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An Ontology-based Approach For Setting
Security Policies in Smart Homes
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Abstract. To preserve the security and the integrity of smart home en-
vironments, a smart home system should provide end users with mech-
anisms to define security-based policies on their devices and services
without the need to know (and specify) details that strongly depend on
the underlying technology. To this end, this paper presents an End-User
Development tool that allows users to a) define high-level security poli-
cies like “do not record any sound in the living room tonight, ” b) check
and debug high-level security policies against inconsistencies and redun-
dancies, and c) translate high-level security policies into device-specific
policies that can be applied at run-time. The tool implements a trigger-
action programming paradigm, and it exploits a hybrid formalism based
on ontologies and Petri Networks.

Keywords: End-User Development · Internet of Things · Trigger-Action
Programming · High-Level Policies.

1 Introduction

The Internet of Things (IoT) is the paradigm whereby everyday objects are no
longer disconnected from the virtual world, but they can be controlled remotely
and serve as an access point to the Internet [30]. The advent of the IoT al-
ready helps society in many ways through applications ranging in scope from
the individual to the planet [17]. People, in particular, can nowadays interact
with a multitude of IoT devices in their homes: with lamps, thermostats, and
many other appliances, including fridges and ovens, that can be connected to
the Internet, homes are becoming “smart.” Besides physical devices, many dif-
ferent online services, ranging from social networks to news and messaging apps,
are greatly used by almost everyone: the number of people using the Internet
passed 4.5 billion marks in January 2020, with more than 3.8 billion people
actively using social media [34]. As a result, users can easily access a complex
network of connected entities, be they smart devices or online services, that can
communicate with each other, humans, and the environment.

The complexity of the IoT poses several security challenges, especially in the
smart home context. Errors in automated behaviors, for example, can lead to
unpredictable and dangerous behaviors [14]. While posting content on a social
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network twice could be considered a trivial issue, wrong automation could un-
expectedly unlock the main door of a house, thus generating a security threat.
To preserve the security and the integrity of smart home environments, a smart
home system should provide end users with mechanisms to define security-based
high-level policies on their devices and services, without the need to know (and
specify) details that strongly depend on the underlying technology. Following this
need, this work proposes the Policy Translation Point (PTP) system, an end-user
development tool that aims to support users to express high-level policies like
“Do not record sound in the living room tonight.” To this end, PTP uses an on-
tological representation for end-user development and employs a trigger-action
programming paradigm through which high-level security policies are expressed
as abstract trigger-action rules. These policies ultimately ensure that the behav-
ior of the devices and applications involved in a given smart home adheres to the
latest underlying policy description. In particular, PTP can translate high-level
policies into device-level policies, when possible. Stemming from a high-level
policy, for instance, the system could limit the features of a smart home de-
vice or inhibit the operation of a non-reconfigurable device. In addition, it could
verify whether a given home configuration is compatible with one or more ac-
tive (or suggested) policies. Besides empowering users to define and translate
rules, PTP is also able to detect potential conflicts between high-level policies,
namely redundancies (i.e., policies that produce equal or overlapping results)
and inconsistencies (i.e., policies with contradictory actions).

2 Related Work

Smart home is an emerging application paradigm that has been gaining popu-
larity in the last few years. Most recently, the IoT has fostered a vision of smart
home systems, where users can install smart devices and applications that coop-
erate to manage home services and functionalities automatically. This emerging
market rapidly attracts software developers to produce novel applications and
services to provide additional smart home functionalities. However, noticeable
barriers and concerns are still present, mainly related to cyber-security and safety
within smart home systems, as well as to the privacy and integrity of produced
and consumed data, most of which are personal and sensitive. In our work, we
aim to design and implement a solution allowing end users to specify, debug, and
translate high-level security policies that can be applied in a given smart home.
This section contextualizes our work by discussing state-of-the-art literature on
End-User Development (EUD) and rules modeling and analysis.

2.1 End-User Development in the IoT

Lieberman et al. [29] define End-User Development (EUD) as “a set of methods,
techniques, and tools that allow users of software systems, who are acting as
non-professional software developers, at some point to create, modify or extend
a software artifact.” With the technological advances we are confronting today,
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people are increasingly moving from passive consumers to active producers of in-
formation, data, and software [32], and EUD approaches and methodologies have
been extensively explored in different contexts, e.g., mobile environments [33],
smart homes [37, 13], and web mashups [35, 21]. The explosion of the IoT fur-
ther increased the need to allow end users to customize the behavior of their
smart devices and online services. One of the most popular paradigms to em-
power end users in directly programming their connected entities is trigger-action
programming [37, 23]. Trigger-action programming offers a straightforward and
easy-to-learn solution for creating end-user applications, according to Barricelli
and Valtolina [11]. It is not surprising that, in the last years, several commercial
trigger-action programming platforms were born to allow end-user personaliza-
tion of connected entities. Examples include IFTTT [2], Zapier [6], Microsoft
Flow [3], Mozzilla’s Thing Gateway [5], SmartRules [4], and many others. In its
basic form, trigger-action programming allows users to connect a single event to
a single action: by defining trigger-action (IF-THEN) rules, users can connect a
pair of devices or online services in such a way that, when an event (the trigger)
is detected on one of them, an action is automatically executed on the latter.
Although some behaviors would require greater expressiveness to be defined in a
single rule, e.g., through multiple actions or additional trigger conditions, many
of the most popular trigger-action programming platforms, e.g., IFTTT, Zapier,
and Microsoft Flow, still continue to adopt the basic form of the trigger-action
programming paradigm [12].

Given its advantages and widespread adoption in EUD solutions for IoT
environments, including smart homes, we decided to adopt the trigger-action
programming paradigm to empower end users to define high-level security poli-
cies. Our approach is inspired by the work described in [20],in which the authors
proposed a method based on Semantic Web technologies to express abstract
(high-lelvel) trigger-action rules that adapt to different contextual situations,
e.g., “increase the home temperature when I’m coming home.”

2.2 Rule Modeling and Analysis

Despite the trigger-action programming paradigm can express most of the be-
haviors desired by potential users [11, 37], and is adopted by the most com-
mon EUD platforms [22], the definition of trigger-action rules can be difficult
for non-programmers. Multiple studies investigated different aspects of contem-
porary platforms like IFTTT, ranging from empirical characterization of the
performance and usage of IFTTT [31] to human factors related to their adop-
tion in the smart home [37]. Large-scale analysis of publicly shared rules on
IFTTT [36], and changes to the underlying models are proposed as well [22, 18].
In these studies, in particular, conflicts and ambiguities among rules emerged as
possible challenges [37]. As a result, users frequently misinterpret the behavior
of trigger-action rules [14], often deviating from their actual semantics, and are
prone to introduce errors [25].

All the described problems naturally apply to the context of high-level secu-
rity policies expressed as trigger-action rules. Consequently, our work also aims
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to allow users to check and debug their policies. Many prior works face the
problem of formally or semi-formally verifying event-based rules with different
approaches, especially in the area of databases [24, 28], expert systems [39], and
smart environments [38, 9]. Rules, indeed, can interact with each other, and even
a small set of dependencies between them makes it hard (and often undecidable)
the problem of predicting their overall behavior [10]. Li et al. [28], for instance,
propose a Conditional Colored Petri Net (CCPN) formalism to model and sim-
ulate Event-Condition-Action (ECA) rules for active databases. Petri nets are
used by Yang et al. [39] to verify rules in expert systems, and by Jin et al. [27]
to dynamically verify ECA properties such as termination and confluence. In
the field of smart environments, Vannucchi et al. [38] adopt formal verification
methods for ECA rules, while Augusto and Hornos [9] propose a methodological
guide to use the Spin model checker to inform the development of more reliable,
intelligent environments.

Most of the works described above aim to check the consistency of a set of
fixed and already defined rules, not in real time, and employ predefined use cases
to validate the algorithms. The goal of the PTP system is different. Instead of
performing such an “off-line” verification of rules, PTP aims at assisting end
users during the definition of their own security policies. For this purpose, we
empower the PTP interface with a novel Petri net formalism, similar to CCPN
but enhanced with new elements and with semantic information.

3 The Policy Translation Point System

The Policy Translation Point (PTP) is a system that has three main goals:

1. supporting users to express high-level security policies like “Do not record
sound in the living room tonight”;

2. translating high-level security policies into device-level policies, when possi-
ble;

3. detecting potential conflicts between high-level security policies.

Figure 1 shows the client-server architecture of the PTP system. Through
the web-based PTP User Interface, users can compose new high-level security
policies. The PTP Server analyzes these policies taking into account the devices
and applications installed in the smart home, and produces alarms in case of
conflicts and/or translates the defined high-level policies into a set of device-
level policies expressed in the XACML formalism [7].

In this Section, we present the models and formalisms adopted in the PTP
system (Section 3.1), and we detail how users can compose and check high-
level security policies through the PTP User Interface (Section 3.2). Finally,
Section 3.3 presents the implementation details.

3.1 Adopted Models and Formalisms

Concept Modeling and Translation: the SIFIS-Home Ontology The
PTP system uses the SIFIS-Home ontology to model high-level security policies,
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Fig. 1. The architecture of the PTP system.

smart home devices/applications, and users. Figure 2 shows the architecture
of the SIFIS-Home ontology. We designed and implemented it by exploiting
state-of-the-art vocabularies like foaf [1] and EUPont [20]. EUPont, in particu-
lar, is a high-level ontological representation of trigger-action programming that
describes smart devices and online services based on their categories and ca-
pabilities, i.e., their offered services. In detail, for each trigger or action, the
ontology provides information about the device or online service by which they
are offered, and any relationship with other triggers or actions, e.g., the fact that
an action implicitly activates a given trigger. Furthermore, triggers and actions
are classified through a tree of classes that represents the final behavior they
monitor, in case of triggers, or produce, in case of actions. Triggers or actions
that are classified under the same EUPont classes, in particular, are similar in
terms of final functionality, while triggers or actions that do not share any EU-
Pont class are functionally contradictory. For example, the two actions “set the
Nest thermostat to Home mode” and “set 25 Celsius degree on the Nest thermo-
stat” share the same final functionality, because they are both classified under
the same EUPont class, i.e., IncreaseTemperatureAction. Compared to these ac-
tions, the action “set the Nest thermostat to Away mode” is contradictory in
terms of functionality, because it is classified under a different EUPont class,
i.e., DecreaseTemperatureAction.

In our work, we specialized the EUPont classes to the context of high-level
security policies in the smart home context. Each policy follows a simple trigger-
action programming paradigm, and is defined through an abstract trigger-action
rule composed of a single trigger and a single action. In the initial version of the
SIFIS-Home ontology, we included the following triggers and actions:

– Temporal triggers: events that fire every morning, afternoon, evening, or
night, respectively.

– Video actions: actions that allow or forbid video recording in a given location,
e.g., the bedroom.

– Audio actions: actions that allow or forbid audio recording in a given loca-
tion, e.g., the bedroom.
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Fig. 2. The architecture of the SIFIS-Home ontology.
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Figure 3a shows how a policy is modeled inside the SIFIS-Home ontology.
The OWL class POLICY has two subclasses, i.e., TRIGGER and ACTION. A set
of OWL restrictions have been added to specify that a policy must have a sin-
gle trigger and a single action. Following the EUPont model, the TRIGGER and
ACTION classes are in turn specialized in a hierarchy of OWL sub-classes repre-
senting events and actions of different categories. These hierarchies of sub-classes
are expressed at different levels of abstraction: this potentially allows users to
specify high-level policies in different ways, by choosing to be more or less spe-
cific. Figure 3b exemplifies some video-related actions included in the initial ver-
sion of the SIFIS-Home ontology. For example, the SIFIS dont-record-video

action is a RDFS instance of the STOP VIDEO class, while the SIFIS record-video

action is a RDFS instance of the START VIDEO class.

(a)

(b)

Fig. 3. Modeling of a policy inside the SIFIS-Home ontology.

As shown in Figure 2, each trigger and action is directly linked with con-
textual information, e.g., locations (SpatialThing) and users (Agent), and in-
directly linked with devices and applications installed in the smart home (Home
Entity). PTP uses this information to translate the defined high-level policies
into the corresponding set of device-level policies in the XACML formalism.

Conflicts Detection: Semantic Colored Petri Nets To model and check
the behavior of high-level security policies at run-time, we defined a formalism
inspired by the Semantic Colored Petri Net (SCPN) approach defined in [19].
Petri nets are bipartite directed graphs, in which directed arcs connect places
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and transitions. Places may hold tokens, which are used to study the dynamic
behavior of the net. They can naturally describe policies expressed as trigger-
action rules as well as their non-deterministic concurrent environment [27]. We
chose such an approach to allow users to simulate step-by-step the execution of
their policies: by firing a transition at a time, tokens move in the net by giving the
idea of a possible execution flow. As a member of Petri nets family, Colored Petri
Nets (CPNs) [26] combine the strengths of ordinary Petri nets with the strengths
of a high-level programming language. In particular, SCPN is a Colored Petri Net
similar to the Conditional Colored Petri Net (CCPN) formalism [28] proposed
to model ECA rules in active databases. Differently from such a formalism, we
do not consider conditions and use a semantic model to generate and analyze
the net. Furthermore, each token assumes different semantic “colors” by moving
in the net: places, in particular, are labeled with the corresponding OWL classes
extracted from the SIFIS-Home ontology. Such semantic information allows the
inference of more information from the simulation of the net, i.e., to discriminate
between problematic and safe policies.

(a) (b) (c)

Fig. 4. The Semantic Colored Petri Net (SCPN) formalism adopted to model the run-
time behavior of high-level security policies.

Figure 4 summarizes the adopted approach. Specifically:

– High-level policies’ triggers and actions are modeled as places in the Petri
Net. When a trigger is in common between more than one policy, the associ-
ated places are duplicated and connected through a dedicated copy transition
(TCopy, Figure 4a). When a token is in the original place, the copy transi-
tion simply replicates the token in each copied place. Instead, action places
can be directly reused by policies that have the same action.

– Places can be connected each other through a policy transition (TPolicy,
Figure 4a), i.e., a connection between the trigger and the action of the same
policy, or through an activate transition (TActivate, Figure 4c), i.e., a connec-
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tion used when an action of a high-level policy triggers the event of another
high-level policy.

– Places, i.e., high-level policies’ triggers and actions, are labeled with the
corresponding OWL classes extracted from the SIFIS-Home ontology (Fig-
ure 4a).

Using the described model, PTP is able to detect two possible conflicts among
the currently available high-level policies: inconsistencies and redundancies.

Inconsistencies occur when policies that should be activated at (nearly) the
same time1 try to execute contradictory actions. In trigger-action rules, an in-
consistency occurs when the execution order of rules may render different final
states in the system [16]. In this work, we generalized this concept to consider
the entire smart-home ecosystem, i.e., not only physical devices but also online
services. For this reason, we analyze the meaning of the actions executed by
the involved policies rather than their execution order. An example of a set of
policies that produces an inconsistency is:

– when in the morning, from 9 to 12 AM, then record video in the bedroom;
– when in the morning, from 9 to 12 AM, then do not record any video in the

bedroom;

Here, the two policies are executed simultaneously because they share the same
trigger and produce two contradictory actions, i.e., allowing and prohibiting
video recording in the bedroom.

Redundancies, instead, occur when two or more policies that are activated
(nearly) at the same time have replicated functionality [16]. An example of a set
of policies that produce a redundancy is:

– when in the evening, from 6 to 9 PM, then do not record any audio in the
entire home;

– when in the evening, from 6 to 9 PM, then do not record any audio in the
living room.

Also in this case, the two policies are executed simultaneously because they share
the same trigger. Here, however, the action of the second policy is redundant
with the action of the first policy, as the living room is part of the entire home.

3.2 User Interface

The PTP user interface can be logically split into three parts: a) Policy Compo-
sition (Figure 5), b) Problem Checking (Figure 6a), and c) Step-by-Step Expla-
nation (Figure 6b). The Problem Checking and the Step-by-Step Explanation
interfaces implement two well-known end-user debugging strategies: identifica-
tion of rule conflicts and simulation of the run-time behavior.

1 e.g., when policies share the same trigger or when some policies trigger other policies
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(a) (b)

(c)

Fig. 5. The definition of a new high-level security policy in the PTP interface.

To allow the composition of high-level security policies, we designed a user
interface based on the form-filling paradigm, an approach that has been found to
be effective and easy to use in trigger-action programming platforms by several
previous works, e.g., [15, 22]. In addition, the form-filling procedure it adopts
helps users to avoid syntactical errors during the composition process. To com-
pose a policy, a user must first select which service they want to use as a trigger,
e.g., “Temporal Triggers” (Figure 5a). Once they select a service, they can choose
the specific trigger to be used (e.g., “Every Morning,” Figure 5b) and fill in any
additional information required by the trigger (e.g., the specific time interval,
Figure 5c). To define the action part of the rule, the user has to repeat the same
steps.

When a rule has been composed, PTP uses the mechanisms described in
Section 3.1 to find any possible conflicts with the policies that have been de-
fined in the past, highlighting a problem to the user if necessary. The Problem
Checking interface, in particular, shows the policy just defined by the user and
any problems that the policy may generate. In Figure 6a, for instance, a possi-
ble inconsistency between two policies is highlighted. To better understand the
problems and to foresee the run-time behavior of the involved policies, the user
can click on the “Explanation” button to open the Step-by-Step Explanation
interface (Figure 6b). In such an interface, the user can simulate step-by-step
what happens within their policies, to try to understand why the highlighted
problems arise.

At the end of the composition procedure, if no problems are detected, the
user has the possibility to translate the defined high-level policy into a set of
XACML policies.
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(a) (b)

Fig. 6. The Problem Checking interface showing an inconsistency between an already
existent policy and the defined one (a), and the corresponding Step-by-Step Explana-
tion (b).

3.3 Implementation

The implementation of the PTP system consists of two main components:

PTP Server It is built in Java with the Spring framework2. It is composed
of three modules: Policy Service, SCPN Service, and Policy Controller. The
Policy Service offers the features needed to manage collections of policies
i.e., to create, read, update, and delete policies through the interaction with
a MySQL database. Once a user has completed a policy, the SCPN Service
generates and analyzes the SCPN by retrieving the defined policies from the
Policy Service, and by using the OWL API3 library to extract the needed
semantic information from the SIFIS-Home ontology. The same module is
also responsible for the step-by-step simulation of the involved policies. Fi-
nally, the Policy Controller exposes a list of REST APIs to interact with the
two services.

PTP User Interface It is the web-based interface built with the Angular frame-
work4. It interacts with the PTP Server through the provided REST APIs.

2 https://spring.io, last visited on November 07, 2022
3 http://owlapi.sourceforge.net, last visited November 07, 2022
4 https://angular.io, last visited on November 07, 2022
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4 Conclusions

In this paper, we have presented the Policy Translation Point system, and End-
User Development tool that empowers users to define, translate, and debug high-
level security policies. The tool exploits a novel formalism based on Semantic
Web technologies and Petri Nets, and it implements a trigger-action program-
ming approach through which users can define policies as abstract trigger-action
rules that do not depend on any specific technology. Furthermore, it is able to
detect redundancies and inconsistencies between high-level security policies, and
it can translate a high-level policy into a set of XACML policies that can be
directly applied to the devices and applications installed in the smart home.
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