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Abstract We explore the presence of thermodynamic insta-
bilities and, consequently, the realization of a pure hadronic
phase transition in the hot and finite baryon density nuclear
matter. The analysis is performed by means of an effective
relativistic mean-field model with the inclusion of hyperons,
Δ-isobars, and the lightest pseudoscalar and vector meson
degrees of freedom. The Gibbs conditions on the global con-
servation of baryon number and zero net strangeness in sym-
metric nuclear matter are required. Similarly to the liquid–gas
phase transition, we show that a phase transition, character-
ized by mechanical instabilities (due to fluctuations on the
baryon number) and chemical-diffusive instabilities (due to
fluctuations on the strangeness number), can take place for a
finite range of Δ-meson coupling constants, compatible with
different experimental constraints. The hadronic phase tran-
sition, which presents similar features to the quark-hadron
phase transition, is characterized by different strangeness
content during the mixed phase and, consequently, by a sen-
sible variation of the strange anti-particle to particle ratios.

1 Introduction

One of the major challenges in the high energy heavy-ion
collisions is a detailed study of the nuclear equation of state
(EOS) at different regimes of baryon chemical potential and
temperature, with the investigation of possible phase transi-
tion phenomena during the collisions [1].

At high temperature regime, various QCD inspired the-
oretical models indicate a region with a rapid cross-over of
thermodynamic observable and a formation of a critical end-
point, beyond which the system shows a first order phase

a e-mail: andrea.lavagno@polito.it (corresponding author)

transition from confined to deconfined matter [2–6]. The
existence and the location of such phase transition at finite
baryon chemical potential is still a matter of debate and can be
in principle detected in the planned high-energy compressed
nuclear matter experiments [7–12].

At low temperatures and subnuclear densities, a liquid-gas
type of phase transition was predicted and observed in nuclear
multifragmentation experiments at intermediate-energy [13–
16]. Because nuclei are made of protons and neutrons with
two conserved charges (baryon number and electric charge),
such a phase transition is continuous (rather than discontinu-
ous as in the one-component system) and, consequently, for a
binary system, the instabilities in the mixed liquid–gas phase
arise from fluctuations in the baryon density and in the proton
concentration [17–20].

Recently, the study of a nuclear liquid–gas phase transition
has been extended to the strangeness sector at low temper-
ature regime, below and above the nuclear saturation den-
sity, in order to examine the occurrence of phase transitions
and thermodynamic instabilities in presence of the hyperon
degrees of freedom [21–25]. The relevance of strangeness
instabilities has been also studied in the context of dense
β-stable neutron star and supernova matter [26].

In relativistic heavy-ion collisions, besides hyperons, a
state of high density resonance Δ(1232)-isobar matter may
be formed. Transport model calculations and experimental
results indicate that an excited state of baryonic matter is
dominated by Δ-resonance at the energy from AGS to RHIC
[27–31]. In addition, it has been pointed out that the existence
of Δ-isobars can be very relevant also in the core of neutron
stars [32–38].

In this context, is important to remember that the recent
discovery of massive neutron stars and different astrophysi-
cal observations, mainly related to neutron star mergers with
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electromagnetic and gravitational wave signals, put strong
constraints on the EOS of dense baryonic matter, which must
be rather stiff to support a large mass against gravitational
collapse [39–41]. Moreover, the existence of massive com-
pact stars (M ≥ 2.1M�) implies that the speed of sound
(strictly related to the stiffness of the EOS) exceeds the con-
formal limit (c2

s = 1/3, in units of the speed of light) in the
scenario of one family hadronic EOS [42–44]. Therefore,
it would be some physical mechanism for which the speed
of sound as a function of density should increase to values
significantly larger than the conformal bound, with at least
one local maximum, and it should decrease to asymptotically
reach the conformal limit, in agreement with the pQCD cal-
culations [45,46].1 On the other hand, the appearance in the
EOS of hyperons and Δ-isobars implies a remarkable soft-
ening of the EOS at high density with resulting a significant
reduction of the achievable maximum mass. As discussed in
Refs. [32,48], this problem could be overcome in the sce-
nario of two coexisting families of compact stars: hadronic
stars, whose EOS is soft (like the one adopted in the present
investigation), can be very compact with small radii and with
maximum masses of about 1.5M�, while massive strange
quark stars, whose EOS is stiff, with masses greater than 2
M� [49,50].

The scenario of two-family compact stars implies that
hadronic matter is metastable and decays into strange quark
matter, by assuming the Bodmer-Witten hypothesis [51].
The condition for a nucleation conversion from beta-stable
hadronic stars to quark stars are related to a critical amount
of net strangeness (or hyperons fraction) that is present in
the cold beta-stable hadronic star [52]. Recent investiga-
tions have shown that in this latter scenario, strange quark
stars can reach very massive conditions (larger also than 2.5
M�, achievable mass value if the second stellar object of the
merger of the gravitational wave signal GW190814 would
turn out to be a compact star [53,54]), without the need for
a velocity of sound close the casual limit but with values,
in the most cases, below the conformal limit [55]. Neutron
stars (actually hadronic stars with hyperonic and Δ degrees of
freedom in the two families scenario) could instead satisfied
the constraints obtained from heavy-ion collisions experi-
ments [56] and the tidal deformability constraints derived
from GW170817 [53] which favor softer EOSs. A qualita-
tive agreement of this scenario with the recent NICER results
was also showed [55,57].

Concerning the study of the excited dense baryonic mat-
ter reachable in heavy-ion collisions, in the seminal work of
Ref. [58], on the basis of the Boguta’s Δ isomers [59] and in
the framework of a non-linear relativistic mean field model,

1 For the sake of completeness, we remember that lattice QCD calcu-
lations had clearly established the speed of sound at finite temperature
and zero density matter is always below the conformal limit [47].

it was predicted that a one-component phase transition from
nucleonic matter to Δ-excited nuclear matter can take place
in symmetric nuclear matter and the occurrence of this phase
transition sensibly depends on the value of the Δ-meson cou-
pling constants. Such a study was also extended with EOSs
corresponding to different values of the nucleon effective
mass and the saturated compressibility [60]. The range of
possible mean-field coupling constants of the scalar and the
vector mesons with Δ-isobars, compatible with existence of
stable nuclei at the saturation density, was studied in Ref.
[61]. In a similar framework, the relevance of the Δ-isobar
degrees of freedom at different regimes of temperature and
density was shown in symmetric and asymmetric hadronic
matter with the inclusion of hyperons and the lightest pseu-
doscalar and vector mesons, by requiring the Gibbs condi-
tions of the global conservation of baryon number, electric
charge fraction and zero net strangeness [62].

Following the approach of Refs. [17,58], we have studied
the presence of thermodynamical instabilities and a subse-
quent phase transition from nucleonic matter to resonance-
dominated Δ matter in a warm and dense asymmetric nuclear
medium (T ≤ 50 MeV and ρ0 ≤ ρB ≤ 3ρ0) [63].

In this paper we plan to extend such previous investiga-
tions in regime of high temperature and dense baryon matter
with the inclusion of the hyperon and the Δ-isobar degrees
of freedom in an effective relativistic hadronic EOS, charac-
terized by a set of mean-field coupling constants compat-
ible with different experimental constraints. By requiring
the Gibbs conditions on the global conservation of baryon
number and zero net strangeness, we are going to show
that the presence of the Δ-isobars can drive to the for-
mation of mechanical (due to fluctuations on the baryon
density) and chemical-diffusive instabilities (due to fluctu-
ations on the strangeness density). Analogously to Refs.
[17,63], an important feature of a system with two conserved
charges (baryon number and strangeness content) is that the
phase transition is continuous. At variance with the so-called
Maxwell construction for one conserved charge, the pressure
in not constant in the mixed phase, the binodal coexistence
surface is two dimensional and a pure hadronic phase transi-
tion with different baryon and strangeness content in the two
phases takes place.

2 Hadronic equation of state

We employ here the scheme of relativistic mean-field (RMF)
model at finite temperature and baryon density. For what
concern the full octect of the lightest baryons, the dynamics
can be described by the following Lagrangian density [64,65]

Loctet =
∑

k

ψk [i γμ ∂μ − (Mk − gσk σ) − gωk γμ ωμ
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−gρk γμ t · ρ μ] ψk + 1

2
(∂μσ∂μσ − m2

σ σ 2)

−1

3
a (gσN σ)3 − 1

4
b (gσN σ 4) + 1

2
m2

ω ωμωμ

+1

4
c (g2

ωN ωμωμ)2 + 1

2
m2

ρ ρμ · ρ μ

−1

4
FμνF

μν − 1

4
GμνGμν , (1)

where the sum runs over the full octet of baryons (p, n, Λ,
Σ+, Σ0, Σ−, Ξ0, Ξ−) interacting with σ , ω, ρ meson fields,
Mk is the vacuum baryon mass of index k and t is the isospin
operator which acts on the baryon. The field strength tensors
for the vector mesons are given by the usual expressions
Fμν ≡ ∂μων − ∂νωμ, Gμν ≡ ∂μρν − ∂νρμ.

In the RMF approach, baryons are considered as Dirac
quasiparticles moving in classical meson fields and the
field operators are replaced by their expectation values. The
parameters of the model are fixed to reproduce the properties
of equilibrium nuclear matter. In the following we will use
the parameters set marked as TM1 of Ref. [65], which has
a slightly lower value of the compression modulus K with
respect to the GM1 or GM2 sets of Ref. [64] and a smaller
value of the effective nucleon mass M∗

N , more appropriate to
reproduce the correct spin-orbit splitting in finite nuclei [66].

Let us remark that in Ref. [63], with the same parameters
set TM1, we have preliminarily studied the liquid–gas phase
transition in regime of low temperature and baryon density
for different proton fractions, obtaining results in accordance
with previous investigations [17,18].

The meson-hyperon coupling constants has been fixed
to the potential depth of hyperons at the saturation density
(UN

Λ = −28 MeV, UN
Σ = +30 MeV, UN

Ξ = −18 MeV) and
by means of the SU(6) symmetry relations [67,68].

We have verified that the two additional meson fields,
the hidden strange scalar meson f0(975) and the vector
meson φ(1020), usually introduced to simulate the hyperon-
hyperon attraction observed in Λ − Λ hypernuclei [67,68],
do not significantly affect the EOS in the considered range
of density and temperature and, taking also into account of
the uncertainty of the coupling constants, their contributions
will be neglected.

On the other hand, as previously discussed, we expect
that in regime of finite values of temperature and density,
the Δ(1232)-isobar degrees of freedom can play a central
role. To take into account of the Δ-isobars, a formalism was
developed considering only the on-shell Δ-particle contribu-
tion where the mass of Δs are substituted by the effective
one in RMF approximation [59,61,69]. In this framework
the Lagrangian density for the Δ-isobars can be expressed as

LΔ = ψΔν [iγμ∂μ − (MΔ − gσΔσ) − gωΔγμωμ]ψ ν
Δ,

(2)

where ψν
Δ is the Rarita-Schwinger spinor for the Δ-isobars.

In literature there are large uncertainties on the couplings
xσΔ = gσΔ/gσN and xωΔ = gωΔ/gωN between Δs and field
mesons (we limit ourselves to consider only the coupling with
the σ and ω-meson fields, more of which are explored in the
literature, taking also into account of the high temperature
symmetric nuclear matter regime considered in this investi-
gation). Qualitatively, it has been possible to establish that the
Δ-isobars inside a nucleus feel an attractive potential [70,71].
Moreover, as observed in Ref. [48], from phenomenological
analysis of the data relative to electron-nucleus, photoabsorp-
tion and pion nucleus scattering can be extracted different
experimental constraints on the values of the Δ-meson cou-
pling constants [72–75]. Of course, the choice of couplings
that satisfies the above conditions is not unique but exists a
finite range of possible values which depends on the particu-
lar EOS under consideration. Without loss of generality, we
can limit our investigation by fixing xωΔ = 1 and varying
xσΔ from unity to the value xσΔ = 1.2, compatible with the
observational constraints mentioned above. Such values are
also consistent with the limits obtained from the data analysis
of Ref. [56] (see, for example, Fig. 1 of Ref. [62]). Moreover,
we point out that the Δ-metastable condition (appearance of
a high density second minimum on the energy per baryon in
the zero temperature symmetric EOS), is not realized for the
above considered range of couplings. In Ref. [62] a detailed
study in absence and in presence of different Δ-meson fields
interaction is reported.

The finite temperature and density EOS with respect to
strong interaction has to conserve two charges related to
baryon number (B) and strangeness number (S). Due to
the high temperature involved in this study we will limit to
consider symmetric nuclear matter at Z/A = 0.5 and for
simplicity we will not consider fluctuations on the electric
charge. Therefore, the system is described by two indepen-
dent chemical potentials μB , μS , and the particle chemical
potential of index i can be written as

μi = bi μB + si μS , (3)

where bi and si are the baryon and the strangeness numbers
of i-th hadronic species, respectively. On the other hand, the
particle chemical potentials are related to the microscopic
EOS by means of μi = ∂ε/∂ρi and are given in terms of the
effective chemical potentials μ∗

i as

μi = μ∗
i + gωi ω + gρi t3i ρ . (4)

The baryon effective energy is E∗
i (k) =

√
k2 + Mi

∗2, where
the effective mass of the i th baryon is defined as M∗

i =
Mi − gσ iσ .

Especially in regime of high temperature and low baryon
density, the relevance of the lightest pseudoscalar and vector
mesons is expected to be important. On the other hand, the
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contribution of the π mesons (and other pseudoscalar and
pseudovector fields) vanishes at the mean-field level. From
a phenomenological point of view, we can take into account
the lightest pseudoscalar (π , K , K , η, η′) and vector mesons
(ρ, ω, K ∗, K

∗
, φ) as a quasi-particle gas by adding their

one-body contribution to the thermodynamical potential (for
details, see for example, Refs. [19,62]).

Finally, the thermodynamical quantities can be obtained
from the total grand potential Ω in the standard way, as a
sum of the baryon and meson degrees of freedom.

3 Phase transitions and stability conditions

At variance of temperature and density, the multi-compo-
nent particles constituent the system can change under the
constraint of the global conservation of the baryon number
and zero net strangeness. For such a system, the Helmholtz
free energy density F can be written as

F(T, ρB, ρS) = −P(T, μB , μS) + μBρB + μSρS , (5)

with

μB =
(

∂F

∂ρB

)

T,ρS

, μS =
(

∂F

∂ρS

)

T,ρB

. (6)

By assuming the presence of two phases (denoted as I and
I I , respectively), the system is stable against the separation
in two phases if the free energy of a single phase is lower than
the free energy in all two phases configuration. In this case
the phase coexistence is described by the following Gibbs
conditions

μI
B = μI I

B , μI
S = μI I

S , (7)

P I (T, μB , μS) = P I I (T, μB , μS) . (8)

At a given baryon density ρB and at a zero net strangeness
density (rS = ρS/ρB = 0), the chemical potentials μB and
μS are univocally determined by the following equations

ρB = (1 − χ) ρ I
B(T, μB , μS) + χ ρ I I

B (T, μB , μS) , (9)

ρS = (1 − χ) ρ I
S(T, μB, μS) + χ ρ I I

S (T, μB , μS) , (10)

where ρ
I (I I )
B and ρ

I (I I )
S are, respectively, the baryon and

strangeness charge densities in the lower density (I ) and in
the higher density (I I ) phase and χ is the volume fraction of
the phase I I in the mixed phase (0 ≤ χ ≤ 1).

Unlike the case of a single conserved charge, where the
pressure in the so-called Maxwell construction is constant,
for two conserved charges the pressure in the mixed phase is
not constant and the baryon and the strangeness densities can
be locally different in the two phases, although the total ρB

and ρS of system result to be globally conserved. At the ther-
mal equilibrium, the possible phase transition can be char-
acterized by mechanical (fluctuations on the baryon density)

and chemical instabilities (fluctuations on the strangeness
density) with a consequent two dimensional binodal coexis-
tence surface [23–26].

The condition of the mechanical stability implies [17]

ρB

(
∂P

∂ρB

)

T, ρS

> 0 , (11)

therefore, when the compressibility becomes negative, at
fixed temperature and strangeness density, a mechanical
instability appears in the EOS.

By defining μi, j = (∂μi/∂ρ j )T,P (with i, j = B, S) [76],
the chemical stability can be expressed with the following
conditions

μB,B > 0 , μS,S > 0 ,

∣∣∣∣
μB,B μB,S

μS,B μS,S

∣∣∣∣ > 0 . (12)

In addition to the above conditions, for a process at constant
P and T , it is always satisfied that

ρB μB,B + ρS μS,B = 0 , (13)

ρB μB,S + ρS μS,S = 0 . (14)

More explicitly, for example, Eq.(14) can be written as
(

∂μB

∂rS

)

T,P
+ rS

(
∂μS

∂rS

)

T,P
= 0 . (15)

The system has a zero net strangeness content but during
a phase transition the strangeness fraction rS is not locally
fixed in the single phase. At a given temperature, during
the compression of the system, the appearance of strange
particles/antiparticle could, in principle, shift the diffusive
instability region to positive or negative values of rS . Such a
feature has no counterpart in the standard liquid–gas phase
transition where the proton fraction is always positive [17].

Taking into account of these aspects, the chemical stability
condition is satisfied if

(
∂μS

∂rS

)

T,P
> 0 or

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

(
∂μB

∂rS

)

T,P
< 0 , if rS > 0 ,

(
∂μB

∂rS

)

T,P
> 0 , if rS < 0 .

(16)

Whenever the above stability conditions are not respected,
the system becomes unstable and a binodal surface in
(T, P, rS) space encloses the area where the system under-
goes to the phase transition.

4 Results and discussion

We are now able to investigate the presence of thermody-
namic instabilities in the symmetric nuclear EOS at different
values of temperature and baryon density.
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Fig. 1 Pressure as a function of the baryon density (in units of the
nuclear saturation density ρ0) at different temperatures. The curves
labeled a through d have decreasing temperatures: T = 150, 140,
130 and 120 MeV, respectively. In the case b (T = 140 MeV) and c
(T = 130 MeV), the system is mechanically unstable and the continu-
ous (dashed) lines correspond to the solution obtained with (without)
the Gibbs construction

As already anticipated, the presence of the Δ-isobar
degrees of freedom plays a crucial role into the formation of
thermodynamic instabilities. Although unstable conditions
can be realized for different combinations of the meson-Δ
coupling constants, corresponding to a larger net attraction
for Δ isobars with respect the nucleon one, we initially focal-
ize our discussion by fixing xσΔ = 1.2 and xωΔ = 1, val-
ues compatible with different experimental constraints pre-
viously discussed [48]. Let us observe that, in the case of
a net repulsive Δ-interaction or in absence of interaction,
the effects thermodynamic instabilities would disappear or
become negligible. This is mainly due to the softening of the
EOS with the appearance of Δ isobars, which favor, together
with hyperons, the formation of mechanical instabilities (11).
On the other hand, an attractive Δ-interaction modifies, at
fixed μB and finite T , the strange chemical potential μS (see
for example, Fig. 9 of Ref. [62]) by affecting the presence of
chemical (strangeness) instabilities.

In Fig. 1, we show the pressure as a function of the baryon
density at different temperatures and zero net strangeness
(rS = 0). For the curves b (corresponding to T = 140 MeV)
and c (corresponding to T = 130 MeV), the condition (11) is
clearly not satisfied and the mechanical instabilities are real-
ized from about T = 125 MeV to T = 145 MeV, over a finite
range of baryon densities. For the unstable isotherms, b (T =
140 MeV) and c (T = 130 MeV), the continuous lines corre-
spond to the solution obtained with the Gibbs construction,
related to the conditions (7) and (8), whereas the (unphys-
ical) dashed lines with the appearance of loops are without
correction.

In the most cases, together with the presence of the
mechanical instability, the chemical instability conditions
result to be also achieved. To better clarify the realization
of this last condition, in Fig. 2, we report the two indepen-

Fig. 2 Baryon (upper panel) and strangeness (botton panel) chemical
potentials at T = 140 MeV as a function of the strangeness ratio rS .
The curves labeled a, b and c correspond to a value of pressure P = 50,
26 and 20 MeV/fm3, respectively. In the case b (P = 26 MeV/fm3), the
system results to be unstable and the geometrical construction of the
Gibbs conditions is reported in the rectangular region

dent chemical potentials μB (upper panel) and μS (lower
panel) for three different values of pressure (P = 20, 26 and
50 MeV/fm3) as a function of the strangeness fraction rS , at
T = 140 MeV.

The cases a and c correspond to a value of pressure for
which the chemical stability conditions are satisfied and, at
fixed value of rS , we have a unique value of μB and μS .
Otherwise, the red dashed lines, labeled with b in the two
panels, show an example of chemical instability due to a
multiple solution for the chemical potentials at fixed value
of pressure. In the black points at the edges of the rectan-
gular regions are reported the geometrical constructions of
the phase equilibrium, on the basis of the Gibbs conditions:
the pressure and the chemical potentials of the two phases at
different strangeness fractions, r (1)

S and r (2)
S , are equal at the

same temperature. The collection of all pairs of strangeness
fractions r (1)

S (T, P) and r (2)
S (T, P), defines the binodal sur-

face, which encloses the area of thermodynamical instability
of the system.

In Fig 3, we report the corresponding binodal section at T
= 140 MeV. During the isothermal compression, the system
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Fig. 3 Binodal section giving the two phase coexistence phase bound-
ary in the mixed phase at T = 140 MeV

meets the unstable region in the point A, at ρB(A) ≈ 0.3 ρ0

and rS = 0, and it separates into two phases of different
strangeness ratio rS . At the same time, a second phase appears
in B at higher baryon density, ρB(B) ≈ 1.1 ρ0. Then each
phase evolves from A to D (phase I ) and from B to C (phase
I I ) with an almost constant baryon density in each phase.
Finally, the system emerges in the higher density phase in C ,
at the same strangeness fraction of A (rS = 0). Let us observe
that the phase transition occurs in a very strictly range of
pressure corresponding however to a sensible variation in the
baryon density (about 0.8 ρ0) at a baryon chemical potential
μB 	 320 MeV (in the case of T = 130 MeV, the phase
transition occurs at about μB 	 600 MeV, with an almost
constant baryon density of about 1.5 ρ0 in the phase I and
2.2 ρ0 in the phase I I ).

Therefore, in the mixed phase, two phases at different
baryon density and strangeness content take place. The phase
I , at lower density and positive strangeness with an excess
of s quarks, corresponding to an enhancement of anti-hyper-
ons and K+, K 0 mesons. As a counterpart, the phase I I ,
at higher density and negative strangeness with an excess

of s quarks, due to the formation of hyperons and K−, K
0

mesons (in addition to a Δ-rich matter). This feature has
strictly analogies to the quark-hadron phase transition where
it possible to realize the so-called strangeness distillation:
s quarks are foreseen mainly present in the lower density
hadronic phase and the population of s quarks should be
greatly enriched in the higher density quark-gluon phase [77–
79].

As previously outlined, the region in which the thermody-
namic instabilities take place is very sensitive to the value of
the xσΔ coupling constant. At this regards, in Fig. 4, we report
the phase diagram in the temperature-baryon density plane, at
a fixed value of xωΔ = 1 and for the values xσΔ = 1.2 (upper
panel) and xσΔ = 1 (lower panel). Different isentropic lines
corresponding to the values S/B = 30, 20, 15, 10 (red, blue,
green and magenta, respectively) are also reported.

Fig. 4 Phase diagrams for two values of the coupling: xσΔ = 1.2
(upper panel) and xσΔ = 1.0 (lower panel). Dot-dashed and dashed
lines, represent the isentropic trajectories for S/B = 30, 20, 15, 10 (red,
blue, green and magenta, respectively) for the two coupling constants
xσΔ

Let us observe that the thermodynamic instabilities are
already present in the so-called “minimal coupling” choice,
assuming the Δ-isobars coupling constants equal to the
nucleon one (xσΔ = xωΔ = 1). By increasing xσΔ and,
consequently, the relevance of the Δ-isobar degrees of free-
dom in the EOS, we observe a remarkable reduction of the
critical temperature and an increase of the baryon density
range for which the system enters into the thermodynamical
instabilities region. Furthermore, along each isentropic tra-
jectory, conserved in a fluid element in the hydrodynamics
models [80], we have in the mixed phase a reduction of the
temperature in a wide range of baryon density. This pecu-
liar behavior could be phenomenologically relevant in order
to identify such a phase transition in the future compressed
baryonic matter experiments [7–11].

We have verified that the baryon effective masses never
become negative in the range of the considered coupling
constants. In presence of the phase transition, we observe
a remarkable reduction of the effective masses during the
mixed phase. This effect is relatively stronger for the nucle-
ons and Δ isobars. For example, at T = 140 MeV, with xσΔ =
1.2, the nucleon ratio M∗/MN is reduced to 0.08, while the Δ

isobars ratio M∗/MΔ 	 0.13 at the end of the phase transi-
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Fig. 5 Absolute value of the strangeness fractions YS = ρS/ρB for
hyperons (H ), anti-hyperons (H ), strange mesons (M) and strange anti-
mesons (M) as a function of the net baryon density at T = 140 MeV
and xσΔ = 1.2. The vertical dashed lines delimit the regions of the
mixed phase

tion, corresponding to ρB 	 1.1 ρ0. At densities greater than
the second transition density, the effective masses decrease
very slowly. In this context, let us observe that such effective
masses cannot be directly compared with the baryon ground
state masses obtained in lattice QCD predictions at vanishing
baryon density [81].

Finally, concerning Fig. 4, it is necessary to observe that,
in order to complete the phase diagram, we have extended
our results to very low baryon densities even if the considered
EOS is mainly appropriate at finite baryon density.

In order to get a deeper insight into the chemical parti-
cle composition during the phase transition, in the Fig. 5,
we report the absolute value of the strangeness fractions
YS = ρS/ρB for hyperons, anti-hyperons, strange mesons
and anti-mesons as a function of the net baryon density at
T = 140 MeV and xσΔ = 1.2. In accordance with the com-
ments of Fig. 3, during the mixed phase we have a strong
enhancement of anti-hyperons mainly in the lower density
mixed phase I with positive strangeness. The global zero net
strangeness is realized by means of a slower reduction of
the strange anti-mesons (mainly present in the higher den-
sity mixed phase I I ) with respect to the strange mesons.
At the end of the phase transition (at about ≈ 1.1 ρ0), the
strangeness fraction decreases with approximately the same
slope for strange baryons and mesons.

In Fig. 6, we report the Λ (solid lines) and Λ (dashed
lines) particle densities as a function of the baryon density,
for different temperatures and xσΔ = 1.2. The dots delimit
the region of the mixed phase at T = 130 (blue lines)
and 140 MeV (red lines), where thermodynamic instabili-
ties are present (the system becomes unstable for T � 125
MeV). According to the previous discussion, by increas-
ing the baryon density during the mixed phase, we have
an enhancement for both Λ (mainly in the higher density
phase I I ) and Λ (mainly in the lower density phase I ) but

Fig. 6 Λ (solid lines) and Λ (dashed lines) densities (in units of fm−3)
as a function of the net baryon density for different temperatures. Dots
delimit the mixed phase region where thermodynamic instabilities are
present (T = 140 MeV, red lines and T = 130 MeV, blue lines)

this effect is stronger for Λ. We get a similar behavior also
for the other strange baryons, even if with lower particle
densities (in comparison, let us observe that in Fig. 5 the
strangeness densities have been divided by the baryon den-
sity). As a counterpart, we have found that a sharp reduc-
tion in the strange meson/anti-meson ratios (mainly in the
K+/K− ratio) occurs into the mixed phase.

5 Conclusions

Nuclear phase transitions and critical phenomena have been
studied at different regimes of temperature and baryon
density reachable in relativistic heavy-ion collisions. High
energy compressed baryonic matter experiments will open
the possibility to investigate in detail finite temperature and
dense nuclear matter.

The main goal of this work it to show the possible presen-
ce of thermodynamical instabilities at high temperature and
dense nuclear matter, by requiring the global conservation
of the baryon number and zero net strangeness. Similarly to
the liquid–gas phase transition in asymmetric nuclear matter,
mechanical and chemical-diffusive thermodynamic instabil-
ities can be formed but, in the present regime, the correspond-
ing phase transition is driven by a different strangeness con-
tent in the mixed phase, instead of a different electric charge
fraction.

The considered effective EOS has the noticeable advan-
tage of making the non trivial numerical analysis more easy
to handle, even if cannot, of course, to incorporate the com-
plex many-body interactions at finite temperature and baryon
density. It would be very interesting to extend such a study
to a more realistic chiral symmetric model and beyond of the
mean field approximation.

As first observed in Ref. [58], the introduction of the Δ

isobar degrees of freedom plays a crucial role in the real-
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ization of the unstable conditions, which are sensible to the
values of the Δ-meson coupling constants. We have seen that
the mechanical and the chemical thermodynamic instabilities
appear in the EOS considering a finite range of couplings
compatible with different experimental constraints.

Differently from the discontinuous one-component phase
transitions, for a two-component system a continuous hadronic
phase transition takes place with two phases at the same
baryon and strangeness chemical potentials but with a dif-
ferent content of baryon and strangeness density. A phase I ,
at lower baryon density and positive strangeness and a phase
I I , at higher baryon density, negative strangeness and Δ-rich
matter.

Due to the global conservation of zero net strangeness,
during the phase transition, at fixed temperature, we observe
a pure hadronic strangeness distillation, a strong enhance-
ment of the anti-hyperon to hyperon ratios with a consequent
formation of s quarks, mainly in the baryon sector in the
lower density phase I , and of s quarks, mainly in the meson
sector in the higher density phase I I . Furthermore, the con-
sidered hadronic phase transition, which implies a softening
of the EOS, have very similar features and signatures to the
hadron-quark phase transition with an analogue strangeness
distillation effect due to a large anti-strangeness content in
the hadron phase while the quark-gluon phase retains a large
net strangeness excess [77,78]. In this context, let us observe
that the formation of a high density Δ-rich matter in the
hadronic phase can delay the hadron-quark phase transition
at fixed temperature [79].

In the last years, many important progresses have been
made in the theoretical modeling of high baryon density with
the development of hydrodynamic and microscopic transport
models to simulate space-time evolution of hot and dense
nuclear matter generated in high energy heavy-ion collisions
[82–91]. Analysis of collective flows, such as directed and
elliptic flow, which are sensitive to the early stage of the
collisions, can give valuable information about the nuclear
EOS [92–94].

However, to date, the developed hydrodynamic and trans-
port models seem to have been unsuccessful in the reproduc-
ing the beam energy dependence of the directed flow slope
within a single EOS parameters set [85,87,93,94]. In partic-
ular, the NA49 Collaboration [95] and, more recently, with
a much higher statistics, the STAR Collaboration [96,97]
clearly discovered a change of sign of the proton directed
flow slope around

√
sNN = 10 GeV at mid-rapidity. On

one side, quantum molecular dynamic transport models well
reproduces the experimental directed and elliptic flow by
means of a rather stiff monotonous EOS up to

√
sNN = 8.8

GeV, whereas the collapse of the proton direct flow at higher
energy beam seems to support a softening of the EOS around√
sNN = 10 GeV, corresponding to a (unknown) first order

phase transition [90,94].2 In this context, we observe that
most of the theoretical calculations predict the collapse of
the directed flow below

√
sNN ≈ 6 GeV.

It is still premature to conclude unambiguously that the
collapse of the directed flow is a clear signature of a phase
transition, on the other hand the hypothetical softening of the
EOS could be in principle compatible with the pure hadronic
phase transition of the present investigation (also due to the
similarities with a hadron-quark phase transition). Although
the results of hydrodynamic and microscopic hadron trans-
port models are very sensitive to the considered assump-
tions and the adopted EOS, the order of magnitude of differ-
ent physical quantities that characterize the phase transition
(such as the values of entropy per net baryon S/B ≈ 18÷25,
temperature and baryon densities involved in the dynamical
trajectories at

√
sNN = 7.7 and 11.5 GeV, predicted in Ref.

[86]; the values S/B = 10, 20 and the pressure during the first
order phase transition considered in Refs. [88,89]), appears
to be comparable with that involved in the thermodynamic
instabilities region here considered.

Among the others, detailed and simultaneous studies of the
radial, directed, elliptic flow values [89] and/or sophisticated
analysis, such as the extraction of the bulk modulus [98],
could discriminate more clearly the occurrence of a pure
hadronic or the nature of a hadron-quark phase transition in
the compressed baryon matter regime.

Acknowledgements It is a pleasure to thank A. Drago and G. Pagliara
for useful discussions.

Funding Information Open access funding provided by Politecnico
di Torino within the CRUI-CARE Agreement.

Data Availability Statement This manuscript has no associated data
or the data will not be deposited. [Authors’ comment: Data is available
upon request from the authors.]

Open Access This article is licensed under a Creative Commons Attri-
bution 4.0 International License, which permits use, sharing, adaptation,
distribution and reproduction in any medium or format, as long as you
give appropriate credit to the original author(s) and the source, pro-
vide a link to the Creative Commons licence, and indicate if changes
were made. The images or other third party material in this article
are included in the article’s Creative Commons licence, unless indi-
cated otherwise in a credit line to the material. If material is not
included in the article’s Creative Commons licence and your intended
use is not permitted by statutory regulation or exceeds the permit-
ted use, you will need to obtain permission directly from the copy-
right holder. To view a copy of this licence, visit http://creativecomm
ons.org/licenses/by/4.0/.

2 Within three-fluid dynamics simulations, a smooth crossover seems
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