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0. Introduction

In the paper we investigate conjugation with the Bargmann transformation of pseudo-differential and
Toeplitz operators on R? with isotropic symbols, and we explore relations between Wick and anti-Wick
operators. Particularly we consider Shubin operators and operators of infinite order. This gives rise to
analytic type pseudo-differential operators on C¢ that are called Wick or Berezin operators because of the
fundamental contributions by F. Berezin [5,6], which in turns goes back to some ideas in [33] by G. C. Wick.

Let a be a suitable locally bounded function on C2¢ such that z — a(z,w) is analytic, z,w € C?%. Then
the Wick operator Opg;(a) with symbol a is the operator which takes an appropriate entire function F' on
C¢ into the entire function

Opg(a)F(z) = 7 ¢ Ld az, w)F(w)e®%) d(w), (0.1)

where d) is the Lebesgue measure and (-, -) is the scalar product on C?. (See [17] and Section 1 for
notation.) Wick operators appear naturally in several problems in analysis and its applications, e.g. in
quantum mechanics. For example, the harmonic oscillator, the creation and annihilation operators take the
simple forms

F—{z,V)F+cF, FrzFF and Fw 0,F,

respectively, for some constant ¢, in the Wick formulation (see [3]).

An advantage of the Wick calculus compared to corresponding operators on functions and distributions
defined on R is that in almost all situations, the involved functions are entire, which admits the use
of the powerful techniques of complex analysis. (A more general approach is studied in [29], where the
Wick calculus is formulated in terms of spaces of formal power series expansions instead of spaces of entire
functions.) The possible lack of analyticity of a(z,w) in (0.1) with respect to the w variable is removable
in the sense that for any suitable Wick symbol a, there is a unique ag such that (z,w) — ao(z, W) is entire,
and Opgy(a) = Opgy(ag) (see e.g. [29,30]). Consequently it is no restriction to assume that a(z,w) in (0.1)
is analytic in z and conjugate analytic in w, which we do in the introduction henceforth. Any linear and
continuous operator from the Schwartz space, a Fourier invariant Gelfand-Shilov space or Pilipovié¢ space,
to the corresponding distribution spaces, respectively, is in a unique way transformed into a Wick operator
by the Bargmann transform (see [29]).

Several operators in quantum mechanics are so-called Shubin operators, i.e. pseudo-differential operators

~

0p<a>f<x>=<2w>-%f 0@, O f(©)O de,  fe (R,

Rd
where the symbol a belongs to the Shubin class Shf)“’) (R2%), the set of all a e C*(R2?) such that
020l a(x, &) < w(@, (L + |z] + [¢)) 1+, a,Be N7

(See e.g. [17,26].) Here w is a suitable weight function on R?? and 0 < p < 1. Partial differential oper-
ators with polynomial coefficients, e.g. the creation and annihilation operators or the harmonic oscillator
mentioned above, are examples of Shubin operators. In Section 2 we prove that the Bargmann image of
Shubin operators with symbols in Shg)‘“) (R2%) is the set of all Wick operators in (0.1) such that a belongs

to ﬁ‘sﬁ)p((}?d). This means that C?? 5 (z,w) + a(z,W) is an entire function that satisfies

10%2) a(z,w)| < e w(v22)(z + w) PPN — wy N (0.2)
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for every N = 0.

An important subclass of Wick operators is the anti-Wick operators, which are Wick operators where
the symbol a(z,w) does not depend on z. That is, for an appropriate measurable function ag on C¢, its
anti-Wick operator is given by

Op4y (ag)F(z) = 74 ch ao(w)F(w)e® ) dx(w). (0.1)

Again F is a suitable entire function on C?. The anti-Wick operators can also be described as the Bargmann
images of Toeplitz operators on R%. (See e.g. [20,26,30] for the definition of Toeplitz operators.)

A feature of Toeplitz operators and anti-Wick operators, useful for energy estimates in quantum mechanics
and time-frequency analysis, is that non-negative symbols give rise to non-negative operators. (Cf. e.g.
[20,18,19].) An operator T" = Opg;(a) with a satisfying (0.2) for every N > 0, is called positive (non-
negative), if there is a constant C > 0 (C' = 0) such that

(TF,F)az = C|F|%,

for every analytic polynomial F on C¢, where (-, -) 42 is the scalar product induced by the Hilbert norm

| F'|| 42 = T2 <ch |F(z)|2e—|2\2 d)\(z)>%

The implication from non-negative symbols to non-negative operators is not relevant for Wick operators
in (0.1) when a(z,w) is not constant with respect to z, since the analyticity of the map z — a(z, w) implies
that a(z,w) is non-real almost everywhere. For such symbols it is instead natural to check whether positivity
of the map w — a(w,w) leads to positive operators (see e.g. [5,6,12]). By choosing

d=1, a(z,w)=1-22w+22*w*> and F(z) =2
we obtain
a(w,w) = (1 — [w*)? + |w[* >0 but (Opy(a)F,F): =—1<0.

Consequently Opy;(a) may fail to be a non-negative operator even though a(w,w) is positive.

On the other hand, for certain conditions on a, we deduce in Section 3 a weaker positivity result for Wick
operators, which is equivalent to the sharp Garding inequality in isotropic pseudo-differential calculus on R?
(see Theorem 18.6.7 and the proof of Theorem 18.6.8 in [17]). That is, for a € .%T(S‘fl?p(CQd) with w(z) = (2)?°
and p > 0 we prove

Re(Opy (a)F, F) 42 = —C|F|%2 (0.3)
and
[Tm(Opg; (a)F, F) 42| < C|F|42, when a(w,w) =0 (0.4)

(cf. Theorem 4.2). In particular we obtain energy estimates also for Wick operators with symbols that are
non-negative on the diagonal.

The latter result is obtained by approximating Wick operators by anti-Wick operators, using for the
Wick operator (0.1) with a € flgﬁ) ,(C?%) the remarkable identity
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(_1)\04\ w aA®
Opgy(a) = 2 o Opy (ba) + Opy(car)  where by (w) = 090, a(w, w), (0.5)
lal<M ’
for some ¢y € Agﬁf;)(CQd) with was(2) = w(z){z)~2M*. Here we again assume p > 0. The decay conditions
on b, and cys are, respectively,

1080 bo(w)| S w(v/2w){w)y~PlRati+l a, B,y e N4, (0.6)
and
10907 ear (2, w)| < e w(v/22)(2)"2MP s 4 w)PIAHYI (2 — )y (0.7)

for every N = 0. Consequently, several Wick operators can essentially be expressed as linear combinations
of anti-Wick operators. The expansion (0.5) is deduced in Section 3 using Taylor expansion and integration
by parts, see Proposition 3.1 and Remark 3.2. The estimates (0.6) and (0.7) are consequences of (2.5)” and
Proposition 3.3.

The conditions on b, are the same as the conditions on a (0.2), restricted to the diagonal z = w, and
with improved decay. On the diagonal, the growth term et l=—ul® disappears, which dominates in (0.2) when
|z—w| 2 |z| or |z—w| 2 |w|. The right-hand side of (0.6) becomes as large as possible when a = § = v =0,
that is by is the dominating term in the sum (0.5).

The conditions on cjp; are the same as the estimates (0.2) again with improved decay due to the factor
(z)y~2Mp,

For polynomial symbols, (0.5) agrees with the integral formula [5, Theorem 3] due to Berezin which carry
over Wick operators into anti-Wick operators. For the general case, (0.5) is analogous to the approximation
technique of pseudo-differential operators on R? in terms of Toeplitz operators given in [26, Theorem 24.1]
and its proof, by Shubin.

The anti-Wick symbols in (0.5) bs(w) = 027, a(w,w) extend to have the property that 027, a(z,w) is
entire in z and conjugate entire in w. Note that restriction to the diagonal also appears in the positivity
condition (0.3) on Wick symbols.

The sharp Garding inequality (0.3) is reached by using the fact that Opg;' (bo) is non-negative, and that
if T is either Opg}’ (ba) or Opy(cn) for o # 0, then |[TF| 42 < |F| 42 when F € A(C?) is a polynomial.

In Section 5 we deduce links concerning ellipticity, hypoellipticity (in Shubin’s sense) and weak ellipticity
between Shubin and Wick symbols. The notion of hypoelliptic symbol resembles hypoelliptic symbols in
Shubin’s sense (see [26]). More specifically, we say that the symbol a € Shf)‘*’)(RQd) is hypoelliptic of order
po = 0, whenever there is an R > 0 such that

ja(z, )] 2 w(z,)(x, €)™ and |0%a(z,&)| < |a(z, (2, €))7

when |(z,€)| = R.
A linear operator T from .7’/ (R?) to .#/(R%) is called globally hypoelliptic if

Tf=g, fes'(RY, ge ZRY) = fe IR

(See e.g. [11].) It can be proved that a pseudo-differential operator with hypoelliptic symbol in Shubin’s
sense is globally hypoelliptic as operator (see e.g. [26, Corollary 25.1]).

We show, similarly to our investigations of the sharp Garding inequality and for expansion (0.5), that
ellipticity, hypoellipticity and to some degree weak ellipticity for the Shubin symbol a can be characterized
by certain conditions for the corresponding Wick symbol a(z,w) along the diagonal z = w. For example,
let a be a polynomial on R with principal symbol a,, and let a(z,w) be a polynomial in z,w € C¢ with
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principal part a,. Then a is elliptic means that a,(z, ) # 0 when (z,£) # (0,0), and a is elliptic means that
ap(z,2) # 0 when z # 0. For such a we prove

a is elliptic < a is elliptic,
when a(z,w) is the Wick symbol corresponding to a (which must be a polynomial in z and ).

Our investigations include the Bargmann transform of certain operators of infinite order, i.e. pseudo-
differential operators with ultra-differentiable symbols that are permitted to grow faster than any polynomial
at infinity together with their derivatives. Particularly we consider Wick operators of infinite order, i.e. the
Bargmann images Opgy(a) of operators Op(a) of infinite order in [1], and characterize their images under
the Bargmann transform (see Theorem 2.6). Then we deduce in Subsections 3.2 and 3.3 continuity results
for anti-Wick operators which holds for the symbols b, in (0.5) when Opgy;(a) is the Bargmann image of an
operator of infinite order.

In fact, in Subsection 3.2 we show that Opg}’ (b,) possess several other continuity properties than what is
valid for Opg;(a) in the expansion (0.5) (see Propositions 3.6 and 3.9). In Subsection 3.3 we deduce estimates
of the Wick symbol b2¥ to the anti-Wick operator Op3y (by), i.e. the unique element »2¥ € A(C??) such
that Opg; (b27) = Opyy’ (ba). We show that usually, b2¥ satisfies stronger conditions than a when Opgy(a) is
a Wick operator of infinite order (see Theorems 3.11, 3.14 and 3.13).

The paper is organized as follows. In Section 1 we set the stage by providing necessary background
notions and fixing the notation. It contains useful properties for weight functions, Gelfand-Shilov spaces,
the Bargmann transform, pseudo-differential operators, Wick and anti-Wick operators. Thereafter we char-
acterize in Section 2 Shubin operators and operators of infinite order in terms of appropriate classes of
Wick operators on the Bargmann side. These considerations are based on a formula for the Wick symbol
expressed in terms of a short-time Fourier transform of the Weyl symbol, and admits characterization of
the Wick symbols corresponding to Shubin Weyl symbols and symbols for operators of infinite order (see
Proposition 2.3).

In Section 2 we also study composition and show for example that the well-known closure under com-
position of Shubin operators and operators of infinite orders have simple and natural proofs on the Wick
symbol side.

In Section 3 we deduce series expansions of Wick operators in terms of anti-Wick operators, and between
Wick symbols and symbols to corresponding Shubin operators. We also consider anti-Wick operators, and
show continuity results for them. We show that the upper bounds for the Wick symbols of anti-Wick
operators are stricter than for general Wick symbols.

In Section 4 we discuss lower bounds for Wick operators and deduce the sharp Garding’s inequality.
Section 5 concerns ellipticity, hypoellipticity and weak ellipticity.

Finally we observe in Section 6 that a polynomial bound of a Wick symbol implies that the symbol
is a polynomial. For pseudo-differential operators this corresponds to partial differential operators with
polynomial coefficients. This gives a characterization of such operators as those having polynomially bounded
Wick symbols.

Various types of function spaces, distribution spaces, their Bargmann images, and symbol classes for
pseudo-differential, Wick and anti-Wick operators appear frequently in the paper. For the reader’s conve-
nience we summarize several of these items in Appendix A.
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1. Preliminaries

In this section we recall some facts on function and distribution spaces as well as on pseudo-differential
operators, Wick and anti-Wick operators. Subsection 1.1 concerns weight functions and Subsection 1.2 treats
Gelfand-Shilov spaces. In Subsection 1.3 we introduce the Bargmann transform and topological spaces of
entire functions on C%, and in Subsection 1.4 we recall the definitions and some facts on pseudo-differential
operators on R? as well as Wick and anti-Wick operators on C?. Subsection 1.5 defines certain symbol
classes for pseudo-differential operators on R9.

1.1. Weight functions

A weight on R? is a positive function w € L¥ (R?) such that 1/w € L (R?). The weight w is called

loc loc
moderate if there is a positive locally bounded function v such that

w(z +y) < Cw(z)v(y), z,yeR, (1.1)

for some constant C' > 1. If w and v are weights such that (1.1) holds, then w is also called v-moderate. The
set of all moderate weights on R is denoted by &25(R?). The set Z(R?) consists of weights that are v-
moderate for a polynomially bounded weight, that is a weight of the form v(z) = (x)® where (z) = (1+|z|?)2
and s > 0. The bracket notation is also used for complex arguments as (z) = (1 + |2|2)2 when z € C%. In
particular, w € Z(R4), if and only if

w(z +y) < Cw(x){y)", z,yeRY, (L.1y

for some 7 > 0. If s € R then z — (x)® belongs to Z(R%), due to Peetre’s inequality (with optimal constant,
see [25, Lemma 2.1])

[s]
wrpr< () @Ol ayeRrt seR (12)

The weight v is called submultiplicative if it is even and (1.1) holds for w = v. If (1.1) holds and v is
submultiplicative then

w(z)

oo S wle ) S )i, .

v(z +y) Sv(@)v(y) and v(z) =v(-z), =,yeR
The notation A(0) < B(0), 6 € 2, means that there is a constant ¢ > 0 such that A(0) < ¢B(#) for all § € Q.

If w is a moderate weight then by [30] there is a submultiplicative weight v such that (1.1) and (1.3)
hold. If v is submultiplicative then

1< o(x) S el (1.4)
for some constant r > 0 (cf. [14]). In particular, if w is moderate, then
wx+y) <w@e and el <w@) <, 2yeR? (1.5)

for some r > 0. If not otherwise specified the symbol v always denote a submultiplicative weight.
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1.2. Gelfand-Shilov spaces

Let s,0 > 0. The Gelfand-Shilov space S7(R?) (£7(R%)) of Roumieu (Beurling) type consists of all
f e C*(R?) such that

apB
stal (16)

sz, =00 (s

is finite for some (every) h > 0 (see [13]). The supremum refers to all «, 3 € N¢ and z € R?. The seminorms
[ - s7,, induce an inductive limit topology for the space S7(R?) and a projective limit topology for 7 (R4).
The latter space is a Fréchet space under this topology. The space S7(R%) # {0}, if and only if s + o > 1,
and X7 (R%) # {0}, if and only if s + o > 1, see [13,22]. We write S,(R?) = S$(R%) and ¥,(R%) = 23(R?).
The Gelfand-Shilov distribution spaces (S7) (R?) and (X7)'(R?) are the (strong) dual spaces of S7(RY)
and %7 (RY), respectively.
The embeddings

S3H(RY) = 22 (RY) — S72(RY) — S (RY)
= SR — (52)(RT) — (232)'(R) — (87})'(RY),
s1+01 =1, s1 <89, 01 <09, (17)

are dense. For topological spaces A and B, A <— B means that the inclusion A € B is continuous.
The spaces S5 and X4, and their dual spaces, admit characterizations in terms of coefficients with respect
to expansions with respect to the Hermite functions

2
lz]

ho(z) = n 5 (=Dl @lelal)"2e 2 (02 17), o e N7
The set of Hermite functions on R is an orthonormal basis for L?(R%). We use Ho(R?) to denote the space
of finite linear combinations of Hermite functions. Then Ho(R?) is dense in the Schwartz space .#(R%), as
well as in .#”(R%), with respect to its weak* topology. The same conclusion is true for X,(R?) when s > 1,
Ss(R?) when s > 1 and their distribution dual spaces 3/, (R%) and S,(R“). A function or (ultra-)distribution
f in any of these spaces possess an expansion of the form

f= > elfia)ha, c(f.@)=(fha), aeN” (1.8)

aeNd

Here (-, -) denotes the unique extensions of the L? form, which is linear in the first variable and conjugate
linear in the second variable, from Ho(R?) x Ho(R?) to SL(R?) x Ss(R?) or XL (RY) x X4(R%). We recall
that (cf. [24, Chapter V.3 ])

feZRY < e(f,a) S )N for every N = 0,
(1.9)
fes'RY < le(f,a) S ()N for some N = 0.

The topology on .7 (R?) is equivalent to the Fréchet space topology defined by the sequence space seminorms

F®RY 5[ 3 @Pe(f )2, N 20,

aeNd

For f e ./(R%) the sum in (1.8) converges in the weak* topology.
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The Hermite functions are eigenfunctions to the harmonic oscillator H = Hy = |z|> — A and to the
Fourier transform .%, given by

FHO=FQ=0mt | f@e " Vdr, ¢eR,

when f e L'(R?). Here (-, -) denotes the scalar product on R%. In fact
Hgho = (2la| + d)he, oe N

The Fourier transform .% extends uniquely to homeomorphisms on .7/ (R%), from (S7)'(R?) to (S2)'(R%)
and from (37)'(R%) to (X2)'(R%). It also restricts to homeomorphisms on . (R%), from S7(R?) to S:(RY),
from £7(R?) to ¥3(R?), and to a unitary operator on L?(R?). Similar facts hold true when the Fourier
transform is replaced by a partial Fourier transform.

Let ¢ € .7(R%)\0 be fixed. We use the transform

Tof (@,€) = 2m) "2 O(f, e 00(- — )
= TOF(f o0 —2))(©) (1.10)
:ﬂ(f( +ZE)8>(§), x,ﬁeRd,

where f e .7/(RY) and ¢ € Z(R)\0 (cf. [8]). If f, ¢ € .7 (R?) then

Tof(2,€) = (2m) 2 Xm0 . F)dly — 2)e @O dy

(1.10Y
=@m7F | fy+o)dlye Yy, z.teR
Rd
We notice that the short-time Fourier transform Vi f of f is given by
Vif(2,€) = e OO T f(x,6). (1.11)

That is, Ty is a modulated short-time Fourier transform. Thus by [30, Theorem 2.3] it follows that the
definition of the map (f, ¢) — Ty f from .7 (R%) x .7 (R?) to .#(R??) is uniquely extendable to a continuous
map from S, (R%) x S,(R?) to S.(R?%), and restricts to a continuous map from Sg(R%) x Ss(R?) to Ss(R?9).
The same conclusion holds with ¥ in place of S, at each place.

The adjoint 7 is given by

(TS F, g)L2ray = (F, Tpg) L2 (2
for F e S/(R??) and g € Ss(R%), and similarly with X, or with .# in place of S, at each occurrence. When
F' is a polynomially bounded measurable function we write
T2Fw) = @n) ! [[ P e oy - o) dade, (112)
R2d

where the integral is defined weakly so that (7 F, g)r2ra) = (F, Tpg)r2(mz2a) for g € < (R?). The identity
(1.12) is called Moyal’s formula.
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We have

(TFoTo)f = (W.0)f,  [eSiR), ¢, Ss(RY), (1.13)

and similarly with X3 or with % in place of S, at each occurrence.
Two important features of 74 which distinguish it from the short-time Fourier transform are the differ-
ential identities

oTof(2,6) = Tp(0"f)(x,6),  aeN? (1.14)
and
DITof(2,8) = Tyu f(2.6),  BeN®  ¢p(z) = () ¢(x). (1.15)

By (1.11) it follows that characterizations of Gelfand-Shilov spaces and their distribution spaces in terms
of estimates of their short-time Fourier transforms carry over to estimates on 74 in place of V. For example
we have the following (see e.g. [15,27] for the proof of (1) and [31] for the proof of (2)). See also [10] for
related results.

Proposition 1.1. Let s,0 > 0, ¢ € ST(RY)\0 (¢ € ZI(R)\0) and let f € (S7)(RY) (f € (X7)(RY)). Then
the following is true:

(1) feSI(RY) (f e £I(RY)) if and only if

1 1
|76 f (w,6)] < eI g e RY, (1.16)

for some (every) r > 0.

(2) fe(SI)RT) (fe(32)(RY)) if and only if
T (@,€)] < T +E) g e R, (117)
for every (some) r > 0.
1.8. The Bargmann transform and spaces of analytic functions

If © < C%1is open then A(f2) consists of all (complex-valued) analytic functions on 2. Complex derivatives
are denoted, with z = x + iy € ,

0., =

J

(00, +i0,,)

DN | =

(a%‘ - Z-ayj) ’ 523‘ =

N —

for 1 < j < d, which admits the Cauchy-Riemann equations to be written as 5,3]. f=0,1<j5<d.
The Bargmann kernel is defined by

(22 + ly?) +2%Cz,p)), zeCY yeRY,

N =

Aa(zy) = 7 Fexp (-

where

d
(zyw) = Z zjw; and (z,w) = {(z,W)
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when
z2=(z1,...,20) € C? and w= (w,...,wy)e C%

Sometimes (-, -) denotes the duality between a test function space and its dual. The context precludes
confusion between its double use. The Bargmann transform Uy f of f € S] /2 (R%) is the entire function

Vaf(z) = {f,Wa(z, -)), zeC (1.18)

The right-hand side is a well defined element in A(C?), since y — 24(z,y) belongs to Sy /2(R?) for z € C*
fixed, and Ag(-,y) is entire for all y € R%. Let p € [1,00] and w € Zg(R%). Then Ll(’w)(Rd) consists of all
feLl (R?) such that HfHwa) = |f - w|Le is finite. If f € L’()w)(Rd), then

loc

el
4

Vaf) = | By =m | e (=5 ) + 25 Gw) fa)dy. 2L (119

(CE. [3,4,30,31].)
For p € (0,0], w e Zr(C%) and wy(z) = w(v/27), let A’(’w)(Cd) be the set of all F'e A(C?) such that

d
P

11,2
|FlLap, =P IF - €3 g

is finite, and set A? = AP | when w = 1. It was proved by Bargmann [3] that
(w)
U, : L*(RY) — A%(CY) (1.20)

is bijective and isometric. The space A?(C?) is the Hilbert space of entire functions with scalar product

(Fv G)A2 = ci F(Z)G(Z) d,U,(Z), F,Ge AQ(Cd)7

where du(z) = 7~ %e~1#" dX\(2) and dA(z) is the Lebesgue measure on CY. The space A2(C?) is known as
the Fock or Segal-Bargmann space in quantum mechanics (see [12,16]).
In [3] it was proved that the Bargmann transform maps the Hermite functions to monomials as

(03

. :zeC? aeN< (1.21)

al?

mdh()z = €q;, ea(z) =

The orthonormal basis {ha}aene S L?(RY) is thus mapped to the orthonormal basis {eq }eene S A2(C?).
Bargmann also proved that there is a reproducing formula for A%(C9). Let I14 be the operator from L?(dpu)
to A(CY), given by

MM F(z) = ch F(w)e®™) du(w), zeCL (1.22)

Then II4 is the orthogonal projection from L2(du) to A%2(C?) (cf. [3]).
When we discuss extensions and restrictions of the Bargmann transform to Gelfand-Shilov spaces and
their distribution spaces, we use

e |Imz\%, ze CY, (1.23)

|z]s,c = |Rez
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and consider the seminorms

12

_1 r _ —1-? -
IFlay, = |F e 2V e, [Py, = IF e 2T e

and

|F ezl Forllos | o

ZL] 24
HFHAsg;T =|F-e AR R |S"’HL°°> HF“A/sg,T

when F € A(C%), 7> 0 and 5,0 > 3. Then AJ (C?) for s,0 > 3, A»(C?) and (A7) (C?) for s,0 > % are
the sets of all F e A(C?) such that

HFHAsg;T < O, HFHAy:r <o and HFHAggT < 0, (124)

respectively, for every » > 0. The spaces are equipped with the projective limit topology with respect to
r > 0, defined by each class of seminorms, respectively.

In the same way we let AZ(CY) for s,0 > 1, A", (C?) and ( §.)/(CY) for 5,0 > 1 be the sets of all
F e A(C?) such that

|Flag, <o, |Fla

LT

<o and |[F|a, <o, (1.25)

respectively, for some r > 0. Their topologies are the inductive limit topologies with respect to r > 0,
defined by each class of seminorms, respectively. We also set

Aos =Ajs and A, = AL
Then
By : (R - Ax(Ch, By : S (RY - A,(CH,

g :SI(RY) — AI(CT), By :(ST)(RY) — (A2)(CY) 5,02

N =

and
1
Vg :BIRY) - A (CY), Vg ()R - (AF,)(CY, s,0> 3

are homeomorphisms [31].

From these homeomorphisms, the fact that the map (1.20) is a homeomorphism and duality properties
for Gelfand-Shilov spaces, it follows that (-, )42 on Aj;(C?) x A;;(C?) is uniquely extendable to a
continuous sesqui-linear form on (A?)'(C?) x AZ(C?). The (strong) dual of AZ(C?) can be identified with
(AZ)'(C*) through this form. Similar facts hold for A , in place of A7 at each occurrence. (Cf. e.g. [30,31].)

Finally let A, .,.(C?%) and A,_.,.(C?) for r > 0 be the Banach spaces which consist of all F' € A(C?) such
that

— . . —_ . 2
|Flla,,, = [F-e " e respectively [Fa,, , =|F-e L=

is finite, and let A,, (C?) be the inductive limit of A, ..(C%) with respect to r > 0. Also let Ay, _(C?) and
gbw(Cd) be the projective respectively inductive limit topologies of A, _..(C%) with respect to r > 0.
It is evident that A, (C?) is densely embedded in .AJ(C?) for every s,0 > 3, as well as in Ag ,(C?) for

every s,0 > %. The form (-, -) a2 on A, (C?) x A,, (C) is uniquely extendable to a continuous sesqui-linear
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form on A(C?) x A,, (C?) and the dual of A, (C%) can be identified with A(C?). The Fréchet space topology
of A(C?) can be defined by the seminorms

F— sup |F(z)], N=12,....

|z|<N
(CE. [31].)

Remark 1.2. The spaces Abl(Cd) and Ay, (C?) are examples of Bargmann images of special Pilipovié
spaces, a family of Fourier invariant topological vector spaces which are smaller than any Fourier invariant
Gelfand-Shilov space, and which were introduced and investigated in [31]. For any o > 0, the Bargmann
image of the Pilipovi¢ spaces H,_ (R?) and H, ) (R?) are given by

20
A, (C = {FeACY; |F(z)| e for some 7 > 0}
respectively
20
Aoy, (CH ={Fe A(CY; |F(2)| < e for every r > 0}.

If 0 > 1, then the (strong) duals of A, (C?) and Ao, (C%) are given by

20
o—

A (CHYy={FeAC; |F(z)| < e for every r > 0}
respectively
20

B,b(, (Cd) ={Fe A(Cd) V| F(2)| < "7 for some r > 0}

through a unique extension of the A? scalar product on A, (C%) x A, (C%). In particular, if o tends to o,
it follows that some of these conditions tend to

Agy, (CH) ={FeACY; |F(2)| < = for every r > 0}
respectively
0bes (CH ={FeACY;|F(2)| < e for some r > 0 }.

Note that in [31,29], the set Ay, (C?) is denoted by Aoé(Cd), and its dual Aéybm(Cd) is denoted by
/ Cd).
o,é(

At many places it will be crucial to use the Gaussian window
o(x) = W7%67%|z|2, zeRY, (1.26)
in the transform 7. For this ¢ the relationship between the Bargmann transform and 7y is
By =UgoTy, and Uy oWy =T, (1.27)
where Uy is the linear, continuous and bijective operator on 2'(R2?) ~ 2'(C?), given by

UgF(x + i) = (27r)%e%(|$|2H§|2)ei<x’5>F(\/§x, —V28), x,£eRY, (1.28)
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cf. [30] in combination with (1.11).
In analytic operator theory we need subspaces of

AC*)={OK; Ke A(C*™)},
where the semi-conjugation operator is
(BK)(z,w) = K(z,w), z,we C (1.29)
If T is a linear and continuous operator from Sy 5(R?) to 81/2 (R%), then there is a unique K € A(C??) such

that OK € A’l/z(CQd) and By 0T oV, is given by

F(z)— o K(z,w)F(w) du(w). (1.30)

(See e.g. [29].) For these reasons we let

Aos(C*),  A(C*), Ap(C*), Ay (C*), A(C*) and A (C*)
be the images of

Aos(C*),  A(C?),  Ap(C*), A, (C*), A(C) and A (C*)

respectively, under the map ©. We also let AP(C??) and A4,, (C??) be the images of A?(C2?) and A, (C??),
respectively, under the map ©. The topologies of the former spaces are inherited from the corresponding
latter spaces.

The semi-conjugated Bargmann (SCB) transform is defined as

Veo,qg = O 0 Vyq.

All properties of the Bargmann transform carry over naturally to analogous properties for the SCB trans-

form.
1.4. Pseudo-differential operators

Let A be a real d x d matrix. The pseudo-differential operator Op 4(a) with symbol a € Sy /2(R?) is the
linear and continuous operator on S /Q(Rd) given by

Op A (a)(x) = (27) 4 H 0z — Az — ),€) ()T 1O dyde, z e R (1.31)
RQd

For a € &) /2(R2d) the pseudo-differential operator Op,4(a) is defined as the continuous operator from
S12(R?) to S/ (R%) with distribution kernel

d
2

Ku,A(Ivy) = (Qﬁ)7 J{la(x - A(I - y)vx - y)v T,y € Rd? (132)

where F>F is the partial Fourier transform of F(z,y) € S} ,(R?*®) with respect to the y variable. This
definition makes sense since the mappings
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Fy and F(x,y) — F(z — Az —y),z —y) (1.33)

are homeomorphisms on S ,(R*?). The map a — Kj,4 is hence a homeomorphism on Si ,(R*?).

If A and B are real d x d matrices and a € 81/2(R2d), then there is a unique b € 81/2(R2d) such that

Op4(a) = Opg(b), and b can be obtained by
Opa(a) = Opp(b) = e HPePa(z,€) = e FPeDIb(z,¢) (1.34)
(see [9,17]).

Remark 1.3. By Fourier’s inversion formula, (1.32) and the kernel theorem [21, Theorem 2.2], [28, Theorem
2.5] for operators from Gelfand-Shilov spaces to their duals, it follows that the map a — Op4(a) is bijective

from 81/2(R2d) to the set of all linear and continuous operators from Sy 5(R?) to 81/2 (R2).

If A =0 then Opy(a) = Opy(a) = Op(a) = a(z, D) is the Kohn-Nirenberg or standard representation.
If A = 1I; where I; is the d x d identity matrix then Op4(a) = Op“(a) is the Weyl quantization. In this
paper we use mainly the Weyl quantization and we put

K;ﬂ = ‘KCIJd/2 :

The Weyl product a#b of two Weyl symbols a,b € S; /2(R2d) is defined as the product of symbols
corresponding to operator composition. Thus

Op"“(a#b) = Op*(a) o Op“(b)
and the Weyl product can be extended to larger spaces as long as composition is well defined.
Next we recall the definition of Wick operators. Suppose that a € A(C??) satisfies
w — a(z, w)e”lq“'jl_ll”l2 e L'(cY (1.35)

locally uniformly with respect to z € C¢ for every r > 0. Then the analytic pseudo-differential operator, or
Wick operator Opg;(a) with symbol a and acting on F € A,, (C?), is defined by

Opy(a)F(z) = ch a(z,w)F(w)e®™) du(w), ze CL (1.36)

(Cf. e.g. [5,12,29-31].) The condition (1.35) and F € A,, (C?) imply that the integrand on the right-hand
side of (1.36) is well defined. The locally uniform condition (1.35) with respect to z € C? implies that
Opgy(a)F € A(CY).

In [29] several extensions and restrictions of Opg;(a) are given. The following result follows from [29,

Theorems 2.7 and 2.8]. Here £(A,, (C%), A(C?)) is the space of all linear and continuous operators from
Ay, (C?) to A(CY).

Proposition 1.4. The map a — Opy(a) from A, (C*?) to L(A,, (C?), A(CY)) is uniquely extendable to a
bijective map from A(C??) to L(A,, (C?), A(C?)).
Let L4(C??) be the set of all a € L]

L .(C?%) such that z — a(z,w) is entire for almost every w € C? and

2
a?a(Z, w) . eTl’LU‘—l’LU‘
w — sup

i el e L*(CY) (1.37)
aE *
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for every h,r > 0 and z € C%. If a € A(C??) satisfies (1.35) then a € L4(C??) as a consequence of Cauchy’s
integral formula. Thus L 4(C??) is a relaxation of the former condition.

If a € La(C??) then Opg(a) : Ay, (C4) — Aél(Cd) = A(C?) is continuous. Hence the following result is
a straight-forward consequence of Proposition 1.4 and the fact that A\LI(CM) = A(C??).

Proposition 1.5. Let a € La(C??). Then there is a unique ag € A(C??) such that Opgy(a) = Opy(ag) as
mappings from A, (C?) to Al’,l(Cd). It holds

Opy(a) = Opy(ag)  where  ap(z,w) = W_dJ- a(z, wy)e” GTUnwTE gy (1), (1.38)
Cd

Proof. The operator I14 defined in (1.22) is the orthogonal projection from L2(du) to A%(C?) which is
uniquely extendable to a continuous map from

Loa(CY ={ape L. (CY; wm— ao(w)er‘wl_‘“’|2 e L'(C?) for every r > 0} (1.39)

to A(C?) (see e.g. [30]). Hence, if F,G € A,, (C?) and aq is given by (1.38) then

(Opg (@) F, G) a2 = ((Opy(a) o I14) F, G) a2

= (L (], ot e et dugun) ) #w) du, G>A2

= <ch ao( -, w)e' ) F(w) du(w), G) = (Opg (ao)F, G) a2,

A2

and thus Opy;(a) = Opgy(ag) follows. The assertion now follows from Proposition 1.4 and the fact that ag
in the integral formula of (1.38) defines an element in A(C2??). [

We will also consider anti- Wick operators [12,5,6] defined by

Opay (ag)F(z) = Ld ao(w)F(w)e®™) du(w), ze CY, (1.40)

when ag € Lo_4(C?) and F belongs to Ay (C?), the space of analytic polynomials on C¢. Then ag € Lo 4(C?)
if and only if a(z,w) = ag(w) belongs to L 4(C??), and then Op3}’ (ag) = Opy(a). Consequently, all results
for Wick operators with symbols in L 4(C??) hold for anti-Wick operators. In particular, if ag € Ly_a(C?),
then Opdy (ag) : Ay, (C?) — A(C?) is continuous. We denote the Wick symbol of the anti-Wick operator
Opyy' (ap) by ag™. Then (1.38) takes the form

Opy (ag) = Opg(ad™) where af¥ (z,w) = W_dJ ag(wy)e” FTWLUTW g\ (wy). (1.38)
cd

Pseudo-differential operators on R? may be transferred to Wick operators on C? by means of the
Bargmann transform.

Definition 1.6. Let a € S] , (R2%).

(1) the Bargmann assignment Sga of a is the unique element a € A(C??) which fulfills

Opy(a) =Vy00p“(a)o Vs <« a=Sya (1.41)
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(2) the Bargmann kernel assignment Ky o of a is the unique element K € A(C2?), which is the kernel of
the map U, o Op"”(a) o V* with respect to the sesquilinear A? form.

By the definitions we have
Koy .o(z,w) = e®®)Sqa(z, w). (1.42)
Example 1.7. The creation and annihilation operators
2*%(%- — 0g,;) and 2*%(33]- + 0x;),
are transfered to the operators
F— 2z F and F 0, F, (1.43)

by the Bargmann transform (see [3]). The Wick symbols of the operators in (1.43) are z; and @, respectively
[5,30]. By combining these identities with the fact that the Weyl symbol of rlazj equals &§; we get

Sw(2 2 (w; —i&;) =25, Sw(272(x; +1i&)) =W,

(1.44)
Sig(ﬂ?j) = 275(25]' -l—@j) and S(B(f]) = 2751.(2]' — wj).
We need to compare K and Ky 4. On the one hand we have for f,g € Z(RY)
(Op“(a)f,9)L2(ra) = (K, g ® ) r2(reay = (V2a Ky, Vaa(g @ f)) az(c2ay
and on the other hand
(Op“(a)f, 9)r2(re) = (OPy(a)Baf, BVag) a2(cay
= (Kw,a,0a9 @ Vaf) az(coa)
= (0Ky,q,0(Vag ®Vaf)) 4>(coay-
Since
O(Vag ® Vauf)(2,w) = Vag(2)Vaf (W) = Vaa(g ® f)(z, w)
we obtain
Koo = OU9q K = Vo oKy . (1.45)

1.5. Symbol classes for pseudo-differential operators on R?

In order to define a generalized family of Shubin symbol classes [26], we need to add a restriction of the
involved weights. Let p € [0,1], and let Py, ,(RY) be the set of all w € Z(R?) n C*(R?) such that for
every multi-index o € N¢,

|0%0(x)| < w(x)z)~Plel ze R4 (1.46)
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For w € Py, ,(R?) the Shubin symbol class Shf)w)(Rd) is the set of all f € C®(R%) such that for every
a e N2,

|0% f ()| < w(x)(x)~rlel] zeRY (1.47)

Let p € [0,1], w € Pgy ,(R?*¥) and A be a real d x d matrix. Then it follows from [26] or [17, Section
18.5] that e*4P¢:P=) is a homeomorphism on ShE)‘”)(RQd), which implies that the set

{Op4(a); ae Shi (R?)}

is independent of the choice of A, in view of (1.34). If B is another real d x d matrix and a,b € Sh;‘")(Rw)
satisfy (1.34), then it follows from [17, Section 18.5] that

a— beShl/(R™), where w,(z,§) =w(x,){(z,&)) . (1.48)
In particular
la(z,€) — b(z, &) < wlz, ){(x, €))7 (1.49)

We also need the symbol classes defined in [1, Definition 1.8] with symbols satisfying estimates of the
form

1 1
020 a(x,&)| < hlotPlalogreriel +iEl=) g e e R (1.50)
(See also [9] for the restricted case when s = ¢.)

Definition 1.8. Let s,0 > 0. Then

(1) T5°(R?) consists of all a € C*(R2%) such that for some r > 0, (1.50) holds for every h > 0;
(2) T75.0(R??) consists of all a e C*(R?®) such that for some h > 0, (1.50) holds for every r > 0;
(3) '35 (R?*) consists of all a € C*(R2%) such that (1.50) holds for some h > 0 and some 7 > 0.

Remark 1.9. The symbol classes Shf)‘“) (R2?) have isotropic behavior with respect to phase space T*R% ~
R2?, and the same holds for the symbol classes in Definition 1.8 when o = s. See also [9] for the restricted
case when s = g, and [2] for a bilinear extension. Important classes similar to those given by Definition 1.8
are considered in [23].

Pseudo-differential operators with symbols in the classes in Definition 1.8 are examples of so called
operators of infinite order. These operators are continuous on appropriate Gelfand-Shilov (distribution)
spaces [1,9]. The next result characterizes the symbol classes in Definition 1.8 by means of estimates of form

1 1 1 1
| Tya(z, &n,y)| < erillzle+lele)=ralinle +lyl=) 4 ¢ ne R (1.51)

We omit the proof since the result is a special case of [1, Proposition 2.1']. We refer to [1, Subsection 1.1]
for the definition of the Gelfand-Shilov spaces ST5(R??), £2:5(R??) and their distribution spaces.

Proposition 1.10. Let s,0 > 0 and let a € C*(R2?). Then the following is true:
(1) if Y € ST5(R2)\0, then a € T'75.o(R??) if and only if (1.51) holds for some ro > 0 and every ry > 0;
(2) if € BT5R2H\0, then a € TT5O(R) if and only if (1.51) holds for some r1 >0 and all r5 > 0;
1

1.
1.51
(3) if € BT5(R2H\0, then a e TT5(R) if and only if (1.51) holds for some r1 >0 and some ry > 0.

)
.5
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1.6. Elliptic, weakly elliptic and hypoelliptic elements in Shg")(Rd)

Let p > 0and w € Py, ,(R?). Then f € Sh(p“’)(Rd) is called weakly elliptic of order py = 0, (in Shg“) (R%)),
or po-weakly elliptic, if there is an R > 0 such that

[f(2)] 2 (@)™ w(z),  |z| =R

A weakly elliptic function of order 0 is called elliptic.

Let A and B be real d x d matrices, p > 0, pg € [0,2p), w € Pgp ,(R>*?) and suppose that a, b € Sh,(a‘”)(RM)
satisfy (1.34). It follows from (1.48) that a is weakly elliptic of order py, if and only if b is weakly elliptic of
order pg. In particular, a is elliptic, if and only if b is elliptic.

Next we define Shubin hypoelliptic symbols (cf. Definitions 5.1 and 25.1 in [26]).

Definition 1.11. Let p > 0, pg = 0, wy € Py ,(R?) and f € Shf)wo)(Rd). Then f is called hypoelliptic (in
Shubin’s sense in Shg"‘j)(Rd)) of order py, if there is an R > 0 such that for every o € N, it holds

0 f ()| < |f (@) ey, |2 = R,
and
|f(2)| 2 wo(z)(@)™™,  |z[ =R

Elliptic and hypoelliptic symbols are important since they give rise to parametrices. For p, w as above
and a e Sh(p“’)(de) elliptic, there is an elliptic symbol b € Shgl/ “) (R24) such that

Opa(a) 0 Opy(b) =+ Opy(cr) and  Opy(b)oOpy(a) =1+ Opy(ca)

for some ¢1, ¢y € .7(R2%). An operator Op(c) with ¢ € #(R>2?) is regularizing in the sense that Op(c) is
continuous from .#’(R%) to .7 (R%). (Cf. e.g. [7,20].)

2. Reformulation of pseudo-differential calculus using the Bargmann transform

In this section we characterize the Bargmann assignment of pseudo-differential operator symbols from
Subsection 1.5, using estimates of complex derivatives. In Subsection 2.1 we show how pseudo-differential
operators on R? with Shubin symbols are transformed to Wick operators by the Bargmann transform. In
Subsection 2.3 we deduce similar links between pseudo-differential operators of infinite order, given in the
second part of Subsection 1.5, and suitable classes of Wick operators. Subsection 2.4 treats composition
formulae for symbols of Wick operators, which leads to algebraic properties for operators in Subsection 2.1
and 2.3. As an application we obtain short proofs of composition results for pseudo-differential operators
on R¢ from Subsection 1.5.

2.1. Wick symbols of Shubin pseudo-differential operators

The following proposition is essential in the characterization of Shubin type pseudo-differential operators
on R? by means of the corresponding Wick symbols. The Shubin classes can be characterized using the
transform 7T, by means of estimates of the form

10207 To f (2, €)] < w(a)ay~rlele)y=>, (2.1)
09T f(x,€)| < w(a)(ayrloley= (2:2)



66 N. Teofanov et al. / J. Math. Pures Appl. 167 (2022) 48-100

and
|76f (2, 6)| S w(@)(€)~. (2.3)
The proof of the following result is similar to the proof of [8, Proposition 3.2].

Proposition 2.1. Let 0 < p < 1, let w € Pgy, ,(R?), and suppose f € ' (R?) and ¢ € S (RH)\0. The
following conditions are equivalent:

(1) feShi(RY),
(2) (2.1) holds true for any N =0 and a, f € N,
(3) (2-2) holds true for any N = 0 and o € N4,

and the following conditions are equivalent:

(1) f & Shi” (RY),
(2)" (2.3) holds true for any N = 0.

Proof. First we prove that (1) implies (2). Suppose f € Shgw)(Rd) and let a, 3, € N¢ be arbitrary. We will
show

€700 To f (2, )| 5 wla){wy=ol.

By (1.14), (1.15) and integration by parts we get

17020, T f (2, €)| = [T, (8% F) (2, €)]

ol

= (2m)"

Ld ((i0,)7e <) G5(4) o fla + ) dy‘

<[ Jas[mmesar )| w

_ Ld

< ( ) f 07 (y)| wlz + y)a +yy Pl dy.

K<y

dy

2

K<Yy

() raatiomsia s

Since w is polynomially moderate, Peetre’s inequality (1.2) and the fact that ¢ € . give

€020 Ty f(,€)] < wla)ay—olel 3 < )de—%ﬁ )| () I+ dy = o)yl

K<Y

Thus f € Sh;“’)(Rd) implies (2.1), and as a special case (2.2), and f ¢ Sh{)(R%) implies (2.3). We have
proved that (1) implies (2) which in turn implies (3), and that (1)" implies (2)’.
Conversely, suppose (3), that is f € .#/(R%) and (2.2) holds for all N > 0 and all a € N%, which is a

weaker assumption than (2). We obtain from (1.13)
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f(x) = |9l72 T3 Tof (x)

~ o2 @m) ¢ [[ T, 65 ot — y) dya,

R2d

which is an absolutely convergent integral due to (2.2) and the fact that ¢ € .#(R%). We may differentiate
under the integral, so integration by parts, (2.2) and Peetre’s inequality give for some Ny > 0, any o € N¢
and any = € R that

d
2

0 5(a) = 6122 )| [[ Tar(w. €05 (665 ol ) e

R2d

— 6|72 (2m) ¢ j f ST f (. €) FETV §(z — ) dydt
R2d

d
2

_ 672 (2m) f Tof (@ — y.€) 6V 3(y) dyde

R2d

< ﬂ w(z — ) — gy 1 (€)= ()| dyde

R2d

()1 [ty el lofy)] dyde = (o)1

R2d

Thus f € Shg,“’)(Rd) and we have proved the equivalence of (1), (2) and (3).

It remains to show that (2)’ implies (1), that is (2.3) for all N = 0 implies f € Shéw)(Rd). We have for
some Ny =0, any a e N*, x e R and N >0

0% f ()] = )3 (2m)%

[[ Tt o2z (5= ol — ) avae

R2d

<Y (g) |[ s o1 160t — )] dya
Y

B<a
( )JJ ()OI N 02 P p(x — y)| dydg

5<0‘ R2d

Sw@) )] ( ) f O N —ypyNo |0* Pz — y)| dydg

<o

Q

provided N is sufficiently large, since ¢ € .. This shows that f € Sh((;u)(Rd). O

We may now characterize the Shubin classes Sh;f’) (R?d) by estimates on their Bargmann (kernel) assign-
ments of the forms
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(2 +8)°(0: = 3w)?Sma(z, w)]| < €2 w(V2E)(z + wy =1z — ), (2.4)
020, Spa(z, w)| < e} w(VER) G + w) I - w) N, (2.5)
[Swa(z,w)| < 2 w(v2E)(z — wy™N (2.6)
and
| Ko a(z,w)| < 20 H0P 0 (v22) 2 — w) ™. (2.7)

Theorem 2.2. Let 0 < p < 1, w € Py, ,(R?*) and a € 7' (R*). The following conditions are equivalent:

(1) aeShi(R),
(2) (2.4) holds true for every N
N

0, z,we C? and a, B € N,
(3) (2.5) holds true for every 0,

=
>0, z,we C? and a, B € N9,

and the following conditions are equivalent:

(1) aeSh§” (R2?),

(2)" (2.6) holds true for any N € N and z,w € C?,
(3)" (2.7) holds true for any N € N and z,w € C.

For the proof we need the following proposition of independent interest. Here we recall that Sy is bijective
from S{/Q(Rw) to the set

{ae A(C2); |a(z,w)| < et for every r > 0} (2.8)

Proposition 2.3. Let ¢(z,&) = (%)%6_(‘$|2+|§‘2), z,6eR? ae 81/2(R2d) and a belongs to the set in (2.8).
Then

Sma(e,w) = (2t et Ta (22 £, vty - . valy - 0)) . 29)
and
_ (2 ¢ z z —2jw|?
(Sg'a)(z, —€) = (;) ch a (ﬁ —w, 7 + w> e dA\(w), (2.10)

with z = x + i€, w =y + in and x,y,£,m € R4,

1

Proof. Let ¢(z,y) = n 2e 2=+ for 2 y € R?, and let KY be the kernel of Op“(a). Then ¢ =
Fa(p o k), where k(x,y) = (¢ + y/2,2 — y/2). By (1.27) (or [29, Eq. (1.35)]) and [8, Lemma 4.1] we have

Vo aKy' (z,w) = Vaa Ky (2,W0) = VaaKg' (2, ) + i, —n))

= (2m)ded (= +ul?) +ile O—wm) 7 gw (\/5@7 ), —V2(E, 777))

4 (1224 |w|?) 414 —x + +
_ (om) 4 3PP ) i O~ 7 <x\/§y’%’\/§(ng),\/§(yz)),



N. Teofanov et al. / J. Math. Pures Appl. 167 (2022) 48-100 69

_ (2ﬂ_)%e%(\z|2+|w‘2)+ilm(z,w)7:ba (l‘\'/‘%y 5\‘/';77 \/’(n o), \f( )) ]

Together with the identity
|22 + |w|* + 2i Im (2, w) = |z — w|® + 2(z,w)

this gives

m@7dK;U(Z,w) = (271)%6%|Z_w|2+(z’w)7:ba (x\_/%y f\‘;_n \/>(n §), f( )) . (2.11)

A combination of this identity with (1.42) and (1.45) gives (2.9).
In order to prove (2.10), we use Moyal’s formula (1.12), (1.13) and the fact that ||¢)|| 2 = 1. This implies
that the inverse of 7y is given by

(T F)(@,€) = (TS F)(x,€)

= (m .HHF(thhmyyl)Wx — 21, & — &) ETImAWLEED) doy de iy dy, .
R4d

Writing
G(z,w) = F(z,&,n,y), z=x+1i, w=y+1in,
we obtain
THF(x,6) = 2¢(2m) =% H G(wy, wa)e 17wt MmG=wrw2) g (1) )dA (ws). (2.12)
C2d

If a =7jF and a = Sga, then (2.9) shows that

a(z,w) = (2m)iedll G (% V2(w — z))

which gives

G(z,w) = (27‘()7%67%'1”'2& < 5

Inserting this into (2.12) we get

2w 2 - L
7;;‘F(x, 2d - J] ( w1 211127 w;\'/th)€_|Z_WI|26_‘11|“’22611m<z_w171"2>d)\(wl)d)\(wg),

C2d
and by taking

2w, +w
and AT 2

22 42

2w, — wo

2v/2

as new variables of integration and using (1.22), we obtain

Sl
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7:/) = 2d JJ (wl + — , W2 + E) 67("“)1|2+|w2|2)62ﬂm(w1yw2) d)\(U)l)d)\(MQ)

=24 ff (w1 + =, wo + \/§> e2im(wi,w2) dp(wy)dp(ws)

z z

- 2dJ . <—w2 i %,wg " %) el dp(w)
c

() LGz o

Proof of Theorem 2.2. Combining Propositions 2.1 and 2.3, writing z + w = 2z + w — 2z, we obtain that
ae Sh;‘“)(RM) if and only if for all a, 3 € N? and N € N we have

zZ+w

7 ) (z+ w>_p|a+'6|<z —w)y N

(02 + 0y)*(0¢ + 57,)5 (e_%|z—w|25<5a(z,w))’ <w (
w(v2Z)(z + w>_p|a+'8|<z —w) Ntk

for some k € N that can be absorbed into N.
Note that multi-index powers of the differential operators d, + d, and J¢ + 0, acting on the factor
= ¢~ 3 (lz=y*+1€&=n1") are zero. Thus we obtain the equivalent condition

|(00 + 0,)*(0e + 0y)?Sea(z, w)| < eélz*“’lzw(ﬁz)(z + w)PleFBl — )N,

Using the (conjugate) analyticity of Sya(z,w) with respect to z € C? (w € C?%) we can formulate this as
(2.4). We have now shown the equivalence between (1) and (2).
The equivalence between (2) and (3) follows from the binomial formulae

(0: +t0w)™ = ) <a)t”aj—@7m te{-1,1},
gl

e

o2 =27l ) <O‘> (0: + 0u)* 7 (8; — Bu)"

e v

and

MECREDS ( ) DB, + )P ~7(0s — Bu)"

Y<B

It remains to consider the case p = 0. We obtain from Propositions 2.1 and 2.3 that a € Sh(()w) (R%) if
and only if for all N € N we have

Swa(z,w)| < ez Fu(v22)(z —w)y™N, 2 ¢eC

This shows the equivalence between (1)" and (2)’.
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Finally the equivalence of (2)" and (3)’ is an immediate consequence of (1.42) and

(B +0P) =) | 3PP =2 Re(zw)+lul) _ la—ul
Let ﬁgﬁp(cﬁ), be the set of all a € A(C?%) such that
097 a(z,w)| < Ced v (V2 E)(z + wyPletBl; —wy N, N > 0. (2.13)

The smallest constant C' > 0 defines a semi-norm parameterized by «, 8 and N, and we equip .%T(Sﬁ) p(C2d)
with the Fréchet space topology defined by these semi-norms. The following result is an immediate conse-
quence of Theorem 2.2 and its proof.

Proposition 2.4. Let 0 < p < 1 and w € Py, ,(R??). Then Sy is a homeomorphism from Sh(p‘”)(de) to
AG) (c2),

2.2. Eaxtensions and variations
There are several extensions and variations of Theorem 2.2. First we observe that by playing with IV in

(2.4) and (2.5) and using Peetre’s inequality, it follows that (z + w) in (2.4) and (2.5) can be replaced by
W, where

U(z,w) ={z+w)y, Y(z,w)=_{z), Y(zw)= w),

(2.14)
U(z,w) = max((z),(wy) or ¥(z,w)=min((z),(w)).
In particular (2.5) in Theorem 2.2 can be replaced by
022,5ma(z,w)| < e3P W(V2Z) U (2, w) PO —w) N, (2.5)
where ¥ is given by (2.14).
Secondly, let
Qs ={(ar,...,a) e N x .. x NT = NFL o) + - g = M},
where k > 1 and M > 0 are integers.
If a € A(C??) and « € Q4 pr, then
091002952004 a = loal—lasl gorraagiatat
o (2.15)

z=x+1i&, w=y+1in,

because of the analyticity with respect to z and conjugate analyticity with respect to w for a(z,w). In
particular, (2.5) implies

031 0¢20,20p*Syya(z, w)| < eélz_“”?w(\/if)\ll(z,w)_pM<z —w)™N, ae Q. (2.5)"

On the other hand, if we let ag = a4 = 0 in (2.15), (2.5)” implies (2.5)". Hence (2.5)" and (2.5)" are
equivalent.
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Let M > 0 be an integer and let Th; be the operator

Ty = Y, c(@)dd,’, cla)eC, a=(a1,a) €. (2.16)

aEQz,M

Then (2.5)" implies that
[Tar (Sma) (2, w)]| < €2 w(vV22) (2, w) =Mz = w)™, (2.5)"

holds for every M > 0 and every operator Th; of the form (2.16). On the other hand, the operators 62‘55
n (2.5)" are special cases of the operators Ty in (2.5)”. This shows that 6?55 in (2.5)" can be replaced by
operators Ty in (2.16).

In the same way it follows that (2.5)” is equivalent to (2.5)"”, after Ths in (2.16) is replaced by

D Cla)agrageagross,  z=x+if, w=y+in,
e, M (2.17)

C(a) € C, a = (o, 00,03,04) € Qq -

Finally we observe that we may replace the set of operators in (2.16) by the set of operators

D Cla)edl" e, 0%, z=w+if, w=y+in,
actla, i (2.18)

C(a) € C, a = (o, 00,03, 04) € Q4 1,

in the estimate (2.5)”. In fact, obviously the operators of form (2.18) contains the operators of form (2.16).
Hence if (2.5)” holds true for operators of form (2.18), it also holds for operators of form (2.16). On the
other hand, if aig # 0 or aq # 0 in (2.18), then

0N 0% = 0

because of the analyticity in z and conjugate analyticity in w for a(z, w). Consequently, it suffices to consider
operators in (2.18) where all C'(«) = 0 when ag # 0 or ay # 0, when investigating the condition (2.5)"”.
This set of operators is exactly the set of operators in (2.16). This implies that the set of operators in (2.16)
can be replaced by the set of operators in (2.18) when checking the condition (2.5)".

From these observations Theorem 2.2 gives the following conclusion.

Theorem 2.5. Suppose that p = 0, w € Psy, ,(C?), a e A(C??) and V is given by (2.14). Then the following
conditions are equivalent:

(1) aeS (RQd)

(2) (2.5) holds true for every N =0, a, 8 € N¢ and z,w € C¢;

(3) for every M =0, (2.5)" holds true for every N =0, and z,w € C%;

(4) for every M =0, (2.5)" holds true for every N =0, Tys in (2.16) and z,w € C%;
(5) for every M =0, (2.5)" holds true for every N =0, Tas in (2.17) and z,w € C%;
(6) for every M =0, (2.5)" holds true for every N =0, Tys in (2.18) and z,w € C?.
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2.8. Wick operators corresponding to Gevrey type pseudo-differential operators

Using (2.9) and (1.23) we obtain the following theorem expressed with estimates of the form
1 2
la(z,w)| < exp §\sz| + 71|z + Ws,e — T2z — Ws 6 (2.19)

(cf. Definition 1.8). The verification is left for the reader.
Theorem 2.6. The following is true:

(1) if s,0 = 3, then Sy is homeomorphic from 750 (R?) to the set of all a € A(C??) such that for some
ro >0, (2.19) holds for every r; > 0;

(2) if s,0 > 3, then Sy is homeomorphic from T'750(R2?) to the set of all a € A(C??) such that for some
r1 >0, (2.19) holds for every ro > 0;

(3) if s,0 > %, then Sy is homeomorphic from I35 (R?®) to the set of all a € A(C??) such that (2.19) holds
for some r1 > 0 and some ro > 0.

Remark 2.7. The restrictions on s and ¢ in Theorem 2.6 are needed since we must choose ¢ in (1.51) as the
Gauss function in Proposition 2.3. According to the proof of Theorem 2.2 this is necessary for the use of
the formula (1.27) that relates T, K and the Bargmann transform Uo, K. For this ¢ we have 1) € S7(R?)
(v € £7(RY)), if and only if s,0 > 3 (s,0 > %)

Theorem 2.6 can be combined with continuity results in [1] to deduce continuity of Wick operators acting
on the Bargmann images of X7(R%), S7(R%), (87)'(R?) and (X7)'(R%), respectively. The following result
follows by a straight-forward combination of Theorems 3.8 and 3.15 in [1], (1.41) and Theorem 2.6.
Proposition 2.8. Let a € A(C?4). Then the following is true:

(1) if s,0 = 3 and some ry > 0, (2.19) holds for every ry > 0, then Opgy(a) is continuous on AJ(C?) and
on (A7)'(C%);

(2) if s,0 > 5 and for some r1 >0, (2.19) holds for every ry > 0, then Opgy(a) is continuous on Ag (C?)
and on (Ag,)'(C%).

2.4. Composition of Wick operators

Let a1, ay € A(C??). If composition is well defined then the complex twisted product a;#gqas is defined
by

Opg;(a1) o Opy(az) = Opgy (a1 #gasz).

By straight-forward computations it follows that the product #g is given by
a1 #gaz(z,w) = ﬂfdj a1 (z,w)ag(u, w)e” F7HYTW g\ (u),  zwe C, (2.20)
Cd
provided the integral is well defined. Inserting derivatives, (2.20) takes the form

(021 a1 )4y (0222 a2) (2, w)
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- w*df (09137 a1) (2, ) (02202 as) (u, w)e~ W= d\(u), zwe CL.  (2.20)
Ca
The following lemma is a product rule for the complex twisted product.

Lemma 2.9. Let a1, ay € A(C?%) and suppose the integral in (2.20) is well defined for all z,w € C* and all
a1, az, B1, Bo € N? such that

|Oé1+042+61+62‘<1

Suppose also that the integrand in (2.20) is zero at infinity. Then

0., (a1#902) = (0.;a1)#pa2 + a1#5(02,02), j=1,...,d (2.21)
and
Ow, (a1#5a2) = (O, a1)#pa2 + a1#95(0w,a2), j=1,...,d. (2.22)
Proof. If
Fopa,(z,w,u) = al(z,u)ag(u,w)e(z’“_w)+(“7w)
then
wd(al#mag)(z, w) = ch Foya,(2,w, u)eflu‘2 d\(u).
This gives
70, (a1#90a2) (2, w) = b1 (2, w) + ba (2, w) — b3(z, w),
where
f Fo. a1,as (z,w,u)e” fuf? d\(u),
cd
J Fy, a0, (2, w,u)u e ~lul® d\(u)
cd
and

bs3(z, w) = w; J Fo, .05 (2,w, u)e_lul2 dA(u)
Cd

= Ejﬂd(al#m@)(z, w).

The conjugate analyticity of u — a;(z,u) and u — e(**~%) implies Ou, 01(2,u) = 8,”6(2’“_“’) = 0 which
gives

auj Fa1702 (Z7 w, u) = (al(Za u)au]' a2 (U, ’LU) + wjal(zv U)QQ (u, UJ)) e(z,ufw)Jr(u,w)
= Fa17azj az (Zv w, u) + EjF‘al,az (Zv w, u)

Consider by (z, w). Integration by parts gives
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2
ba(z, w) =J Fal,az(z,w,u)ﬂje*‘“‘ d\(u)
cd
= 7J\ Fa1,a2(sz7u) auj67|u|2 dk(u)
cd
= J &qual,az(z,w,u)ef‘“‘2 d\(u)
cd

= ‘[ Fo, 0. 0 (2w, u)e_|“|2 d\(u) + w; J Foy 0, (2w, u)e_‘“‘2 dA(u)
Cd J cd

= Fo, 6. as (z:,w,u)e_|“|2 dA(u) + bs(z, w).
ca

A combination of these identities now gives

70, (a1 #9pa2) (2, w) = f d(Fazj ar,a2 (2, w,u) + Fay o, as (2, w7u))e—\u\2 d\(u)
c

= wd(ﬁzjal)#mag(z7w) + wdal#m(azj az)(z,w),

and (2.21) follows.
The assertion (2.22) is proved by similar arguments. []

The characterization in Theorem 2.2 (3) can be applied to prove the following composition result, which
is a generalization of [26, Theorem 23.6] to include the case when p = 0.

Proposition 2.10. Let 0 < p < 1 and w; € Psy ,(R?*) for j = 1,2. If a; € Shg“’j)(RQd) for 7 =1,2, then
a1#0ag € Sh(pwlwz)(R2d).

Proof. If ap = a1#as and a; = Syaj, j = 0,1,2, then ag = a1#yas. From Lemma 2.9 and (2.20) we obtain
for o, f € N¢,

itz = 3 5 () () (@2 rawm(@tian) (o)

- a) <ﬁ) pga—rgPr o (zu—w)+(u,w)
= 270, a1(z,u)d)0,,a2(u, w)e dp(u).
’Y;a n;ﬁ <’Y a o 1( ) 2( ) ( )

Since wy € Z(R2?4) ~ 2(C?) is moderate, Theorem 2.2 gives for some Ny > 0 and any Ny, Ny > 0
05720 a0 € r(VEZGz + )y AT e
and
10707 as(u, w)| S wa(V27)(z — uhNodu 4+ wy P HEl(y — w}sze%‘“fwP.

This gives

é’jgiao(z, w)| < wl(\/§§)u12(\/ii)eélz_“’|2 J F(z,w,u)e®E d)(u) (2.23)
Cd

where for any N7 > 0,
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F(z,w,u) = (z + uy PlarB=r=rl ) yNo= Ny )y =PIFrl gy — )=
and

1 1
—|z —ul* + §|u —w|* — |u® + Re(z,u — w) + Re(u,w) = 0.

1
D(z,w,u) = —5\2—w|2 +3

By Peetre’s inequality and the facts that v < o and k < 8 we get

(z 4wyl 4 w)=PrHsl < (o —qpypelrtel

< (2 — )Pl — )yl < — uyPlatBlly — )Pl Al
and
(z + u>—p|a+/3| <z 4+ w>—pla+ﬂ|<u — w>p|a+/3|
wherefrom
F(z,w,u) < {2+ wy Plotbliy — qyplatBliENo=Nigy  qpy2elatBl=Nz (2.24)
Hence a combination of (2.23) and (2.24) gives for any N > 0

agéﬁao(z, w)

(@1(V22)wn(vV272)) Tz 4 wyrletd

S 6%‘Z7w|2 J <Z o u>p|a+'Bl+N07N1<’U, _ w>2p|a+ﬁ|7N2 d)\(u)
Cd

< (z—wy Nezlz—vl f (z — uYPlet A Not N=N1 gy, N2l BI+N=N2 13 (y))
cd
By letting
Ny =2 pla+ 8]+ No+ N and Ny >2pla+ 8]+ N +2d
we obtain

(?g‘giao(% w)| € w1 (V22)wa (V272)(z + w) PlotBl(y — )y Neslz—wl,

According to Theorem 2.2 (3) this estimate implies that ag € Shffl“’Z)(RQd). O

Remark 2.11. Eq. (2.20) combined with Theorem 2.6 can be used to show composition results for pseudo-
s:;;O

Proposition 2.10, but simpler since derivatives can be avoided. We obtain

differential operators with symbols in I" (R2?). In fact we may use an argument similar to the proof of

1
ar#ap € 7% (R*)  when ap,a e I'77 (R%), 50> 5

s,0;0 s,0;0

0,8
5,030

and similarly with F;’;g‘o in place of " provided o > % Thereby we regain parts of [1, Theorem 3.18]

for certain restrictions on s and o.
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3. Relations and estimates for Wick and anti-Wick operators

In this section we first show how to approximate a Wick operator by means of a sum of anti-Wick
operators. Then we prove continuity results for anti-Wick operators with symbols having exponential type
bounds. Finally we deduce estimates for the Wick symbol of these anti-Wick operators.
3.1. Ezxpansion of Shubin type Wick operators with respect to anti- Wick operators

The first result can be stated for semi-conjugate analytic symbols on C2,

Proposition 3.1. Suppose s = %, a€ /T’S(CQd), let M = 0 be an integer, and let

ta(w) = 2F0a(w,w), aeN,

and

! =

ba(z,w) = |a] J (1 —)l=16900 a(w + t(z — w),w) dt, o e N.

0

Then
_ (=1 Opyy'(aa) (—1)*! Opoy (ba)
Op‘ﬂ(a) - Z al + Z T (31)
|a|l<M la|=M+1

Proof. Taylor expansion gives

—leley (z,w —Dleley (2w
a(z’w): Z M+ Z ( 1) 0,a(7 )

al !
|a|l<M |la|=M+1
where
Ca(z,w) = (—1)‘“‘(2 —w)¥0¢a(w,w)

and

1

coa(z,w) = (=1)al(z — w)® J (1 —t)l=10%(w + t(z — w),w) dt.

0

Hence

—1)*! Opy (e —1)lel Opgs (e
Oppla) = 3, FOPmlea) - 5h (Z1 Oby(cne)

la|<M la|=M+1

)

and the result follows if we prove

Opy(ca) = Opy (an) and  Opgy(coa) = Opgy (ba)- (3.2)

It follows from (1.38) that

Opgy (ba) = Opm(cl,a) and Op%(CO,a) = Op;n(c;a)
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where
1
ez, W) = (—1)|a|7r_d\a|f (1= )10 o (ast, 2 w) dt, (3.3)
0
j =1,2, with
ho(a;t, z,w) = (—1)l 0% a(wy + t(z — wy), wy )e” CTULYTW )\ () (3.4)
Cd
and
hoo(ast, z,w) = J (z —w1)*0%(wy + t(z — wy), wy)e” ETULYTY) g\ (wy).
Cd
Since

—(z— — Yo (> — —
(z*w1)°‘e (z—w1,w—w1) :awle (z—w1,w—w1)

integration by parts yields

ho,o(a;t, z,w) = 0Fa(wy + t(z —wr), wl)ézle_(z_“’l’w_wl) dA(wy)
Cd

= (=1)lel 090 a(wy + t(z — wy),w)e” CTUIYTYD dA(wy) = hy o(ast, z, w),
Ca

and the second equality in (3.2) follows. The first equality in (3.2) follows by similar arguments. The details
are left for the reader. [

Remark 3.2. Proposition 3.1 and its proof show that

Opglay = 3 EUIOM @) | 5 (1" Opglera) 1y

a! a!
la]<M loe|=M+1

where ¢ , is defined by (3.3) and (3.4).

In the following result we estimate a, in Proposition 3.1 and ¢; o in (3.3) when a = Sya satisfies (2.5)
for every N = 0 and «, 8 € N%. By Theorem 2.2 this means that Opy(a) is the Bargmann transform of a
Shubin type operator.

Proposition 3.3. Let 0 < p <1, we P, ,(R?*?), a € ﬁéﬁp(CQd), and let a, and b, be as in Proposition 3.1
for ae N¢. Then Opy(ba) = Opg(ci1.a) for a unique ¢y o € A(C??),

1080) a0 (w)] S w(v2w)w) PEIIFIBHD o 3 4 e N¥, (3.5)

and for every N = 0 it holds,
1090) ¢1.0(z,w)| < e%‘z_w|2w(\/§f)<z + w) PClelHIED G YN o, B,y e N9 (3.6)
Remark 3.4. The Wick symbol ¢, in Proposition 3.3 is uniquely defined and given by (3.3) in view of

Proposition 1.5, when hy ,, is defined by (3.4). The conditions in Proposition 3.3 imply that ¢1 € fl(stffp) (C2d)
where w, = (- )=2lel .y,
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Proof of Proposition 3.3. The estimate (3.5) is an immediate consequence of
B0} a(w) = 8g+ﬁ§z+7a(w, w)
and (2.5).

In order to prove (3.6) we first note that the uniqueness assertion for ¢ 4 is a consequence of Remark 3.4.
Let hy o(a; z,w) be the same as in the proof of Proposition 3.1. Integration by parts gives

OP0L by alast, z,w) = hy o(0%0) ast, 2, w),

which reduces the problem to prove that (3.6) holds for § =+ = 0.
The assumption a € fl(sﬁp(CQd) combined with w and {-)~*l°l being moderate imply

1697, a(z,w)| < 2P w(V2w) (wy Pl (s — )y

for every N = 0. This gives
2
R | py (ast, 2, w)| € f w(v2m7)e T TP (Y 2eled (g (2 — qpy )y N eRe(tw—wiwn) gy (),
Cd
that is

t2
e iy (a2, w)| < f w(V2wT)e ' Pl () =2l (2 — )y Vel g (wy)
Cd

- J w(V2(Z Fwn)e 1 2y + w2t (2 — w)) Ve i da(wr)  (3.7)
Cd

for every N > 0, where z; = (2 — w) and 23 = (2 + w).

If t € [0, %], then the last estimate together with the moderateness of w gives

eflzlﬁ\hLa(a;t,z,wN < w(V27) )21 J d exllextaul el dA(w1)
c

S w(Vam) ey Wledial | el By
C

< w(ﬁz?)(z@‘wa‘e%‘21|2<zl>_N,
for every N > 0. The moderateness of w again gives
b1 a(ast, 2z, w)] < e3P w(V22) G + w) =200z —w)y =N (3.8)

or every N > 0, when t € [0, 3].

Suppose instead ¢ € [, 1]. Then (t(z1 — w1))¥ = {21 — w1)~". Moderateness again gives

w(V2(zz F w1)){z2 + wi1) 2Nz —wi) TN S w(V2ZE)(2) 1

for some Ny. Hence (3.7) gives
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67|Z1‘2w(\/§§)*1<2>2”‘0“|h1,a(a;t,Z,w)| < f , e%|217w1|2<21 _ w1>7Nef|w1\2 d)\(wl)
C

= et f (a1 — wi)y Nemdlral® ax(uy) = el ey
cd
for every N > 0. This gives (3.8) also for t € [3,1].

The result now follows by using (3.8) when estimating |c;1 (2, w)| in (3.3) and evaluating the arising
integral. [

The next result, analogous to Proposition 3.3, will be useful in Section 5 when we discuss hypoellipticity
for Shubin operators in the Wick setting.

Proposition 3.5. Let p > 0, w € Py, ,(C?), wy = w - ()72 whent >0, a € ,&gﬁfp((:?d), a = Sy'a and
M = 0 be an integer. Then

_1)el(203% gy 24z, 2- b2

= Slalo] +em(2), 2=z +1E, (3.9)

a(SE, -
|a|l<M

where
%00 ae A(“'a (C*) and (x,€) = carw — i€) € Sh{M+)(R?). (3.10)

Proof. The first claim in (3.10) is an immediate consequence of the definition (2.13) and Peetre’s inequality.
By Taylor expanding the right-hand side of (2.10) we obtain

=B _1 _1
2/m) I, 5- (090, a)(2" 22,272
alz, —&) = Z ( /ﬂ-) B (02 'w'a)( Z Z) +CM(Z), (3.11)
|a+B|<2M+1 alp!
where
Iop = | (mwra?e o drw)
cd
and
—1)sl b
cm(z) =2(M +1) )] ( 1); 1(1—9)2M+1Ha7ﬂ(z,0)d9 (3.12)
la+B|=2M +2 alBlt o
with

He 5(2,0) = (%)d Ld(agéﬁa) (% — fu, % + 0w> w2 g (w). (3.13)

The orthonormality of {eq}aene S A2(CY) (cf. (1.21)) yields I, 5 = 0 if a # 3 and
Tow — f (—w) w2 gA(w)
Cd

— (el late | e (w) dp(w)

= (=1)lelg=d=lelgzd,
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By inserting these values of I, 5 into (3.11), we obtain (3.9).
It remains to study the remainder cp;. We need to prove that c(z,§) = cp(x — i) belongs to
Sh{wm+1)(R21). If

ha,p(z,w,0) = ((9?5560 (% — fw, % + 6w> wowle 2wl
then
2\ ¢
H,p(z,0)=| = ha,p(z, w,0) d\(w).
: - e
First we notice that
azB _ (_1)‘6| ! 2M+1 a3B
00 em(z) =2(M+1) )] s | =9 020, H., 5(2,0) db,
|y+8]=2M +2 -0t 0

d
020 H, 5(z,0) = <3> f 027 hoy 5 (2, w, 0) dA(w)
Vs Ccd

and

la+B|
2

020 by (5, w,0) = 275 (25473 ) (i — fw, =+ 0w> w2l

V2 V2

From the definition (2.13) this implies that for every N > 0 and some Ny > 0 we have

‘azagfh%(s(z’ w, 9)| < 6—2(1—92)|w|2w(2 o \/i@@)<z>_p(|a+'6|+2M+2)<0U)>_N_NO |w|2]\/1+2

< 6_2(1—9)\w|2w(§)<Z>—P(|a+ﬂ|+2M+2)<9w>_N|w‘2M+2.
This gives
02 Hy5(2,0)] 5 w(E)(z) Pl A2 (),
where
J(0) = ch e~ 20=0 1w (9N =N |1 |2M+2 g3 ().
For 6 € [0, 3] we get
IO < | e P drw)
c
which is finite and independent of 6. If instead 6 € [%, 1], and choosing N > 2d 4+ 2M + 2, then
J(9) < Ld<0w>—N|w|2M+2 dA\(w),

which is again finite and uniformly bounded with respect to 6.
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A combination of these estimates gives
02 Hy5(2,0)] S w(@)(zy Pl ole2n2),
which in turn implies
02 err ()] < w(F)(a)rlor e,
This means that ¢ € Sh{“»+)(R?). O
8.2. Continuity of anti-Wick operators with exponentially bounded symbols
Next we consider anti-Wick symbols that satisfy exponential bounds of the form
Jao(w)| < eI, (3.14)
or
lao(w)] < eroluls. (3.15)

In order to formulate our results we introduce new spaces of entire functions. Let s > %, to,r > 0, and
let As ¢,.-(C%) be the Banach space of all F' e A(C%) such that

g2 1
1F Az =F € tol - |2+ |5

Lo < 0.

Set

AO,(s’to)(Cd) = ﬂ As,to,r(cd) and A/(s,to)(cd) = m As,to,—r(cd)

r>0 r>0

equipped with the projective limit topology. Likewise we set

A(S,to)(cd) = U AS,to,r(Cd) and AE),(s,tO)(Cd) = U As,tg,—r(cd)

r>0 >0

equipped with the inductive limit topology.
Referring to Section 1.3 it is clear that the spaces Ag,(s.40)(C?), As.1,)(CY), '(Sﬁtg)(Cd) and Ag,(s’to)(cd)
are generalizations of

Ao, (5,2)(C?) = Ta(Z5(R7)) = Ag,s(CY)
A1) (C?) = Ba(S(R)) = As(CY)
(6,1 (C) = Ta(S,(R)) = AL(CY)
and
0,(5,1)(C1) = Ta(BL(R)) = A (C),

respectively.
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Proposition 3.6. Let ag € LY (C?), s > %, 0<ty<1and

loc

1

Then the following is true:
(1) if (3.15) holds for some o > 0 then
Opy' (ao) : AO,(s,to)(Cd) - Ao,(s,tl)(cd)a
. ; (3.17)
Opy' (a0) * Af,(5,10)(C") = Af (5.6, (C7)
are continuous;
(2) if (3.15) holds for every ro > 0 then
Opa‘BW(ClO) : A(s,to)(cd) - A(s,tl)(cd)7
(3.18)

0Py’ (a0) : Al 1) (C?) — Al 4,)(C?)
are continuous.
Proof. We only prove that the first map in (3.17) is continuous. The other continuity assertions follow by

similar arguments and are left for the reader.
Let ro > 0 be given, r; > rg and F € AO,(&tO)(Cd). We have for z € C?

1 1
003 (ag)F(2) el gt [ g ) e
Cd

2 1
< e—t1‘2| +ralz]’s

F|

b et rs s+ R0l
Aoyt f e'r0|w|- +to|w|*—r1|w|s +Re(z,w)—|w| d)\(w)
cd

1
6T2|z\s

Fla

s,t0,71

J e (1 =ro) ¥ —(1—to)lwl+Re(z,w)~t|21% 1) ()
Ca

1
ra|z|s

1 2
—c F”As,to,rl j ) e*(nfro)hl)ls 7‘1/17tow* 2\//7711_702‘ d)\(w)
C

1
6T'2|Z‘S

1
Flac i fcd et st Ol gy )
< e(rzfcl(rlfro))\z|% || ecz(rrro)lwléf(lfto)|w|2 d\(w)
< As tg,m1 o

= [, 7ot ol
5,80,
for some constants c1,ca > 0. By choosing r; sufficiently large we get
| Opy" (a0) Fllasc, vy S 1F g, -
The estimates and (1.40) imply Op4y (ag)F € A(C%). [

Remark 3.7. Note that (3.16) implies ¢; > i and ty < t; with equality if and only if tg = % Hence
Ao (5,10)(Ch) < A (5,4,)(C?), and similarly for the other spaces.
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1

The particular case to = 3

in Proposition 3.6 is the following.

Corollary 3.8. Let ag € L{.(C?) and s > L. If (3.15) holds for some (every) ro > 0 then Opy (ag) is

continuous on Ag s(C%) (on As(C9)).

With a technique similar to the proof of Proposition 3.6 one obtains the following result.
Proposition 3.9. Let ag € L (C?), s > %, 0 < tg <1 and suppose (3.16) holds. Then the following is true:
(1) 4f (3.14) holds for all ro > 0 then

Opy' (ao) : AB,(S,tG)(Cd) - Ao,(s,tl)(cd) (3.19)

is continuous;
(2) if (3.14) holds for some ro > 0 then

0P (0) : Al 1(C?) = Ay ) (€ (3.20)
s continuous.
Similarly, by letting ¢y = % in Proposition 3.9 we get the following.
Corollary 3.10. Let ag € L (C%) and s > % Then the following is true:
(1) 4f (3.14) holds for every ro > 0 then
Opy'(a0) : Ap o(C7) — Ao s(C?)

18 continuous;
(2) if (3.14) holds for some ro > 0 then

Op'(a0) + A(CY) — A(CY)
18 continuous.
3.8. Estimates of Wick symbols of anti-Wick operators with exponentially bounded symbols
For anti-Wick operators in [12, Eq. (2.94)] we have the following result.
Theorem 3.11. If ag € L, (C%) satisfies
lag(w)] < el weCd, for some r<1, (3.21)
then ag € Lo a(C?) and (1.38)" holds for some a3V € A(C??) with

a2 (2, w)| < erolztwl’~Re(zw) ro=4""1-r)""

Proof. The claim ag € Lo 4(C?) is an immediate consequence of the assumption (3.21) and the definition
(1.39). The integral in (1.38)" can be estimated as
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A

d)\(’w1)

J ao(w1)e_(z_w1’“’_w1) dM(wy)
Cd

f orlw|? ’e—(z—wl,w—wl)
Cd

— e Re(z,w) f e—(l—r)|w1|2eRc(z+w,w1) d/\(wl)
Cd

_ euﬁlwwI“Re(w)J e~ (=l =)/ =) g3 (15,
cd
- erg|z+w|27Re(Z,w)' 0

Remark 3.12. The condition on a§" in Theorem 3.11 implies that a§" belongs to ﬁi) (C24) (see [29]). In

particular it follows that Opg;'(ag) = Opyg(ag™) is continuous from Ay 1 (C9) to .Ag’% (éd) (cf. [29, Theorem
2.10] and Remark 1.2).
The following result concerns exponentially moderate weight functions.
Theorem 3.13. Let ag € Lo a(C?), ag¥ € A(C??) be given by (1.38)" and w e Pr(C?). If
lap(w)| < w(2w), we ce,
then
la5™ (z,w)| < eilz_wa(z +w), zweC

Proof. Let r > 0 be chosen such that w(z +w) < w(z)e”!) z,w e C%. From (1.38)" we get
¥(zyw) < [ wlzwn)e e dy(w)
Cd
_ e—Re(z,w)J- w(2w1)eRe(z+w,wl)—|wl|2 d/\(wl)
Cd

— ¢~ Re(zw)+1lz+ul” J w(2w1)6_‘w1_(2+w)/2|2 dA(wr)
cd

= eilzwl’ J wwy + 2z + w)eflwl‘2 dX\(wn)
Cd
l|sz|2 2r|w1|7|w1\2
< et w(z + w) e dX\(w)
Ca

= eﬂz—w'zw(z +w). [

The anti-Wick operators in Propositions 3.6 and 3.9 can also be described as Wick operators with symbols

that have smaller growth bounds than A,(C??) and its dual. The following result extends Theorem 3.13 for

1
weights of the form el*|* with ce R from s > 1 to s > 1.

Theorem 3.14. Let s > & (s > 3 ), ag € Lo, 4(C%) and let a§™ be given by (1.38)". Then the following is true:

(1) 4f (3.14) holds for some (every) ro > 0 then

1
‘GSW(Z,U))‘ < ei|2*w|2*7"‘z+w|5 (322)
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for some (every) r > 0;
(2) if (3.15) holds for every (some) ro > 0 then

a8 (2, w)| < eIl Hrletuls (3.23)
for every (some) r > 0.

Remark 3.15. Thanks to the parameter % in the factor eil*=*!* rather than %, the estimates (3.23) are
much stronger than the estimates (2.19) with ¢ = s. Corollary 3.8 can thus be seen as a consequence of
Theorems 2.6 and 3.14, and [9, Definition 2.4, and Theorems 4.10 and 4.11].

Remark 3.16. The estimates for af" in Theorem 3.14 may seem weak since the dominating factor eilz—wl?
is present in (3.22) and (3.23) but absent in the original estimates (3.14) and (3.15) for ao.

On the other hand, Wick symbols for operators with continuity involving the spaces A,(C%) and A,(C?),
as well as Ag s(C?) and Aj ,(C%), usually satisfy conditions of the form

l|z—w\2ir1\z+w\%i\z—w\%
la(z,w)| 5 e

in view of [29, Theorems 2.9 and 2.10], and Theorem 2.6. Here the dominating factor is e%|z_w|2, which is
larger than the factor eil==vI* in Theorem 3.14.

This factor has a large impact on functions on R that are transformed back by the inverse of the
Bargmann transform. For instance, if ¢ > 0, then the Bargmann image of any non-trivial Gelfand-Shilov
space and its distribution space contain

{FeACY); [F(z)| 5 k)
and are contained in

(FeAC; |F(z) 5 etk
The same holds true for the Bargmann images of .#(R?) and .7/ (R?).

Theorem 3.14 is a straight-forward consequence of the following two propositions, which give more details
on the relationships between r and 7o in (3.14), (3.15), (3.22) and (3.23).

Proposition 3.17. Let s > 5 and let ro,r € (0,00) be such that

ro€ (0,00) and r< ﬁ, when s = 3, (3.24)
and
ro € (0,00) and <2 g, when s € (3,), (3.25)

with strict inequality in (3.25) when s < 1. If ag € L. (C%) satisfies (3.14) and a3™ € A(C??) is given by
(1.38)', then (3.22) holds.

Proposition 3.18. Let s > 3 and ro,r € (0,00) be such that

To

Ty (3.24)

(SIS

ro€ (0,1) and r> when s =
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and
ro € (0,00) and =2 %r, when s e (L, 0), (3.25)

with strict inequality in (3.25) when s < 1. If ag € L, (C?) satisfies (3.15) and ag™ € A(C??) is given by
(1.38)’, then (3.23) holds.

For the proofs of Propositions 3.17 and 3.18 we use the inequalities

12| — Jw]® <)z +w]® <z + |w|?, fe(0,1], z,we C? (3.26)
24+ wl? <A +e)z? + (A +e Y, 9e1,2], z,we C% (3.27)

and
lz+wl’ = (1-e)2® + (1 — e Y)wl|, fell,2], z,we C (3.28)

for every € > 0.

Proof of Proposition 3.17. Suppose that ag satisfies (3.14) for some ¢ > 0. First we consider the case s > %
Ifs<1llete; >0and ey =e;!, andif s > 1let ey = 0 and e, = 2, and let ¢ = 27 <. Then (1.38)’, (3.26)
and (3.28) give

|a8w(z,w)| < J 6_T0|w1|%6_ Re(z—wi,w—w1) d)\(wl)
cd

1
_ ei\zw\z—Re(z,w)f e=roluwrl —wr—(=+w)/22 g3 (1)
Cd,

1
= e%\z—w‘z f €_To|w1+(2+w)/2‘ s —|w[? d)\(wl)
Cd

L—w|? —erp(1— H —ro(l— T —lun|?
< 64‘2 w| e cro(l—eq)|z4+w| e ro(l—ez)|wy|s —|wq| d)\(wl)
cd

— oxlz—w]? —07‘0(1—61)‘Z+w‘%
=e e . (3.29)

If s > 1, then e; = 0 and €3 = 2, and the result follows from (3.29). If instead s < 1, then the result follows
by choosing €; > 0 small enough, and we have proved the result in the case s > %
Next suppose that s = % For e; > 0 and €3 = £7 %, (3.29) gives

19, 02 _1 _ 2 _ _ 2
|a8w(z7w)| < 64‘2 w| e sro(l—e1)|z4w| f e (ro(l—e2)+1)|wi]| d)\(’LUl)
Cd

14+7o

0 it follows that the integral converges, and
0

For any €2 <
1761 = 1*52_1 < (1+T0)71.
By the assumptions there is § > 0 such that

B ’/’0(1 — 5)
4(]. +7‘0).
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Since

1+ 7
To

l—ei /(L470)™" as e/

we may pick 0 < g9 < 1;[0”’ such that

and the result follows in the case s = % OJ

Proof of Proposition 3.18. First we consider the case when s > % Suppose that ag satisfies (3.15) for some

ro > 0, let 1,69 = 0 be such that e; =9 =0 when s > 1 and €162 = 1 when s < 1, and let ¢ = 2=%. Then
(1.38)", (3.26) and (3.27) give

‘agw(z,w)‘ SJ erg|w1\%67Re(z7w1,w7w1) d/\(’LUl)
cd

_ ei|z+w|2—Rc(z,w>J grolwnlF —wi=(=+w)/2% g3 (1)
Cd

1.2 1 2
_ phleul f erolun+(z+w)/21 —junl® g3 (1)
Cd

1 2 1 1 2
< ez|z—w| ecr0(1+51)\z+w\s er0(1+£2)\w1\S—\w1| d)\(wl)
cd

- ei|27w|26cr0(1+£1)\z+w\%' (330)

If s > 1, then &1 = g5 = 0, and the result follows from (3.30). If instead s < 1, then the result follows by
choosing €7 > 0 small enough, and the result follows in the case s > %
Next suppose that s = % Then (3.30) gives

11,02 1 2 2 2
|a8w(z,w)| < 64‘Z w| e4r0(1+51)\z+w| J €r0(1+52)\w1| |w | d)\(wl).
cd

177‘0
o

For any g5 < the integral converges, and

l+er=1+e'>1—-r) "

Since

1—r
1+€1\(1—T0)_1 as &g , 0,
0

the result follows in the case s = 3 by letting r = W. O

Remark 3.19. In the previous results we have mainly deduced certain estimates on the Wick symbols of
anti-Wick operators. In [32], similar estimates are presented, where estimates on the anti-Wick symbols to
certain Wick operators are deduced. We also refer to [6,32] for further transition properties between Wick
and anti-Wick operators, and to [32] for certain fundamental continuity properties for Wick and anti-Wick
operators.
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4. A lower bound for Wick operators

In this section we apply the asymptotic expansions in the previous section for Shubin-Wick operators to
deduce a sharp Garding inequality.
First we have the following result. We put Agy, ,(C??) = ﬁgﬁ)’p(Cw) when w = 1.

Proposition 4.1. Let w e #(C%), pe [1,0], a € Asho(C??) and ag € L®(C?). Then Opy(a) and Opdy (ap)
are both continuous on Afw)(Cd).

The claimed continuity of Opgy(a) is a straight-forward consequence of [29, Theorem 3.3], in combination
with Proposition 2.1 and the relationship K (z,w) = a(z,w)e(*™) between the kernel and symbol of a Wick
operator (cf. (0.1)). In order to be self-contained we include an alternative and shorter proof.

Proof. Let F' € Az(jw)(Cd), G(z) = e 2’ |F(2)w(v/27)|,
Hi(2) = e 3| Opgy (a) F(2)w(v/22)|  and
Ha(2) = e 2F1° Op3y (a0) F(2)w(v22).
We have
w(vV22) S w(vV2W)(z — Wy

for some Ny = 0. By Theorem 2.2 and (2.6) we get

H(z) s e 31 f e3P (w)w(v23) R0 ga(w) = (NN 1 @) (2),
Ccd

for every N > 0. By choosing N > 2d + Ny and using Young’s inequality we get |Hi|r» < |G| rr which
means || Opgy; (G)FHA{’ S ||F||A§> ,» and the asserted continuity for Opgy(a) follows.
In the same way we get

Hy(2) 5 Jlaof se 210" Ld [F(w)w(V2m)(z — w) et ax(w) = ()N 2! T) « 6)(2),

and another application of Young’s inequality shows that HHQHLf’ = HGHLf . that is || Opg"(ao)FHA? S
1Fla,. O

We have finally a version of the sharp Garding inequality.

Theorem 4.2. Let p > 0, w(z) = (2)* and let a € A\gﬁ?p((}m) be such that a(w,w) = —Cy for all w e C?,
for some constant Cy = 0. Then

Re((Opy(a)F, F) a2) = —C|F |32, FeAy(CY (4.1)
and
| Im ((Opy () F, F)a2)| < C|F[%,  F e Ay (CY) (4.2)

for some constant C' = 0.
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Proof. Let by(w) = a(w,w). Then Opy(a) = Opgy (by) + Opy;(a1) for some a; € Agp, ,(C??) < Agy 0(C??),
in view of Proposition 3.3. Since II4F = F for F € A?(CY) (cf. (1.22)), the assumption by > —Cj implies
(0P (bo)F, F) a2 = —Cy| F|%: for every F € A5 (C?). The operator Opy(a;) is continuous on A?(C?) in
view of Proposition 4.1. A combination of these facts gives the result. [J

5. Ellipticity and hypoellipticity for Shubin and Wick operators

In this section we show that the Bargmann assignment Sy maps the sets of hypoelliptic symbols and

weakly elliptic symbols in the Shubin class Shg“’)(RQd) bijectively into the sets of hypoelliptic symbols

and weakly elliptic Wick symbols in ﬁgﬁ) p(Czd), respectively. (Cf. Subsection 1.6.) Then we explain some

consequences for polynomial symbols.
5.1. Transition of weakly elliptic symbols
For symbols in flgﬁ) p(Czd) we define ellipticity and weak ellipticity as follows.

Definition 5.1. Let p > 0, w € Pg;, ,(C?) and a € ftéﬁp(cm). Then a is called weakly elliptic of order
po = 0, or pg-weakly elliptic, if for some R > 0

la(z2)| 2 2y Pw(v2Z), |2 > R
If a is weakly elliptic of order 0 then a is called elliptic.
Theorem 5.2. Let we Z(R??) ~ 2(C%), p>0and ae Shff)(RQd). Then the following is true:
(1) if z = + i€, x,& € RY, then
Swa(s,2) — a(v2z, ~V2E)| < w222 ; (5.1)

(2) if po € [0,2p), then Sy is bijective from the set of weakly elliptic symbols in Shf;“)(de) of order pg to
the set of weakly elliptic symbols in flgﬁ?p(CQd) of order pg.

As a consequence of (2) in the previous theorem we get the following. Here recall Subsection 1.6 for
definition of weakly elliptic symbols in Shubin classes.

Corollary 5.3. Let a be as in Theorem 5.2. Then the following is true:

if po € [0,2p), then a € is weakly elliptic of order po, if and only if Sya € A, is
1) if 0,2p), th Sh() (R4 is weakly elliptic of ord if and only if S Ag) (¢
weakly elliptic of order po;
ae is elliptic if and only if Sya € A, 1s elliptic.
2 Sh()(R2%) is elliptic if and only if Swa € A5y (C?%) s ell

For the proof of Theorem 5.2 we need the following proposition, related to Propositions 3.1 and 3.5. It
shows that the Bargmann assignment of a Shubin symbol a possess convenient expansion properties.

Proposition 5.4. Let M > 0 be an integer, p > 0, w € Pgp,(R*?) =~ P, ,(CY), wi(x,&) =
w(z, ){(x,€))72°% and a € Shé“’)(RQd). Then for some ¢y € ShgwM“)(de) and constants {Ca}ja|<2m
with cg = 1, it holds



N. Teofanov et al. / J. Math. Pures Appl. 167 (2022) 48-100 91

M
Sya(2™ 12,27 22 = Z &) + ear(z, =§), ai = Z ca0%a. (5.2)

|a|=2k

Proof. Let ¢ be as in Proposition 2.3. If we put z = w, then (2.9) and Taylor’s formula give

(27)%Sypa(2722,2772) = (2m) % Tya(z, —£,0,0)

2M+1
_ od JJ alt +z,7 — £)e= 1P+ grdr = Z br(z, &) + c(z,—€)  (5.3)
R2d k=0
where
e, €) = oy [0 07 1 7P dtar
" Rd
and
1
¢(z,§) = ML (1= 0)*M*eq(x,€)do
with

oz, €) — 21 J J @PMAD (4 4 0t € 4 07); (8,7), - (£, 7)ye I HT) g,

R2d

If k£ is odd, then

(t,7) = @B (@, )5 (t,7), ..., (t,7)ye (I

is odd which implies that the integral is zero. Hence by (x, &) = 0 when k is odd. For k = 0 we observe that
the integral for by becomes

94 H U7 g — (2m)e,

R2d
and it follows from these relations that
2M+1

Z bk—zaka

with a; as in (5.2) and ¢y = 1. Hence the result follows if we prove that the last term in (5.3) satisfies
car € ShiM+) (R24),
For 6 € [0,1] and o € N2 we have

0%y (2, €)| < J 10%a@M2) (1 4 0t € + 07)|((¢, 7)Y2M 2= P+ grar
R2d

< H w(@ + 0, &€ + 07){(x + 0t, & + Or)y~ CM+2+lale (4 p)\2MA2o= (P41 gyar

R2d
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< w(z, €){(x, &)y~ @M +2+lale JJ<(t, PyNo =) g

R2d

= wla, (. €)M+l

for some Ny > 0. In the last inequality we have used the fact that w is polynomially moderate.
This implies

1

[0%¢(z, )] < f 10%¢o(z, )| dO < w(x, €)((x, &)y~ @M +2tlahp,

0

which shows that ¢, cys € ShE,“M“)(RM). ]
Proof of Theorem 5.2. Let 1 be as in Proposition 2.3 and N = 0 in Proposition 5.4. Then
[Swa(2™22,272) — a(z, ~6)| < w(z, ~E)(z,—€) ™™, (5.1

and (1) follows.
Suppose pg € [0,2p). Then it follows from the latter inequality that

Swa(z,2)| 2 () "w(v27), />R
for some R > 0, if and only if

la(z,8)] 2 (2, )" w(x,8), [/ =R
for some R > 0, and the asserted equivalence in (2) follows. []
5.2. Shubin hypoellipticity in a Wick setting

Definition 5.5. Let p > 0, pg > 0, w € Pgp, ,(C?) and a € ﬁ(sﬁ?p(02d). Then « is called hypoelliptic (in the
Shubin- Wick sense in ﬂ(sﬁ?p(CQd)) of order py, if there is an R > 0 such that for every o, 8 € N?, it holds

|02Fna(z,2)| < la(z,2)l(z) P, 2| > R (5.4)
and
a(z,2)] 2 wo(VEE ", |2 = R. (5.5)

According to Definition 1.11, if w, p and pg are as in the definition, then a € Sh(p“’)(RQd) is hypoelliptic
of order pg means that there is an R > 0 such that for every o € N2, it holds

|0%a(z,6)| < la(e, (@ )", (@, >R (5.6)

and

la(z,8)| 2 w(z, O){(x, )", [z, )| = R. (5.7)

Similar to Theorem 5.2 we have the following.
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Theorem 5.6. Let p > 0, pg = 0, w € @Shw(RM) ~ @Shm(Cd), ae Sh’(;“) (R?%) and a = Syga. Then a is

hypoelliptic of order pg in Sh(p"’) (R2%), if and only if a is hypoelliptic of order py in flgﬁ?p(CQd).

Proof. Suppose that a € Sh(“) (R2%) is hypoelliptic of order pg, and choose M > 0 such that 2Mp > po.
Suppose that R > 0 is chosen such that (5.6) and (5.7) are fulfilled. Then Proposition 5.4 gives for z = x +1¢
with |z| = R where R > 0 is sufficiently large

M
|a<2—%z,2—%z)\z\a(x,—gn—z 2 (l0%a(z, —€)| + |c(z, —€)|)
k=1 |a|=2

2 la(z, —€)| — Ja(z, —E)(x, —€))™ — w(w, —€){(w, —€)) ™M +2)
2 laz, —€)| — la(z, —&)|((z, —€))~%
2 la(z, —€)| 2 w(x, —E){(z, —€)) ™",
and (5.5) follows. In particular it follows from the previous estimates that
a(27%2,2722)] 2 [a(x, —€),  |2| = R. (5.8)

For fixed a, 3 € N9, let Q) be the set of all (7,5) € N2¢ x N2¢ such that |y| = 2k and [§| = |a + B|. By
Proposition 5.4 and (5.8) we have for some R large enough and |z| = R

M
(@22, 2227k s Y Y (07 a(e, )| + el ~))
k=0 (v,8)eQ
M
s D (la(a, =& (@, =€)y PERHHAAED 4 (2, —€)((w, —€))y M FlatAD))
0 (7,6)€Q%

>
Il

= Ja(z, ~E)K(w, =€) 1"+ war, —E)(, =)y EM D
< la(z, —&)|((x, =)y P1oFFl + Ja(z, —€)|((w, —€)yro—PMFlath)
= la(e, ~§)[(x, ~€)y 1 g Ja(2 b2, 272 2) (&, ) PP,

which implies that (5.4) holds.
This shows that a is hypoelliptic of order pg in flgﬁ) ,(C?%) when a is hypoelliptic of order py in Sh(pw) (R2d).
Suppose instead that a is hypoelliptic of order py in ﬁgﬁ?p(cw). By using Proposition 3.5, (3.12) and
(3.13) instead of Proposition 5.4, similar computations as in the first part of the proof shows that (5.6) and
(5.7) hold for some R > 0. This shows that a is hypoelliptic of order pg in Shg") (R2?) when a is hypoelliptic

of order pg in A(w) (Czd), and the result follows. []
5.8. Ellipticity in the case of polynomial symbols

Next we discuss ellipticity for polynomial symbols, i.e.

a(z, &) = Z c(a,ﬁ)m“{ﬁ, z, & e RY, (5.9)

la+Bl<M

and
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a(z,w) = Z c(a, B)2°w", z,we CY (5.10)
la+Bl<M

The corresponding principal symbols are

(.8 = >, o, B2’ z,¢eRY, (5.11)
loe+B|=M
and
ap(z,w) = Z cla, B)2°w°, z,we C% (5.12)
la+B|=M
respectively.

First we relate polynomials on R?¢ to Shubin classes.

Proposition 5.7. Let a and a, be as in (5.9) and (5.11) for some c(a, B) € C, o, B € N¢ and M > 0, and let
wrr(z,8) = (z,€)YM, 2,6 € R Then the following is true:

(1) a e Shi™ (R*);
(2) a is elliptic with respect to war, if and only if a,(x, &) # 0 when (x,&) # 0.

The result can be considered folklore. In order to be self-contained we present the arguments.

Proof. First we prove (1). Let t = max(|z1],...,|zdl,|&1],- .., |&]) when = (21,...,24) € R? and ¢ =
(€1,...,&1) € R Then

a(@, Ol < D el BT < 1+ M < (@, )M,

la+Bl<M

which gives the desired bound for |a(z,&)|. Since the degree of a polynomial is lowered by at least one for
every differentiation we get

j0%a(z, €)| < {(x, )M 1

for every v € N2¢| which gives (1).
In order to prove (2) we let a, be as in (5.11). First suppose that a,(z, ) # 0 when (z,£) # (0,0), and
let g be the continuous function on R2%\0 given by

(. 8)|
(e, M

Since g is continuous and positive, and the sphere

g(x, &) (z,€) # (0,0).
S = {(,6) e R*; |z + [¢]> = 1}
is compact, it follows that there are constants ¢, cy > 0 such that
c1 < g(z,8) < e, (z,€) € 821,

By homogeneity it now follows
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(@, &)™ < lap(, &) < ea(, €)M, 2,6 R

Hence, if

b(.’lﬁ,f) = Cl(.’l?,f) - Clp($,£) = Z c(a75)xa55’

|la+B|<M—-1

then the first part of the proof implies that for some constants C' > 0 and R > 0 we have

|Cl($,€)‘ = ‘Clp(l‘,fﬂ - |b(l‘,£)| = Cl‘(.’I},f”M - C<(x7£)>M_1 e <(x7£)>M

when |(z,&)| = R. Hence a is elliptic with respect to way.
Suppose instead a,(20,&) = 0 for some (x9,&p) # (0,0). For any (x,&) = (txo, t{) we have

la(z, €)] < lap(x, )] + [b(z, €)] = [t ap (0, &0)| + [0(z, &) = [b(z, )| < (=, )M,
giving that |a(z,&)| = {(x,&)YM, |(z,€)| = R, cannot hold for any R > 0. []
By Theorems 5.2, 5.6 and Proposition 5.7 we get the following. The verification is left for the reader.

Proposition 5.8. Let a and a, be as in (5.10) and (5.12) for some c(a, B) € C, o, € N¢ and M > 0, and
let wyr(x, &) = (2, &)Y, z,& € R Then the following is true:

(1) a e AGY(©);
(2) a is elliptic in Ag;ﬁ)(C?d) if and only if ay(z,z) # 0 when z # 0.

Remark 5.9. Let a, a,, a and a,, be as in (5.9)—(5.12). Then it follows from Proposition 5.7 and Proposition 5.8
that a is elliptic, if and only if a,, is elliptic, and that a is elliptic, if and only if a, is elliptic.

We have now the following.

Theorem 5.10. Let a € ShgwM)(RQd) and a, be as in (5.9) and (5.11) for some c(a, B) € C, a, 8 € N¢ and
M > 0. Then the following is true:

(1) the principal symbol a,(z, w) of Sya is given by

ap(zw)=27% Y (o, B)il(z + W) (2 — W) (5.13)
lat+Bl=M

(2) a is elliptic in ShgwM)(de) if and only if a, is elliptic in Ag‘fﬁ)((}?d);
(3) ay(x,&) > 0 for every (z,&) # (0,0), if and only if a,(z, z) > 0 for every z # 0.

Proof. Let z =z + i, ,£ € R%, i.e. v = 3(2 + Z) and £ = 5 (z — ). By Theorem 5.2 we get
ap(27%z,27%z) = ay(z, =§). (5.14)

This implies

ap(2,2) =27 D1 (0, fa(=¢)7 =25 Y e, f)27(z +2)(2) I~ (2 - 7)),

|a+B|=M |a+B|=M
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which gives

ap(z,2) =275 Y (o, il (z +2)%(z — 2)°. (5.13)’
lot+Bl=M

The formula (5.13) now follows from (5.13)" and analytic continuation, using the fact that a,(z, w) is analytic
in z and conjugate analytic in w.

The assertion (2) follows by a combination of Corollary 5.3, Propositions 5.7 and 5.8, and the assertion
(3) is a direct consequence of (5.14). [J

6. A necessary condition for polynomially bounded Wick symbols

In [12, Section 2.7] Folland shows that polynomial symbols for pseudo-differential operators correspond
to polynomial Wick and anti-Wick symbols. Thus partial differential operators with polynomial coefficients
corresponds to polynomial Wick symbols.

Here we show that a Wick symbol that is polynomially bounded must be a polynomial. This gives a
characterization of Wick symbols corresponding to polynomial symbols for pseudo-differential operators.

Cauchy’s integral formula implies that an entire function which is polynomially bounded must be a
polynomial:

Proposition 6.1. Let F € A(C?) with Maclaurin series

F(z) = Z c(a)eq(z), zeCo

aeNd

Suppose that for some j e {1,...,d}, C >0, M >0, and an open neighborhood I = C of the origin it holds
[F(2)| < O™, z€C,
provided z € I, ke {1,...,d}\{j}. Then c(a) =0 when a; > M.
Proof. By interchanging the variables, we may assume that j = d. Let R > 1 and € > 0 be chosen such that
D.={2€C;lz|<e}c .

Take o € N? such that ag > M, let 8 = (a; + 1,...,aq + 1) € N? and 7. < C be the boundary circle of
D.. Then Cauchy’s integral formula gives

5’0‘5!(0)‘ — (2m)~¢ JJ (LdR Fz(;) dzd> dzy -+ -dzg—q

g (%)_dﬁ,,f (LHR |F(2)]

z
28|
< R(RyMe=(eattaa)

|e(a)]

1
al2

|d2d|> |dz1| -+ |dza|

as R — . [J



N. Teofanov et al. / J. Math. Pures Appl. 167 (2022) 48-100 97

Corollary 6.2. Let a € A(C??) and suppose
la(z, w)| < {(z,w))M (6.1)
for some M = 0. Then a is a polynomial in z € C* and W e C% of degree at most M.

Proof. By Proposition 6.1 it follows that a is a polynomial of degree at most 2dM. We need to prove that
the degree is at most M. In order to do this we may assume that a has degree at least one.
For some integer L > 1 we have

a(z,w) = ar(z,w) + ap—1(z,w),

where

la+B|=L

is non-trivial and
ar—1(z,w) = Z (o, B)z"w”.

la+Bl<L-1
Since ay, is non-trivial, there are zp,wy € C? such that |z|? + |wo|? = 1 and |az,(z0,wo)| = co # 0. By
homogeneity we get

lar(tz0, two)| = colt]”,  teR.
In the same way we get
lar—1(tz0, two)| < C(1 + [t))*~ teR

for some constant C which is independent of ¢.
Suppose contrary to the assertion that L > M. For ¢t € R with [¢t| = 1 we have

‘ tZO, two)

—M
W‘ 2 [t (laz(tzo, two)| — |ar—1(tz0, two)|)

> [tM (colt)]" —C(L+ [t)* ™) >0 as |t — .
This contradicts (6.1), and the hence our assumption that L > M must be false. []
Appendix A

In this appendix we present some tables on weights, operators, spaces of entire functions on C% and Wick
symbol classes.

In the first two tables, Tables 1 and 2 we review weight classes, transforms, and operators. The next
two tables, Tables 3 and 4, deal with properties of the Bargmann images of Gelfand-Shilov function spaces,
the Schwartz space, and their distribution spaces. Then, in Table 5 we explain some links between the
Shubin class Shfj")(RQd) (see (1.47)), and the symbol classes T'750(R??), 7). (R??) and '3 (R??) (see

Definition 1.8).
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Table 1

Weight classes.
Weight class  Features Eq. ref.
25(R%) we LE (RLGRL), wlz +y) < w(z)elv! (1.5)
2(RY) we LE (RGRy), wiz +y) S wl@y)™  (11)
Psn,p(RY) we PR, [0%w(x)| S w(x)z)y~rlel (1.46)

Table 2
Operators and transforms.
Operator Notation  Features Eq. ref.
Modul. STFT T Fo (2m)75 (Fly + 2) e VO dy (1.10)’
Bargm. transf. By f— i S67%(<z’Z>Hy|2)+21/2<z‘y>f(y) dy (1.19)
Semi-conj. op. © K(z,w) — K(z,W) (1.29)
Pseudo-diff. op.  Op4(a) f @) fal@— Az —y), &) f(y)el® ¥ dyde  (1.31)
Wick op. Opy (a) F e {qia(z, w)F(w)e® ™) du(w) (1.36)
Anti-Wick op. Opy'(a) F o a(w)F(w)e®™) du(w) (1.40)
Bargm. assignm. Sy Opy (Swa) = Vg 00p,(a)o BF, A= 1T (1.41)
Table 3
The Bargmann images of test function spaces.
Function space Bargmann image [Vaf(z)| < Eq. ref.
[=1* _,.
S7(RY), s,0 =1  AT(CY ez TIFle 3050 (1.6), (1.24), (1.25)
= 2
ZIRY), 5,0 > 5 AT (C T Tl yr s 0 (1.6), (1.24), (1.25)
=2
S (R%) Az (Ch e2 (DN YN=0  (1.6), (1.24), (1.25)
Table 4
The Bargmann images of distribution spaces.
Distribution space Bargmann image 1Vaf(z)] < Eq. ref.
-2
(87)YRY), s,0> 1 (AZ)(C?) eJT"'T‘Z“‘”", vr >0 (1.6), (1.24), (1.25)
]2
(=) (RY), 5,0 > 1 (Ag.)(C% ez TTIEle 3050 (1.6), (1.24), (1.25)
=2
& (RY) ', (CY ez (DN, AN =0 (1.6), (1.24), (1.25)

Table 5

Estimates for Wick symbol classes.
Wick class [0%a(z, w)| < Ref.
Sm(Shg“)(de)) eé‘z_wlzw(\/ﬁfxz —wy ™ N VYN=0,a=0 Theorem 2.2

Sw(Sh(R2)) el * 7", (vV22)(z —w) ™, a e N*

Theorem 2.5

Sm(ngi;o(Rz)d)) eé‘ziwlhr”‘z+w|“’”7r2|27w""”, Iry > 0,Vry >0, a =0  Theorem 2.6

Sw(TTS0(R3M))  eslemwliamletwlamrlzwls 30 5 0,Vry > 0,0 =0 Theorem 2.6

1, 24 0 — —1
SQ](Fg:;(R2d)) 62‘2 w|*+r|ztwls, —r2|z w‘s.a, Iri,re >0, a=0

Theorem 2.6

Here recall

(@)= (1+|z])

and

dp(w) = rde=lwl? d\(w),
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2ls.0 = |Rez|? + [Imz|7,  zeCY

where d\(w) is the Lebesgue measure on C.
In Table 5 we let

0%a = 0y 0g° 0, 0 a,
z=x+i& w=y+in, a=(o,az,as a4 € N2,

when a € A(C??) (see (2.15)), and w,(z) = w(2){z)™" when w € Pg, ,(C?) and r € R, and recall that
ﬁgﬁ?p = Sm(ShS")(RQd)). For Sy (I'75.o(R?1)) it is assumed that s,0 > 3, while for Sy(I'75°(R?%)) and

s,0;0

Sep(I'75(R?)) it is assumed that s,0 > &.
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