin type and of infinite order, and results on composition. We prove 
a series expansion of Wick operators in terms of anti-Wick operators which leads 
to a sharp Gårding inequality and transition of hypoellipticity between Wick and
Shubin symbols. Finally we show continuity results for anti-Wick operators, and 
estimates for the Wick symbols of anti-Wick operators.
© 2022 The Author(s). Published by Elsevier Masson SAS. This is an open access 
article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

r é s u m é

Nous étudions le lien entre Ψdos et opérateurs Wick passant par la transformée 
de Bargmann. Nous déduisons une formule pour le symbole de l’opérateur de 
Wick en termes de la transformée de Fourier à court terme du symbole de Weyl. 
Ceci donne des caractérisations des symboles Wick de Ψdos de type Shubin et 
d’ordre infini, et des résultats sur composition. Nous prouvons un développemet 
en série des opérateurs Wick dans opérateurs anti–Wick qui conduit à une forte 
inégalité Gårding et transition de hypoellipticité entre les symboles Wick et Shubin. 
Enfin, nous montrons des résultats de continuité pour opérateurs anti-Wick et des 
estimations pour les symboles Wick des opérateurs anti–Wick.
© 2022 The Author(s). Published by Elsevier Masson SAS. This is an open access 
article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
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0. Introduction

In the paper we investigate conjugation with the Bargmann transformation of pseudo-differential and 
Toeplitz operators on Rd with isotropic symbols, and we explore relations between Wick and anti-Wick 
operators. Particularly we consider Shubin operators and operators of infinite order. This gives rise to 
analytic type pseudo-differential operators on Cd that are called Wick or Berezin operators because of the 
fundamental contributions by F. Berezin [5,6], which in turns goes back to some ideas in [33] by G. C. Wick.

Let a be a suitable locally bounded function on C2d such that z ÞÑ apz, wq is analytic, z, w P Cd. Then 
the Wick operator OpVpaq with symbol a is the operator which takes an appropriate entire function F on 
Cd into the entire function

OpVpaqF pzq “ π´d

ż

Cd

apz, wqF pwqepz´w,wq dλpwq, (0.1)

where dλ is the Lebesgue measure and p ̈  , ¨ q is the scalar product on Cd. (See [17] and Section 1 for 
notation.) Wick operators appear naturally in several problems in analysis and its applications, e.g. in 
quantum mechanics. For example, the harmonic oscillator, the creation and annihilation operators take the 
simple forms

F ÞÑ xz,∇zyF ` cF, F ÞÑ zjF and F ÞÑ BzjF,

respectively, for some constant c, in the Wick formulation (see [3]).
An advantage of the Wick calculus compared to corresponding operators on functions and distributions 

defined on Rd is that in almost all situations, the involved functions are entire, which admits the use 
of the powerful techniques of complex analysis. (A more general approach is studied in [29], where the 
Wick calculus is formulated in terms of spaces of formal power series expansions instead of spaces of entire 
functions.) The possible lack of analyticity of apz, wq in (0.1) with respect to the w variable is removable 
in the sense that for any suitable Wick symbol a, there is a unique a0 such that pz, wq ÞÑ a0pz, wq is entire, 
and OpVpaq “ OpVpa0q (see e.g. [29,30]). Consequently it is no restriction to assume that apz, wq in (0.1)
is analytic in z and conjugate analytic in w, which we do in the introduction henceforth. Any linear and 
continuous operator from the Schwartz space, a Fourier invariant Gelfand-Shilov space or Pilipović space, 
to the corresponding distribution spaces, respectively, is in a unique way transformed into a Wick operator 
by the Bargmann transform (see [29]).

Several operators in quantum mechanics are so-called Shubin operators, i.e. pseudo-differential operators

Oppaqfpxq “ p2πq
´ d

2

ż

Rd

apx, ξq pfpξqeixx,ξy dξ, f P S pRd
q,

where the symbol a belongs to the Shubin class Shpωq
ρ pR2dq, the set of all a P C8pR2dq such that

|B
α
x B

β
ξ apx, ξq| À ωpx, ξqp1 ` |x| ` |ξ|q

´ρ|α`β|, α, β P Nd.

(See e.g. [17,26].) Here ω is a suitable weight function on R2d and 0 ď ρ ď 1. Partial differential oper-
ators with polynomial coefficients, e.g. the creation and annihilation operators or the harmonic oscillator 
mentioned above, are examples of Shubin operators. In Section 2 we prove that the Bargmann image of 
Shubin operators with symbols in Shpωq

ρ pR2dq is the set of all Wick operators in (0.1) such that a belongs 
to uApωq

Sh,ρpC2dq. This means that C2d Q pz, wq ÞÑ apz, wq is an entire function that satisfies

γ 1 2 ?

|B

β
z Bwapz, wq| À e 2 |z´w| ωp 2zqxz ` wy

´ρ|β`γ|
xz ´ wy

´N (0.2)
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for every N ě 0.
An important subclass of Wick operators is the anti-Wick operators, which are Wick operators where 

the symbol apz, wq does not depend on z. That is, for an appropriate measurable function a0 on Cd, its 
anti-Wick operator is given by

Opaw
V pa0qF pzq “ π´d

ż

Cd

a0pwqF pwqepz´w,wq dλpwq. (0.1)1

Again F is a suitable entire function on Cd. The anti-Wick operators can also be described as the Bargmann 
images of Toeplitz operators on Rd. (See e.g. [20,26,30] for the definition of Toeplitz operators.)

A feature of Toeplitz operators and anti-Wick operators, useful for energy estimates in quantum mechanics 
and time-frequency analysis, is that non-negative symbols give rise to non-negative operators. (Cf. e.g. 
[20,18,19].) An operator T “ OpVpaq with a satisfying (0.2) for every N ě 0, is called positive (non-
negative), if there is a constant C ą 0 (C ě 0) such that

pTF, F qA2 ě C}F }
2
A2 ,

for every analytic polynomial F on Cd, where p ̈  , ¨ qA2 is the scalar product induced by the Hilbert norm

}F }A2 “ π´ d
2

ˆ
ż

Cd

|F pzq|
2e´|z|

2
dλpzq

˙
1
2

.

The implication from non-negative symbols to non-negative operators is not relevant for Wick operators 
in (0.1) when apz, wq is not constant with respect to z, since the analyticity of the map z ÞÑ apz, wq implies 
that apz, wq is non-real almost everywhere. For such symbols it is instead natural to check whether positivity 
of the map w ÞÑ apw, wq leads to positive operators (see e.g. [5,6,12]). By choosing

d “ 1, apz, wq “ 1 ´ 2zw ` 2z2w2 and F pzq “ z

we obtain

apw,wq “ p1 ´ |w|
2
q
2

` |w|
4

ą 0 but pOpVpaqF, F qA2 “ ´1 ă 0.

Consequently OpVpaq may fail to be a non-negative operator even though apw, wq is positive.
On the other hand, for certain conditions on a, we deduce in Section 3 a weaker positivity result for Wick 

operators, which is equivalent to the sharp Gårding inequality in isotropic pseudo-differential calculus on Rd

(see Theorem 18.6.7 and the proof of Theorem 18.6.8 in [17]). That is, for a P uApωq

Sh,ρpC2dq with ωpzq “ xzy2ρ

and ρ ą 0 we prove

RepOpVpaqF, F qA2 ě ´C}F }
2
A2 (0.3)

and

|ImpOpVpaqF, F qA2 | ď C}F }
2
A2 , when apw,wq ě 0 (0.4)

(cf. Theorem 4.2). In particular we obtain energy estimates also for Wick operators with symbols that are 
non-negative on the diagonal.

The latter result is obtained by approximating Wick operators by anti-Wick operators, using for the 

Wick operator (0.1) with a P uApωq

Sh,ρpC2dq the remarkable identity
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OpVpaq “
ÿ

|α|ăM

p´1q|α|

α! Opaw
V pbαq ` OpVpcM q where bαpwq “ B

α
z B

α

wapw,wq, (0.5)

for some cM P ApωM q

Sh,ρ pC2dq with ωM pzq “ ωpzqxzy´2Mρ. Here we again assume ρ ą 0. The decay conditions 
on bα and cM are, respectively,

|B
β
wB

γ

wbαpwq| À ωp
?

2wqxwy
´ρ|2α`β`γ|, α, β, γ P Nd, (0.6)

and

|B
β
z B

γ

wcM pz, wq| À e
1
2 |z´w|

2
ωp

?
2zqxzy

´2Mρ
xz ` wy

´ρ|β`γ|
xz ´ wy

´N , (0.7)

for every N ě 0. Consequently, several Wick operators can essentially be expressed as linear combinations 
of anti-Wick operators. The expansion (0.5) is deduced in Section 3 using Taylor expansion and integration 
by parts, see Proposition 3.1 and Remark 3.2. The estimates (0.6) and (0.7) are consequences of (2.5)2 and 
Proposition 3.3.

The conditions on bα are the same as the conditions on a (0.2), restricted to the diagonal z “ w, and 
with improved decay. On the diagonal, the growth term e

1
2 |z´w|

2 disappears, which dominates in (0.2) when 
|z´w| Á |z| or |z´w| Á |w|. The right-hand side of (0.6) becomes as large as possible when α “ β “ γ “ 0, 
that is b0 is the dominating term in the sum (0.5).

The conditions on cM are the same as the estimates (0.2) again with improved decay due to the factor 
xzy´2Mρ.

For polynomial symbols, (0.5) agrees with the integral formula [5, Theorem 3] due to Berezin which carry 
over Wick operators into anti-Wick operators. For the general case, (0.5) is analogous to the approximation 
technique of pseudo-differential operators on Rd in terms of Toeplitz operators given in [26, Theorem 24.1]
and its proof, by Shubin.

The anti-Wick symbols in (0.5) bαpwq “ Bα
z B

α

wapw, wq extend to have the property that Bα
z B

α

wapz, wq is 
entire in z and conjugate entire in w. Note that restriction to the diagonal also appears in the positivity 
condition (0.3) on Wick symbols.

The sharp Gårding inequality (0.3) is reached by using the fact that Opaw
V pb0q is non-negative, and that 

if T is either Opaw
V pbαq or OpVpcN q for α ‰ 0, then }TF }A2 À }F }A2 when F P ApCdq is a polynomial.

In Section 5 we deduce links concerning ellipticity, hypoellipticity (in Shubin’s sense) and weak ellipticity 
between Shubin and Wick symbols. The notion of hypoelliptic symbol resembles hypoelliptic symbols in 
Shubin’s sense (see [26]). More specifically, we say that the symbol a P Shpωq

ρ pR2dq is hypoelliptic of order 
ρ0 ě 0, whenever there is an R ą 0 such that

|apx, ξq| Á ωpx, ξqxpx, ξqy
´ρ0 and |B

αapx, ξq| À |apx, ξq|xpx, ξqy
´ρ|α|

when |px, ξq| ě R.
A linear operator T from S 1pRdq to S 1pRdq is called globally hypoelliptic if

Tf “ g, f P S 1
pRd

q, g P S pRd
q ñ f P S pRd

q.

(See e.g. [11].) It can be proved that a pseudo-differential operator with hypoelliptic symbol in Shubin’s 
sense is globally hypoelliptic as operator (see e.g. [26, Corollary 25.1]).

We show, similarly to our investigations of the sharp Gårding inequality and for expansion (0.5), that 
ellipticity, hypoellipticity and to some degree weak ellipticity for the Shubin symbol a can be characterized 
by certain conditions for the corresponding Wick symbol apz, wq along the diagonal z “ w. For example, 

let a be a polynomial on Rd with principal symbol ap, and let apz, wq be a polynomial in z, w P Cd with 
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principal part ap. Then a is elliptic means that appx, ξq ‰ 0 when px, ξq ‰ p0, 0q, and a is elliptic means that 
appz, zq ‰ 0 when z ‰ 0. For such a we prove

a is elliptic ô a is elliptic,

when apz, wq is the Wick symbol corresponding to a (which must be a polynomial in z and w).

Our investigations include the Bargmann transform of certain operators of infinite order, i.e. pseudo-
differential operators with ultra-differentiable symbols that are permitted to grow faster than any polynomial 
at infinity together with their derivatives. Particularly we consider Wick operators of infinite order, i.e. the 
Bargmann images OpVpaq of operators Oppaq of infinite order in [1], and characterize their images under 
the Bargmann transform (see Theorem 2.6). Then we deduce in Subsections 3.2 and 3.3 continuity results 
for anti-Wick operators which holds for the symbols bα in (0.5) when OpVpaq is the Bargmann image of an 
operator of infinite order.

In fact, in Subsection 3.2 we show that Opaw
V pbαq possess several other continuity properties than what is 

valid for OpVpaq in the expansion (0.5) (see Propositions 3.6 and 3.9). In Subsection 3.3 we deduce estimates 
of the Wick symbol bawα to the anti-Wick operator Opaw

V pbαq, i.e. the unique element bawα P uApC2dq such 
that OpVpbawα q “ Opaw

V pbαq. We show that usually, bawα satisfies stronger conditions than a when OpVpaq is 
a Wick operator of infinite order (see Theorems 3.11, 3.14 and 3.13).

The paper is organized as follows. In Section 1 we set the stage by providing necessary background 
notions and fixing the notation. It contains useful properties for weight functions, Gelfand-Shilov spaces, 
the Bargmann transform, pseudo-differential operators, Wick and anti-Wick operators. Thereafter we char-
acterize in Section 2 Shubin operators and operators of infinite order in terms of appropriate classes of 
Wick operators on the Bargmann side. These considerations are based on a formula for the Wick symbol 
expressed in terms of a short-time Fourier transform of the Weyl symbol, and admits characterization of 
the Wick symbols corresponding to Shubin Weyl symbols and symbols for operators of infinite order (see 
Proposition 2.3).

In Section 2 we also study composition and show for example that the well-known closure under com-
position of Shubin operators and operators of infinite orders have simple and natural proofs on the Wick 
symbol side.

In Section 3 we deduce series expansions of Wick operators in terms of anti-Wick operators, and between 
Wick symbols and symbols to corresponding Shubin operators. We also consider anti-Wick operators, and 
show continuity results for them. We show that the upper bounds for the Wick symbols of anti-Wick 
operators are stricter than for general Wick symbols.

In Section 4 we discuss lower bounds for Wick operators and deduce the sharp Gårding’s inequality. 
Section 5 concerns ellipticity, hypoellipticity and weak ellipticity.

Finally we observe in Section 6 that a polynomial bound of a Wick symbol implies that the symbol 
is a polynomial. For pseudo-differential operators this corresponds to partial differential operators with 
polynomial coefficients. This gives a characterization of such operators as those having polynomially bounded 
Wick symbols.

Various types of function spaces, distribution spaces, their Bargmann images, and symbol classes for 
pseudo-differential, Wick and anti-Wick operators appear frequently in the paper. For the reader’s conve-
nience we summarize several of these items in Appendix A.
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1. Preliminaries

In this section we recall some facts on function and distribution spaces as well as on pseudo-differential 
operators, Wick and anti-Wick operators. Subsection 1.1 concerns weight functions and Subsection 1.2 treats 
Gelfand-Shilov spaces. In Subsection 1.3 we introduce the Bargmann transform and topological spaces of 
entire functions on Cd, and in Subsection 1.4 we recall the definitions and some facts on pseudo-differential 
operators on Rd as well as Wick and anti-Wick operators on Cd. Subsection 1.5 defines certain symbol 
classes for pseudo-differential operators on Rd.

1.1. Weight functions

A weight on Rd is a positive function ω P L8
locpRdq such that 1{ω P L8

locpRdq. The weight ω is called 
moderate if there is a positive locally bounded function v such that

ωpx ` yq ď Cωpxqvpyq, x, y P Rd, (1.1)

for some constant C ě 1. If ω and v are weights such that (1.1) holds, then ω is also called v-moderate. The 
set of all moderate weights on Rd is denoted by PEpRdq. The set PpRdq consists of weights that are v-
moderate for a polynomially bounded weight, that is a weight of the form vpxq “ xxy

s where xxy “ p1 ̀ |x|2q
1
2

and s ě 0. The bracket notation is also used for complex arguments as xzy “ p1 ` |z|2q
1
2 when z P Cd. In 

particular, ω P PpRdq, if and only if

ωpx ` yq ď Cωpxqxyy
r, x, y P Rd, (1.1)1

for some r ě 0. If s P R then x ÞÑ xxys belongs to PpRdq, due to Peetre’s inequality (with optimal constant, 
see [25, Lemma 2.1])

xx ` yy
s

ď

ˆ

2
?

3

˙|s|

xxy
s
xyy

|s| x, y P Rd, s P R. (1.2)

The weight v is called submultiplicative if it is even and (1.1) holds for ω “ v. If (1.1) holds and v is 
submultiplicative then

ωpxq

vpyq
À ωpx ` yq À ωpxqvpyq,

vpx ` yq À vpxqvpyq and vpxq “ vp´xq, x, y P Rd.

(1.3)

The notation Apθq À Bpθq, θ P Ω, means that there is a constant c ą 0 such that Apθq ď cBpθq for all θ P Ω.
If ω is a moderate weight then by [30] there is a submultiplicative weight v such that (1.1) and (1.3)

hold. If v is submultiplicative then

1 À vpxq À er|x| (1.4)

for some constant r ą 0 (cf. [14]). In particular, if ω is moderate, then

ωpx ` yq À ωpxqer|y| and e´r|x|
À ωpxq À er|x|, x, y P Rd (1.5)
for some r ą 0. If not otherwise specified the symbol v always denote a submultiplicative weight.
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1.2. Gelfand-Shilov spaces

Let s, σ ą 0. The Gelfand-Shilov space Sσ
s pRdq (Σσ

s pRdq) of Roumieu (Beurling) type consists of all 
f P C8pRdq such that

}f}Sσ
s,h

” sup
ˆ

|xαBβfpxq|

h|α`β|α!s β!σ

˙

(1.6)

is finite for some (every) h ą 0 (see [13]). The supremum refers to all α, β P Nd and x P Rd. The seminorms 
} ¨ }Sσ

s,h
induce an inductive limit topology for the space Sσ

s pRdq and a projective limit topology for Σσ
s pRdq. 

The latter space is a Fréchet space under this topology. The space Sσ
s pRdq ‰ t0u, if and only if s ̀ σ ě 1, 

and Σσ
s pRdq ‰ t0u, if and only if s ̀ σ ą 1, see [13,22]. We write SspRdq “ Ss

s pRdq and ΣspRdq “ Σs
spRdq.

The Gelfand-Shilov distribution spaces pSσ
s q1pRdq and pΣσ

s q1pRdq are the (strong) dual spaces of Sσ
s pRdq

and Σσ
s pRdq, respectively.

The embeddings

Sσ1
s1 pRd

q ãÑ Σσ2
s2 pRd

q ãÑ Sσ2
s2 pRd

q ãÑ S pRd
q

ãÑ S 1
pRd

q ãÑ pSσ2
s2 q

1
pRd

q ãÑ pΣσ2
s2 q

1
pRd

q ãÑ pSσ1
s1 q

1
pRd

q,

s1 ` σ1 ě 1, s1 ă s2, σ1 ă σ2, (1.7)

are dense. For topological spaces A and B, A ãÑ B means that the inclusion A Ď B is continuous.
The spaces Ss and Σs, and their dual spaces, admit characterizations in terms of coefficients with respect 

to expansions with respect to the Hermite functions

hαpxq “ π´ d
4 p´1q

|α|
p2|α|α!q´ 1

2 e
|x|2
2 pB

αe´|x|
2
q, α P Nd.

The set of Hermite functions on Rd is an orthonormal basis for L2pRdq. We use H0pRdq to denote the space 
of finite linear combinations of Hermite functions. Then H0pRdq is dense in the Schwartz space S pRdq, as 
well as in S 1pRdq, with respect to its weak˚ topology. The same conclusion is true for ΣspRdq when s ą 1

2 , 
SspRdq when s ě 1

2 and their distribution dual spaces Σ1
spRdq and S 1

spRdq. A function or (ultra-)distribution 
f in any of these spaces possess an expansion of the form

f “
ÿ

αPNd

cpf, αqhα, cpf, αq “ pf, hαq, α P Nd. (1.8)

Here p ̈  , ¨ q denotes the unique extensions of the L2 form, which is linear in the first variable and conjugate 
linear in the second variable, from H0pRdq ̂ H0pRdq to S 1

spRdq ̂ SspRdq or Σ1
spRdq ̂ ΣspRdq. We recall 

that (cf. [24, Chapter V.3 ])

f P S pRd
q ô |cpf, αq| À xαy

´N for every N ě 0,

f P S 1
pRd

q ô |cpf, αq| À xαy
N for some N ě 0.

(1.9)

The topology on S pRdq is equivalent to the Fréchet space topology defined by the sequence space seminorms

S pRd
q Q f ÞÑ

ÿ

αPNd

xαy
2N

|cpf, αq|
2, N ě 0.
For f P S 1pRdq the sum in (1.8) converges in the weak˚ topology.
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The Hermite functions are eigenfunctions to the harmonic oscillator H “ Hd ” |x|2 ´ Δ and to the 
Fourier transform F , given by

Ffpξq “ pfpξq ” p2πq
´ d

2

ż

Rd

fpxqe´ixx,ξy dx, ξ P Rd,

when f P L1pRdq. Here x ̈  , ¨ y denotes the scalar product on Rd. In fact

Hdhα “ p2|α| ` dqhα, α P Nd.

The Fourier transform F extends uniquely to homeomorphisms on S 1pRdq, from pSσ
s q1pRdq to pSs

σq1pRdq

and from pΣσ
s q1pRdq to pΣs

σq1pRdq. It also restricts to homeomorphisms on S pRdq, from Sσ
s pRdq to Ss

σpRdq, 
from Σσ

s pRdq to Σs
σpRdq, and to a unitary operator on L2pRdq. Similar facts hold true when the Fourier 

transform is replaced by a partial Fourier transform.
Let φ P S pRdqz0 be fixed. We use the transform

Tφfpx, ξq “ p2πq
´ d

2 eixx,ξy
pf, eix ¨ ,ξyφp ¨ ´ xqq

“ eixx,ξyF pf ¨ φp ¨ ´ xqqpξq

“ F pfp ¨ ` xqφqpξq, x, ξ P Rd,

(1.10)

where f P S 1pRdq and φ P S pRdqz0 (cf. [8]). If f, φ P S pRdq then

Tφfpx, ξq “ p2πq
´ d

2 eixx,ξy

ż

Rd

fpyqφpy ´ xqe´ixy,ξy dy

“ p2πq
´ d

2

ż

Rd

fpy ` xqφpyqe´ixy,ξy dy, x, ξ P Rd.

(1.10)1

We notice that the short-time Fourier transform Vφf of f is given by

Vφfpx, ξq “ e´ixx,ξyTφfpx, ξq. (1.11)

That is, Tφ is a modulated short-time Fourier transform. Thus by [30, Theorem 2.3] it follows that the 
definition of the map pf, φq ÞÑ Tφf from S pRdq ̂ S pRdq to S pR2dq is uniquely extendable to a continuous 
map from S 1

spRdq ̂ S 1
spRdq to S 1

spR2dq, and restricts to a continuous map from SspRdq ̂ SspRdq to SspR2dq. 
The same conclusion holds with Σs in place of Ss, at each place.

The adjoint T ˚
φ is given by

pT ˚
φ F, gqL2pRdq “ pF, TφgqL2pR2dq

for F P S 1
spR2dq and g P SspRdq, and similarly with Σs or with S in place of Ss at each occurrence. When 

F is a polynomially bounded measurable function we write

T ˚
φ F pyq “ p2πq

´ d
2

ĳ

R2d

F px, ξq eixy´x,ξyφpy ´ xq dxdξ, (1.12)

where the integral is defined weakly so that pT ˚
φ F, gqL2pRdq “ pF, TφgqL2pR2dq for g P S pRdq. The identity 
(1.12) is called Moyal’s formula.
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We have

pT ˚
ψ ˝ Tφqf “ pψ, φqf, f P S 1

spRd
q, φ, ψ P SspRd

q, (1.13)

and similarly with Σs or with S in place of Ss at each occurrence.
Two important features of Tφ which distinguish it from the short-time Fourier transform are the differ-

ential identities

B
α
xTφfpx, ξq “ TφpB

αfqpx, ξq, α P Nd (1.14)

and

Dβ
ξ Tφfpx, ξq “ Tgβfpx, ξq, β P Nd, φβpxq “ p´xq

βφpxq. (1.15)

By (1.11) it follows that characterizations of Gelfand-Shilov spaces and their distribution spaces in terms 
of estimates of their short-time Fourier transforms carry over to estimates on Tφ in place of Vφ. For example 
we have the following (see e.g. [15,27] for the proof of (1) and [31] for the proof of (2)). See also [10] for 
related results.

Proposition 1.1. Let s, σ ą 0, φ P Sσ
s pRdqz0 (φ P Σσ

s pRdqz0) and let f P pSσ
s q1pRdq (f P pΣσ

s q1pRdq). Then 
the following is true:

(1) f P Sσ
s pRdq (f P Σσ

s pRdq) if and only if

|Tφfpx, ξq| À e´rp|x|
1
s `|ξ|

1
σ q, x, ξ P Rd, (1.16)

for some (every) r ą 0.
(2) f P pSσ

s q1pRdq (f P pΣσ
s q1pRdq) if and only if

|Tφfpx, ξq| À erp|x|
1
s `|ξ|

1
σ q, x, ξ P Rd, (1.17)

for every (some) r ą 0.

1.3. The Bargmann transform and spaces of analytic functions

If Ω Ď Cd is open then ApΩq consists of all (complex-valued) analytic functions on Ω. Complex derivatives 
are denoted, with z “ x ̀ iy P Ω,

Bzj “
1
2
`

Bxj
´ iByj

˘

, Bzj “
1
2
`

Bxj
` iByj

˘

for 1 ď j ď d, which admits the Cauchy-Riemann equations to be written as Bzjf “ 0, 1 ď j ď d.
The Bargmann kernel is defined by

Adpz, yq “ π´ d
4 exp

´

´
1
2 pxz, zy ` |y|

2
q ` 21{2

xz, yy

¯

, z P Cd, y P Rd,

where

xz, wy “

d
ÿ

z w and pz, wq “ xz, wy
j“1
j j
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when

z “ pz1, . . . , zdq P Cd and w “ pw1, . . . , wdq P Cd.

Sometimes x ̈  , ¨ y denotes the duality between a test function space and its dual. The context precludes 
confusion between its double use. The Bargmann transform Vdf of f P S 1

1{2pRdq is the entire function

Vdfpzq “ xf,Adpz, ¨ qy, z P Cd. (1.18)

The right-hand side is a well defined element in ApCdq, since y ÞÑ Adpz, yq belongs to S1{2pRdq for z P Cd

fixed, and Adp ̈  , yq is entire for all y P Rd. Let p P r1, 8s and ω P PEpRdq. Then Lp
pωq

pRdq consists of all 
f P L1

locpRdq such that }f}Lp
pωq

” }f ¨ ω}Lp is finite. If f P Lp
pωq

pRdq, then

Vdfpzq “

ż

Rd

Adpz, yqfpyq dy “ π´ d
4

ż

Rd

exp
´

´
1
2 pxz, zy ` |y|

2
q ` 21{2

xz, yy

¯

fpyq dy, z P Cd. (1.19)

(Cf. [3,4,30,31].)
For p P p0, 8s, ω P PEpCdq and ω0pzq “ ωp

?
2zq, let Ap

pωq
pCdq be the set of all F P ApCdq such that

}F }Ap
pωq

” π´ d
p }F ¨ e´ 1

2 | ¨ |
2

¨ ω0}Lp

is finite, and set Ap “ Ap
pωq

when ω “ 1. It was proved by Bargmann [3] that

Vd : L2
pRd

q Ñ A2
pCd

q (1.20)

is bijective and isometric. The space A2pCdq is the Hilbert space of entire functions with scalar product

pF,GqA2 ”

ż

Cd

F pzqGpzq dμpzq, F,G P A2
pCd

q,

where dμpzq “ π´de´|z|
2
dλpzq and dλpzq is the Lebesgue measure on Cd. The space A2pCdq is known as 

the Fock or Segal-Bargmann space in quantum mechanics (see [12,16]).
In [3] it was proved that the Bargmann transform maps the Hermite functions to monomials as

Vdhα “ eα, eαpzq “
zα

α! 1
2
, z P Cd, α P Nd. (1.21)

The orthonormal basis thαuαPNd Ď L2pRdq is thus mapped to the orthonormal basis teαuαPNd Ď A2pCdq. 
Bargmann also proved that there is a reproducing formula for A2pCdq. Let ΠA be the operator from L2pdμq

to ApCdq, given by

ΠAF pzq “

ż

Cd

F pwqepz,wq dμpwq, z P Cd. (1.22)

Then ΠA is the orthogonal projection from L2pdμq to A2pCdq (cf. [3]).
When we discuss extensions and restrictions of the Bargmann transform to Gelfand-Shilov spaces and 

their distribution spaces, we use

1 1

|z|s,σ “ | Re z| s ` | Im z| σ , z P Cd, (1.23)
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and consider the seminorms

}F }AS ;r ” }F ¨ e´ 1
2 | ¨ |

2
x ¨ y

r
}L8 , }F }A1

S ;r
” }F ¨ e´ 1

2 | ¨ |
2
x ¨ y

´r
}L8

and

}F }ASσ
s;r

” }F ¨ e´ 1
2 | ¨ |

2
`r| ¨ |s,σ}L8 , }F }A1

Sσ
s;r

” }F ¨ e´ 1
2 | ¨ |

2
´r| ¨ |s,σ}L8

when F P ApCdq, r ą 0 and s, σ ě
1
2 . Then Aσ

0,spCdq for s, σ ą
1
2 , AS pCdq and pAσ

s q1pCdq for s, σ ě
1
2 are 

the sets of all F P ApCdq such that

}F }ASσ
s;r

ă 8, }F }AS ;r ă 8 and }F }A1
Sσ
s;r

ă 8, (1.24)

respectively, for every r ą 0. The spaces are equipped with the projective limit topology with respect to 
r ą 0, defined by each class of seminorms, respectively.

In the same way we let Aσ
s pCdq for s, σ ě

1
2 , A1

S pCdq and pAσ
0,sq1pCdq for s, σ ą

1
2 be the sets of all 

F P ApCdq such that

}F }ASσ
s;r

ă 8, }F }A1
S ;r

ă 8 and }F }A1
Sσ
s;r

ă 8, (1.25)

respectively, for some r ą 0. Their topologies are the inductive limit topologies with respect to r ą 0, 
defined by each class of seminorms, respectively. We also set

A0,s “ As
0,s and As “ As

s.

Then

Vd : S pRd
q Ñ AS pCd

q, Vd : S 1
pRd

q Ñ A1
S pCd

q,

Vd :Sσ
s pRd

q Ñ Aσ
s pCd

q, Vd : pSσ
s q

1
pRd

q Ñ pAσ
s q

1
pCd

q s, σ ě
1
2

and

Vd : Σσ
s pRd

q Ñ Aσ
0,spCd

q, Vd : pΣσ
s q

1
pRd

q Ñ pAσ
0,sq

1
pCd

q, s, σ ą
1
2

are homeomorphisms [31].
From these homeomorphisms, the fact that the map (1.20) is a homeomorphism and duality properties 

for Gelfand-Shilov spaces, it follows that p ̈  , ¨ qA2 on A1{2pCdq ˆ A1{2pCdq is uniquely extendable to a 
continuous sesqui-linear form on pAσ

s q1pCdq ̂ Aσ
s pCdq. The (strong) dual of Aσ

s pCdq can be identified with 
pAσ

s q1pCdq through this form. Similar facts hold for Aσ
0,s in place of Aσ

s at each occurrence. (Cf. e.g. [30,31].)
Finally let A51;rpCdq and A58;rpCdq for r ą 0 be the Banach spaces which consist of all F P ApCdq such 

that

}F }A51;r ” }F ¨ e´r| ¨ |
}L8 respectively }F }A58;r ” }F ¨ e´r| ¨ |

2
}L8

is finite, and let A51pCdq be the inductive limit of A51;rpCdq with respect to r ą 0. Also let A0,58 pCdq and 
A1

0,58
pCdq be the projective respectively inductive limit topologies of A58;rpCdq with respect to r ą 0.

It is evident that A51pCdq is densely embedded in Aσ
s pCdq for every s, σ ě

1
2 , as well as in Aσ

0,spCdq for 

every s, σ ą

1
2 . The form p ̈  , ¨ qA2 on A51pCdq ̂ A51pCdq is uniquely extendable to a continuous sesqui-linear 
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form on ApCdq ̂ A51pCdq and the dual of A51pCdq can be identified with ApCdq. The Fréchet space topology 
of ApCdq can be defined by the seminorms

F ÞÑ sup
|z|ďN

|F pzq|, N “ 1, 2, . . . .

(Cf. [31].)

Remark 1.2. The spaces A51pCdq and A0,58 pCdq are examples of Bargmann images of special Pilipović 
spaces, a family of Fourier invariant topological vector spaces which are smaller than any Fourier invariant 
Gelfand-Shilov space, and which were introduced and investigated in [31]. For any σ ą 0, the Bargmann 
image of the Pilipović spaces H5σ pRdq and H0,5σ pRdq are given by

A5σ pCd
q ” tF P ApCd

q ; |F pzq| À er|z|
2σ

σ`1 for some r ą 0 u

respectively

A0,5σ pCd
q ” tF P ApCd

q ; |F pzq| À er|z|
2σ

σ`1 for every r ą 0 u.

If σ ą 1, then the (strong) duals of A5σpCdq and A0,5σ pCdq are given by

A1
5σ

pCd
q ” tF P ApCd

q ; |F pzq| À er|z|
2σ

σ´1 for every r ą 0 u

respectively

A1
0,5σ pCd

q ” tF P ApCd
q ; |F pzq| À er|z|

2σ
σ´1 for some r ą 0 u

through a unique extension of the A2 scalar product on A51pCdq ̂ A51pCdq. In particular, if σ tends to 8, 
it follows that some of these conditions tend to

A0,58 pCd
q ” tF P ApCd

q ; |F pzq| À er|z|
2

for every r ą 0 u

respectively

A1
0,58

pCd
q ” tF P ApCd

q ; |F pzq| À er|z|
2

for some r ą 0 u.

Note that in [31,29], the set A0,58 pCdq is denoted by A0, 12 pCdq, and its dual A1
0,58

pCdq is denoted by 
A1

0, 12
pCdq.

At many places it will be crucial to use the Gaussian window

φpxq “ π´ d
4 e´ 1

2 |x|
2
, x P Rd, (1.26)

in the transform Tφ. For this φ the relationship between the Bargmann transform and Tφ is

Vd “ UV ˝ Tφ, and U´1
V

˝ Vd “ Tφ, (1.27)

where UV is the linear, continuous and bijective operator on D 1pR2dq » D 1pCdq, given by

d 1 2 2 ? ?

UVF px ` iξq “ p2πq 2 e 2 p|x| `|ξ| qeixx,ξyF p 2x,´ 2 ξq, x, ξ P Rd, (1.28)
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cf. [30] in combination with (1.11).
In analytic operator theory we need subspaces of

uApC2d
q ”

�

ΘK ; K P ApC2d
q
(

,

where the semi-conjugation operator is

pΘKqpz, wq “ Kpz, wq, z, w P Cd. (1.29)

If T is a linear and continuous operator from S1{2pRdq to S 1
1{2pRdq, then there is a unique K P uApC2dq such 

that ΘK P A1
1{2pC2dq and Vd ˝ T ˝ V

´1
d is given by

F pzq ÞÑ

ż

Cd

Kpz, wqF pwq dμpwq. (1.30)

(See e.g. [29].) For these reasons we let

uA0,spC2d
q, uAspC2d

q, uAS pC2d
q, uA1

S pC2d
q, uA1

spC2d
q and uA1

0,spC2d
q

be the images of

A0,spC2d
q, AspC2d

q, AS pC2d
q, A1

S pC2d
q, A1

spC2d
q and A1

0,spC2d
q

respectively, under the map Θ. We also let uAppC2dq and uA51pC2dq be the images of AppC2dq and A51pC2dq, 
respectively, under the map Θ. The topologies of the former spaces are inherited from the corresponding 
latter spaces.

The semi-conjugated Bargmann (SCB) transform is defined as

VΘ,d “ Θ ˝ V2d.

All properties of the Bargmann transform carry over naturally to analogous properties for the SCB trans-
form.

1.4. Pseudo-differential operators

Let A be a real d ̂ d matrix. The pseudo-differential operator OpApaq with symbol a P S1{2pR2dq is the 
linear and continuous operator on S1{2pRdq given by

OpApaqfpxq “ p2πq
´d

ĳ

R2d

apx ´ Apx ´ yq, ξqfpyqeixx´y,ξy dydξ, x P Rd. (1.31)

For a P S 1
1{2pR2dq the pseudo-differential operator OpApaq is defined as the continuous operator from 

S1{2pRdq to S 1
1{2pRdq with distribution kernel

Ka,Apx, yq “ p2πq
´ d

2 F ´1
2 apx ´ Apx ´ yq, x ´ yq, x, y P Rd, (1.32)

where F2F is the partial Fourier transform of F px, yq P S 1
1{2pR2dq with respect to the y variable. This 
definition makes sense since the mappings
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F2 and F px, yq ÞÑ F px ´ Apx ´ yq, x ´ yq (1.33)

are homeomorphisms on S 1
1{2pR2dq. The map a ÞÑ Ka,A is hence a homeomorphism on S 1

1{2pR2dq.
If A and B are real d ˆ d matrices and a P S 1

1{2pR2dq, then there is a unique b P S 1
1{2pR2dq such that 

OpApaq “ OpBpbq, and b can be obtained by

OpApaq “ OpBpbq ô eixADξ,Dxyapx, ξq “ eixBDξ,Dxybpx, ξq (1.34)

(see [9,17]).

Remark 1.3. By Fourier’s inversion formula, (1.32) and the kernel theorem [21, Theorem 2.2], [28, Theorem 
2.5] for operators from Gelfand-Shilov spaces to their duals, it follows that the map a ÞÑ OpApaq is bijective 
from S 1

1{2pR2dq to the set of all linear and continuous operators from S1{2pRdq to S 1
1{2pR2dq.

If A “ 0 then OpApaq “ Op0paq “ Oppaq “ apx, Dq is the Kohn-Nirenberg or standard representation. 
If A “ 1

2Id where Id is the d ˆ d identity matrix then OpApaq “ Opw
paq is the Weyl quantization. In this 

paper we use mainly the Weyl quantization and we put

Kw
a “ Ka,Id{2 .

The Weyl product a#b of two Weyl symbols a, b P S1{2pR2dq is defined as the product of symbols 
corresponding to operator composition. Thus

Opw
pa#bq “ Opw

paq ˝ Opw
pbq

and the Weyl product can be extended to larger spaces as long as composition is well defined.

Next we recall the definition of Wick operators. Suppose that a P uApC2dq satisfies

w ÞÑ apz, wqer|w|´|w|
2

P L1
pCd

q (1.35)

locally uniformly with respect to z P Cd for every r ą 0. Then the analytic pseudo-differential operator, or 
Wick operator OpVpaq with symbol a and acting on F P A51pCdq, is defined by

OpVpaqF pzq “

ż

Cd

apz, wqF pwqepz,wq dμpwq, z P Cd. (1.36)

(Cf. e.g. [5,12,29–31].) The condition (1.35) and F P A51pCdq imply that the integrand on the right-hand 
side of (1.36) is well defined. The locally uniform condition (1.35) with respect to z P Cd implies that 
OpVpaqF P ApCdq.

In [29] several extensions and restrictions of OpVpaq are given. The following result follows from [29, 
Theorems 2.7 and 2.8]. Here LpA51pCdq, ApCdqq is the space of all linear and continuous operators from 
A51pCdq to ApCdq.

Proposition 1.4. The map a ÞÑ OpVpaq from uA51pC2dq to LpA51pCdq, ApCdqq is uniquely extendable to a 
bijective map from uApC2dq to LpA51pCdq, ApCdqq.

Let LApC2dq be the set of all a P L1
locpC2dq such that z ÞÑ apz, wq is entire for almost every w P Cd and

w ÞÑ sup

ˇ

ˇ

ˇ

Bα
z apz, wq ¨ er|w|´|w|

2
ˇ

ˇ

ˇ

P L1
pCd

q (1.37)

αPNd

ˇ

ˇ h|α|α! ˇ

ˇ
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for every h, r ą 0 and z P Cd. If a P uApC2dq satisfies (1.35) then a P LApC2dq as a consequence of Cauchy’s 
integral formula. Thus LApC2dq is a relaxation of the former condition.

If a P LApC2dq then OpVpaq : A51pCdq Ñ A1
51

pCdq “ ApCdq is continuous. Hence the following result is 
a straight-forward consequence of Proposition 1.4 and the fact that uA1

51
pC2dq “ uApC2dq.

Proposition 1.5. Let a P LApC2dq. Then there is a unique a0 P uApC2dq such that OpVpaq “ OpVpa0q as 
mappings from A51pCdq to A1

51
pCdq. It holds

OpVpaq “ OpVpa0q where a0pz, wq “ π´d

ż

Cd

apz, w1qe´pz´w1,w´w1q dλpw1q. (1.38)

Proof. The operator ΠA defined in (1.22) is the orthogonal projection from L2pdμq to A2pCdq which is 
uniquely extendable to a continuous map from

L0,ApCd
q ” t a0 P L1

locpCd
q ; w ÞÑ a0pwqer|w|´|w|

2
P L1

pCd
q for every r ą 0 u (1.39)

to ApCdq (see e.g. [30]). Hence, if F, G P A51pCdq and a0 is given by (1.38) then

pOpVpaqF,GqA2 “ ppOpVpaq ˝ ΠAqF,GqA2

“

ˆ
ż

Cd

ˆ
ż

Cd

ap ¨ , w1qep ¨ ,w1qepw1,wq dμpw1q

˙

F pwq dμpwq, G

˙

A2

“

ˆ
ż

Cd

a0p ¨ , wqep ¨ ,wqF pwq dμpwq, G

˙

A2
“ pOpVpa0qF,GqA2 ,

and thus OpVpaq “ OpVpa0q follows. The assertion now follows from Proposition 1.4 and the fact that a0
in the integral formula of (1.38) defines an element in uApC2dq. l

We will also consider anti-Wick operators [12,5,6] defined by

Opaw
V pa0qF pzq “

ż

Cd

a0pwqF pwqepz,wq dμpwq, z P Cd, (1.40)

when a0 P L0,ApCdq and F belongs to A0pCdq, the space of analytic polynomials on Cd. Then a0 P L0,ApCdq

if and only if apz, wq ” a0pwq belongs to LApC2dq, and then Opaw
V pa0q “ OpVpaq. Consequently, all results 

for Wick operators with symbols in LApC2dq hold for anti-Wick operators. In particular, if a0 P L0,ApCdq, 
then Opaw

V pa0q : A51pCdq Ñ ApCdq is continuous. We denote the Wick symbol of the anti-Wick operator 
Opaw

V pa0q by aaw
0 . Then (1.38) takes the form

Opaw
V pa0q “ OpVpaaw

0 q where aaw
0 pz, wq “ π´d

ż

Cd

a0pw1qe´pz´w1,w´w1q dλpw1q. (1.38)1

Pseudo-differential operators on Rd may be transferred to Wick operators on Cd by means of the 
Bargmann transform.

Definition 1.6. Let a P S 1
1{2pR2dq.

(1) the Bargmann assignment SVa of a is the unique element a P uApC2dq which fulfills
OpVpaq “ Vd ˝ Opw
paq ˝ V˚

d ô a “ SVa; (1.41)
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(2) the Bargmann kernel assignment KV,a of a is the unique element K P uApC2dq, which is the kernel of 
the map Vd ˝ Opw

paq ̋ V˚
d with respect to the sesquilinear A2 form.

By the definitions we have

KV,apz, wq “ epz,wqSVapz, wq. (1.42)

Example 1.7. The creation and annihilation operators

2´ 1
2 pxj ´ Bxj

q and 2´ 1
2 pxj ` Bxj

q,

are transfered to the operators

F ÞÑ zjF and F ÞÑ BzjF, (1.43)

by the Bargmann transform (see [3]). The Wick symbols of the operators in (1.43) are zj and wj , respectively 
[5,30]. By combining these identities with the fact that the Weyl symbol of i´1Bxj

equals ξj we get

SVp2´ 1
2 pxj ´ iξjqq “ zj , SVp2´ 1

2 pxj ` iξjqq “ wj ,

SVpxjq “ 2´ 1
2 pzj ` wjq and SVpξjq “ 2´ 1

2 ipzj ´ wjq.

(1.44)

We need to compare Kw
a and KV,a. On the one hand we have for f, g P S pRdq

pOpw
paqf, gqL2pRdq “ pKw

a , g b fqL2pR2dq “ pV2dK
w
a ,V2dpg b fqqA2pC2dq

and on the other hand

pOpw
paqf, gqL2pRdq “ pOpVpaqVdf,VdgqA2pCdq

“ pKV,a,Vdg b VdfqA2pC2dq

“ pΘKV,a,ΘpVdg b Vdfqq
uA2pC2dq.

Since

ΘpVdg b Vdfqpz, wq “ VdgpzqVdfpwq “ V2dpg b fqpz, wq

we obtain

KV,a “ ΘV2dK
w
a “ VΘ,dK

w
a . (1.45)

1.5. Symbol classes for pseudo-differential operators on Rd

In order to define a generalized family of Shubin symbol classes [26], we need to add a restriction of the 
involved weights. Let ρ P r0, 1s, and let PSh,ρpRdq be the set of all ω P PpRdq X C8pRdq such that for 
every multi-index α P Nd,
|B
αωpxq| À ωpxqxxy

´ρ|α|, x P Rd. (1.46)
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For ω P PSh,ρpRdq the Shubin symbol class Shpωq
ρ pRdq is the set of all f P C8pRdq such that for every 

α P N2d,

|B
αfpxq| À ωpxqxxy

´ρ|α|, x P Rd. (1.47)

Let ρ P r0, 1s, ω P PSh,ρpR2dq and A be a real d ˆ d matrix. Then it follows from [26] or [17, Section 
18.5] that eixADξ,Dxy is a homeomorphism on Shpωq

ρ pR2dq, which implies that the set

t OpApaq ; a P Shpωq
ρ pR2d

q u

is independent of the choice of A, in view of (1.34). If B is another real d ̂ d matrix and a, b P Shpωq
ρ pR2dq

satisfy (1.34), then it follows from [17, Section 18.5] that

a ´ b P Shpωρq
ρ pR2d

q, where ωρpx, ξq “ ωpx, ξqxpx, ξqy
´2ρ. (1.48)

In particular

|apx, ξq ´ bpx, ξq| À ωpx, ξqxpx, ξqy
´2ρ. (1.49)

We also need the symbol classes defined in [1, Definition 1.8] with symbols satisfying estimates of the 
form

|B
α
x B

β
ξ apx, ξq| À h|α`β|α!σβ!serp|x|

1
s `|ξ|

1
σ q, x, ξ P Rd. (1.50)

(See also [9] for the restricted case when s “ σ.)

Definition 1.8. Let s, σ ą 0. Then

(1) Γσ,s;0
s,σ pR2dq consists of all a P C8pR2dq such that for some r ą 0, (1.50) holds for every h ą 0;

(2) Γσ,s
s,σ;0pR2dq consists of all a P C8pR2dq such that for some h ą 0, (1.50) holds for every r ą 0;

(3) Γσ,s
s,σpR2dq consists of all a P C8pR2dq such that (1.50) holds for some h ą 0 and some r ą 0.

Remark 1.9. The symbol classes Shpωq
ρ pR2dq have isotropic behavior with respect to phase space T˚Rd »

R2d, and the same holds for the symbol classes in Definition 1.8 when σ “ s. See also [9] for the restricted 
case when s “ σ, and [2] for a bilinear extension. Important classes similar to those given by Definition 1.8
are considered in [23].

Pseudo-differential operators with symbols in the classes in Definition 1.8 are examples of so called 
operators of infinite order. These operators are continuous on appropriate Gelfand-Shilov (distribution) 
spaces [1,9]. The next result characterizes the symbol classes in Definition 1.8 by means of estimates of form

|Tψapx, ξ, η, yq| À er1p|x|
1
s `|ξ|

1
σ q´r2p|η|

1
σ `|y|

1
s q, x, ξ, y, η P Rd. (1.51)

We omit the proof since the result is a special case of [1, Proposition 2.11]. We refer to [1, Subsection 1.1]
for the definition of the Gelfand-Shilov spaces Sσ,s

s,σpR2dq, Σσ,s
s,σpR2dq and their distribution spaces.

Proposition 1.10. Let s, σ ą 0 and let a P C8pR2dq. Then the following is true:

(1) if ψ P Sσ,s
s,σpR2dqz0, then a P Γσ,s

s,σ;0pR2dq if and only if (1.51) holds for some r2 ą 0 and every r1 ą 0;
(2) if ψ P Σσ,s

s,σpR2dqz0, then a P Γσ,s;0
s,σ pR2dq if and only if (1.51) holds for some r1 ą 0 and all r2 ą 0;
(3) if ψ P Σσ,s
s,σpR2dqz0, then a P Γσ,s

s,σpR2dq if and only if (1.51) holds for some r1 ą 0 and some r2 ą 0.
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1.6. Elliptic, weakly elliptic and hypoelliptic elements in Shpωq
ρ pRdq

Let ρ ě 0 and ω P PSh,ρpRdq. Then f P Shpωq
ρ pRdq is called weakly elliptic of order ρ0 ě 0, (in Shpωq

ρ pRdq), 
or ρ0-weakly elliptic, if there is an R ą 0 such that

|fpxq| Á xxy
´ρ0ωpxq, |x| ě R.

A weakly elliptic function of order 0 is called elliptic.
Let A and B be real d ̂ d matrices, ρ ą 0, ρ0 P r0, 2ρq, ω P PSh,ρpR2dq and suppose that a, b P Shpωq

ρ pR2dq

satisfy (1.34). It follows from (1.48) that a is weakly elliptic of order ρ0, if and only if b is weakly elliptic of 
order ρ0. In particular, a is elliptic, if and only if b is elliptic.

Next we define Shubin hypoelliptic symbols (cf. Definitions 5.1 and 25.1 in [26]).

Definition 1.11. Let ρ ą 0, ρ0 ě 0, ω0 P PSh,ρpRdq and f P Shpω0q
ρ pRdq. Then f is called hypoelliptic (in 

Shubin’s sense in Shpω0q
ρ pRdq) of order ρ0, if there is an R ą 0 such that for every α P Nd, it holds

|B
αfpxq| À |fpxq|xxy

´ρ|α|, |x| ě R,

and

|fpxq| Á ω0pxqxxy
´ρ0 , |x| ě R.

Elliptic and hypoelliptic symbols are important since they give rise to parametrices. For ρ, ω as above 
and a P Shpωq

ρ pR2dq elliptic, there is an elliptic symbol b P Shp1{ωq
ρ pR2dq such that

OpApaq ˝ OpApbq “ I ` OpApc1q and OpApbq ˝ OpApaq “ I ` OpApc2q

for some c1, c2 P S pR2dq. An operator Oppcq with c P S pR2dq is regularizing in the sense that Oppcq is 
continuous from S 1pRdq to S pRdq. (Cf. e.g. [7,26].)

2. Reformulation of pseudo-differential calculus using the Bargmann transform

In this section we characterize the Bargmann assignment of pseudo-differential operator symbols from 
Subsection 1.5, using estimates of complex derivatives. In Subsection 2.1 we show how pseudo-differential 
operators on Rd with Shubin symbols are transformed to Wick operators by the Bargmann transform. In 
Subsection 2.3 we deduce similar links between pseudo-differential operators of infinite order, given in the 
second part of Subsection 1.5, and suitable classes of Wick operators. Subsection 2.4 treats composition 
formulae for symbols of Wick operators, which leads to algebraic properties for operators in Subsection 2.1
and 2.3. As an application we obtain short proofs of composition results for pseudo-differential operators 
on Rd from Subsection 1.5.

2.1. Wick symbols of Shubin pseudo-differential operators

The following proposition is essential in the characterization of Shubin type pseudo-differential operators 
on Rd by means of the corresponding Wick symbols. The Shubin classes can be characterized using the 
transform Tφ by means of estimates of the form

|B
α
x B

β
ξ Tφfpx, ξq| À ωpxqxxy

´ρ|α|
xξy

´N , (2.1)

α ´ρ|α| ´N

|BxTφfpx, ξq| À ωpxqxxy xξy (2.2)
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and

|Tφfpx, ξq| À ωpxqxξy
´N . (2.3)

The proof of the following result is similar to the proof of [8, Proposition 3.2].

Proposition 2.1. Let 0 ď ρ ď 1, let ω P PSh,ρpRdq, and suppose f P S 1pRdq and φ P S pRdqz0. The 
following conditions are equivalent:

(1) f P Shpωq
ρ pRdq,

(2) (2.1) holds true for any N ě 0 and α, β P Nd,
(3) (2.2) holds true for any N ě 0 and α P Nd,

and the following conditions are equivalent:

(1)1 f P Shpωq

0 pRdq,
(2)1 (2.3) holds true for any N ě 0.

Proof. First we prove that (1) implies (2). Suppose f P Shpωq
ρ pRdq and let α, β, γ P Nd be arbitrary. We will 

show

|ξγB
α
x B

β
ξ Tφfpx, ξq| À ωpxqxxy

´ρ|α|.

By (1.14), (1.15) and integration by parts we get

|ξγB
α
x B

β
ξ Tφfpx, ξq| “

ˇ

ˇξγTφβ
pB

αfqpx, ξq
ˇ

ˇ

“ p2πq
´ d

2

ˇ

ˇ

ˇ

ˇ

ż

Rd

´

piByq
γe´ixξ,yy

¯

φβpyq B
αfpx ` yq dy

ˇ

ˇ

ˇ

ˇ

À

ż

Rd

ˇ

ˇ

ˇ
B
γ
y

”

φβpyq B
αfpx ` yq

ıˇ

ˇ

ˇ
dy

“

ż

Rd

ˇ

ˇ

ˇ

ˇ

ˇ

ÿ

κďγ

ˆ

γ

κ

˙

B
γ´κφβpyq B

α`κfpx ` yq

ˇ

ˇ

ˇ

ˇ

ˇ

dy

À
ÿ

κďγ

ˆ

γ

κ

˙
ż

Rd

ˇ

ˇB
γ´κφβpyq

ˇ

ˇ ωpx ` yqxx ` yy
´ρ|α`κ| dy.

Since ω is polynomially moderate, Peetre’s inequality (1.2) and the fact that φ P S give

|ξγB
α
x B

β
ξ Tφfpx, ξq| À ωpxqxxy

´ρ|α|
ÿ

κďγ

ˆ

γ

κ

˙
ż

Rd

ˇ

ˇB
γ´κφβpyq

ˇ

ˇ ωpyq xyy
|m|`ρ|α`κ| dy — ωpxqxxy

´ρ|α|.

Thus f P Shpωq
ρ pRdq implies (2.1), and as a special case (2.2), and f P Shpωq

0 pRdq implies (2.3). We have 
proved that (1) implies (2) which in turn implies (3), and that (1)1 implies (2)1.

Conversely, suppose (3), that is f P S 1pRdq and (2.2) holds for all N ě 0 and all α P Nd, which is a 

weaker assumption than (2). We obtain from (1.13)
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fpxq “ }φ}
´2
L2 T ˚

φ Tφfpxq

“ }φ}
´2
L2 p2πq

´ d
2

ĳ

R2d

Tφfpy, ξq eixξ,x´yy φpx ´ yq dydξ,

which is an absolutely convergent integral due to (2.2) and the fact that φ P S pRdq. We may differentiate 
under the integral, so integration by parts, (2.2) and Peetre’s inequality give for some N0 ě 0, any α P Nd

and any x P Rd that

|B
αfpxq| “ }φ}

´2
L2 p2πq

´ d
2

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ĳ

R2d

Tφfpy, ξq B
α
y

´

eixξ,x´yy φpx ´ yq

¯

dydξ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

“ }φ}
´2
L2 p2πq

´ d
2

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ĳ

R2d

B
α
y Tφfpy, ξq eixξ,x´yy φpx ´ yq dydξ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

“ }φ}
´2
L2 p2πq

´ d
2

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ĳ

R2d

B
α
y Tφfpx ´ y, ξq eixξ,yy φpyq dydξ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

À

ĳ

R2d

ωpx ´ yqxx ´ yy
´ρ|α|

xξy
´d´1

|φpyq| dydξ

À ωpxqxxy
´ρ|α|

ĳ

R2d

xξy
´d´1

xyy
N0`ρ|α|

|φpyq| dydξ — ωpxqxxy
´ρ|α|.

Thus f P Shpωq
ρ pRdq and we have proved the equivalence of (1), (2) and (3).

It remains to show that (2)1 implies (1)1, that is (2.3) for all N ě 0 implies f P Shpωq

0 pRdq. We have for 
some N0 ě 0, any α P Nd, x P Rd and N ě 0,

|B
αfpxq| “ }φ}

´2
L2 p2πq

´ d
2

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ĳ

R2d

Tφfpy, ξq B
α
x

´

eixξ,x´yy φpx ´ yq

¯

dydξ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

À
ÿ

βďα

ˆ

α

β

˙
ĳ

R2d

|Tφfpy, ξq| xξy
|β|

ˇ

ˇB
α´βφpx ´ yq

ˇ

ˇ dydξ

À
ÿ

βďα

ˆ

α

β

˙
ĳ

R2d

ωpyqxξy
|α|´N

ˇ

ˇB
α´βφpx ´ yq

ˇ

ˇ dydξ

À ωpxq
ÿ

βďα

ˆ

α

β

˙
ĳ

R2d

xξy
|α|´N

xx ´ yy
N0

ˇ

ˇB
α´βφpx ´ yq

ˇ

ˇ dydξ

À ωpxq

provided N is sufficiently large, since φ P S . This shows that f P Shpωq

0 pRdq. l

We may now characterize the Shubin classes Shpωq
ρ pR2dq by estimates on their Bargmann (kernel) assign-
ments of the forms
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ˇ

ˇpBz ` Bwq
α

pBz ´ Bwq
βSVapz, wq

ˇ

ˇ À e
1
2 |z´w|

2
ωp

?
2 zqxz ` wy

´ρ|α`β|
xz ´ wy

´N , (2.4)
ˇ

ˇ

ˇ
B
α
z B

β

wSVapz, wq

ˇ

ˇ

ˇ
À e

1
2 |z´w|

2
ωp

?
2 zqxz ` wy

´ρ|α`β|
xz ´ wy

´N , (2.5)

|SVapz, wq| À e
1
2 |z´w|

2
ωp

?
2 zqxz ´ wy

´N (2.6)

and

|KV,apz, wq| À e
1
2
`

|z|
2

`|w|
2˘

ωp
?

2 zqxz ´ wy
´N . (2.7)

Theorem 2.2. Let 0 ď ρ ď 1, ω P PSh,ρpR2dq and a P S 1pR2dq. The following conditions are equivalent:

(1) a P Shpωq
ρ pR2dq,

(2) (2.4) holds true for every N ě 0, z, w P Cd and α, β P Nd,
(3) (2.5) holds true for every N ě 0, z, w P Cd and α, β P Nd,

and the following conditions are equivalent:

(1)1 a P Shpωq

0 pR2dq,
(2)1 (2.6) holds true for any N P N and z, w P Cd,
(3)1 (2.7) holds true for any N P N and z, w P Cd.

For the proof we need the following proposition of independent interest. Here we recall that SV is bijective 
from S 1

1{2pR2dq to the set

t a P uApC2d
q ; |apz, wq| À ep 1

2 `rq|z´w|
2

for every r ą 0 u. (2.8)

Proposition 2.3. Let ψpx, ξq “ p
2
π q

d
2 e´p|x|

2
`|ξ|

2
q, x, ξ P Rd, a P S 1

1{2pR2dq and a belongs to the set in (2.8). 
Then

SVapz, wq “ p2πq
d
2 e

1
2 |z´w|

2Tψa
ˆ

x ` y
?

2
,´

ξ ` η
?

2
,
?

2pη ´ ξq,
?

2py ´ xq

˙

, (2.9)

and

pS´1
V

aqpx,´ξq “

ˆ

2
π

˙d ż

Cd

a

ˆ

z
?

2
´ w,

z
?

2
` w

˙

e´2|w|
2
dλpwq, (2.10)

with z “ x ̀ iξ, w “ y ` iη and x, y, ξ, η P Rd.

Proof. Let φpx, yq “ π´ d
2 e´ 1

2 p|x|
2

`|y|
2

q for x, y P Rd, and let Kw
a be the kernel of Opw

paq. Then ψ “

F2pφ ̋ κq, where κpx, yq “ px ̀ y{2, x ́ y{2q. By (1.27) (or [29, Eq. (1.35)]) and [8, Lemma 4.1] we have

VΘ,dK
w
a pz, wq “ V2dK

w
a pz, wq “ V2dK

w
a ppx, yq ` ipξ,´ηqq

“ p2πq
de

1
2
`

|z|
2

`|w|
2˘

`ipxx,ξy´xy,ηyqTφKw
a

´?
2px, yq,´

?
2pξ,´ηq

¯

d 1 `|z|
2

`|w|
2˘

`ipxy,ξy´xx,ηyq

ˆ

x ` y ξ ` η ? ?
˙

“ p2πq 2 e 2 Tψa ?
2

,´ ?
2

, 2pη ´ ξq, 2py ´ xq ,
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“ p2πq
d
2 e

1
2
`

|z|
2

`|w|
2˘

`i Impz,wqTψa
ˆ

x ` y
?

2
,´

ξ ` η
?

2
,
?

2pη ´ ξq,
?

2py ´ xq

˙

.

Together with the identity

|z|
2

` |w|
2

` 2i Impz, wq “ |z ´ w|
2

` 2pz, wq

this gives

VΘ,dK
w
a pz, wq “ p2πq

d
2 e

1
2 |z´w|

2
`pz,wqTψa

ˆ

x ` y
?

2
,´

ξ ` η
?

2
,
?

2pη ´ ξq,
?

2py ´ xq

˙

. (2.11)

A combination of this identity with (1.42) and (1.45) gives (2.9).
In order to prove (2.10), we use Moyal’s formula (1.12), (1.13) and the fact that }ψ}L2 “ 1. This implies 

that the inverse of Tψ is given by

pT ´1
ψ F qpx, ξq “ pT ˚

ψ F qpx, ξq

“ p2πq
´d

żżżż

R4d

F px1, ξ1, η1, y1qψpx ´ x1, ξ ´ ξ1qeipxx´x1,η1y`xy1,ξ´ξ1yq dx1dξ1dη1dy1.

Writing

Gpz, wq “ F px, ξ, η, yq, z “ x ` iξ, w “ y ` iη,

we obtain

T ˚
ψ F px, ξq “ 2dp2πq

´ 3d
2

ĳ

C2d

Gpw1, w2qe´|z´w1|
2
eiImxz´w1,w2y dλpw1qdλpw2q. (2.12)

If a “ T ˚
ψ F and a “ SVa, then (2.9) shows that

apz, wq “ p2πq
d
2 e

1
2 |z´w|

2
G

ˆ

z ` w
?

2
,
?

2pw ´ zq

˙

which gives

Gpz, wq “ p2πq
´ d

2 e´ 1
4 |w|

2
a

ˆ

2z ´ w

2
?

2
,
2z ` w

2
?

2

˙

.

Inserting this into (2.12) we get

T ˚
ψ F px,´ξq “

1
2dπ2d

ĳ

C2d

a

ˆ

2w1 ´ w2

2
?

2
,
2w1 ` w2

2
?

2

˙

e´|z´w1|
2
e´ 1

4 |w2|
2
eiImxz´w1,w2y dλpw1qdλpw2q,

and by taking

2w1 ´ w2

2
?

2
´

z
?

2
and 2w1 ` w2

2
?

2
´

z
?

2

as new variables of integration and using (1.22), we obtain
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T ˚
ψ F px,´ξq “

2d

π2d

ĳ

C2d

a

ˆ

w1 `
z

?
2
, w2 `

z
?

2

˙

e´p|w1|
2

`|w2|
2

qe2iImpw1,w2q dλpw1qdλpw2q

“ 2d
ĳ

C2d

a

ˆ

w1 `
z

?
2
, w2 `

z
?

2

˙

e2iImpw1,w2q dμpw1qdμpw2q

“ 2d
ż

Cd

ˆ
ż

Cd

a

ˆ

w1 `
z

?
2
, w2 `

z
?

2

˙

epw1,w2q ep´w2,w1q dμpw1q

˙

dμpw2q

“ 2d
ż

Cd

a

ˆ

´w2 `
z

?
2
, w2 `

z
?

2

˙

e´|w2|
2
dμpw2q

“

ˆ

2
π

˙d ż

Cd

a

ˆ

z
?

2
´ w,

z
?

2
` w

˙

e´2|w|
2
dλpwq. l

Proof of Theorem 2.2. Combining Propositions 2.1 and 2.3, writing z ` w “ 2z ` w ´ z, we obtain that 
a P Shpωq

ρ pR2dq if and only if for all α, β P Nd and N P N we have

ˇ

ˇ

ˇ
pBx ` Byq

α
pBξ ` Bηq

β
´

e´ 1
2 |z´w|

2
SVapz, wq

¯ˇ

ˇ

ˇ
À ω

ˆ

z ` w
?

2

˙

xz ` wy
´ρ|α`β|

xz ´ wy
´N

À ωp
?

2 zqxz ` wy
´ρ|α`β|

xz ´ wy
´N`k

for some k P N that can be absorbed into N .
Note that multi-index powers of the differential operators Bx ` By and Bξ ` Bη acting on the factor 

e´ 1
2 |z´w|

2
“ e´ 1

2
`

|x´y|
2

`|ξ´η|
2˘ are zero. Thus we obtain the equivalent condition

ˇ

ˇpBx ` Byq
α

pBξ ` Bηq
βSVapz, wq

ˇ

ˇ À e
1
2 |z´w|

2
ωp

?
2 zqxz ` wy

´ρ|α`β|
xz ´ wy

´N .

Using the (conjugate) analyticity of SVapz, wq with respect to z P Cd (w P Cd) we can formulate this as 
(2.4). We have now shown the equivalence between (1) and (2).

The equivalence between (2) and (3) follows from the binomial formulae

pBz ` tBwq
α

“
ÿ

γďα

ˆ

α

γ

˙

t|γ|
B
α´γ
z B

γ

w, t P t´1, 1u,

B
α
z “ 2´|α|

ÿ

γďα

ˆ

α

γ

˙

pBz ` Bwq
α´γ

pBz ´ Bwq
γ

and

B
β

w “ 2´|β|
ÿ

γďβ

ˆ

β

γ

˙

p´1q
|γ|

pBz ` Bwq
β´γ

pBz ´ Bwq
γ .

It remains to consider the case ρ “ 0. We obtain from Propositions 2.1 and 2.3 that a P Shpωq

0 pR2dq if 
and only if for all N P N we have

|SVapz, wq| À e
1
2 |z´w|

2
ωp

?
2 zqxz ´ wy

´N , z, ζ P Cd.
This shows the equivalence between (1)1 and (2)1.
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Finally the equivalence of (2)1 and (3)1 is an immediate consequence of (1.42) and

|e
1
2 p|z|

2
`|w|

2
qe´pz,wq

| “ e
1
2 p|z|

2
´2 Repz,wq`|w|

2
q

“ e
1
2 |z´w|

2
. l

Let uApωq

Sh,ρpC2dq, be the set of all a P uApC2dq such that

ˇ

ˇ

ˇ
B
α
z B

β

wapz, wq

ˇ

ˇ

ˇ
ď Ce

1
2 |z´w|

2
ωp

?
2 zqxz ` wy

´ρ|α`β|
xz ´ wy

´N , N ě 0. (2.13)

The smallest constant C ě 0 defines a semi-norm parameterized by α, β and N , and we equip uApωq

Sh,ρpC2dq

with the Fréchet space topology defined by these semi-norms. The following result is an immediate conse-
quence of Theorem 2.2 and its proof.

Proposition 2.4. Let 0 ď ρ ď 1 and ω P PSh,ρpR2dq. Then SV is a homeomorphism from Shpωq
ρ pR2dq to 

uApωq

Sh,ρpC2dq.

2.2. Extensions and variations

There are several extensions and variations of Theorem 2.2. First we observe that by playing with N in 
(2.4) and (2.5) and using Peetre’s inequality, it follows that xz ` wy in (2.4) and (2.5) can be replaced by 
Ψ, where

Ψpz, wq “ xz ` wy, Ψpz, wq “ xzy, Ψpz, wq “ xwy,

Ψpz, wq “ maxpxzy, xwyq or Ψpz, wq “ minpxzy, xwyq.
(2.14)

In particular (2.5) in Theorem 2.2 can be replaced by

ˇ

ˇ

ˇ
B
α
z B

β

wSVapz, wq

ˇ

ˇ

ˇ
À e

1
2 |z´w|

2
ωp

?
2 zqΨpz, wq

´ρ|α`β|
xz ´ wy

´N , (2.5)1

where Ψ is given by (2.14).
Secondly, let

Ωk,M “ t pα1, . . . , αkq P Nd
ˆ ¨ ¨ ¨ ˆ Nd

» Nkd ; |α1 ` ¨ ¨ ¨ ` αk| “ M u,

where k ě 1 and M ě 0 are integers.
If a P uApC2dq and α P Ω4,M , then

B
α1
x B

α3
ξ B

α2
y B

α4
η a “ i|α3|´|α4|

B
α1`α3
z B

α2`α4
w a,

z “ x ` iξ, w “ y ` iη,
(2.15)

because of the analyticity with respect to z and conjugate analyticity with respect to w for apz, wq. In 
particular, (2.5)1 implies

ˇ

ˇ

ˇ
B
α1
x B

α3
ξ B

α2
y B

α4
η SVapz, wq

ˇ

ˇ

ˇ
À e

1
2 |z´w|

2
ωp

?
2 zqΨpz, wq

´ρM
xz ´ wy

´N , α P Ω4,M . (2.5)2

On the other hand, if we let α3 “ α4 “ 0 in (2.15), (2.5)2 implies (2.5)1. Hence (2.5)1 and (2.5)2 are 

equivalent.
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Let M ě 0 be an integer and let TM be the operator

TM “
ÿ

αPΩ2,M

cpαqB
α1
z B

α2
w , cpαq P C, α “ pα1, α2q P Ω2,M . (2.16)

Then (2.5)1 implies that

|TM pSVaqpz, wq| À e
1
2 |z´w|

2
ωp

?
2 zqΨpz, wq

´ρM
xz ´ wy

´N , (2.5)3

holds for every M ě 0 and every operator TM of the form (2.16). On the other hand, the operators Bα
z B

β

w

in (2.5)1 are special cases of the operators TM in (2.5)3. This shows that Bα
z B

β

w in (2.5)1 can be replaced by 
operators TM in (2.16).

In the same way it follows that (2.5)2 is equivalent to (2.5)3, after TM in (2.16) is replaced by

TM “
ÿ

αPΩ4,M

CpαqB
α1
x B

α3
ξ B

α2
y B

α4
η , z “ x ` iξ, w “ y ` iη,

Cpαq P C, α “ pα1, α2, α3, α4q P Ω4,M .

(2.17)

Finally we observe that we may replace the set of operators in (2.16) by the set of operators

TM “
ÿ

αPΩ4,M

CpαqB
α1
z B

α3
z B

α2
w B

α4
w , z “ x ` iξ, w “ y ` iη,

Cpαq P C, α “ pα1, α2, α3, α4q P Ω4,M ,

(2.18)

in the estimate (2.5)3. In fact, obviously the operators of form (2.18) contains the operators of form (2.16). 
Hence if (2.5)3 holds true for operators of form (2.18), it also holds for operators of form (2.16). On the 
other hand, if α3 ‰ 0 or α4 ‰ 0 in (2.18), then

B
α1
z B

α3
z B

α2
w B

α4
w a “ 0

because of the analyticity in z and conjugate analyticity in w for apz, wq. Consequently, it suffices to consider 
operators in (2.18) where all Cpαq “ 0 when α3 ‰ 0 or α4 ‰ 0, when investigating the condition (2.5)3. 
This set of operators is exactly the set of operators in (2.16). This implies that the set of operators in (2.16)
can be replaced by the set of operators in (2.18) when checking the condition (2.5)3.

From these observations Theorem 2.2 gives the following conclusion.

Theorem 2.5. Suppose that ρ ě 0, ω P PSh,ρpCdq, a P uApC2dq and Ψ is given by (2.14). Then the following 
conditions are equivalent:

(1) a P Shpωq
ρ pR2dq,

(2) (2.5)1 holds true for every N ě 0, α, β P Nd and z, w P Cd;
(3) for every M ě 0, (2.5)2 holds true for every N ě 0, and z, w P Cd;
(4) for every M ě 0, (2.5)3 holds true for every N ě 0, TM in (2.16) and z, w P Cd;
(5) for every M ě 0, (2.5)3 holds true for every N ě 0, TM in (2.17) and z, w P Cd;

(6) for every M ě 0, (2.5)3 holds true for every N ě 0, TM in (2.18) and z, w P Cd.
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2.3. Wick operators corresponding to Gevrey type pseudo-differential operators

Using (2.9) and (1.23) we obtain the following theorem expressed with estimates of the form

|apz, wq| À exp
ˆ

1
2 |z ´ w|

2
` r1|z ` w|s,σ ´ r2|z ´ w|s,σ

˙

(2.19)

(cf. Definition 1.8). The verification is left for the reader.

Theorem 2.6. The following is true:

(1) if s, σ ě
1
2 , then SV is homeomorphic from Γσ,s

s,σ;0pR2dq to the set of all a P uApC2dq such that for some 
r2 ą 0, (2.19) holds for every r1 ą 0;

(2) if s, σ ą
1
2 , then SV is homeomorphic from Γσ,s;0

s,σ pR2dq to the set of all a P uApC2dq such that for some 
r1 ą 0, (2.19) holds for every r2 ą 0;

(3) if s, σ ą
1
2 , then SV is homeomorphic from Γσ,s

s,σpR2dq to the set of all a P uApC2dq such that (2.19) holds 
for some r1 ą 0 and some r2 ą 0.

Remark 2.7. The restrictions on s and σ in Theorem 2.6 are needed since we must choose ψ in (1.51) as the 
Gauss function in Proposition 2.3. According to the proof of Theorem 2.2 this is necessary for the use of 
the formula (1.27) that relates TφKw

a and the Bargmann transform V2dK
w
a . For this ψ we have ψ P Sσ

s pRdq

(ψ P Σσ
s pRdq), if and only if s, σ ě

1
2 (s, σ ą

1
2 ).

Theorem 2.6 can be combined with continuity results in [1] to deduce continuity of Wick operators acting 
on the Bargmann images of Σσ

s pRdq, Sσ
s pRdq, pSσ

s q1pRdq and pΣσ
s q1pRdq, respectively. The following result 

follows by a straight-forward combination of Theorems 3.8 and 3.15 in [1], (1.41) and Theorem 2.6.

Proposition 2.8. Let a P uApC2dq. Then the following is true:

(1) if s, σ ě
1
2 and some r2 ą 0, (2.19) holds for every r1 ą 0, then OpVpaq is continuous on Aσ

s pCdq and 
on pAσ

s q1pCdq;
(2) if s, σ ą

1
2 and for some r1 ą 0, (2.19) holds for every r2 ą 0, then OpVpaq is continuous on Aσ

0,spCdq

and on pAσ
0,sq1pCdq.

2.4. Composition of Wick operators

Let a1, a2 P uApC2dq. If composition is well defined then the complex twisted product a1#Va2 is defined 
by

OpVpa1q ˝ OpVpa2q “ OpVpa1#Va2q.

By straight-forward computations it follows that the product #V is given by

a1#Va2pz, wq “ π´d

ż

Cd

a1pz, uqa2pu,wqe´pz´u,w´uq dλpuq, z, w P Cd, (2.20)

provided the integral is well defined. Inserting derivatives, (2.20) takes the form

β β

pB

α1
z B

1
w a1q#VpB

α2
z B

2
w a2qpz, wq
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“ π´d

ż

Cd

pB
α1
z B

β1
u a1qpz, uqpB

α2
u B

β2
w a2qpu,wqe´pz´u,w´uq dλpuq, z, w P Cd. (2.20)1

The following lemma is a product rule for the complex twisted product.

Lemma 2.9. Let a1, a2 P uApC2dq and suppose the integral in (2.20)1 is well defined for all z, w P Cd and all 
α1, α2, β1, β2 P Nd such that

|α1 ` α2 ` β1 ` β2| ď 1.

Suppose also that the integrand in (2.20) is zero at infinity. Then

Bzj pa1#Va2q “ pBzja1q#Va2 ` a1#VpBzja2q, j “ 1, . . . , d (2.21)

and

Bwj
pa1#Va2q “ pBwj

a1q#Va2 ` a1#VpBwj
a2q, j “ 1, . . . , d. (2.22)

Proof. If

Fa1,a2pz, w, uq “ a1pz, uqa2pu,wqepz,u´wq`pu,wq

then

πd
pa1#Va2qpz, wq “

ż

Cd

Fa1,a2pz, w, uqe´|u|
2
dλpuq.

This gives

πd
Bzj pa1#Va2qpz, wq “ b1pz, wq ` b2pz, wq ´ b3pz, wq,

where

b1pz, wq “

ż

Cd

FBzj
a1,a2pz, w, uqe´|u|

2
dλpuq,

b2pz, wq “

ż

Cd

Fa1,a2pz, w, uquje
´|u|

2
dλpuq

and

b3pz, wq “ wj

ż

Cd

Fa1,a2pz, w, uqe´|u|
2
dλpuq

“ wjπ
d
pa1#Va2qpz, wq.

The conjugate analyticity of u ÞÑ a1pz, uq and u ÞÑ epz,u´wq implies Buj
a1pz, uq “ Buj

epz,u´wq “ 0 which 
gives

Buj
Fa1,a2pz, w, uq “

`

a1pz, uqBuj
a2pu,wq ` wja1pz, uqa2pu,wq

˘

epz,u´wq`pu,wq

“ Fa1,Bzj
a2pz, w, uq ` wjFa1,a2pz, w, uq.
Consider b2pz, wq. Integration by parts gives
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b2pz, wq “

ż

Cd

Fa1,a2pz, w, uquje
´|u|

2
dλpuq

“ ´

ż

Cd

Fa1,a2pz, w, uq Buj
e´|u|

2
dλpuq

“

ż

Cd

Buj
Fa1,a2pz, w, uqe´|u|

2
dλpuq

“

ż

Cd

Fa1,Bzj
a2pz, w, uqe´|u|

2
dλpuq ` wj

ż

Cd

Fa1,a2pz, w, uqe´|u|
2
dλpuq

“

ż

Cd

Fa1,Bzj
a2pz, w, uqe´|u|

2
dλpuq ` b3pz, wq.

A combination of these identities now gives

πd
Bzj pa1#Va2qpz, wq “

ż

Cd

pFBzj
a1,a2pz, w, uq ` Fa1,Bzj

a2pz, w, uqqe´|u|
2
dλpuq

“ πd
pBzja1q#Va2pz, wq ` πda1#VpBzja2qpz, wq,

and (2.21) follows.
The assertion (2.22) is proved by similar arguments. l

The characterization in Theorem 2.2 (3) can be applied to prove the following composition result, which 
is a generalization of [26, Theorem 23.6] to include the case when ρ “ 0.

Proposition 2.10. Let 0 ď ρ ď 1 and ωj P PSh,ρpR2dq for j “ 1, 2. If aj P Shpωjq
ρ pR2dq for j “ 1, 2, then 

a1#a2 P Shpω1ω2q
ρ pR2dq.

Proof. If a0 “ a1#a2 and aj “ SVaj , j “ 0, 1, 2, then a0 “ a1#Va2. From Lemma 2.9 and (2.20) we obtain 
for α, β P Nd,

B
α
z B

β

wa0pz, wq “
ÿ

γďα

ÿ

κďβ

ˆ

α

γ

˙ˆ

β

κ

˙

´

pB
α´γ
z B

β´κ

w a1q#VpB
γ
z B

κ

wa2q

¯

pz, wq

“ π´d
ÿ

γďα

ÿ

κďβ

ˆ

α

γ

˙ˆ

β

κ

˙
ż

Cd

B
α´γ
z B

β´κ

u a1pz, uqB
γ
uB

κ

wa2pu,wqepz,u´wq`pu,wqdμpuq.

Since ω2 P PpR2dq » PpCdq is moderate, Theorem 2.2 gives for some N0 ě 0 and any N1, N2 ě 0

|B
α´γ
u B

β´κ

w a1pz, uq| À ω1p
?

2 zqxz ` uy
´ρ|α`β´γ´κ|

xz ´ uy
´N1e

1
2 |z´u|

2

and

|B
γ
uB

κ

wa2pu,wq| À ω2p
?

2 zqxz ´ uy
N0xu ` wy

´ρ|γ`κ|
xu ´ wy

´N2e
1
2 |u´w|

2
.

This gives

ˇ

ˇ

ˇ
B
α
z B

β

wa0pz, wq

ˇ

ˇ

ˇ
À ω1p

?
2 zqω2p

?
2 zqe

1
2 |z´w|

2
ż

Cd

F pz, w, uqeΦpz,w,uq dλpuq (2.23)
where for any N1 ě 0,
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F pz, w, uq “ xz ` uy
´ρ|α`β´γ´κ|

xz ´ uy
N0´N1xu ` wy

´ρ|γ`κ|
xu ´ wy

´N2

and

Φpz, w, uq “ ´
1
2 |z ´ w|

2
`

1
2 |z ´ u|

2
`

1
2 |u ´ w|

2
´ |u|

2
` Repz, u ´ wq ` Repu,wq “ 0.

By Peetre’s inequality and the facts that γ ď α and κ ď β we get

xz ` uy
ρ|γ`κ|

xu ` wy
´ρ|γ`κ|

À xz ´ wy
ρ|γ`κ|

À xz ´ uy
ρ|γ`κ|

xu ´ wy
ρ|γ`κ|

ď xz ´ uy
ρ|α`β|

xu ´ wy
ρ|α`β|

and

xz ` uy
´ρ|α`β|

À xz ` wy
´ρ|α`β|

xu ´ wy
ρ|α`β|

wherefrom

F pz, w, uq ď xz ` wy
´ρ|α`β|

xz ´ uy
ρ|α`β|`N0´N1xu ´ wy

2ρ|α`β|´N2 . (2.24)

Hence a combination of (2.23) and (2.24) gives for any N ě 0

pω1p
?

2 zqω2p
?

2 zqq
´1

xz ` wy
ρ|α`β|

ˇ

ˇ

ˇ
B
α
z B

β

wa0pz, wq

ˇ

ˇ

ˇ

À e
1
2 |z´w|

2
ż

Cd

xz ´ uy
ρ|α`β|`N0´N1xu ´ wy

2ρ|α`β|´N2 dλpuq

À xz ´ wy
´Ne

1
2 |z´w|

2
ż

Cd

xz ´ uy
ρ|α`β|`N0`N´N1xu ´ wy

2ρ|α`β|`N´N2 dλpuq.

By letting

N1 ě ρ|α ` β| ` N0 ` N and N2 ą 2ρ|α ` β| ` N ` 2d

we obtain
ˇ

ˇ

ˇ
B
α
z B

β

wa0pz, wq

ˇ

ˇ

ˇ
À ω1p

?
2 zqω2p

?
2 zqxz ` wy

´ρ|α`β|
xz ´ wy

´Ne
1
2 |z´w|

2
.

According to Theorem 2.2 (3) this estimate implies that a0 P Shpω1ω2q
ρ pR2dq. l

Remark 2.11. Eq. (2.20) combined with Theorem 2.6 can be used to show composition results for pseudo-
differential operators with symbols in Γσ,s

s,σ;0pR2dq. In fact we may use an argument similar to the proof of 
Proposition 2.10, but simpler since derivatives can be avoided. We obtain

a1#a2 P Γσ,s
s,σ;0pR2d

q when a1, a2 P Γσ,s
s,σ;0pR2d

q, s, σ ě
1
2 ,

and similarly with Γσ,s;0
s,σ in place of Γσ,s

s,σ;0, provided σ ą
1
2 . Thereby we regain parts of [1, Theorem 3.18]
for certain restrictions on s and σ.
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3. Relations and estimates for Wick and anti-Wick operators

In this section we first show how to approximate a Wick operator by means of a sum of anti-Wick 
operators. Then we prove continuity results for anti-Wick operators with symbols having exponential type 
bounds. Finally we deduce estimates for the Wick symbol of these anti-Wick operators.

3.1. Expansion of Shubin type Wick operators with respect to anti-Wick operators

The first result can be stated for semi-conjugate analytic symbols on C2d.

Proposition 3.1. Suppose s ě 1
2 , a P uA1

spC2dq, let M ě 0 be an integer, and let

aαpwq “ B
α
z B

α

wapw,wq, α P Nd,

and

bαpz, wq “ |α|

ż 1

0
p1 ´ tq|α|´1

B
α
z B

α

wapw ` tpz ´ wq, wq dt, α P Nd
z0.

Then

OpVpaq “
ÿ

|α|ďM

p´1q|α| Opaw
V paαq

α! `
ÿ

|α|“M`1

p´1q|α| OpVpbαq

α! . (3.1)

Proof. Taylor expansion gives

apz, wq “
ÿ

|α|ďM

p´1q|α|cαpz, wq

α! `
ÿ

|α|“M`1

p´1q|α|c0,αpz, wq

α! ,

where

cαpz, wq “ p´1q
|α|

pz ´ wq
α

B
α
z apw,wq

and

c0,αpz, wq “ p´1q
|α|

|α|pz ´ wq
α

ż 1

0
p1 ´ tq|α|´1

B
α
z apw ` tpz ´ wq, wq dt.

Hence

OpVpaq “
ÿ

|α|ďM

p´1q|α| OpVpcαq

α! `
ÿ

|α|“M`1

p´1q|α| OpVpc0,αq

α! ,

and the result follows if we prove

OpVpcαq “ Opaw
V paαq and OpVpc0,αq “ OpVpbαq. (3.2)

It follows from (1.38) that
OpVpbαq “ OpVpc1,αq and OpVpc0,αq “ OpVpc2,αq
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where

cj,αpz, wq “ p´1q
|α|π´d

|α|

ż 1

0
p1 ´ tq|α|´1hj,αpa; t, z, wq dt, (3.3)

j “ 1, 2, with

h1,αpa; t, z, wq “ p´1q
|α|

ż

Cd

B
α
z B

α

wapw1 ` tpz ´ w1q, w1qe´pz´w1,w´w1q dλpw1q (3.4)

and

h2,αpa; t, z, wq “

ż

Cd

pz ´ w1q
α

B
α
z apw1 ` tpz ´ w1q, w1qe´pz´w1,w´w1q dλpw1q.

Since

pz ´ w1q
αe´pz´w1,w´w1q

“ B
α

w1
e´pz´w1,w´w1q

integration by parts yields

h2,αpa; t, z, wq “

ż

Cd

B
α
z apw1 ` tpz ´ w1q, w1qB

α

w1
e´pz´w1,w´w1q dλpw1q

“ p´1q
|α|

ż

Cd

B
α
z B

α

wapw1 ` tpz ´ w1q, w1qe´pz´w1,w´w1q dλpw1q “ h1,αpa; t, z, wq,

and the second equality in (3.2) follows. The first equality in (3.2) follows by similar arguments. The details 
are left for the reader. l

Remark 3.2. Proposition 3.1 and its proof show that

OpVpaq “
ÿ

|α|ďM

p´1q|α| Opaw
V paαq

α! `
ÿ

|α|“M`1

p´1q|α| OpVpc1,αq

α! (3.1)1

where c1,α is defined by (3.3) and (3.4).

In the following result we estimate aα in Proposition 3.1 and c1,α in (3.3) when a “ SVa satisfies (2.5)
for every N ě 0 and α, β P Nd. By Theorem 2.2 this means that OpVpaq is the Bargmann transform of a 
Shubin type operator.

Proposition 3.3. Let 0 ď ρ ď 1, ω P PSh,ρpR2dq, a P uApωq

Sh,ρpC2dq, and let aα and bα be as in Proposition 3.1
for α P Nd. Then OpVpbαq “ OpVpc1,αq for a unique c1,α P uApC2dq,

|B
β
wB

γ

waαpwq| À ωp
?

2wqxwy
´ρp2|α|`|β`γ|q, α, β, γ P Nd, (3.5)

and for every N ě 0 it holds,

|B
β
z B

γ

wc1,αpz, wq| À e
1
2 |z´w|

2
ωp

?
2zqxz ` wy

´ρp2|α|`|β`γ|q
xz ´ wy

´N , α, β, γ P Nd. (3.6)

Remark 3.4. The Wick symbol c1,α in Proposition 3.3 is uniquely defined and given by (3.3) in view of 
Proposition 1.5, when h1,α is defined by (3.4). The conditions in Proposition 3.3 imply that c1,α P uApωαq

Sh,ρ pC2dq
where ωα “ x ̈  y´2ρ|α| ¨ ω.



N. Teofanov et al. / J. Math. Pures Appl. 167 (2022) 48–100 79
Proof of Proposition 3.3. The estimate (3.5) is an immediate consequence of

B
β
wB

γ

waαpwq “ B
α`β
w B

α`γ

w apw,wq

and (2.5).
In order to prove (3.6) we first note that the uniqueness assertion for c1,α is a consequence of Remark 3.4. 

Let h1,αpa; z, wq be the same as in the proof of Proposition 3.1. Integration by parts gives

B
β
z B

γ

wh1,αpa; t, z, wq “ h1,αpB
β
z B

γ

wa; t, z, wq,

which reduces the problem to prove that (3.6) holds for β “ γ “ 0.
The assumption a P uApωq

Sh,ρpC2dq combined with ω and x ̈  y´ρ|α| being moderate imply

|B
α
z B

β

wapz, wq| À e
1
2 |z´w|

2
ωp

?
2wqxwy

´ρ|α`β|
xz ´ wy

´N

for every N ě 0. This gives

eRepz,wq
|h1,αpa; t, z, wq| À

ż

Cd

ωp
?

2w1qe
t2
2 |z´w1|

2
xw1y

´2ρ|α|
xtpz ´ w1qy

´NeRepz`w´w1,w1q dλpw1q,

that is

e´ 1
4 |z´w|

2
|h1,αpa; t, z, wq| À

ż

Cd

ωp
?

2w1qe
t2
2 |z´w1|

2
xw1y

´2ρ|α|
xtpz ´ w1qy

´Ne´|w1´z2|
2
dλpw1q

“

ż

Cd

ωp
?

2pz2 ` w1qqe
t2
2 |z1´w1|

2
xz2 ` w1y

´2ρ|α|
xtpz1 ´ w1qy

´Ne´|w1|
2
dλpw1q (3.7)

for every N ě 0, where z1 “
1
2 pz ´ wq and z2 “

1
2 pz ` wq.

If t P r0, 12 s, then the last estimate together with the moderateness of ω gives

e´|z1|
2
|h1,αpa; t, z, wq| À ωp

?
2z2qxz2y

´2ρ|α|

ż

Cd

e
1
8 |w1|

2
e

1
8 |z1´w1|

2
e´|w1|

2
dλpw1q

À ωp
?

2z2qxz2y
´2ρ|α|e

1
4 |z1|

2
ż

Cd

e
1
4 |w1|

2
e´ 7

8 |w1|
2
dλpw1q

À ωp
?

2z2qxz2y
´2ρ|α|e

1
2 |z1|

2
xz1y

´N ,

for every N ě 0. The moderateness of ω again gives

|h1,αpa; t, z, wq| À e
1
2 |z´w|

2
ωp

?
2zqxz ` wy

´2ρ|α|
xz ´ wy

´N (3.8)

or every N ě 0, when t P r0, 12 s.
Suppose instead t P r

1
2 , 1s. Then xtpz1 ´ w1qy´N — xz1 ´ w1y´N . Moderateness again gives

ωp
?

2pz2 ` w1qqxz2 ` w1y
´2ρ|α|

xz1 ´ w1y
´N0 À ωp

?
2zqxzy

´2ρ|α|
for some N0. Hence (3.7) gives
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e´|z1|
2
ωp

?
2zq

´1
xzy

2ρ|α|
|h1,αpa; t, z, wq| À

ż

Cd

e
1
2 |z1´w1|

2
xz1 ´ w1y

´Ne´|w1|
2
dλpw1q

“ e|z1|
2
ż

Cd

xz1 ´ w1y
´Ne´ 1

2 |w1`z1|
2
dλpw1q — e|z1|

2
xz1y

´N

for every N ě 0. This gives (3.8) also for t P r
1
2 , 1s.

The result now follows by using (3.8) when estimating |c1,αpz, wq| in (3.3) and evaluating the arising 
integral. l

The next result, analogous to Proposition 3.3, will be useful in Section 5 when we discuss hypoellipticity 
for Shubin operators in the Wick setting.

Proposition 3.5. Let ρ ě 0, ω P PSh,ρpCdq, ωt “ ω ¨ x ̈  y´2ρt when t ě 0, a P uApωq

Sh,ρpC2dq, a “ S´1
V

a and 
M ě 0 be an integer. Then

apx,´ξq “
ÿ

|α|ďM

p´1q|α|pBα
z B

α

waqp2´ 1
2 z, 2´ 1

2 zq

2|α|α!
` cM pzq, z “ x ` iξ, (3.9)

where

B
α
z B

α

wa P uApω|α|q

Sh,ρ pC2d
q and px, ξq ÞÑ cM px ´ iξq P ShpωM`1q

ρ pR2d
q. (3.10)

Proof. The first claim in (3.10) is an immediate consequence of the definition (2.13) and Peetre’s inequality.
By Taylor expanding the right-hand side of (2.10) we obtain

apx,´ξq “
ÿ

|α`β|ď2M`1

p2{πqdIα,β ¨ pBα
z B

β

waqp2´ 1
2 z, 2´ 1

2 zq

α!β! ` cM pzq, (3.11)

where

Iα,β “

ż

Cd

p´wq
αwβe´2|w|

2
dλpwq,

and

cM pzq “ 2pM ` 1q
ÿ

|α`β|“2M`2

p´1q|β|

α!β!

ż 1

0
p1 ´ θq

2M`1Hα,βpz, θq dθ (3.12)

with

Hα,βpz, θq “

ˆ

2
π

˙d ż

Cd

pB
α
z B

β

waq

ˆ

z
?

2
´ θw,

z
?

2
` θw

˙

wαwβe´2|w|
2
dλpwq. (3.13)

The orthonormality of teαuαPNd Ď A2pCdq (cf. (1.21)) yields Iα,β “ 0 if α ‰ β and

Iα,α “

ż

Cd

p´wq
αwαe´2|w|

2
dλpwq

“ p´1q
|α|2´d´|α|α!πd

ż

Cd

|eαpwq|
2 dμpwq

|α| ´d´|α| d

“ p´1q 2 α!π .
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By inserting these values of Iα,β into (3.11), we obtain (3.9).
It remains to study the remainder cM . We need to prove that cpx, ξq “ cM px ´ iξq belongs to 

ShpωM`1q
ρ pR2dq. If

hα,βpz, w, θq “ pB
α
z B

β

waq

ˆ

z
?

2
´ θw,

z
?

2
` θw

˙

wαwβe´2|w|
2

then

Hα,βpz, θq “

ˆ

2
π

˙d ż

Cd

hα,βpz, w, θq dλpwq.

First we notice that

B
α
z B

β

z cM pzq “ 2pM ` 1q
ÿ

|γ`δ|“2M`2

p´1q|δ|

γ!δ!

ż 1

0
p1 ´ θq

2M`1
B
α
z B

β

zHγ,δpz, θq dθ,

B
α
z B

β

zHγ,δpz, θq “

ˆ

2
π

˙d ż

Cd

B
α
z B

β

zhγ,δpz, w, θq dλpwq

and

B
α
z B

β

zhγ,δpz, w, θq “ 2´
|α`β|

2 pB
α`γ
z B

β`δ

z aq

ˆ

z
?

2
´ θw,

z
?

2
` θw

˙

wγwδe´2|w|
2
.

From the definition (2.13) this implies that for every N ě 0 and some N0 ě 0 we have

|B
α
z B

β

zhγ,δpz, w, θq| À e´2p1´θ2
q|w|

2
ωpz ´

?
2θwqxzy

´ρp|α`β|`2M`2q
xθwy

´N´N0 |w|
2M`2

À e´2p1´θq|w|
2
ωpzqxzy

´ρp|α`β|`2M`2q
xθwy

´N
|w|

2M`2.

This gives

|B
α
z B

β

zHγ,δpz, θq| À ωpzqxzy
´ρp|α`β|`2M`2q

¨ Jpθq,

where

Jpθq “

ż

Cd

e´2p1´θq|w|
2
xθwy

´N
|w|

2M`2 dλpwq.

For θ P r0, 12 s we get

Jpθq ď

ż

Cd

e´|w|
2
|w|

2M`2 dλpwq,

which is finite and independent of θ. If instead θ P r
1
2 , 1s, and choosing N ą 2d ̀ 2M ` 2, then

Jpθq ď

ż

Cd

xθwy
´N

|w|
2M`2 dλpwq,
which is again finite and uniformly bounded with respect to θ.
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A combination of these estimates gives

|B
α
z B

β

zHγ,δpz, θq| À ωpzqxzy
´ρp|α`β|`2M`2q,

which in turn implies

|B
α
z B

β

z cM pzq| À ωpzqxzy
´ρp|α`β|`2M`2q.

This means that c P ShpωM`1q
ρ pR2dq. l

3.2. Continuity of anti-Wick operators with exponentially bounded symbols

Next we consider anti-Wick symbols that satisfy exponential bounds of the form

|a0pwq| À e´r0|w|
1
s , (3.14)

or

|a0pwq| À er0|w|
1
s . (3.15)

In order to formulate our results we introduce new spaces of entire functions. Let s ą 1
2 , t0, r ą 0, and 

let As,t0,rpCdq be the Banach space of all F P ApCdq such that

}F }As,t0,r
” }F ¨ e´t0| ¨ |

2
`r| ¨ |

1
s

}L8 ă 8.

Set

A0,ps,t0qpCd
q “

č

rą0
As,t0,rpCd

q and A1
ps,t0qpCd

q “
č

rą0
As,t0,´rpCd

q

equipped with the projective limit topology. Likewise we set

Aps,t0qpCd
q “

ď

rą0
As,t0,rpCd

q and A1
0,ps,t0qpCd

q “
ď

rą0
As,t0,´rpCd

q

equipped with the inductive limit topology.
Referring to Section 1.3 it is clear that the spaces A0,ps,t0qpCdq, Aps,t0qpCdq, A1

ps,t0q
pCdq and A1

0,ps,t0q
pCdq

are generalizations of

A0,ps, 12 qpCd
q “ VdpΣspRd

qq “ A0,spCd
q

Aps, 12 qpCd
q “ VdpSspRd

qq “ AspCd
q

A1

ps, 12 q
pCd

q “ VdpS 1
spRd

qq “ A1
spCd

q

and

A1

0,ps, 12 q
pCd

q “ VdpΣ1
spRd

qq “ A1
0,spCd

q,
respectively.
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Proposition 3.6. Let a0 P L8
locpCdq, s ą 1

2 , 0 ă t0 ă 1 and

t1 “
1

4p1 ´ t0q
. (3.16)

Then the following is true:

(1) if (3.15) holds for some r0 ą 0 then

Opaw
V pa0q : A0,ps,t0qpCd

q Ñ A0,ps,t1qpCd
q,

Opaw
V pa0q : A1

0,ps,t0qpCd
q Ñ A1

0,ps,t1qpCd
q

(3.17)

are continuous;
(2) if (3.15) holds for every r0 ą 0 then

Opaw
V pa0q : Aps,t0qpCd

q Ñ Aps,t1qpCd
q,

Opaw
V pa0q : A1

ps,t0qpCd
q Ñ A1

ps,t1qpCd
q

(3.18)

are continuous.

Proof. We only prove that the first map in (3.17) is continuous. The other continuity assertions follow by 
similar arguments and are left for the reader.

Let r2 ą 0 be given, r1 ą r0 and F P A0,ps,t0qpCdq. We have for z P Cd

| Opaw
V pa0qF pzq|e´t1|z|

2
`r2|z|

1
s

À e´t1|z|
2

`r2|z|
1
s

ż

Cd

|a0pwq| |F pwq| eRepz,wq´|w|
2
dλpwq

À e´t1|z|
2

`r2|z|
1
s

}F }As,t0,r1

ż

Cd

er0|w|
1
s `t0|w|

2
´r1|w|

1
s `Repz,wq´|w|

2
dλpwq

“ er2|z|
1
s

}F }As,t0,r1

ż

Cd

e´pr1´r0q|w|
1
s ´p1´t0q|w|

2
`Repz,wq´t1|z|

2
dλpwq

“ er2|z|
1
s

}F }As,t0,r1

ż

Cd

e
´pr1´r0q|w|

1
s ´

ˇ

ˇ

ˇ

?
1´t0w´ 1

2
a

1´t0
z
ˇ

ˇ

ˇ

2

dλpwq

“ er2|z|
1
s

}F }As,t0,r1

ż

Cd

e
´pr1´r0q

ˇ

ˇ

ˇ
w` 1

2p1´t0q z
ˇ

ˇ

ˇ

1
s ´p1´t0q|w|

2

dλpwq

ď epr2´c1pr1´r0qq|z|
1
s

}F }As,t0,r1

ż

Cd

ec2pr1´r0q|w|
1
s ´p1´t0q|w|

2
dλpwq

— }F }As,t0,r1
epr2´c1pr1´r0qq|z|

1
s

for some constants c1, c2 ą 0. By choosing r1 sufficiently large we get

} Opaw
V pa0qF }As,t1,r2

À }F }As,t0,r1
.

The estimates and (1.40) imply Opaw
V pa0qF P ApCdq. l

Remark 3.7. Note that (3.16) implies t1 ą
1
4 and t0 ď t1 with equality if and only if t0 “

1
2 . Hence 
A0,ps,t0qpCdq Ď A0,ps,t1qpCdq, and similarly for the other spaces.



84 N. Teofanov et al. / J. Math. Pures Appl. 167 (2022) 48–100
The particular case t0 “
1
2 in Proposition 3.6 is the following.

Corollary 3.8. Let a0 P L8
locpCdq and s ą

1
2 . If (3.15) holds for some (every) r0 ą 0 then Opaw

V pa0q is 
continuous on A0,spCdq (on AspCdq).

With a technique similar to the proof of Proposition 3.6 one obtains the following result.

Proposition 3.9. Let a0 P L8
locpCdq, s ą 1

2 , 0 ă t0 ă 1 and suppose (3.16) holds. Then the following is true:

(1) if (3.14) holds for all r0 ą 0 then

Opaw
V pa0q : A1

0,ps,t0qpCd
q Ñ A0,ps,t1qpCd

q (3.19)

is continuous;
(2) if (3.14) holds for some r0 ą 0 then

Opaw
V pa0q : A1

ps,t0qpCd
q Ñ Aps,t1qpCd

q (3.20)

is continuous.

Similarly, by letting t0 “
1
2 in Proposition 3.9 we get the following.

Corollary 3.10. Let a0 P L8
locpCdq and s ą 1

2 . Then the following is true:

(1) if (3.14) holds for every r0 ą 0 then

Opaw
V pa0q : A1

0,spCd
q Ñ A0,spCd

q

is continuous;
(2) if (3.14) holds for some r0 ą 0 then

Opaw
V pa0q : A1

spCd
q Ñ AspCd

q

is continuous.

3.3. Estimates of Wick symbols of anti-Wick operators with exponentially bounded symbols

For anti-Wick operators in [12, Eq. (2.94)] we have the following result.

Theorem 3.11. If a0 P L8
locpCdq satisfies

|a0pwq| À er|w|
2
, w P Cd, for some r ă 1, (3.21)

then a0 P L0,ApCdq and (1.38)1 holds for some aaw
0 P uApC2dq with

|aaw
0 pz, wq| À er0|z`w|

2
´Repz,wq, r0 “ 4´1

p1 ´ rq
´1.

Proof. The claim a0 P L0,ApCdq is an immediate consequence of the assumption (3.21) and the definition 

(1.39). The integral in (1.38)1 can be estimated as
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ˇ

ˇ

ˇ

ˇ

ż

Cd

a0pw1qe´pz´w1,w´w1q dλpw1q

ˇ

ˇ

ˇ

ˇ

À

ż

Cd

er|w1|
2
ˇ

ˇ

ˇ
e´pz´w1,w´w1q

ˇ

ˇ

ˇ
dλpw1q

“ e´ Repz,wq

ż

Cd

e´p1´rq|w1|
2
eRepz`w,w1q dλpw1q

“ e
1

4p1´rq |z`w|
2

´Repz,wq

ż

Cd

e´p1´rq|w1´pz`wq{p2p1´rqq|
2
dλpw1q

— er0|z`w|
2

´Repz,wq. l

Remark 3.12. The condition on aaw
0 in Theorem 3.11 implies that aaw

0 belongs to uA1

0, 12
pC2dq (see [29]). In 

particular it follows that Opaw
V pa0q “ OpVpaaw

0 q is continuous from A0, 12 pCdq to A1

0, 12
pCdq (cf. [29, Theorem 

2.10] and Remark 1.2).

The following result concerns exponentially moderate weight functions.

Theorem 3.13. Let a0 P L0,ApCdq, aaw
0 P uApC2dq be given by (1.38)1 and ω P PEpCdq. If

|a0pwq| À ωp2wq, w P Cd,

then

|aaw
0 pz, wq| À e

1
4 |z´w|

2
ωpz ` wq, z, w P Cd.

Proof. Let r ě 0 be chosen such that ωpz ` wq À ωpzqer|w|, z, w P Cd. From (1.38)1 we get

|aaw
0 pz, wq| À

ż

Cd

ωp2w1qe´ Repz´w1,w´w1q dλpw1q

“ e´ Repz,wq

ż

Cd

ωp2w1qeRepz`w,w1q´|w1|
2
dλpw1q

“ e´ Repz,wq` 1
4 |z`w|

2
ż

Cd

ωp2w1qe´|w1´pz`wq{2|
2
dλpw1q

“ e
1
4 |z´w|

2
ż

Cd

ωp2w1 ` z ` wqe´|w1|
2
dλpw1q

À e
1
4 |z´w|

2
ωpz ` wq

ż

Cd

e2r|w1|´|w1|
2
dλpw1q

— e
1
4 |z´w|

2
ωpz ` wq. l

The anti-Wick operators in Propositions 3.6 and 3.9 can also be described as Wick operators with symbols 
that have smaller growth bounds than uAspC2dq and its dual. The following result extends Theorem 3.13 for 
weights of the form ec|z|

1
s with c P R from s ě 1 to s ě 1

2 .

Theorem 3.14. Let s ě 1
2 (s ą 1

2), a0 P L0,ApCdq and let aaw
0 be given by (1.38)1. Then the following is true:

(1) if (3.14) holds for some (every) r0 ą 0 then

1 2 1
|aaw
0 pz, wq| À e 4 |z´w| ´r|z`w| s (3.22)
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for some (every) r ą 0;
(2) if (3.15) holds for every (some) r0 ą 0 then

|aaw
0 pz, wq| À e

1
4 |z´w|

2
`r|z`w|

1
s (3.23)

for every (some) r ą 0.

Remark 3.15. Thanks to the parameter 1
4 in the factor e 1

4 |z´w|
2 rather than 1

2 , the estimates (3.23) are 
much stronger than the estimates (2.19) with σ “ s. Corollary 3.8 can thus be seen as a consequence of 
Theorems 2.6 and 3.14, and [9, Definition 2.4, and Theorems 4.10 and 4.11].

Remark 3.16. The estimates for aaw
0 in Theorem 3.14 may seem weak since the dominating factor e 1

4 |z´w|
2

is present in (3.22) and (3.23) but absent in the original estimates (3.14) and (3.15) for a0.
On the other hand, Wick symbols for operators with continuity involving the spaces AspCdq and A1

spCdq, 
as well as A0,spCdq and A1

0,spCdq, usually satisfy conditions of the form

|apz, wq| À e
1
2 |z´w|

2
˘r1|z`w|

1
2 ˘|z´w|

1
s

in view of [29, Theorems 2.9 and 2.10], and Theorem 2.6. Here the dominating factor is e 1
2 |z´w|

2 , which is 
larger than the factor e 1

4 |z´w|
2 in Theorem 3.14.

This factor has a large impact on functions on Rd that are transformed back by the inverse of the 
Bargmann transform. For instance, if ε ą 0, then the Bargmann image of any non-trivial Gelfand-Shilov 
space and its distribution space contain

tF P ApCd
q ; |F pzq| À ep 1

2 ´εq|z|
2

u

and are contained in

tF P ApCd
q ; |F pzq| À ep 1

2 `εq|z|
2

u.

The same holds true for the Bargmann images of S pRdq and S 1pRdq.

Theorem 3.14 is a straight-forward consequence of the following two propositions, which give more details 
on the relationships between r and r0 in (3.14), (3.15), (3.22) and (3.23).

Proposition 3.17. Let s ě 1
2 and let r0, r P p0, 8q be such that

r0 P p0,8q and r ă
r0

4p1 ` r0q
, when s “

1
2 , (3.24)

and

r0 P p0,8q and r ď 2´ 1
s r0, when s P p

1
2 ,8q, (3.25)

with strict inequality in (3.25) when s ă 1. If a0 P L8
locpCdq satisfies (3.14) and aaw

0 P uApC2dq is given by 
(1.38)1, then (3.22) holds.

Proposition 3.18. Let s ě 1
2 and r0, r P p0, 8q be such that

r0 P p0, 1q and r ą
r0

, when s “
1
2 , (3.24)1
4p1 ´ r0q
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and

r0 P p0,8q and r ě 2´ 1
s r0, when s P p

1
2 ,8q, (3.25)1

with strict inequality in (3.25)1 when s ă 1. If a0 P L8
locpCdq satisfies (3.15) and aaw

0 P uApC2dq is given by 
(1.38)1, then (3.23) holds.

For the proofs of Propositions 3.17 and 3.18 we use the inequalities

|z|
θ

´ |w|
θ

ď |z ` w|
θ

ď |z|
θ

` |w|
θ, θ P p0, 1s, z, w P Cd (3.26)

|z ` w|
θ

ď p1 ` εq|z|
θ

` p1 ` ε´1
q|w|

θ, θ P r1, 2s, z, w P Cd, (3.27)

and

|z ` w|
θ

ě p1 ´ εq|z|
θ

` p1 ´ ε´1
q|w|

θ, θ P r1, 2s, z, w P Cd, (3.28)

for every ε ą 0.

Proof of Proposition 3.17. Suppose that a0 satisfies (3.14) for some r0 ą 0. First we consider the case s ą 1
2 . 

If s ă 1 let ε1 ą 0 and ε2 “ ε´1
1 , and if s ě 1 let ε1 “ 0 and ε2 “ 2, and let c “ 2´ 1

s . Then (1.38)1, (3.26)
and (3.28) give

|aaw
0 pz, wq| À

ż

Cd

e´r0|w1|
1
s e´ Repz´w1,w´w1q dλpw1q

“ e
1
4 |z`w|

2
´Repz,wq

ż

Cd

e´r0|w1|
1
s ´|w1´pz`wq{2|

2
dλpw1q

“ e
1
4 |z´w|

2
ż

Cd

e´r0|w1`pz`wq{2|
1
s ´|w1|

2
dλpw1q

ď e
1
4 |z´w|

2
e´cr0p1´ε1q|z`w|

1
s

ż

Cd

e´r0p1´ε2q|w1|
1
s ´|w1|

2
dλpw1q

— e
1
4 |z´w|

2
e´cr0p1´ε1q|z`w|

1
s . (3.29)

If s ě 1, then ε1 “ 0 and ε2 “ 2, and the result follows from (3.29). If instead s ă 1, then the result follows 
by choosing ε1 ą 0 small enough, and we have proved the result in the case s ą 1

2 .
Next suppose that s “ 1

2 . For ε1 ą 0 and ε2 “ ε´1
1 , (3.29) gives

|aaw
0 pz, wq| À e

1
4 |z´w|

2
e´ 1

4 r0p1´ε1q|z`w|
2
ż

Cd

e´pr0p1´ε2q`1q|w1|
2
dλpw1q.

For any ε2 ă
1`r0
r0

it follows that the integral converges, and

1 ´ ε1 “ 1 ´ ε´1
2 ă p1 ` r0q

´1.

By the assumptions there is δ ą 0 such that

r0p1 ´ δq

r “ 4p1 ` r0q

.
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Since

1 ´ ε1 Õ p1 ` r0q
´1 as ε2 Õ

1 ` r0
r0

we may pick 0 ă ε2 ă
1`r0
r0

such that

1 ´ δ

1 ` r0
ď 1 ´ ε1

and the result follows in the case s “ 1
2 . l

Proof of Proposition 3.18. First we consider the case when s ą 1
2 . Suppose that a0 satisfies (3.15) for some 

r0 ą 0, let ε1, ε2 ě 0 be such that ε1 “ ε2 “ 0 when s ě 1 and ε1ε2 “ 1 when s ă 1, and let c “ 2´ 1
s . Then 

(1.38)1, (3.26) and (3.27) give

|aaw
0 pz, wq| À

ż

Cd

er0|w1|
1
s e´ Repz´w1,w´w1q dλpw1q

“ e
1
4 |z`w|

2
´Repz,wq

ż

Cd

er0|w1|
1
s ´|w1´pz`wq{2|

2
dλpw1q

“ e
1
4 |z´w|

2
ż

Cd

er0|w1`pz`wq{2|
1
s ´|w1|

2
dλpw1q

ď e
1
4 |z´w|

2
ecr0p1`ε1q|z`w|

1
s

ż

Cd

er0p1`ε2q|w1|
1
s ´|w1|

2
dλpw1q

— e
1
4 |z´w|

2
ecr0p1`ε1q|z`w|

1
s . (3.30)

If s ě 1, then ε1 “ ε2 “ 0, and the result follows from (3.30). If instead s ă 1, then the result follows by 
choosing ε1 ą 0 small enough, and the result follows in the case s ą 1

2 .
Next suppose that s “ 1

2 . Then (3.30) gives

|aaw
0 pz, wq| À e

1
4 |z´w|

2
e

1
4 r0p1`ε1q|z`w|

2
ż

Cd

er0p1`ε2q|w1|
2

´|w1|
2
dλpw1q.

For any ε2 ă
1´r0
r0

the integral converges, and

1 ` ε1 “ 1 ` ε´1
2 ą p1 ´ r0q

´1.

Since

1 ` ε1 Œ p1 ´ r0q
´1 as ε2 Õ

1 ´ r0
r0

,

the result follows in the case s “ 1
2 by letting r “

r0p1`ε1q

4 . l

Remark 3.19. In the previous results we have mainly deduced certain estimates on the Wick symbols of 
anti-Wick operators. In [32], similar estimates are presented, where estimates on the anti-Wick symbols to 
certain Wick operators are deduced. We also refer to [6,32] for further transition properties between Wick 
and anti-Wick operators, and to [32] for certain fundamental continuity properties for Wick and anti-Wick 

operators.
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4. A lower bound for Wick operators

In this section we apply the asymptotic expansions in the previous section for Shubin-Wick operators to 
deduce a sharp Gårding inequality.

First we have the following result. We put uASh,ρpC2dq “ uApωq

Sh,ρpC2dq when ω “ 1.

Proposition 4.1. Let ω P PpCdq, p P r1, 8s, a P uASh,0pC2dq and a0 P L8pCdq. Then OpVpaq and Opaw
V pa0q

are both continuous on Ap
pωq

pCdq.

The claimed continuity of OpVpaq is a straight-forward consequence of [29, Theorem 3.3], in combination 
with Proposition 2.1 and the relationship Kpz, wq “ apz, wqepz,wq between the kernel and symbol of a Wick 
operator (cf. (0.1)). In order to be self-contained we include an alternative and shorter proof.

Proof. Let F P Ap
pωq

pCdq, Gpzq “ e´ 1
2 |z|

2
|F pzqωp

?
2zq|,

H1pzq “ e´ 1
2 |z|

2
| OpVpaqF pzqωp

?
2zq| and

H2pzq “ e´ 1
2 |z|

2
| Opaw

V pa0qF pzqωp
?

2zq|.

We have

ωp
?

2zq À ωp
?

2wqxz ´ wy
N0

for some N0 ě 0. By Theorem 2.2 and (2.6) we get

H1pzq À e´ 1
2 |z|

2
ż

Cd

e
1
2 |z´w|

2
xz ´ wy

´N
|F pwqωp

?
2zq|eRepz,wq´|w|

2
dλpwq “ px ¨ y

N0´N
˚ Gqpzq,

for every N ě 0. By choosing N ą 2d ` N0 and using Young’s inequality we get }H1}Lp À }G}Lp which 
means } OpVpaqF }Ap

pωq
À }F }Ap

pωq
, and the asserted continuity for OpVpaq follows.

In the same way we get

H2pzq À }a0}L8e´ 1
2 |z|

2
ż

Cd

|F pwqωp
?

2wq|xz ´ wy
N0eRepz,wq´|w|

2
dλpwq — ppx ¨ y

N0e´ 1
2 | ¨ |

2
q ˚ Gqpzq,

and another application of Young’s inequality shows that }H2}Lp
pωq

À }G}Lp
pωq

, that is } Opaw
V pa0qF }Ap

pωq
À

}F }Ap
pωq

. l

We have finally a version of the sharp Gårding inequality.

Theorem 4.2. Let ρ ą 0, ωpzq “ xzy2ρ and let a P uApωq

Sh,ρpC2dq be such that apw, wq ě ´C0 for all w P Cd, 
for some constant C0 ě 0. Then

Re
`

pOpVpaqF, F qA2
˘

ě ´C}F }
2
A2 , F P AS pCd

q (4.1)

and

ˇ

ˇ Im
`

pOpVpaqF, F qA2
˘ˇ

ˇ ď C}F }
2
A2 , F P AS pCd

q (4.2)
for some constant C ě 0.
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Proof. Let b0pwq “ apw, wq. Then OpVpaq “ Opaw
V pb0q ̀ OpVpa1q for some a1 P uASh,ρpC2dq Ď uASh,0pC2dq, 

in view of Proposition 3.3. Since ΠAF “ F for F P A2pCdq (cf. (1.22)), the assumption b0 ě ´C0 implies 
pOpaw

V pb0qF, F qA2 ě ´C0}F }2
A2 for every F P AS pCdq. The operator OpVpa1q is continuous on A2pCdq in 

view of Proposition 4.1. A combination of these facts gives the result. l

5. Ellipticity and hypoellipticity for Shubin and Wick operators

In this section we show that the Bargmann assignment SV maps the sets of hypoelliptic symbols and 
weakly elliptic symbols in the Shubin class Shpωq

ρ pR2dq bijectively into the sets of hypoelliptic symbols 
and weakly elliptic Wick symbols in uApωq

Sh,ρpC2dq, respectively. (Cf. Subsection 1.6.) Then we explain some 
consequences for polynomial symbols.

5.1. Transition of weakly elliptic symbols

For symbols in uApωq

Sh,ρpC2dq we define ellipticity and weak ellipticity as follows.

Definition 5.1. Let ρ ą 0, ω P PSh,ρpCdq and a P uApωq

Sh,ρpC2dq. Then a is called weakly elliptic of order 
ρ0 ě 0, or ρ0-weakly elliptic, if for some R ą 0

|apz, zq| Á xzy
´ρ0ωp

?
2zq, |z| ě R.

If a is weakly elliptic of order 0 then a is called elliptic.

Theorem 5.2. Let ω P PpR2dq » PpCdq, ρ ą 0 and a P Shpωq
ρ pR2dq. Then the following is true:

(1) if z “ x ̀ iξ, x, ξ P Rd, then

|SVapz, zq ´ ap
?

2x,´
?

2 ξq| À ωp
?

2 zqxzy
´2ρ; (5.1)

(2) if ρ0 P r0, 2ρq, then SV is bijective from the set of weakly elliptic symbols in Shpωq
ρ pR2dq of order ρ0 to 

the set of weakly elliptic symbols in uApωq

Sh,ρpC2dq of order ρ0.

As a consequence of (2) in the previous theorem we get the following. Here recall Subsection 1.6 for 
definition of weakly elliptic symbols in Shubin classes.

Corollary 5.3. Let a be as in Theorem 5.2. Then the following is true:

(1) if ρ0 P r0, 2ρq, then a P Shpωq
ρ pR2dq is weakly elliptic of order ρ0, if and only if SVa P uA

pωq

Sh,ρpC2dq is 
weakly elliptic of order ρ0;

(2) a P Shpωq
ρ pR2dq is elliptic if and only if SVa P uA

pωq

Sh,ρpC2dq is elliptic.

For the proof of Theorem 5.2 we need the following proposition, related to Propositions 3.1 and 3.5. It 
shows that the Bargmann assignment of a Shubin symbol a possess convenient expansion properties.

Proposition 5.4. Let M ě 0 be an integer, ρ ě 0, ω P PSh,ρpR2dq » PSh,ρpCdq, ωkpx, ξq “

ωpx, ξqxpx, ξqy´2ρk and a P Shpωq
ρ pR2dq. Then for some cM P ShpωM`1q

ρ pR2dq and constants tcαu|α|ď2M

with c0 “ 1, it holds
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SVap2´ 1
2 z, 2´ 1

2 zq “

M
ÿ

k“0
akpx,´ξq ` cM px,´ξq, ak “

ÿ

|α|“2k
cαB

αa. (5.2)

Proof. Let ψ be as in Proposition 2.3. If we put z “ w, then (2.9) and Taylor’s formula give

p2πq
dSVap2´ 1

2 z, 2´ 1
2 zq “ p2πq

3d
2 Tψapx,´ξ, 0, 0q

“ 2d
ĳ

R2d

apt ` x, τ ´ ξqe´p|t|2`|τ |
2

q dtdτ “

2M`1
ÿ

k“0
bkpx,´ξq ` cpx,´ξq (5.3)

where

bkpx, ξq “
2d

k!

ĳ

R2d

xapkq
px, ξq; pt, τq, . . . , pt, τqye´p|t|2`|τ |

2
q dtdτ

and

cpx, ξq “
1

p2M ` 1q!

ż 1

0
p1 ´ θq

2M`1cθpx, ξq dθ,

with

cθpx, ξq “ 2d
ĳ

R2d

xap2M`2q
px ` θt, ξ ` θτq; pt, τq, . . . , pt, τqye´p|t|2`|τ |

2
q dtdτ.

If k is odd, then

pt, τq ÞÑ xapkq
px, ξq; pt, τq, . . . , pt, τqye´p|t|2`|τ |

2
q

is odd which implies that the integral is zero. Hence bkpx, ξq “ 0 when k is odd. For k “ 0 we observe that 
the integral for b0 becomes

2d
ĳ

R2d

e´p|t|2`|τ |
2

q dtdτ “ p2πq
d,

and it follows from these relations that

p2πq
´d

2M`1
ÿ

k“0
bk “

M
ÿ

k“0
ak,

with ak as in (5.2) and c0 “ 1. Hence the result follows if we prove that the last term in (5.3) satisfies 
cM P ShpωM`1q

ρ pR2dq.
For θ P r0, 1s and α P N2d we have

|B
αcθpx, ξq| À

ĳ

R2d

|B
αap2M`2q

px ` θt, ξ ` θτq|xpt, τqy
2M`2e´p|t|2`|τ |

2
q dtdτ

À

ĳ

ωpx ` θt, ξ ` θτqxpx ` θt, ξ ` θτqy
´p2M`2`|α|qρ

xpt, τqy
2M`2e´p|t|2`|τ |

2
q dtdτ
R2d
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À ωpx, ξqxpx, ξqy
´p2M`2`|α|qρ

ĳ

R2d

xpt, τqy
N0e´p|t|2`|τ |

2
q dtdτ

— ωpx, ξqxpx, ξqy
´p2M`2`|α|qρ

for some N0 ą 0. In the last inequality we have used the fact that ω is polynomially moderate.
This implies

|B
αcpx, ξq| À

ż 1

0
|B

αcθpx, ξq| dθ À ωpx, ξqxpx, ξqy
´p2M`2`|α|qρ,

which shows that c, cM P ShpωM`1q
ρ pR2dq. l

Proof of Theorem 5.2. Let ψ be as in Proposition 2.3 and N “ 0 in Proposition 5.4. Then

|SVap2´ 1
2 z, 2´ 1

2 zq ´ apx,´ξq| À ωpx,´ξqxpx,´ξqy
´2ρ, (5.1)1

and (1) follows.
Suppose ρ0 P r0, 2ρq. Then it follows from the latter inequality that

|SVapz, zq| Á xzy
´ρ0ωp

?
2 zq, |z| ě R

for some R ą 0, if and only if

|apx, ξq| Á xpx, ξqy
´ρ0ωpx, ξq, |z| ě R

for some R ą 0, and the asserted equivalence in (2) follows. l

5.2. Shubin hypoellipticity in a Wick setting

Definition 5.5. Let ρ ą 0, ρ0 ě 0, ω P PSh,ρpCdq and a P uApωq

Sh,ρpC2dq. Then a is called hypoelliptic (in the 

Shubin-Wick sense in uApωq

Sh,ρpC2dq) of order ρ0, if there is an R ą 0 such that for every α, β P Nd, it holds

|B
α
z B

β

wapz, zq| À |apz, zq|xzy
´ρ|α`β|, |z| ě R (5.4)

and

|apz, zq| Á ω0p
?

2zqxzy
´ρ0 , |z| ě R. (5.5)

According to Definition 1.11, if ω, ρ and ρ0 are as in the definition, then a P Shpωq
ρ pR2dq is hypoelliptic 

of order ρ0 means that there is an R ą 0 such that for every α P N2d, it holds

|B
αapx, ξq| À |apx, ξq|xpx, ξqy

´ρ|α|, |px, ξq| ě R (5.6)

and

|apx, ξq| Á ωpx, ξqxpx, ξqy
´ρ0 , |px, ξq| ě R. (5.7)
Similar to Theorem 5.2 we have the following.



N. Teofanov et al. / J. Math. Pures Appl. 167 (2022) 48–100 93
Theorem 5.6. Let ρ ą 0, ρ0 ě 0, ω P PSh,ρpR2dq » PSh,ρpCdq, a P Shpωq
ρ pR2dq and a “ SVa. Then a is 

hypoelliptic of order ρ0 in Shpωq
ρ pR2dq, if and only if a is hypoelliptic of order ρ0 in uApωq

Sh,ρpC2dq.

Proof. Suppose that a P Shpωq
ρ pR2dq is hypoelliptic of order ρ0, and choose M ě 0 such that 2Mρ ą ρ0. 

Suppose that R ą 0 is chosen such that (5.6) and (5.7) are fulfilled. Then Proposition 5.4 gives for z “ x ̀ iξ

with |z| ě R where R ą 0 is sufficiently large

|ap2´ 1
2 z, 2´ 1

2 zq| Á |apx,´ξq| ´

M
ÿ

k“1

ÿ

|α|“2k
p|B

αapx,´ξq| ` |cpx,´ξq|q

Á |apx,´ξq| ´ |apx,´ξq|xpx,´ξqy
´2ρ

´ ωpx,´ξqxpx,´ξqy
´ρp2M`2q

Á |apx,´ξq| ´ |apx,´ξq|xpx,´ξqy
´2ρ

Á |apx,´ξq| Á ωpx,´ξqxpx,´ξqy
´ρ0 ,

and (5.5) follows. In particular it follows from the previous estimates that

|ap2´ 1
2 z, 2´ 1

2 zq| Á |apx,´ξq|, |z| ě R. (5.8)

For fixed α, β P Nd, let Ωk be the set of all pγ, δq P N2d ˆ N2d such that |γ| “ 2k and |δ| “ |α ` β|. By 
Proposition 5.4 and (5.8) we have for some R large enough and |z| ě R,

|pB
α
z B

β

waqp2´ 1
2 z, 2´ 1

2 zq| À

M
ÿ

k“0

ÿ

pγ,δqPΩk

p|B
γ`δapx,´ξq| ` |B

δcpx,´ξq|q

À

M
ÿ

k“0

ÿ

pγ,δqPΩk

`

|apx,´ξq|xpx,´ξqy
´ρp2k`|α`β|q

` ωpx,´ξqxpx,´ξqy
´ρp2M`|α`β|q

˘

— |apx,´ξq|xpx,´ξqy
´ρ|α`β|

` ωpx,´ξqxpx,´ξqy
´ρp2M`|α`β|q

À |apx,´ξq|xpx,´ξqy
´ρ|α`β|

` |apx,´ξq|xpx,´ξqy
ρ0´ρp2M`|α`β|q

— |apx,´ξq|xpx,´ξqy
´ρ|α`β|

À |ap2´ 1
2 z, 2´ 1

2 zq|xpx,´ξqy
´ρ|α`β|,

which implies that (5.4) holds.
This shows that a is hypoelliptic of order ρ0 in uApωq

Sh,ρpC2dq when a is hypoelliptic of order ρ0 in Shpωq
ρ pR2dq.

Suppose instead that a is hypoelliptic of order ρ0 in uApωq

Sh,ρpC2dq. By using Proposition 3.5, (3.12) and 
(3.13) instead of Proposition 5.4, similar computations as in the first part of the proof shows that (5.6) and 
(5.7) hold for some R ą 0. This shows that a is hypoelliptic of order ρ0 in Shpωq

ρ pR2dq when a is hypoelliptic 

of order ρ0 in uApωq

Sh,ρpC2dq, and the result follows. l

5.3. Ellipticity in the case of polynomial symbols

Next we discuss ellipticity for polynomial symbols, i.e.

apx, ξq “
ÿ

|α`β|ďM

cpα, βqxαξβ , x, ξ P Rd, (5.9)
and
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apz, wq “
ÿ

|α`β|ďM

cpα, βqzαwβ , z, w P Cd. (5.10)

The corresponding principal symbols are

appx, ξq “
ÿ

|α`β|“M

cpα, βqxαξβ , x, ξ P Rd, (5.11)

and

appz, wq “
ÿ

|α`β|“M

cpα, βqzαwβ , z, w P Cd, (5.12)

respectively.
First we relate polynomials on R2d to Shubin classes.

Proposition 5.7. Let a and ap be as in (5.9) and (5.11) for some cpα, βq P C, α, β P Nd and M ě 0, and let 
ωM px, ξq “ xpx, ξqyM , x, ξ P Rd. Then the following is true:

(1) a P ShpωM q

1 pR2dq;
(2) a is elliptic with respect to ωM , if and only if appx, ξq ‰ 0 when px, ξq ‰ 0.

The result can be considered folklore. In order to be self-contained we present the arguments.

Proof. First we prove (1). Let t “ maxp|x1|, . . . , |xd|, |ξ1|, . . . , |ξd|q when x “ px1, . . . , xdq P Rd and ξ “

pξ1, . . . , ξdq P Rd. Then

|apx, ξq| ď
ÿ

|α`β|ďM

|cpα, βq|t|α`β|
À 1 ` tM ď xpx, ξqy

M ,

which gives the desired bound for |apx, ξq|. Since the degree of a polynomial is lowered by at least one for 
every differentiation we get

|B
αapx, ξq| À xpx, ξqy

M´|α|

for every α P N2d, which gives (1).
In order to prove (2) we let ap be as in (5.11). First suppose that appx, ξq ‰ 0 when px, ξq ‰ p0, 0q, and 

let g be the continuous function on R2dz0 given by

gpx, ξq “
|appx, ξq|

|px, ξq|M
, px, ξq ‰ p0, 0q.

Since g is continuous and positive, and the sphere

S2d´1
“ t px, ξq P R2d ; |x|

2
` |ξ|

2
“ 1 u

is compact, it follows that there are constants c1, c2 ą 0 such that

c1 ď gpx, ξq ď c2, px, ξq P S2d´1.
By homogeneity it now follows
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c1|px, ξq|
M

ď |appx, ξq| ď c2|px, ξq|
M , x, ξ P Rd.

Hence, if

bpx, ξq “ apx, ξq ´ appx, ξq “
ÿ

|α`β|ďM´1
cpα, βqxαξβ ,

then the first part of the proof implies that for some constants C ą 0 and R ą 0 we have

|apx, ξq| ě |appx, ξq| ´ |bpx, ξq| ě c1|px, ξq|
M

´ Cxpx, ξqy
M´1

Á xpx, ξqy
M

when |px, ξq| ě R. Hence a is elliptic with respect to ωM .
Suppose instead appx0, ξ0q “ 0 for some px0, ξ0q ‰ p0, 0q. For any px, ξq “ ptx0, tξ0q we have

|apx, ξq| ď |appx, ξq| ` |bpx, ξq| “ |tMappx0, ξ0q| ` |bpx, ξq| “ |bpx, ξq| À xpx, ξqy
M´1,

giving that |apx, ξq| Á xpx, ξqyM , |px, ξq| ě R, cannot hold for any R ą 0. l

By Theorems 5.2, 5.6 and Proposition 5.7 we get the following. The verification is left for the reader.

Proposition 5.8. Let a and ap be as in (5.10) and (5.12) for some cpα, βq P C, α, β P Nd and M ě 0, and 
let ωM px, ξq “ xpx, ξqyN , x, ξ P Rd. Then the following is true:

(1) a P ApωM q

Sh,1 pC2dq;
(2) a is elliptic in ApωM q

Sh,1 pC2dq if and only if appz, zq ‰ 0 when z ‰ 0.

Remark 5.9. Let a, ap, a and ap be as in (5.9)–(5.12). Then it follows from Proposition 5.7 and Proposition 5.8
that a is elliptic, if and only if ap is elliptic, and that a is elliptic, if and only if ap is elliptic.

We have now the following.

Theorem 5.10. Let a P ShpωM q

1 pR2dq and ap be as in (5.9) and (5.11) for some cpα, βq P C, α, β P Nd and 
M ě 0. Then the following is true:

(1) the principal symbol appz, wq of SVa is given by

appz, wq “ 2´ M
2

ÿ

|α`β|“M

cpα, βqi|β|
pz ` wq

α
pz ´ wq

β ; (5.13)

(2) a is elliptic in ShpωM q

1 pR2dq if and only if ap is elliptic in ApωM q

Sh,1 pC2dq;
(3) appx, ξq ą 0 for every px, ξq ‰ p0, 0q, if and only if appz, zq ą 0 for every z ‰ 0.

Proof. Let z “ x ̀ iξ, x, ξ P Rd, i.e. x “ 1
2 pz ` zq and ξ “

1
2i pz ´ zq. By Theorem 5.2 we get

app2´ 1
2 z, 2´ 1

2 zq “ appx,´ξq. (5.14)

This implies

appz, zq “ 2M
2

ÿ

cpα, βqxα
p´ξq

β
“ 2M

2
ÿ

cpα, βq2´|α|
pz ` zq

α
p2iq´|β|

p´pz ´ zqq
β ,
|α`β|“M |α`β|“M
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which gives

appz, zq “ 2´ M
2

ÿ

|α`β|“M

cpα, βqi|β|
pz ` zq

α
pz ´ zq

β . (5.13)1

The formula (5.13) now follows from (5.13)1 and analytic continuation, using the fact that appz, wq is analytic 
in z and conjugate analytic in w.

The assertion (2) follows by a combination of Corollary 5.3, Propositions 5.7 and 5.8, and the assertion 
(3) is a direct consequence of (5.14). l

6. A necessary condition for polynomially bounded Wick symbols

In [12, Section 2.7] Folland shows that polynomial symbols for pseudo-differential operators correspond 
to polynomial Wick and anti-Wick symbols. Thus partial differential operators with polynomial coefficients 
corresponds to polynomial Wick symbols.

Here we show that a Wick symbol that is polynomially bounded must be a polynomial. This gives a 
characterization of Wick symbols corresponding to polynomial symbols for pseudo-differential operators.

Cauchy’s integral formula implies that an entire function which is polynomially bounded must be a 
polynomial:

Proposition 6.1. Let F P ApCdq with Maclaurin series

F pzq “
ÿ

αPNd

cpαqeαpzq, z P Cd.

Suppose that for some j P t1, . . . , du, C ą 0, M ě 0, and an open neighborhood I Ď C of the origin it holds

|F pzq| ď Cxzjy
M , zj P C,

provided zk P I, k P t1, . . . , duztju. Then cpαq “ 0 when αj ą M .

Proof. By interchanging the variables, we may assume that j “ d. Let R ě 1 and ε ą 0 be chosen such that

Dε ” t z0 P C ; |z0| ď ε u Ď I.

Take α P Nd such that αd ą M , let β “ pα1 ` 1, . . . , αd ` 1q P Nd and γε Ď C be the boundary circle of 
Dε. Then Cauchy’s integral formula gives

|cpαq|

α! 1
2

“

ˇ

ˇ

ˇ

ˇ

BαF p0q

α!

ˇ

ˇ

ˇ

ˇ

“ p2πq
´d

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ż

¨ ¨ ¨

ż

γd´1
ε

˜

ż

|zd|“R

F pzq

zβ
dzd

¸

dz1 ¨ ¨ ¨ dzd´1

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ď p2πq
´d

ż

¨ ¨ ¨

ż

γd´1
ε

˜

ż

|zd|“R

|F pzq|

|zβ |
|dzd|

¸

|dz1| ¨ ¨ ¨ |dzd´1|

À R´αdxRy
Mε´pα1`¨¨¨`αd´1q

Ñ 0
as R Ñ 8. l
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Corollary 6.2. Let a P uApC2dq and suppose

|apz, wq| À xpz, wqy
M (6.1)

for some M ě 0. Then a is a polynomial in z P Cd and w P Cd of degree at most M .

Proof. By Proposition 6.1 it follows that a is a polynomial of degree at most 2dM . We need to prove that 
the degree is at most M . In order to do this we may assume that a has degree at least one.

For some integer L ě 1 we have

apz, wq “ aLpz, wq ` aL´1pz, wq,

where

aLpz, wq “
ÿ

|α`β|“L

cpα, βqzαwβ

is non-trivial and

aL´1pz, wq “
ÿ

|α`β|ďL´1
cpα, βqzαwβ .

Since aL is non-trivial, there are z0, w0 P Cd such that |z0|2 ` |w0|2 “ 1 and |aLpz0, w0q| “ c0 ‰ 0. By 
homogeneity we get

|aLptz0, tw0q| “ c0|t|L, t P R.

In the same way we get

|aL´1ptz0, tw0q| ď Cp1 ` |t|qL´1, t P R

for some constant C which is independent of t.
Suppose contrary to the assertion that L ą M . For t P R with |t| ě 1 we have

ˇ

ˇ

ˇ

ˇ

aptz0, tw0q

xptz0, tw0qyM

ˇ

ˇ

ˇ

ˇ

Á |t|´M
p|aLptz0, tw0q| ´ |aL´1ptz0, tw0q|q

ě |t|´M
`

c0|t|L ´ Cp1 ` |t|qL´1˘
Ñ 8 as |t| Ñ 8.

This contradicts (6.1), and the hence our assumption that L ą M must be false. l

Appendix A

In this appendix we present some tables on weights, operators, spaces of entire functions on Cd and Wick 
symbol classes.

In the first two tables, Tables 1 and 2 we review weight classes, transforms, and operators. The next 
two tables, Tables 3 and 4, deal with properties of the Bargmann images of Gelfand-Shilov function spaces, 
the Schwartz space, and their distribution spaces. Then, in Table 5 we explain some links between the 
Shubin class Shpωq

ρ pR2dq (see (1.47)), and the symbol classes Γσ,s;0
s,σ pR2dq, Γσ,s

s,σ;0pR2dq and Γσ,s
s,σpR2dq (see 
Definition 1.8).
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Table 1
Weight classes.
Weight class Features Eq. ref.

PEpRd
q ω P L8

locpRd;R`q, ωpx ` yq À ωpxqer|y| (1.5)
PpRd

q ω P L8
locpRd;R`q, ωpx ` yq À ωpxqxyy

N (1.1)1

PSh,ρpRd
q ω P PpRd

q, |B
αωpxq| À ωpxqxxy

´ρ|α| (1.46)

Table 2
Operators and transforms.

Operator Notation Features Eq. ref.

Modul. STFT T f ÞÑ p2πq
´ d

2
ş

fpy ` xqφpyqe´ixy,ξy dy (1.10)1

Bargm. transf. Vd f ÞÑ π´ d

4
ş

e´ 1
2

pxz,zy`|y|2q`21{2xz,yyfpyq dy (1.19)
Semi-conj. op. Θ Kpz, wq ÞÑ Kpz, wq (1.29)

Pseudo-diff. op. OpApaq f ÞÑ p2πq
´d

ť

apx ´ Apx ´ yq, ξqfpyqeixx´y,ξy dydξ (1.31)

Wick op. OpVpaq F ÞÑ
ş

Cd apz, wqF pwqepz,wq dμpwq (1.36)

Anti-Wick op. Opaw
V paq F ÞÑ

ş

Cd apwqF pwqepz,wq dμpwq (1.40)
Bargm. assignm. SV OpVpSVaq “ Vd ˝ OpApaq ˝ V

˚
d , A “ 1

2 I (1.41)

Table 3
The Bargmann images of test function spaces.

Function space Bargmann image |Vdfpzq| À Eq. ref.

Sσ
s pRd

q, s, σ ě 1
2 Aσ

s pCd
q e

|z|2
2

´r|z|s,σ , Dr ą 0 (1.6), (1.24), (1.25)

Σσ
s pRd

q, s, σ ą 1
2 Aσ

0,spCd
q e

|z|2
2

´r|z|s,σ , @r ą 0 (1.6), (1.24), (1.25)

S pRd
q AS pCd

q e
|z|2

2 xzy
´N , @N ě 0 (1.6), (1.24), (1.25)

Table 4
The Bargmann images of distribution spaces.

Distribution space Bargmann image |Vdfpzq| À Eq. ref.

pSσ
s q

1
pRd

q, s, σ ě 1
2 pAσ

s q
1
pCd

q e
|z|2

2
`r|z|s,σ , @r ą 0 (1.6), (1.24), (1.25)

pΣσ
s q

1
pRd

q, s, σ ą 1
2 pAσ

0,sq
1
pCd

q e
|z|2

2
`r|z|s,σ , Dr ą 0 (1.6), (1.24), (1.25)

S 1
pRd

q A1
S pCd

q e
|z|2

2 xzy
N , DN ě 0 (1.6), (1.24), (1.25)

Table 5
Estimates for Wick symbol classes.

Wick class |B
αapz, wq| À Ref.

SVpShpωq
0 pR2d

qq e
1
2

|z´w|2ωp
?

2 zqxz ´ wy
´N

@N ě 0, α “ 0 Theorem 2.2

SVpShpωq
ρ pR2d

qq e
1
2

|z´w|2ωρ|α|p
?

2 zqxz ´ wy
´N , α P N4d Theorem 2.5

SVpΓσ,s
s,σ;0pR2d

qq e
1
2

|z´w|2`r1|z`w|s,σ´r2|z´w|s,σ , Dr2 ą 0, @r1 ą 0, α “ 0 Theorem 2.6

SVpΓσ,s;0
s,σ pR2d

qq e
1
2

|z´w|2`r1|z`w|s,σ´r2|z´w|s,σ , Dr1 ą 0, @r2 ą 0, α “ 0 Theorem 2.6

SVpΓσ,s
s,σpR2d

qq e
1
2

|z´w|2`r1|z`w|s,σ´r2|z´w|s,σ , Dr1, r2 ą 0, α “ 0 Theorem 2.6

Here recall

xxy “ p1 ` |x|
2
q

1
2 , dμpwq “ π´de´|w|

2
dλpwq,
and
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|z|s,σ “ | Re z|
1
s ` | Im z|

1
σ , z P Cd,

where dλpwq is the Lebesgue measure on Cd.
In Table 5 we let

B
αa “ B

α1
x B

α3
ξ B

α2
y B

α4
η a,

z “ x ` iξ, w “ y ` iη, α “ pα1, α2, α3, α4q P N2d,

when a P uApC2dq (see (2.15)), and ωrpzq “ ωpzqxzy´r when ω P PSh,ρpCdq and r P R, and recall that 
uApωq

Sh,ρ “ SVpShpωq
ρ pR2dqq. For SVpΓσ,s

s,σ;0pR2dqq it is assumed that s, σ ě
1
2 , while for SVpΓσ,s;0

s,σ pR2dqq and 
SVpΓσ,s

s,σpR2dqq it is assumed that s, σ ą
1
2 .
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