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Abstract. This study presents an asymptotic stability analysis of a model of a bioreactor
converting carbon monoxide (CO) gas into ethanol through a C. autoethanogenum biocatalyst.
The configuration is a bubble column reactor with co-current gas-liquid flows where gas feed
is introduced by a gas distributor placed at the bottom of the column. A pure culture of
C. autoethanogenum is subsequently injected at the bottom of the column; therein, cells are
dispersed in the liquid and consume the dissolved gas and release by-products such as ethanol
and acetic acid. Cellular growth and byproduct secretion are affected by spatially varying
dissolved gas concentrations due to advection-diffusion mass transports which are induced by
the effect of the injection pressure and gravitational force. The model accounts for four species
representing the biomass, the CO substrate in the liquid phase, and two by-products - ethanol
and acetic acid. Substrate dynamics is described by an advection-diffusion equation.

We investigate the asymptotic stability of the biomass dynamics that is a requirement for
the system’s controllability, i.e. for the possibility to steer a dynamical system from an arbitrary
initial state to an arbitrary final state using a set of controls. The concept of stability of the
controls is extremely relevant to controllability since almost every workable control system is
designed to be stable. If a control system is not stable, it is usually of no use in practice in
industrial processes. In the case of a bioreactor, the control is the biomass and controllability is
the possibility of modulating through this control the ethanol production. We present a test for
asymptotic stability, based on the analysis of the properties of the dynamic function defining
its role as storage function.

1 Corresponding author.
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1. Introduction
Biomanufacturing is a growing trend across countless sectors such as the production of
commodities in the chemical industry [1], the production of high-value biologics in the healthcare
sector [2, 3], and the wastewater treatment in the environmental protection sector [4, 5].
Albeit attracting increasing attention, biomanufacturing is confronted with several challenges.
Consistency in the performances of bioreactors, which are the operation units hosting the
biotechnological production processes, is determined by multiple factors, which encompass not
only productivity but also process and thus product quality [6]. Industrial control systems largely
depend on expensive process analytical technologies with integrated feedback mechanisms to
ensure near real-time consistent and adequate process supervision, fault detection and correction
during manufacturing [7, 8, 9]. It is advisable to design the control process as efficient as possible
and to reduce the scope of application of near real-time process analytical technology. Assessing
a priori the controllability of the process and/or designing the controllability itself offer solid
instruments for this purpose.

Controllability is strongly related to asymptotic stability [10, 11, 12]. Although asymptotic
stability does not imply controllability, asymptotic stability (an in particular global asymptotic
stability) of internal dynamics is a property of the system that can be exploited to implement
control procedures over the system. Recently, asymptotic stability property has in fact
been exploited to implement control procedures for micro-algae growth in chemostat [13].
A theoretical study of asymptotic stability has recently been carried out also on ecological
models for biodegradation of toxic substances in aquatic and atmospheric biotic systems [14].
Mathematical analysis in these contexts is useful to outline the parameters, or to design or
to implement a priori control of parameters domain ensuring stable operations of microbial
processes in a continuous mode. The property of asymptotic stability of the equilibria of
the control variable is so important for the purpose of controllability design that, if it is not
inherently present in the physical process, it is induced, for example through delayed feedback
mechanisms, as also demonstrated by the work of Borisov et al. [15], which is focused on an
anaerobic biological treatment of organic wastes in a continuously stirred tank bioreactor. The
authors proposed an output feedback including a discrete delay for the asymptotic stabilization
of the model. They motivated their study by pointing out that, in operating a plant, feedback
control of bioreactor models provides many advantages among which the most important is the
increment of the efficiency. Along this line of thought, we found very recent works such as that
of Dimitrova et al. [16], which studies the asymptotic stability and bifurcations of a model for
phenol and p-cresol mixture degradation in a continuously stirred bioreactor with respect to a
practically important parameter.

Almost all studies of stability, stabilizability, and control of physical processes use the
theoretical basis and computational models of Lyapunov theory [17]. The application of this
theory to control is mainly based on the Lyapunov stability theorem. There are two Lyapunov
methods for testing stability, of which the most popular one is the Direct Method of Lyapunov
(DML). According to this method, the stability of an equilibrium point x of a dynamical system
in the form ẋ = f(x), where f : D ⊆ Rn+ −→ R, and D is an open set, requires the flow
associated with the dynamical system being decreased on a function V : D ⊆ Rn+ −→ R for
which x is an isolated minimum. This function is known as Lyapunov function.

It is well known that the main drawback of the DML is the lack of a systematic method to
find a Lyapunov function. The common approach consists in proposing a function and then
checking if this candidate satisfies the conditions to be a valid Lyapunov functions. We note
that the Lyapunov function is a special case of the storage function [18] and, with respect to
the traditional error-and-trial search methodology for this function, we note that the function
f can be tested for being a valid storage function. From Megretski and Megretski co-authored
scientific, perspective, editorial and didactical works [19, 20, 21, 18], as well as from the results of
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Mondragón et al. [22], we formulated a theorem stating the sufficient conditions that a storage
function f : D ⊆ Rn+ −→ Rn has to satisfy in order for an equilibrium point x solution of the
non-linear system ẋ = f(x) to be asymptotically stable. According to our theorem, if f is a
storage function, the Hessian matrix of f , Hf evaluated at the equilibrium point, is positive
definite, and ∂f/∂x < 0, x ∈ D, then the equilibrium point x is asymptotically stable. In order
to be a valid storage functions f has to satisfy five conditions: (i) D has to be open, (ii) f has
to be continuously differentiable, (iii) the supply rate σ(x) has to be continuous, (iv) V has to
be continuously differentiable, and (v) the dissipation inequality ∇V ḟ(x) ≤ σ(x) has to be true.

The theorem offers a test for the asymptotic stability of equilibria and can be carried
out numerically, but it is advisable that the test implementation avoids sources of numerical
instability, especially those due to numerical integration procedures. We show the application of
the theorem to the advection-diffusion model of a bubble column bioreactor where the control
variable is represented by the biomass of the biocatalyst which operates the biological capture
and conversion of carbon monoxide into by-products such as acetate and ethanol.

The paper is organized as follows: Section 2 reviews the Lyapunov stability analysis, reports
the relevant literature, highlights the limitations and presents our theorem; Section 3 describes
the bubble columns bioreactor of our case study; Section 4 summarizes the advection-diffusion
model for this type of bioreaction, that we developed in a previous study [23], and the results
of the computational test implementing the theorem of asymptotic stability applied to the
advection-diffusion equation for the biomass. Finally, Section 5 draws some conclusions.

2. Stability analysis
The trajectories of a non-linear dynamical system of the form

ẋ = f(t, x) (1)

where f : D → RN is a Cn is a map and D ⊂ Rn is an open set, are asymptotically stable if
nearby solutions not only remain that way but also may converge to the equilibrium.

According the Direct Method of Lyapunov (DML) an equilibrium point x is said stable if the
flow associated with the dynamical system (1) is decreased on some scalar function V for which
x is an isolated minimum. This function is known as Lyapunov function, and the following is
the Lyapunov stability theorem [24].

Theorem 1. Let x ∈ D be an equilibrium point of (1). Let V : B → R be a continuous function
defined on a neighbourhood B ⊂ D of x, differentiable on B − x, such that

(i) V (x) = 0 and V (x) > 0 if x 6= x

(ii) the orbital derivative V̇ : D ⊆ Rn → R defined as

V̇ :=
∂V

∂t
(t, x) +

∂V

∂x
(t, x) · f(t, x)

is V̇ (x) ≤ 0 in B − x

then x is stable.
Furthermore, if V̇ (x) < 0 in B − x, then x is asymptotically stable.

The DML has been the principal tool to analyse global stability of dynamical systems applied
to basic sciences and engineering in the twentieth century [25]. If it is possible to find a Lyapunov
function for a dynamic system operating around a state x, then x is a stable state that is
approached asymptotically. The main issue of the DML is to find a suitable Lyapunov function
[26], as there is not a systematic method for finding. Commonly, finding a Lyapunov function
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is a artisanal work, i.e. a function is proposed and then it is checked whether it satisfies the
stability conditions, as suggested by Perko [27].

We note that Lyapunov functions are special cases of storage functions [18]. Here we adopt
a notation similar to that of Megretski [18] and consider a system whose dynamics is defined
by the behaviour set Z = {z} of functions z : [0,∞)→ Rp, i.e. the elements of Z are functions
returning all possible outputs for autonomous systems, and all possible input/output pairs for
systems with an input [18]. Consider the case in which z(t) = [vi(t), vo(t)] where vi(t) is the
input and vo(t) the output. Assuming that the composition σ◦z (where σ : Rp → R) is integrable
over every interval (t1, t2) ∈ R+, ∀z ∈ Z, we can calculate the integral

I(z, t1, t) =

∫ t

t1

σ(z(τ))dτ.

Megretski [18] proved that the following conditions are equivalent

(a) ∀z0 ∈ Z and t1 ∈ R+, the set of values of I(z, t1, t), taken for all t ≥ t0 and for all z ∈ Z
defining the same state as z0 at time t0, has a lower bound

(b) there exist a non-negative storage function Vs : Z × R+ → R+ (with supply rate σ) such
that

Vs(z1, t) = Vs(z2, t)

whenever z1 an z2 define same state of Z at time t.

Moreover, when condition (a) is satisfied, a storage function V from (b) can be defined by

Vs(z0(·), t0) = − inf I(z, t0, t) (2)

where the lower extreme is taken over all t ≥ t0 and over all z ∈ Z defining same state as z0 at
time t0.

The equivalence between conditions (a) and (b) has an important consequence for the
existence of a storage function for the solution of an ordinary differential equation model.
Consider a model

ẋ(t) = f(x(t), w(t)) (3)

where function f : X ×W → Rn, X ⊂ Rn and W ⊂ Rm. Here, for the sake of simplicity, and
without loss of generality, and following Megretski [18], we consider a function f whose domain
has only two components. Then consider all functions z(t) = [x(t);w(t)] where x : [0,∞) → X
is a solution of Eq. (3). In this case, two signals z1 = [x1;w1] and z2 = [x2;w2] define same
state of Z at time t0 if and only if x1(t0) = x2(t0). For a given supply rate σ : X ×W → R,
stating the existence of a storage function Vs : X × R+ → R+ such that

Vs(x(t2), t2)− Vs(x(t1), t1) ≤
∫ t2

t1

σ(x(t), w(t))dt (4)

is equivalent to stating that the lower extreme of the integrals∫ t

t0

σ(x(τ), w(τ))dτ (5)

fits over all solutions of (3) with a fixed x(t0) = x0 which can be extended to the time interval
[0,∞). Note that when σ = 0 the storage function becomes a Lyapunov function [18]. In
Appendix A, we report the version of Eq. (4) for a discrete system.
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In several applications σ is a function comparing the instantaneous values of input and output
[18], e.g.

σ(z(t)) = |vo(t)|2–|vi(t)|2.

The search for the storage function (and the Lyapunov function) is not an easy task. However,
in dynamic models, the function f is a possible candidate storage function. The following
proposition lists the necessary and sufficient conditions for a function f : X ×W → Rn to be a
storage function [18].

Proposition 1. A function f : X ×W → Rn is a storage function iff

(i) X is an open set

(ii) f is continuously differentiable

(iii) σ is continuous

(iv) V is continuously differentiable

(v) this inequality holds
∇V · f(x,w) ≤ σ(x,w). (6)

Proof. See [18, 28, 29] for a proof and for a description of the properties of a storage function.

The set of storage functions for a controllable system is a convex bounded polytope [30].
For an uncontrollable system the set of storage functions is unbounded because the set of
Lyapunov functions for the autonomous linearized system is unbounded. The stabilizability
of a system results in this unbounded set becoming bounded from below. Storage function is
related to the energy stored by the system. It is easy to understand the concept of storage
function in dissipative systems. In such a system, the energy depends on the supply rate and a
storage function [31]. The supply rate is the rate at which energy flows into the system, and a
storage function is a function measuring the amount of energy stored inside the system at any
time. These functions are related via the dissipation inequality, which states that, along time
trajectories of the dynamical system, the supply rate is bigger than the increase in storage [32],
i.e.

∂V

∂t
≤ σ(x(τ), w(τ)). (7)

The dissipation inequality states that a system cannot store more energy than is supplied to it
from the outside, and is equivalent to inequality (6) since

∂V

∂t
= ∇V · f(x,w).

The difference between the supplied and the internally stored energy is the dissipated energy.
When a storage function is positive definite the maximum stored energy that can be drawn
out is bounded [30, 33]. In order to test the asymptotic stability of an equilibrium, once it is
possible to prove that the function f in Eq. (3) is a valid storage function, all that remains is to
check if this function is positive definite. The positive definiteness of the storage function is a
requirement for the global asymptotic stability of the equilibrium. We then state the following
theorem.

Theorem 2. Let x ∈ X be an equilibrium solution of non-linear system (3). If

(i) the Hessian matrix of f : X ×W → Rn at x = x, Hf(x) is positive definite

(ii) f is a storage function with supply rate σ

(iii) ∂f
∂xi

< 0 for i = 1, 2, , . . . , n
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then x is globally asymptotically stable.

Proof. Since the Hessian matrix of f at x = x is positive definite (hypothesis (i)), then x is a
relative minimum. Since f : X ×W → Rn is a storage function with supply rate σ (hypothesis
(ii)), then, according to Proposition 1, X is an open set, and f satisfies the dissipation inequality
(6) (or equivalently the dissipation inequality (7)), stating the existence of a Lyapunov function
V , such that −V̇ (x) is positive definite. Consequently, since by hypothesis (i) Hf(x) is positively
definite, then also the the Hessian matrix of the product −V̇ (x) ·f(x) is positive definite. Given
the hypothesis (iii), by the Corollary 4 of Theorem 3 of Mondragón et al. [22] (see also the
Appendix B), we then have that x is globally asymptotically stable.

The Theorem 2 has a straightforward generalization to any function f : D ⊆ Rn → R.

3. The bubble column bioreactor
Gas fermentation by means of autotrophic acetogenic bacteria is a technologically appealing
option to valorize single-carbon (C1) gas resulting from manifold industrial processes into
chemicals [34, 35, 36, 37]. One of the most challenging problems in gas fermentation is to
establish culture conditions which offer favourable gas-liquid mass transfer characteristics such
that the gas components are readily dissolved in the medium and thus available for microbial
conversion. The key objective of bioreactor design is thus to provide a high gas-liquid mass
transfer efficiency of gas into the fermentation broth, while allowing process scale-up and low
operational costs [38]. Commercial development efforts are currently focused on bubble column
reactors due to the low specific power input per gas-liquid mass transfer unit, operational
flexibility, scalability, and low maintenance and operational costs [39, 40]. Bubble column
reactors, in their simplest form, are vertically arranged, cylindrical, stainless steel vessels, filled
with a low viscosity liquid. Gas is injected into the liquid by means of a distributor (sparger),
placed at the bottom of the column. Although bacterial cells would constitute a third phase
within the bioreactor, they are considered to occupy a negligible volume and to be homogeneously
distributed within the liquid phase. The mechanisms at the core of bubble column reactors
functionality are gas bubbles’ formation, bubbles’ rise and resulting circulation patterns. The
fluid dynamics of a bubble column reactor, in the absence of any draught apparatus, is controlled
mainly by the gas flow. The gaseous substrate dynamics, which results from the compound
intervention of gas injection thrust and hydrostatic pressure due to the column height, is
described by an advection-diffusion equation with no source/sink terms. In our study, advection-
diffusion processes were assumed to occur only in the axial direction of the column such that the
spatial variation could be captured by a single variable z. A pure culture of C. autoethanogenum
is injected at the bottom of the column; therein cells are dispersed in the liquids and consume
the dissolved gas and release by-products such as ethanol and acetic acid. Uniform biomass
concentration profile within the reactor was used as the initial condition. The uptake kinetics
for dissolved carbon monoxide were specified to follow the Michaelis-Menten equation and
accounted for carbon monoxide inhibition, which experimental studies suggest are important
at high dissolved CO levels [41]. Cellular growth and by-products’ secretion are affected by
spatially varying dissolved gas concentrations due to advection-diffusion mass transports induced
by the effect of the injection thrust and gravitational force. The model accounts for four species
representing the biomass, the CO gaseous substrate, and two by-products - ethanol and acetic
acid. The operation in industrially relevant environment is typically continuous with respect to
the gas feeding whereas here we assume a batch-wise operation mode.

4. Advection-diffusion equations for a bubble column bioreactor
We examine a model for a bioreactor converting carbon monoxide (CO) gas into ethanol and
acetate through a C. autoethanogenum biocatalyst. The model and its observability analysis
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were developed by the authors in a recent study available in [23]. We use here the same notation
used in [23] to report a brief description of the model.

The bioreactor is a bubble column reactor2 with co-current gas-liquid flows where gas feed
is introduced by a gas distributor placed at the bottom of the column. A pure culture of
C. autoethanogenum is subsequently injected at the bottom of the column; therein cells are
dispersed in the liquid, consume the dissolved gas and release by-products such as ethanol and
acetic acid. Due to the liquid advection and to the gas diffusion processes, the column has
spatially varying dissolved gas concentrations available to the bacteria. The model accounts for
four species representing the biomass BM , the CO substrate in the liquid phase S, and two
by-products - ethanol E and acetic acid A.

4.1. Modelling diffusion-advection of substrates
We model two transport mechanisms for substrate, biomass and products: (i) advective
transport with the mean flow of the liquid in the reactor, and (ii) the diffusive transport due
to concentration gradients. The advection is due to the convection motions of the liquid that
results from the antagonism between the thrust of the pressure and the force of gravity. For
the substrate, we assume there are neither sources nor sinks, and the velocity field describes an
incompressible flow. Under these conditions, the equation for the substrate is linear diffusion-
advection equation

∂S

∂t
+ c

∂S

∂z
= ν

∂2S

∂z2
(8)

where c is the advection velocity (here assumed to be constant) and ν is the fluid velocity. As
in the procedure of Mojtabi et al. [42], we impose homogeneous Dirichlet boundary conditions
S(0, t) = S(L, t) = 0 and the initial condition S(z, 0) = sinπz.

To obtain a closed form solution, we apply the change of variables suggested in [42], i.e.

S(z, t) = Y (z, t)eαz+βt, (9)

where α and β are free parameters. Substituting the Eq. (9) in Eq. (8) and simplifying by the
exponential, we obtain that governing equation for Y (z, t), that is

∂Y

∂t
= −[β + α(c− αν)]Y − (c− 2αν)

∂Y

∂x
− (c− 2αν)

∂Y

∂z
+ ν

∂2Y

∂z2
. (10)

In order to obtain the standard heat equation from the Eq. (10), we set

β + α(c− αν) = 0

c− 2αν = 0

that gives α = c
2ν and β = − c2

4ν . Therefore, the equation for Y becomes

∂Y

∂t
= ν

∂2Y

∂z2
(11)

subject to the homogeneous conditions Y (0, t) = Y (L, t) = 0 and the initial condition

Y (z, 0) = − sinπxe−αz

2 A column bioreactor has a cylindrical shape with the radius R much smaller than the height L.
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The solution of the Eq. (11) is

Y (z, t) =
∞∑
k=0

(
Ak sin

kπz

2
+Bk cos

kπz

2

)
e−

νk2π2

4
t (12)

where the boundary conditions impose that A2p+1 = B2p = 0 for p = 0, 1, 2, . . .. Therefore the
Eq. (12) becomes

Y (z, t) =

∞∑
p=0

(
A2p sin(pπz)e−νp

2π2t +B2p+1 cos

(
2p+ 1

2
πz

)
e−ν

2p+1)2

4
π2t

)
. (13)

Mojtabi et al. [42] showed that the coefficients A2p and B2p+1 can be calculated using the
orthogonality properties of the Fourier polynomials, and the standard trigonometrical relations,
and that, when the viscosity goes to zero, the final solution becomes

S(z, t) = 8π2
(
ν

c

)3

exp

[
c

4ν

(
z + 1− c

2
t

)]
×

[ ∞∑
h=0

(−1)h
(

2h sin(hπz) + (2h+ 1) cos

(
2h+ 1

2
πz

))]
. (14)

For very small values of the kinematic viscosity the calculation of the solution according the
Eq. (14) produces a numerical overflow due to the exponential term. In literature, we find a
number of methods to treat this ill-behaviour (see for example [43, 44, 45, 46, 47, 48, 49, 50]).
We adopted the solution of Mojtabi et al. [42]. Assuming periodic boundary conditions, the
solution of the diffusion-advection equation is the Fourier solution, that in case of low kinematic
viscosity is approximated as follows

S(z, t) = − sin(π(z − ct))e−νπ2t ≈ − sin(π(z − ct))(1− π2t+O(ν2)). (15)

The solution given in Eq. (15) will be used in the equation for the dynamics of biomass, as we
will see in the next section.

4.2. Biomass and product equations
We consider the model we developed in [23], that describes the evolution of the biomass
concentration M with the following equation

∂M

∂t
= ν

∂2M

∂z2
− c∂M

∂z
+ µ(S̃)M (16)

where

µ(S̃) =
µmax S̃

KS + S̃
(17)

is the bacterial growth rate and S̃ = νuptakeS. The term νuptake is the rate of uptake of the

substrate, therefore µ(S̃) is the growth rate expressed as a function of the actual portion of
substrate consumed. Assuming a n-product inhibited Monod kinetics, the uptake rate has the
following expression

νuptake =
νuptake max S(

KM + S

)(
1 +

∑n
j=1 Pj
KI

) (18)
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where νuptake max is the maximum uptake rate, KM the saturation constant and KI the

inhibition constant. From the Eq. (18) in Eq. (17), we obtain that

µ(S̃) =
µmax νuptake max S2

νuptake max S2 +KS(KM + S)

(
1 +

∑n
j=1 Pj
KI

) . (19)

From the Eq. (19) we see that the inhibitory effect of the products becomes preponderant as∑n
j=1 Pj ≥ S, because the infinity order of the denominator reaches the infinity order of the

numerator. Based on this observation, in Eq. (19), we set
∑n
j=1 Pj
KI

≈ nS
KI

. This choice is justified
by the fact that the closed form of the spatio-temporal dynamics of the products is the same
as that of the substrates when the dynamics of the substrate is controlled mainly by advection
and diffusion, and no source/sink term is present.

The equations for the product Pi, templated according to Chen et al. [40] are:

∂Pi
∂t

= M (i)
w νiM − c

∂Pi
∂z

+ ν
∂2Pi
∂z2

, (20)

where νi is the flux of the product and M
(i)
w is its molecular weight, and i = Ethanol, Acetate.

4.3. Remarks
We note that we modelled advection-diffusion processes occurring in water, and in conditions in
which the advection velocity (c) is four orders of magnitude higher than the kinematic viscosity of
water (µ). This disproportion makes the process of advection preponderant over that of diffusion
and consequently the model particularly sensitive to the value of c. In addition, the model
predicts that the substrate S periodically cancels out whenever z = ct, condition implausible
realistically, but which can be corrected by including in the model also the convection processes
of the liquid in which the advection processes of the gaseous bubbles of the substrate take place.
Some literature referring to bubble column bioreactors (as for example [51, 52]) report in detail
the effects of convective liquid movements on the gas dispersion, that should be integrated in
the current model. We point out, however, that, according to this literature, the values of the
velocity of advection, convection are parameters also related to the geometry of the bioreactor,
for which in this model we did not want to be specific in order to let the model be a working
system adaptable to the specific needs of its users.

4.4. Software
We implemented the advection-diffusion model in Python 3.7.0. The code is publicly available
at

https://gitlab.inf.unibz.it/Paola.Lecca/advection-diffusion-simulation

The integration method used to obtain the numerical solution of the partial differential equations
is the Forward Euler method [53].

The parameters c, µmax, KS , νuptake max, KM , KI , the molecular weights M
(i)
w , νA and

νE are reported in the code together with the literature references [40, 54] from which the values
were extracted and adapted at our simulation framework.

4.5. Computational test for asymptotic stability
For the bioreactor model we consider the function f : R4 → R for the control M :
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Figure 1. The heatmap shows the values of the derivative of biomass with respect to time
along the temporal and reactor’s vertical axial dimensions.

(M,S, Pethanol, Pacetate) −→ ν
∂2M

∂z2
− c∂M

∂z
+ µ(S, Pethanol, Pacetate)M. (21)

The f in (21) trivially satisfies the conditions (i)-(iv) of Proposition 3 (where the supply function
is the output-input difference, where the input is the substrate and the output is the biomass,
i.e. σ(M,S, Pethanol, Pacetate) = M − S,) and also the dissipation inequality (condition (v)),
where V is

V (x) =

4∑
i=1

[
xi − xi − xi ln

(
xi
xi

)]
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Figure 2. The heatmap shows if principal minors of Hf , are negative, null or positive in a 2D
space whose coordinates are the time and height of the reactor. The Hessian is computed just
at the equilibrium points. NA values corresponding to non-equilibrium points are displayed in
grey. Rows correspond to the Hessian’s minors and columns to each possible combination of
time and reactor’s height. The coordinates of the equilibria points are displayed in color code
in the top panel containing columns’ annotations

Figure 3. The heatmap shows the sign of the partial derivatives of the function: f with respect
to the four state variables, namely biomass, substrate, ethanol and acetate concentration, in a 2D
space whose coordinates are the time and height of the reactor. Rows correspond to the partial
derivatives and columns correspond to each possible combination of time and reactor’s height.
NA values corresponding to non-equilibrium points are displayed in grey. The coordinates of the
equilibria points are displayed in colour code in the top panel containing columns’ annotations.

as in the majority of ordinary-differential-equation models of biological mass-action like models
[22]. Here, and hereafter x ≡ (x1, x2, x3, x4) ≡ (M,S, Pethanol, Pacetate).

We then performed the following computational step in R programming language [55]:

(i) Identification of equilibrium points (teq, zeq) of M(t, z), defined by the stationarity
condition

∂M

∂t
≈ 0, S(t, z) 6= 0

where ∂M
∂t has been computed by the function stinemanSlope of the package stinepack,

and the stationarity condition has been considered satisfied for |∂X∂t | < 0.0001. The cases
where substrate is null were neglected since they just reflect a limitation in our model that
include the advection but not the convection.
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(ii) Verification of the conditions (i), (ii) and (iii) of the Theorem 2 at the equilibrium points.

The behaviour ∂M
∂t is shown in Figure 1. We found that conditions (i) of Theorem 2 are not

satisfied as it is shown in the Figure 2. In particular, we found no case where the minors are all
positives and no case of alternate signs starting from ”-” that can indicate unstable equilibria.
Also condition (iii) of Theorem 2 is not satisfied (see Figure 3). We therefore conclude that the
equilibria of the biomass are not asymptotically stable.

5. Conclusion
In this paper, we presented a theorem for verifying global asymptotic stability and applied it to
the case study of an advection-diffusion model in a bioreactor. The theorem is the main result of
this study. According to this theorem, the equilibrium points of the advection-diffusion processes
are not globally asymptomatically stable. We hypothesize that the origin of the instability of
the equilibrium points in this process is due to two main factors: 1. the preponderance of the
advective mechanisms over the diffusive ones, 2. the effect of the physical boundary conditions of
the system (i.e. at the bottom and at the top of the reactor). A strongly preponderant advective
motion over diffusive motion makes the boundary conditions unstable if not undefined. This
result is also corroborated by previous simulation studies that the authors have performed in
[23] and in which they report the extremely steep solution trend for the biomass at the top of
the reactor tends to infinity. With increasing time this trend moves more and more progressively
towards the origin, so the instability of the boundary conditions propagate gradually closer and
closer to the origin. We therefore also hypothesize that a different geometry and/or size of the
bioreactor, coupled with a different proportion between the orders of magnitude of the advection
and diffusion parameters may have an effect on the stability of the system. Further analysis,
supported by numerical simulations of a model, which may also include convective effects and
not only diffusive gas dispersion mechanisms, is the next step to be taken to validate these
hypotheses.
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Appendix A. Discrete system
In the case of discrete time state space equations

x(t+ 1) = f(x(t), w(t)), y(t) = g(x(t), w(t)), (A.1)

where x(t) ∈ D ⊂ Rn is the system state, w(t) ∈ W ⊂ Rm is system input, y(t) ∈ Y ⊂ Rk is
system output, and f : X ×W → Y . A functional Vs : X → R is a storage function for system
(A.1) with supply rate σ : Y ×W → R if

Vs(x(t+ 1))–Vs(x(t)) ≤ σ(y(t)) (A.2)

for every solution of (A.1).

Appendix B. Mondragón et al. theorem
To allow a better reading and understanding of the proof of Theorem 2, we report in this
appendix the results of Mondgragón et al. [22] that have been used.
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Proposition 2. Let D be an open subset of Rn+ and x = (x1, x2, . . . xn) equilibrium point
belonging to D. Suppose that f : D −→ Rn+ is a function of class C1, and that f(x) = 0.
Let ∆j(x) be the determinants defined as

∆j(x) = (−1)j
∣∣∣∣ajxj ∂fj(x)

∂xi
+
ai
xi

∂fi(x)

∂xj

∣∣∣∣
i=1,2,...,j

, j = 1, 2, . . . , n

where aj is a real positive constant.

(i) If ∆j(x) for j = 1, 2, . . . , n are positive, then x is globally asymptotically stable.

(ii) If ∆j(x) for j = 1, 2, . . . , n have alternate signs staring from a negative value, the x is
unstable.

From this proposition Mondgragón et al. [22] deduced the following corollary (Corollary 4 in
the original paper of Mondgragón et al.)

Corollary 1. If the Hessian of matrix Hg(x), where g(x) = − · V (x) evaluated at x is positive
definite , then x is globally asymptotically stable on D, and unstable when Hg(x) is negative.

Using Proposition 2 and Corollary 1, the following theorem can be stated (Theorem 5 in the
original paper of Mondgragón et al.).

Theorem 3. Let x ∈ D ⊆ Rn+, an equilibrium solution of the non-linear system ẋ = f(x). If

(i) ∂fi(x
∂xi

< 0, i = 1, 2, . . . , n

(ii) lij(x) > 2 for i, j = 1, 2, . . . n (i 6= j), where

lij(x) =

(
∂fi(x)

∂xi

)−1∂fi(x)

∂xj
+

(
∂fj(x)

∂xj

)−1∂fj(x)

∂xi

then x is globally asymptotically stable.
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