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ABSTRACT This paper presents a review of the literature on network traffic prediction, while also
serving as a tutorial to the topic. We examine works based on autoregressive moving average models, like
ARMA, ARIMA and SARIMA, as well as works based on Artifical Neural Networks approaches, such
as RNN, LSTM, GRU, and CNN. In all cases, we provide a complete and self-contained presentation of
the mathematical foundations of each technique, which allows the reader to get a full understanding of the
operation of the different proposed methods. Further, we perform numerical experiments based on real data
sets, which allows comparing the various approaches directly in terms of fitting quality and computational
costs. We make our code publicly available, so that readers can readily access a wide range of forecasting
tools, and possibly use them as benchmarks for more advanced solutions.

INDEX TERMS Artificial Neural Networks, Forecasting models, Network traffic, Prediction, Statistical
models.

I. INTRODUCTION

OVER the past decade, networks have embraced a soft-
warization process that is granting increasing control

capabilities by operators on their infrastructures. This trend
creates new opportunities for network management, many of
which build upon anticipatory decision-making paradigms:
traffic engineering, resource allocation or service orchestra-
tion policies are enacted in advance of future fluctuations in
traffic demands, as reviewed by Bui et al. [1]. Anticipatory
networking yields the potential to improve network resource
utilization and end user’s quality of service substantially with
respect to traditional reactive, human-in-the-loop strategies.
Yet, its actual gains largely depend on the accuracy of the
predictions that proactive decisions are taken upon. There-
fore, the role of traffic time-series forecasts is today more
central than ever in the design of cutting-edge solutions for
network management.

Network traffic prediction is in fact a largely explored
subject in networking, with early works dating back to the
seventies and a flurry of recent proposals fostered by the
success of machine and deep learning tools. Several surveys

already exist that review and classify the many works on
network traffic forecasting based on different approaches,
from statistical models to artificial neural network ones.

The most recent reviews focus on specific forecasting
approaches, such as deep neural networks (DNN) targeted
by Cao et al. [2] and Huang et al. [3] or the graph neural
networks (GNN) considered by Jiang and Luo [4]; these
surveys are hence limited to a subset of the techniques
available in the literature, whereas our goal is to provide a
comprehensive view of all major prediction strategies. Closer
to our approach, other reviews encompass multiple classes of
models. For instance Joshi and Hadi [5] compile an extensive
survey on network analysis and traffic prediction, describing
pre-processing techniques such as discretization method and
feature selection, which are very relevant to improve the
data quality due to the presence of outliers or inconsistent
information, and linear and non-linear approaches for net-
work traffic prediction. Also, Hendikawati et al. [6] survey
papers using the standard linear models (ARMA, ARIMA,
SARIMA) as well as multivariate methods where the pre-
diction is a function of two or more variables like vector
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autoregressive (VAR), vector moving average (VMA), and
vector autoregressive moving average (VARMA); they also
list papers using neural networks, support vector machines,
wavelet transform, fuzzy logic, and Adaptative Neuro-Fuzzy
Inference System. Finally, Jiang [7] reviews studies that
specifically target cellular traffic prediction, and classify the
models into statistical, machine learning, and deep learning
models.

All the existing surveys above take a traditional approach
of listing a variety of works proposing network traffic pre-
dictors, briefly explaining their operation and proposing a
classification or taxonomy. Instead, this paper has a different
and more ambitious objective: as in regular surveys, we
present a wide range of previous studies that employ sta-
tistical and artificial neural network techniques for network
traffic forecasting; however, at the same time we also propose
a complete and self-contained tutorial on those prediction
techniques. To this end, we include a full explanation of
the mathematical formulation of each technique, and of all
the steps that one should follow to best configure the asso-
ciated model. Unlike previous reviews, this paper thus lets
the reader gain a deep understanding of the functioning of
available traffic forecasting approaches.

Moreover, we implement all reviewed techniques for traffic
prediction, and run numerical experiments with all the tech-
niques presented. Our experimental approach is new, since
no previous survey does the same, and it has a twofold
advantage. First, it allows performing a direct comparison
of the many solutions proposed in the literature in terms of
prediction quality and computational cost; we employ real-
world citywide datasets of mobile network traffic to perform
such a comparative evaluation, and provide a first-of-its-
kind ranking of techniques. Second, we publicly release
our implementations of network traffic predictors1, which
enables non-experts to get acquainted with practical realiza-
tions of the different forecasting models, and also provides
researchers with a sound lineup of benchmarks that can
be used in comparative analyses of novel solutions. When
combined with open datasets of traffic, such as the one we
consider for our analysis, our implementations can improve
the reproducibility and verifiability of research results aiming
at traffic prediction.

The document is organized as follows. In Section II,
we give a brief introduction to network topology and the
advantages of 5th generation mobile network. Besides, we
present a mathematical formulation for the problem, some
literature approaches, and their performance evaluation. In
Section III, we discuss ARMA, ARIMA, and SARIMA
models, presenting the mathematical formulation of each
and explaining their limitations. Besides, we also illustrate
pre-processing approaches such as time-series differencing
and decomposition, and briefly present clustering techniques,
which may be useful to improve the prediction results. Sec-

1The code and documentation are made available, see the Appendix for
details.

TABLE 1. Mobile devices generation technology.

Generation Base Station Controller
2G GSM Base Transceiver Station Base Station Controller

3G UMTS Node B Radio Network Controller
4G LTE eNodeB -

tion IV introduces different types of artificial neural network
models: three recurrent neural networks (RNN, LSTM, and
GRU) and convolutional neural networks (CNN). Again, we
detail the mathematical foundations of each model and ex-
plain their internal operation with intuitive figures. In Section
V, we map relevant papers targeting traffic forecasting to
the different techniques presented in the previous sections,
while also outlining the associated data sets and evaluation
strategies. Section VI present comprehensive numerical ex-
periments comparing all the presented approaches in pres-
ence of real-world mobile traffic demands, when considering
different configurations for the statistical and neural networks
approaches. Section VII provides open research directions.
Finally, Section VIII draws conclusions.

II. BACKGROUND
A simplified cellular network topology can be divided into
three main parts: radio access network, core network, and
user equipment.

• Radio access network (RAN): responsible for the radio
communication between mobile device and network,
and includes several base stations (BS) and one base
station controller (BSC), which is responsible for com-
munication resources management, handover tasks, etc.
According to Lin and Zhang [8], BSs are responsible for
about 80% of energy consumption of a cellular network.
Each generation of wireless cellular technology has its
specific BS, as presented in Table 1 (the first generation
was based on analog technology).
GSM, UMTS, and LTE are Global System for Mo-
bile Communications, Universal Mobile Telecommuni-
cations System, and Long-Term Evolution, respectively.
4G LTE has no controller because eNodeB is also able
to accomplish this task.

• Core Network: it is responsible for connecting different
RANs among themselves and also to external networks,
as the internet.

• User Equipment: mobile devices of the users.
Note that RAN and Core Network are complex parts of a

cellular network. Details about them can be found in Kanani
et al. [9], Abed et al. [10], and Seddigh et al. [11].

Nowadays, studies related to 5G are on the rise. This
technology presents improvements compared to the previ-
ous generations, as presented in Al-Falahy and Alani [12]:
smaller latency, faster download and upload, higher band-
width, higher number of connected devices, data processing
speed (Mbps/m2) 100 times faster than 4G, reduction in
energy consumption, etc. All these developments allow many
applications that depend on device-to-device communication,
as Internet of Things and autonomous cars.
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5G network architecture is heterogeneous, that is, includes
macro and small cells. Hence, optimization problems con-
cerning spectrum allocation, location of these cells and en-
ergy saving of those not serving users are studied, as in Su
et al. [13]. Many of these optimization techniques are based
on big data generated by both user and network operator.
As presented by Zheng et al. [14], this data needs to be
processed, due to incomplete or uncertain information, and
then transformed into knowledge, such as users location,
mobility pattern, and communication behavior. Details on
5G network topology and technical aspects (frequency range,
power consumption, channel bandwidth) are presented in
Gupta and Jha [15]. In this work, the base stations are
also referred to as antennas or towers, regardless of their
generation technology.

It is important to emphasize that the network traffic load
can also be measured and predicted inside fixed environ-
ments, such as Local Area Network (LAN), where dif-
ferent computers or smartphones are connected to routers
or switches. The advantages of network traffic prediction
(management, anticipatory decision making, and resource
allocation) are also required in such a context. Some of the
works cited in this survey design forecasting models for these
kind of data sets, as it will be further presented.

A. NETWORK TRAFFIC FORECASTING

Consider that a time-series containing T network traf-
fic load observations at a tower j is given by X

(j)
t =

[x
(j)
t−T , . . . , x

(j)
t−1]. The elements of this vector could have

different time information depending on the data set, such
as: amount of transferred data (bytes), number of internet
connections, number of incoming/outgoing cellphone calls
and SMS, or any other relevant information.

In network traffic forecasting, the objective is to design a
model to predict the future load X

(0)
t+ = [x

(0)
t , . . . , x

(0)
t+k] for

the next k instants ahead, based on previous observations in
X

(0)
t , X(j)

t with j = 1, . . . , nk, as well as any other available
information that the data set may provide (geographical
position, past errors, weather condition, etc). The predicted
value is given by

x
(0)
t = f(Λ T1(Mt) +

ξ∑
i=1

Γi Ti(Qit)), (1)

where
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,

Λ ∈ R1×T and Γ ∈ R1×T are vectors containing the param-
eters to be estimated. T1(Mt) ∈ RT×1 is a tensor operation
that generates a vector X̂t = [x̂t−T , . . . , x̂t−1] ∈ RT×1, e.g.:

x̂t−i =
1

nk

nk∑
j=1

x
(j)
t−i, i = 1, . . . , T,

x̂t−i = maxx
(j)
t−i, j = 1, . . . , nk, i = 1, . . . , T,

or convolution operations may be used, as it will be later
presented. Note that if just information about tower X

(0)
t

is available, then Mt = X
(0)
t . ξ is the number of factors

(besides the time-series traffic load) that are used to con-
struct the model, such as prediction errors (in the case of
moving average models), hidden state (when using recurrent
neural networks), or any other variables that may impact
the prediction quality and are available on the data set.
Ti(Qit) ∈ RT×1 are calculated in a similar procedure and
Υ

(j)
it

is a vector containing information about tower j used to
construct the prediction model.

It is important to notice that the position of each X
(j)
t in

matrix Mt is not necessarily determined by the geographical
position of each tower. It could also be determined via other
methodologies and metrics, later presented, used to cluster
the time-series. The same analysis is extended to Υ

(j)
it

in Qit .
A prediction model that is capable of forecasting the traffic

load with small error may have big commercial value for
companies that design the network. With good k estimates
for x

(0)
t , . . . , x

(0)
t+k, these companies can assign optimized

amount of hardware/software, making the network capable
of attending the demands inside an area, but also achieving
the optimal tradeoff between capacity (number of users, data
transmission rate, coverage area, etc) and monetary cost.
According to Bega et al. [16], not only over-dimensioned net-
works causes economic losses, but also under-dimensioned,
since they could lead to subscribers’ churn rates and fees
associated with Service-Level agreements.

Usually, the data sets shared by the companies have in-
formation about the traffic load of multiple antennas at a
specif granularity time and the geographical position of each
one. In Section VI, numerical experiments to compare the
approaches discussed in this survey are performed on a data
set of the telecommunication activity in Milan, Italy. There,
the following information is captured in 10-minute time slots:

• received/sent SMS;
• incoming/outgoing call;
• internet connection start/end.
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FIGURE 1. Number of papers on Scopus whose indexed keywords contain
time-series, forecast, and one of the respective approaches.

The items above form Call Detail Record (CDR), which were
pre-processed by the operator so as to ensure the anonymity
o the data subjects generating the traffic. The mobile traffic
data is mapped on a regular spatial grid. For a full description
of the data set, see Barlacchi et al. [17].

Our goal is to use equation (1) and, based on a time horizon
of i observations, that is, for

X
(j)
t = [x

(j)
t−i, . . . , x

(j)
t−2, x

(j)
t−1]

Υ
(j)
t = [υ

(j)
t−i, . . . , υ

(j)
t−2, υ

(j)
t−1],

to predict k steps of the traffic load of a specific tower j = 0:

X
(0)
t+ = [x

(0)
t , . . . , x

(0)
t+k].

Suitable values for prediction and observation horizons are
discussed in the following Sections.

B. DATA-DRIVEN APPROACHES
This survey is focused on Autoregressive Moving Average
and Neural Networks based prediction models. The first class
is a linear combination of previous values of errors and
traffic load, leading to relative simple solutions with high data
interpretability. As it is discussed in most of the bibliography
provided in this work, the forecast capability of neural net-
works based models present higher quality (in general) when
compared to other approaches. Besides, it is relatively simple
to combine different types of ANNs to obtain a model that is
able to capture particular patterns, e.g., a CNN-RNN based
approach can provide spatio-temporal knowledge about the
network traffic load. Due to the aforementioned reasons, a
great number of papers related to network traffic prediction
uses ARIMA or ANN based strategies. Figure 1 illustrates
this scenario. A search on Scopus for papers whose indexed
keywords contain time-series, forecast, and the name of each
of the approaches briefly presented below is done.

Linear Regression (LR) is a machine learning technique
where one wants to estimate the parameters for a linear

model. Basically, the dependent variable to predict (output)
is calculated based on a linear combination of independent
variables (input). The parameters are calculated by minimiz-
ing some loss function, for instance the sum of the squares
or sum of absolute residuals. The first case is equivalent
to maximizing the likelihood and a Gaussian distribution
for the error term is assumed. The second one, known as
Robust Linear Regression, a Laplace distribution is assumed
and may provide better results when the data set contains
outliers. In Lechowicz [18], Linear regression is used to
predict bandwidth blocking probability of a network.

Support Vector Machine (SVM) is a machine learning
technique widely used in classification problems. In sum-
mary, it is an optimization problem whose output is the
parameters of a hyperplane that separates the input space into
two halfspaces. Subsequently, the classification is performed
according to the halfspace of each sample. SVM can also be
used in regression and network traffic prediction problems,
as in Stepanov et al. [19]. The authors compared SVM
forecasting results with predictions calculated by using the
Random Forecast algorithm.

Random Forest (RF) is an ensemble of decision trees,
where different random subsets of the training data are used
to build different decision trees. Subsequently, a prediction
is made by considering majority votes, for classification
problems, or the mean of outputs in case of regression.

Wavelet Transform (WT) can be used as a decomposition
method where the signal features, as frequency or trends,
change over time. Distinctly from the Fourier Transform,
where the signals are decomposed into sine waves, Wavelet
Transform generates wavelets, fast decaying wave-shaped
oscillation with zero mean. As it will be later discussed,
traffic network time-series are highly non-stationary, which
makes such a tool very useful in this context. Despite the fact
it is a decomposition technique, when used with prediction
models, Wavelet Transform may present good forecasting
results, as in Lu and Yang [20] and Tian [21].

Hidden Markov Model (HMM) is a probabilistic model
where the sequence of events can be described as a Markov
process: a state at a time xt is affected only by the previous
one, that is, xt−1. Additionally, these states are not directly
measured, however impact an output yt according to known
rules. Hence, one wants to estimate xt with observations
about yt. In Chadza et al. [22], the authors used HMM to
predict network attacks on simulated period attack of 10
days containing 50 and 420 attacking/victim machines and
30 servers.

Autoregressive models are constructed as a linear combi-
nation of past observations. Usually, the model is estimated
such that its parameters maximize the likelihood of making
the correct predictions. Similarly, the moving average models
are also linear, however the prediction is calculated based on
previous errors. When these two models are used simultane-
ously, one has the so-called autoregressive moving average
models, explained in Section III, that can be extended to
ARIMA and SARIMA.
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FIGURE 2. Overview of network traffic load prediction topics.

A very large class of functions can be approximated by
using Neural Networks, that have the advantage of inserting
non-linearity in the models. Many different prediction strate-
gies are based on Neural Networks, where different patterns
(such as spatio-temporal) can be learned during a training
phase and subsequently used for predictions. Some of the
techniques widely used in traffic load forecast are based on
Convolutional and Recurrent Neural Networks, detailed in
Section IV. Other models are discussed in Chen et al. [23].

Network traffic load prediction is divided (at least) into
three big areas: time-series clustering, decomposition, and
prediction model. In Figure 2 we summarize the main re-
search topics involved in such a subject. Some examples of
strategies regarding each field are given (many others can be
found in the references later presented.) It is important to
emphasize that these areas are connected and affect the pre-
diction result: for instance, a good time-series decomposition
could lead to better clustering result due to stochastic compo-
nent filtering; subsequently, the estimation of the parameters
for a prediction model can be calculated and, according to the
cluster some network belongs, its traffic load is predicted.

C. PERFORMANCE EVALUATION
Different metrics can be used to evaluate the three areas
presented in Figure 2. Concerning the prediction models, the
quality is measured according to some errors, presented in
Table 2, between the predicted and actual values of the time-
series.

Usually, a good clustering result is the one where the
elements inside the same cluster are similar, and elements in
different ones have low similarity (according to some adopted

TABLE 2. Acronyms for errors measurement.

Model Limitation
RE Relative error
PE Percent error
RE Correlation coefficient
ME Mean error
CC Cross correlation
ACE Absolute cumulative error
MAE Mean absolute error
SSE Sum of squared error
SER Signal to error ratio
ACC Prediction accuracy

NMSE Normalized mean squared error
SDAV Standard deviation absolute value
AV RE Absolute value of relative error
RMSE Root mean squared error
CORR Empirical correlation coefficient
MAPE Mean absolute percent error
MARE Mean absolute relative error
MOES Mean squared observed error
PMCC Predictive model choice criteria
NRMSE Normalized root mean squared error
ARMSE Average root mean squared error
RMSEP Relative mean separation

distance measure). However, clustering is an unsupervised
learning technique where the size and number of clusters may
not be known a priori. Therefore, evaluating if the result of
some clustering strategy is good or not is not a trivial task.

According to Aghabozorgi et al. [24], evaluation metrics
are divided into two groups: external and internal indexes.
In the first one, there is a ground truth where the cluster that
each time-series belongs to is known. Hence, the results of
a clustering strategy are compared with a validation data set
by means of some metrics, as: Jaccard Score, Rand Statistic,
Folkes and Mallow Index, purity, entropy, etc. This is used in
Chiş et al. [25], where the authors propose a new algorithm
for time-series clustering and the evaluation of the approach
is performed by comparing, in terms of Jaccard Score, Rand
Statistic, and Folkes and Mallow Index, the labels of their
clustering results with the labels of the original clusters.

One can see that in traffic load prediction this may not be
applicable, since the data sets usually do not provide infor-
mation about clustering. In this case, a common practice is to
minimize the errors concerning specific error metrics, such
as SSE, root-mean-squared standard deviation (RMSSTD),
semi-partial R-squared, R-squared, distance between two
clusters, etc. By solving the optimization problem with one of
the cited metrics, one expects to obtain high intra-cluster and
low inter-cluster similarities. In Halkidi et al. [26], a detailed
explanation of each one of these metrics is given.

III. SIMPLE STATISTICAL MODELS
Before introducing the models, the concept of stationary
time-series is introduced. As reported by Brockwell and
Davis [27], let Xt = [xt−T , . . . , xt−1] be a time-series with
E(X2

t ) <∞. Its mean and covariance functions are given by

µX(t) = E(Xt) (2)

γX(i, j) = Cov(Xi, Xj) = E[(Xi−µX(i))(Xj −µX(j))],
(3)

VOLUME ?, 2022 5
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for all integers i and j. Xt is stationary if:
1) µX(t) is independent of t;
2) γX(t+ k, t) is independent of t for each k.
When these two conditions are satisfied, the statistical

properties of the time-series are similar to those of its shifted
version (in time).

A. ARMA MODELS
In Hoong [28] and Tan et al. [29], prediction models for

network traffic demand are developed by applying the Au-
toregressive Moving Average (ARMA) time-series modeling
technique. Such model is composed of two main terms:
an AutoRegressive component (AR), which is the sum of
past observations with a white noise constant, and Moving
average (MA) component, which is the sum of past white
noise errors with the expected value of the time-series. Both
are modeled, respectively, as

(AR) xt =

p∑
i=1

ϕixt−i + εt (4)

and

(MA) xt = µ+

q∑
i=1

θiεt−i + εt, (5)

where:
• ϕi, ..., ϕp are the AR parameters to be determined;
• εt ∼WN(0, σ2) is white noise error value;
• θi, ..., θp are the MA parameters to be determined;
• µ is the expected value of xt;
• p is the autoregressive order;
• q is the moving average order.

Here xt is the traffic load at time t, which we want to predict
based on past instances.

According to Brockwell and Davis [27], Xt can be mod-
eled as an ARMA(p, q) process if it is stationary and if for
every t

xt −
p∑

i=1

ϕixt−i =

q∑
i=1

θiεt−i + εt. (6)

Additionally, it is ARMA(p, q) with mean µ if Xt − µ is an
ARMA(p, q) process.

Considering µ = 0, equation (6) becomes

xt =

p∑
i=1

ϕixt−i +

q∑
i=1

θiεt−i + εt. (7)

For instance, an ARMA(2,1) model with µ = 0 can be
represented as

xt = ϕ1xt−1 + ϕ2xt−2 + θ1εt−1 + εt. (8)

Such models provide better results when applied to station-
ary data. Hence, when the data is non-stationary, some pre-
processing is necessary. This is usually achieved by using log
return transformation, as

rt = lnxt − lnxt−1, (9)

where rt is the log return value at time t. Then, the model we
need to estimate takes the form

rt =

p∑
i=1

ϕirt−i +

q∑
i=1

θiεt−i + εt. (10)

After the transformation, both papers make use of Cronos,
an open-source tool written in C# programming language,
to evaluate the predicting activity. This software makes use
of the Maximum Likelihood Estimation- MLE to estimate
the model parameters. With MLE, the model parameters are
calculated in such way that the likelihood of making the
correct observations are maximized.

To evaluate the quality of prediction, Hoong [28] used the
mean squared error of the log returns, as

MSE =
1

n

∑
(valuea(i)− valueb(i))

2, (11)

where:
• valuea = ith actual log return;
• valueb = ith predicted log return.

The experiment proposed by the author consisted in design-
ing two models, ARMA(3,0) and ARMA(2,1), and compar-
ing their MSE on 5 step size predictions. ARMA(3,0) models
achieved better results for network traffic with seasonal pat-
tern, while ARMA(2,1) presented lower MSE for network
traffic with cyclical pattern.

MLE for Autoregressive term: consider that each term in
the time-series is independent and identically distributed (iid)
and the set of observations is defined as D. Then

p(D|ϕ) ∝
n∏

t=1

p(xt|ϕ, xt−1) (12)

where p(D|ϕ) is the likelihood to be maximized, and n is
the number of observations. In linear regression problems,
the noise terms are typically assumed to be Gaussian. Hence,
εt ∼ N (0, σ2) in equation (4), consequently

p(xt|ϕ, xt−1) =

(
1

2πσ2

) 1
2

exp

(
−
( 1

2σ2

)
(xt−ΦTx)2

)
,

(13)
with xT = [xt−1, ..., xt−n] and ΦT = [ϕ1, ..., ϕn].

By considering equations (12) and (13) and applying the
negative log likelihood- NLL, one has

NLL(θ) =
n

2
ln(2πσ2) +

1

2σ2

n∑
i=1

(xt − ΦTx)2. (14)

Hence, we should compute Φ such that equation (14) is
minimized. Consider that all xt and x are concatenated in
vectors Y and W , respectively. So,

n∑
i=1

(xt − ΦTx)2 = ∥Y −WTΦ∥22 (15)

This is a least square problem that can be solved by means of
the Normal Equation, see Calafiore and El Ghaoui [30]

(WWT )Φ = WY. (16)
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B. ARIMA AND SARIMA MODELS
When the time-series is not stationary, the use of ARMA

models is possible by using transformations, as discussed
before. However, if the time-series is stationary after d
differencing times, one may use the ARIMA(p, d, q) model,
where the I stands for integrated, see Jung et al. [31]. Hence,
ARMA is a special case of ARIMA models (when there is no
differencing involved). This category of models is discussed
next.

1) Time-series Differencing

The differenced time-series, as used in Alsharif et al. [32], is
simply defined as X ′

t = [x′
t−T+1, . . . , x

′
t−1], with

x′
t−j = xt−j − xt−j−1, (17)

for j = {1, . . . , T − 1}. When the differenced time-series is
not stationary yet, one may use the second-order differencing,
defined as X ′′

t = [x′′
t−T+2, . . . , x

′′
t−1], with:

x′′
t−j = x′

t−j − x′
t−j−1 (18)

for j = {1, . . . , T − 2}. For instance, consider the first
sample, that is j = 1:

x′′
t−1 = x′

t−1 − x′
t−2

= (xt−1 − xt−2)− (xt−2 − xt−3)

= xt−1 − 2xt−2 + xt−3.

(19)

Considering the backward shift operator Bxt
.
= xt−1, equa-

tion (19) can be written as

x′′
t−1 = B0xt−1 − 2Bxt−1 +Bxt−2 (20)

= B0xt−1 − 2Bxt−1 +B2xt−1 (21)

= (1− 2B +B2)xt−1 = (1−B)2xt−1. (22)

A general formulation for a differencing of order d at any
instant k is thus

x
(d)
k = (1−B)dxk. (23)

Then, you construct the ARMA model on the new vari-
ables x

(d)
k . Note that Xt, X ′

t, and X ′′
t have, respectively, T ,

T − 1, and T − 2 samples.
Another strategy sometimes used is the seasonal differenc-

ing, defined as X(s)
t = [x

(s)
t−T+S , . . . , x

(s)
t−1], where

x
(s)
t−j = xt−j − xt−j−S , (24)

for j = {1, . . . , T−S} and S is the lag value. For instance, if
some event has seasonality of 24 hours, one may set S = 24.

2) Model definition

According to Yu et al. [33], ARMA models can be repre-
sented as

xt =

p∑
i=1

ϕixt−i −
q∑

j=0

θjεt−j (25)

or
ϕ[p](B)xt = θ[q](B)εt (26)

with

ϕ[p](B) = 1− ϕ1B − ϕ2B
2 − ...− ϕpB

p,

θ[q](B) = 1− θ1B − θ2B
2 − ...− θqB

q.

If
∇ = 1−B (27)

is the differencing operator, then the ARIMA(p, d, q) model
is

ϕ[p](B)∇dxt = θ[q](B)εt. (28)

For instance, consider d = 1 and p = 2, then the left side
of equation (28) becomes

(1− ϕ1B − ϕ2B
2)(1−B)xt =

(1−B − ϕ1B + ϕ1B
2 − ϕ2B

2 + ϕ2B
3)xt =

(xt − xt−1)− ϕ1(xt−1 − xt−2)− ϕ2(xt−2 − xt−3).

(29)

Here, the parameter d represents the number of times differ-
encing should be applied to make the time-series stationary.

In a similar way, if the time-series to be modeled are
non-stationary and have a periodical component with period
S, one may use seasonal differencing and equation (27)
becomes

∇S = 1−BS , (30)

and the SARIMA(p, d, q)(P,D,Q)S model is described by

ϕ[p](B)Φ[P ](BS)∇d∇D
S xt = θ[q](B)Θ[Q](BS)εt (31)

where:
• P : seasonal autoregressive order;
• D: seasonal difference order;
• Q: seasonal moving average order;
• Φ[P ](BS) = 1− Φ1B

S − Φ2B
2S − ...− ΦpB

PS ;
• Θ[Q](BS) = 1−Θ1B

S −Θ2B
2S − ...−ΘqB

QS .

C. TRAFFIC FORECAST WITH SARIMA MODELS
In this subsection, a general procedure to predict network

traffic using SARIMA models is explained. It is important
to emphasize that this is a general approach based on the
literature review. For instance, some papers do not use cluster
strategies, others cluster each base station after time-series
decomposition, and some apply clustering strategies without
considering time-series decomposition.

The most general procedure to obtain a model for predic-
tion is illustrated in Figure 3. In short, some filtering tech-
nique is applied to the data to extract noise. Subsequently,
a clustering strategy can be used to divide the antennas in
subsets according to their traffic load similarity. One model
for each cluster can be designed. Then, with the time-series
of a specific antenna and the information of the cluster it
belongs to, it is possible to perform the prediction. Each one
of these steps is explained below.
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FIGURE 3. General procedure to obtain SARIMA(p, d, q)(P,D,Q)S models for network traffic prediction.

1) Time-series decomposition
Many of the papers that use ARIMA models for forecast, first
apply time-series decomposition. This can be performed in
several ways. For completeness, we report here the method
introduced in Brockwell and Davis [27], and adopted for
instance in Xu et al. [34] and Zhang et al. [35]. This method
is useful when the time-series has a small trend and we may
assume that the trend within each period is constant. The
time-series can be described as T = {x1, x2, ..., xn} with
each xt representing the traffic volume in the tth time slot.
Then, the time-series can be written as

xt = mt + st + rt, t = 1, 2, ..., n (32)

with:
• mt = general trend of the series;
• st = periodic patterns of the series;
• rt = stochastic component of the series.
The trend parameter m̂t is estimated by applying a moving

average filter, as follows

m̂t =



(0.5xt−q + xt−q+1 + ...+ xt+q−1 + 0.5xt+q)/S,

for S = 2q, q < t < n− q.

(xt−q + xt−q+1 + ...+ xt+q−1 + xt+q)/S,

for S = 2q + 1, q + 1 < t < n− q.
(33)

The next steps are to calculate the deviation series

{(xk+jS − m̂k+jS), q < k + jS ≤ n− q}, (34)

for k = 1, 2, ..., and calculate the average wk of this series.
Then, the periodic pattern sk is computed as

ŝk =

{
wk − S−1

∑S
i=1 wi, k = 1, ..., S,

ŝk−S , k > S.
(35)

The de-seasonality series dt can be calculated by removing
the periodic component from the original series, as

dt = xt − ŝt, t = 1, 2, ..., n. (36)

TABLE 3. Time-series.

t xt m̂t ŝt
1 60 - 27
2 96 - 97
3 49 0.5×60+96+49+40+0.5×108

4
= 67.25 -42.5

4 40 81.25 -81.5
5 108 92.75 27
6 160 98.75 97
7 77 107.25 -42.5
8 60 121.25 -81.5
9 156 132.75 27

10 224 138.75 97
11 105 147.25 -42.5
12 80 161.25 -81.5
13 204 172.75 27
14 288 178.75 97
15 133 187.25 -42.5
16 100 201.25 -81.5
17 252 212.75 27
18 352 0.5×100+252+352+161+0.5×120

4
= 218.75 97

19 161 - -42.5
20 120 - -81.5

Then, the general trend can be computed by applying a
moving average filter on dt. As we want to observe the data
from 0 < t ≤ n, define xt = x1 for t < 1 and xt = xn for
t > n, and

mt = (2q + 1)−1

q∑
j=−q

xt+j . (37)

At last, the residual component is

rt = xt − st −mt, t = 1, 2, ..., n. (38)

Illustrative example (time-series decomposition)

By using equations (32)-(38) and S = 4, the time-series in
Table 3 can be decomposed as

w1 =
x5 − m̂5 + x9 − m̂9 + x13 − m̂13 + x17 − m̂17

4
,

w2 =
x6 − m̂6 + x10 − m̂10 + x14 − m̂14 + x18 − m̂18

4
,
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FIGURE 4. Time-series decomposition into 3 components.

w3 =
x7 − m̂7 + x11 − m̂11 + x15 − m̂15

3
,

w4 =
x8 − m̂8 + x12 − m̂12 + x16 − m̂16

3
.

w1 = 27.25, w2 = 97.25, w3 = −42.25, and w4 =
−81.25. With all these values and equations (36), (37),
and (38), the decomposition is done and the result is pre-
sented in Figure 4.

2) Time-series clustering
When the time-series of each tower is decomposed, it is pos-
sible to use the trend and periodical components to identify
groups of base stations with similar traffic demand patterns.
For each group, a separate forecasting model is designed.
Hence, clustering algorithms represent an important subject
for predicting models.

In many works, e.g. Vujičić et al. [36] and Chen and
Trajković [37], K-means is used. Basically, this is an iterative
approach that divides the data set into K pre-defined clusters.
Subsequently, each element of the data set is assigned to
only one cluster in such a way that the sum of the squared
distances between all elements of the data set and their
respective cluster’s centroid is minimized. New centroids for
each cluster are computed and the assignments of the ele-
ments are updated. This procedure repeats until the algorithm
converges or other stop criterion is attended.

Another strategy is Hierarchical clustering. Proposed in
Corpet [38], the basic idea of this algorithm is to consider
each element as a cluster and merge the nearest two until
some stop condition is achieved. The distance measure can
be calculated via Davis-Bouldin Index (DBI) as in Zhang
et al. [35], or via correlation coefficient between two time-
series of aggregated traffic as in Cici et al. [39].

The base stations could also be clustered according to
some specific characteristic, as their geographical position
or traffic consumption level. For instance, Miao et al. [40]
classified each antenna according to this last criterion, where
the traffic load was used to label it as heavy load (HL), normal
load (NL), and light load (LL).

Time-series clustering is not a trivial task due to the usual
big dimension of the problem (long sequences of data),

and some decisions that may vary from one application
to another, as: appropriate representation method, suitable
distance measure technique and an adequate clustering al-
gorithm. According to Aghabozorgi et al. [24], comparisons
between time-series can be performed in three different ways:

• shape-based: two time-series are considered similar if
they have similar shapes. Through non-linear stretching
of time axes, the sequential data are aligned and then
standard clustering algorithms with specific distance
measurements are applied;

• feature-based: vectors containing features of the
time-series (standard deviation, mean, variance, maxi-
mum/minimum values, etc) are used as input to standard
clustering algorithms. This approach has the advantage
of dealing with low dimension vectors, since very long
sequences are represented by their respective features;

• model-based: parametric models representing each
time-series are designed. Subsequently, a clustering
strategy is applied to the parameters of the models.

The algorithm strategy and distance measure choices may
impact the clustering quality. In time-series comparison con-
text, a widely used metric is the well known Euclidean dis-
tance (ED). For instance, consider Y = (y1, . . . , ym), Z =
(z1, . . . , zm), then ED is simply defined as

ED(Y,Z) =

√√√√ m∑
i=1

(yi − zi)2. (39)

However, this approach has some issues: in case the time-
series present the same shape and amplitude, but different
phases, ED may be large, leading to a bad clustering result.
Additionally, the time-series should have the same length.
To circumvent these problems, elastic distance metrics, as
Dynamic Time Warping (DTW), can be used, see Ding et al.
[41] and Rakthanmanon et al. [42]. DTW is calculated by
computing a cost matrix Mc whose elements mc(i, j) are

mc(i, j) = ED(yi, zj) + min{mc(i− 1, j − 1),

mc(i− 1, j),mc(i, j − 1)}
(40)

and

DTW (Y,Z) = min

√√√√ k∑
i=1

vi, (41)

with V = (vi, . . . , vk) being vectors with the elements from
matrix Mc forming paths from mc(m, 1) to mc(1,m). To
illustrate, consider two vectors representing time-series:

• Y = {1,1,2,3,2,1,1,1};
• Z = {1,1,1,2,3,2,1,1}.

It is easy to see that Z is just a shifted (in time) version of
Y . The alignments obtained with ED and DTW distances are
presented in Figure 5. Note that in this case the time-series
have the same length, but this is not necessary to calculate
DTW distance.

VOLUME ?, 2022 9



Ferreira et al.: Forecasting Network Traffic: A Survey and Tutorial with Open-Source Comparative Evaluation

1 2 3 4 5 6 7 8
0

1

2

3

1

2

3

A
m

p
lit

u
d
e

ED alignment

1 2 3 4 5 6 7 8

Sample

0

1

2

3

1

2

3

A
m

p
lit

u
d
e

DTW alignment

FIGURE 5. Difference between ED and DTW alignment.

        

 

 

 

 

 

 

 

 

3

1

0

0

0

3

1

0

0

0

3

2

1

1

0

1

1

1

3

1

0

1

3

3

3

2

1

0

1

1

0

0

1

3

2

0

0

2

3

0

0

3

4

4

4

4

4

4

4

4

4

4

4

4

4

4

4

4

4

5

4

4

4

4

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

3 21 1 1 11

3

2

2

1

1

1

1

1

m
c
(m,1)

m
c
(1,m)

 Vector Y

2

Vector

    Z

FIGURE 6. Cost matrix Mc considering DTW alignment.

In Figure 6, it is possible to see a vector V such that
equation (41) is satisfied.

For this example, ED(Y, Z) = 2 and DTW (Y,Z) = 0,
presenting the efficacy of DTW to detect similar time-series
even when they have different phase. ED and DTW are
between the most used time-series distance measures, how-
ever many other approaches exist, for instance: Hausdorff
distance, Hidden Markov Model based distance, Longest
Common Subsequence, Spatial Assembling distance, Edit
Distance with Real Penalty. The reader may find works with
comparison and applications of these methods in Zhang et al.
[43] and Wang et al. [44].

According to Paparrizos and Gravano [45], an ideal shape-
based approach is capable of placing time-series inside the
same cluster if they have similar shape, regardless differences
on both signal amplitude and phase. The authors propose
a time-series clustering algorithm known as k-Shape, that
is domain independent and preserves the time-series shapes
while comparing them. To accomplish this task, they use a
distance measurement, named shape-based distance (SBD),

TABLE 4. ACF and PACF behavior for different models.

Model ACF PACF
AR(p) Gradually decay Cuts off after p lags
MA(q) Cuts off after q lags Gradually decay

ARMA(p, q) Gradually decay Gradually decay

that is invariant to scaling and shifting and depends on the
cross-correlation function of the time-series to be compared.
The approach was evaluated on 48 data sets, compared to
other techniques and it outperformed many of them in accu-
racy.

Paparrizos and Gravano [45] define k-shape as a nontrivial
k-means based procedure: in each iteration, the algorithm
updates the clusters by assigning each time-series to its
closest centroid; subsequently, new centroids are computed.
These steps repeat until some stop criterion is reached, as
convergence or the maximum number of iterations. The dif-
ferences from k-means are on distance measurement (SBD)
and centroid computations: while k-means uses the arith-
metic mean of the coordinates of all sequences to compute
an average sequence, k-shape computes the centroids as a
minimization problem whose objective function is the sum
of squared distances to all others time-series.

Surveys concerned with time-series clustering are pre-
sented in Warren Liao [46] and Aghabozorgi et al. [24].
The authors discuss time-series representation, similarity and
dissimilarity measures, clustering algorithms and their taxon-
omy, and evaluation metrics for the clusters.

3) Model choice and parameters p, q, P,Q, S definition
Autocorrelation function (ACF) and partial autocorrelation
function (PACF) are widely used to determine the order of
the AR and MA components of the models, as in Xu et al.
[34], Suarez et al. [47], and Vujičić et al. [36]. ACF describes
the autocorrelation between an observation and a preceding
observation considering direct and indirect information. On
the contrary, PACF considers only the direct relation between
a value and the previous one. The behavior of both functions
regarding a specific model is shown in Table 4.

Illustrative example (ACF/PACF use)

Consider 6 models: AR(1), AR(2), MA(1), MA(2),
ARMA(1,1), and ARMA(2,2) respectively described by

xt = 10− 0.9xt−1 + εt,

xt = 4 + 0.9xt−1 − 0.8xt−2 + εt,

xt = 10 + εt + 1.1εt−1,

xt = 5 + εt − εt−1 + 0.9εt−2,

xt = 10− 0.9xt−1 + εt + 1.1εt−1,

xt = 5− 0.9xt−1 − 0.8xt−2 + εt − εt−1 + 0.9εt−2.

Figures 7, 8, and 9 show exactly the behavior proposed
above. Note that for ARMA models, the plots may give just
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FIGURE 7. Estimating p and q with ACF and PACF.
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FIGURE 8. Estimating p and q for Moving Average models.

an approximate idea. Besides, these analyses require station-
ary time-series. Hence, differencing, as proposed before, may
be necessary.

The problem to determine these parameters for ARIMA
and SARIMA model is similar, one should just apply the
necessary differencing to make the time-series stationary, as
done in Kumar and Vanajakshi [48] and Miao et al. [40].
For the SARIMA case, we also need to fit S, P and, Q. S
can be set by just plotting the time-series and observing the
seasonality of the signal or via spectral analysis, as done in
Shu et al. [49]. For instance FFT, which is an algorithm to
compute the Discrete Fourier Transform of vectors of data,
may be used. Subsequently, P and Q are set by analyzing
ACF and PACF behaviors in the lags that correspond to
S, 2S, 3S....

As an example, consider a model describing a time-series
that becomes stationary after two operations: one-order dif-
ferencing and one seasonal differencing with S = 6. For
the stationary series, the PACF plot gradually decays and the
ACF plot has the following characteristics:
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FIGURE 9. Estimating p and q for ARMA models.

• one significant component at lag 1;
• significant components at lags 6 and 12.
• all other components are not significant.

Hence, a model that could fit the time-series is described
as SARIMA(0, 1, 1)(0, 1, 2)6. p, q, P , and Q could also be
set by performing a grid search, where the combination that
leads to the smallest Akaike Information Criterion (AIC), that
considers the model simplicity and its maximum likelihood
estimation, is the chosen one. In fact, a good practice is first to
analyze ACF and PACF plots for having an approximation of
the parameters values, and later perform a grid search varying
them a little to choose the best model according to AIC.

Consider that x
(j)K
t denotes the traffic load at tower j

at time t for a specific cluster K with nk base stations.
One may compute the average traffic time-series Tk =
{x̂1, x̂2, . . . , x̂n}, where

x̂t =
1

nk

nk∑
j=1

x
(j)K
t , t = 1, . . . , n. (42)

4) Prediction Models
The resulting series in equation (42) can be used to train a
model corresponding to a cluster, as proposed in Figure 3.
In this part, a study with different approaches to determine
x̂t can be done, since the average value may not be the best
one. For instance, in some situations the cost associated to
forecasting lower traffic load than the real one may be higher
than the opposite, then one could use the biggest traffic load
at each instant to train a model, as:

x̂t = maxx
(j)K
t , j = 1, . . . , nk, t = 1, . . . , n. (43)

Hence, according to the time-series of a specific base station,
it can be classified and then the assigned model is used to
make the predictions. Subsequently, the quality of predictions
may be measured by means of well-known metrics between
real value and predicted one: mean absolute error, mean
squared error, relative error, etc.
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Hidden layer
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FIGURE 10. Neuron and a simple neural network.

Note that training models for each base station may lead to
more accurate results. Nevertheless, this can be inappropriate
since the number of antennas may be very large.

IV. NEURAL NETWORKS
Although SARIMA models are an important tool regarding
the forecast of time-series, in the past few years many papers
work in such subject with a different and powerful approach:
artificial neural networks (ANN). In fact, as introduced by
Hornik et al. [50], standard multi-layer feed-forward net-
works using arbitrary squashing functions are universal ap-
proximators of a very large class of functions. This strategy
may lead to more accurate results, since it allows a nonlinear
approach that uses not just past values (as SARIMA) of a
time-series, but also other types of information. For instance,
Barabas et al. [51] compares network traffic prediction eval-
uated with statistical time-series models (as ARMA) and
ANNs. The authors show that the approaches based on neural
networks yield better results. Similar results are obtained in
Azzouni and Pujolle [52], where ANN based approaches out-
perform linear ones; besides, ANN models based on LSTM
(explained below) lead to even more accurate models.

A. A BRIEF INTRODUCTION TO NEURAL NETWORKS
Basically, a neuron is a unit that receives an input vector V =
[vi, ..., vq] associated to weights wl

ij (weight associated to jth
neuron in layer l connected to ith neuron in layer l+ 1). The
neuron then applies a function on the weighted sum of the
inputs to compute the output y. Subsequently, y can become
the input of a new layer of neurons forming a neural network,
which is a function f : Rg −→ Rq as represented in Figure 10,
with g and q being input and output size, respectively. Note
that there are no cycles or loops in the network, so this is
called feed-forward neural network (FFNN). In case there are
2 or more hidden layers, then we have a deep feed-forward
neural network (DFFNN).
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FIGURE 11. Nonlinear activation functions.

f : R −→ R in Figure 10 is called activation function, and
the most used are sigmoid, hyperbolic tangent, and rectified
linear unit (ReLU), shown in Figure 11. Here, b is a scalar
representing a bias term.

The idea is that the weights associated with a neuron can be
learned in the training phase by minimizing a loss function L,
that measures how much the network output is different from
the desired one. The procedure to minimize L is based on the
gradient descent algorithm

wi ←− wi − η
∂L

∂wi
, (44)

and due to the non-convex behavior of the neural network,
the global minimum is not guaranteed. The partial derivatives
in equation (44) are usually calculated via backpropagation
algorithm and η represents the learning rate. Small values for
η can lead to time consuming training and big ones could
make the procedure diverge.

The training phase also depends on the weights initializa-
tion. As proposed in Glorot and Bengio [53], a good practice
is to use the Glorot initialization, where each initial weight
is given by a zero mean Gaussian distribution with variance
given by

σ2 =
2

fanin + fanout
, (45)

where fanin and fanout are numbers of inputs and outputs
to a layer, respectively.

B. NEURAL NETWORKS AND TIME-SERIES
FORECASTING
An important subject when designing a neural network is its
architecture. Some types of ANN, as the feed-forward, have
the vanishing gradient problem, which happens when the par-
tial derivatives in equation (44) become very small during the
back propagation algorithm, leading to little actualization of
the weights wi before a local minimum is achieved. Besides,
the previous values of sequential data are not considered to
predict the next one. To circumvent these problems, papers
dealing with time-series prediction (values from previous
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FIGURE 12. Recurrent neural network layer and inside cells operation.

steps must be considered in regression problems) make use
of some different architectures, such as RNN and LSTM,
presented below.

1) Recurrent Neural Networks
Recurrent neural networks (RNN), different from feed-
forward ones, have the property of cycling the output from
layers back to the network. Hence, the effect of initial values
on the later ones of a sequential data can be modeled by
RNNs. In Ramakrishnan and Soni [54], this approach is
used to predict three network traffic parameters: volume,
protocol classification and protocol distribution. In summary,
the main difference between RNN and FFNN is the presence
of feedback in hidden layers, as shown in Figure 12. Assume
that the input is at ∈ Rm×1 and ht ∈ Rp×1 is the hidden
state (or memory) of tth time step.

Therefore

ht = tanh(Wat + Uht−1 + b), (46)

where W ∈ Rp×m, U ∈ Rp×p, and b ∈ Rp×1 are the model
parameters to be determined during training. It is important
to emphasize that there is just one hidden layer in Figure
12, represented at different time steps, and the estimated
parameters are the same for all time steps.

Despite the fact that RNNs provide better results in pre-
diction of sequential data when compared to FFNN, they
still suffer from the vanishing gradient problem for very long
sequences. Hence, special cases of RNNs were designed to
retain information even in such cases, as LSTM and GRU.

2) LSTM
In Wang et al. [55] and Li et al. [56], Long Short-Term
Memory (LSTM) neural networks are used to predict traffic
in cellular networks and traffic flow in transportation sys-
tems, respectively. Introduced by Hochreiter and Schmidhu-
ber [57], LSTMs are specialized in predicting time sequences
due to its cell architecture: three gates, presented below, that
update the cell state and its hidden state:

• forget gate: decides if an information is relevant or
should be "forgotten". The inputs of such gate, which
are the values of current input at and previous hidden
state ht−1, pass through a sigmoid function to squeeze
the values from 0 to 1, resulting in ft. Subsequently,

x

x
x

+

Input gateForget gate Output gate

FIGURE 13. Operations inside LSTM cell.

there is a pointwise product between ft and previous cell
state ct−1, where values of ct−1 considered irrelevant
are multiplied by values close to 0 of ft, concluding the
forget step;

• input gate: here, there is a pointwise product between
it and C̃t (candidate values that could be considered
relevant and added to cell state). C̃t is the hyperbolic
tangent function (tanh) of at and ht−1 (with respective
weight matrices), squeezing these values between -1 and
1. tanh is used to regulate the values inside the cell,
avoiding them to become very large after the pointwise
products. Later, the output of this step is calculated by a
sum between the output of forget gate and the pointwise
product between it and C̃t.

• cell state update: the updated cell state ct is the output
of the previous step; ct saves relevant information even
from the earliest steps.

• output gate: this gate determines the next hidden state,
which contains relevant information about the previous
steps. at and ht−1 (with respective weight matrices)
pass through a sigmoid function and is pointwise mul-
tiplied by the hyperbolic tangent of ct. The result is the
new hidden state ht.

Such process is represented in Figure 13. Assume that the
input at ∈ Rm×1 are vectors fed into the LSTM layer at each
time step, and that the output at each iteration is ot ∈ Rp×1.
Note that the input vector can be different at each t, and
both ct and ht allow relevant information to be considered
in subsequent LSTM cells. Then,

ft = σ(Wfat + Ufht−1 + bf ),

it = σ(Wiat + Uiht−1 + bi),

C̃t = tanh(Wcat + Ucht−1 + bc),

ct = ft ⊙ ct−1 + it ⊙ C̃t,

ot = σ(Woat + Uoht−1 + bo),

ht = ot ⊙ tanh(ct),

(47)

with all matrices W (Wf ,Wi,Wc,Wo) ∈ Rp×m, all bias b
(bf , bi, bc, bo) ∈ Rp×1, and all matrices U (Uf , Ui, Uc, Uo)
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FIGURE 14. Operations inside GRU cell.

∈ Rp×p being the parameters to be determined during the
training phase. Besides ht ∈ Rp×1, ct ∈ Rp×1, ft ∈ Rp×1,
it ∈ Rp×1, and C̃t ∈ Rp×1.

3) GRU
Another type of RNN is the Gated Recurrent Units (GRU).
Introduced by Cho et al. [58], GRUs can be seen as a simple
version of LSTMs, in the sense they have 2 gates, update
and reset, and according to the authors are much simpler
to compute and implement. In Patil et al. [59], IoT traffic
prediction is developed with the use of GRUs, where the
results are shown to be more accurate than the ones obtained
via ARIMA modeling. In Fu et al. [60], GRU and LSTM NN
are used to forecast traffic flow in the state of California;
similarly to the previous paper, both approaches presented
more accurate results than autoregressive moving average
models. The architecture of a GRU cell is shown in Figure
14.

• update gate: it is responsible for controlling how much
information from previous hidden state will be consid-
ered by the current one;

• reset gate: when its value is close to 0, the current hid-
den state is forced to ignore information from previous
ones and then resets with only the information from the
input.

Then, considering the same input dimensions previously
defined (at ∈ Rm×1 and ht ∈ Rp×1)

zt = σ(Wzat + Uzht−1 + bz),

rt = σ(Wrat + Urht−1 + br),

h̃t = tanh(What + Uh(rt ⊙ ht−1) + bh),

ht = (1− zt)⊙ ht−1 + zt ⊙ h̃t,

(48)

with all matrices W (Wz,Wr,Wh) ∈ Rp×m, all bias b
(bz, br, bh) ∈ Rp×1, and all matrices U (Uz, Ur, Uh) ∈ Rp×p

being the parameters to be determined during the training
phase. Besides zt ∈ Rp×1, rt ∈ Rp×1, ft ∈ Rp×1,
h̃t ∈ Rp×1, and ht ∈ Rp×1. zt and rt are update and reset
gates, respectively.
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FIGURE 15. Operation with convolutional layer: valid convolution.

4) Convolutional Neural Networks
Another common approach used to predict time-series is
based on Convolutional Neural Networks (CNNs). CNNs
have a structure that allows them to identify local patterns
in the feature space of a matrix [3]. In Bega et al. [16], a
distance matrix based on the similarity between the time-
series of base stations was constructed, and then a forecast
procedure based on CNN was developed. Note that with the
distance matrix, local patterns become an important subject
to prediction. Traffic flow prediction is developed in Chen
et al. [61] also with the use of CNNs. Convolutional neural
networks have also big applicability in researches that work
with image and video processing, since these two can be seen
as matrices with high local patterns.

In brief, a convolutional layer can be understood as a filter,
also called Kernel, that slides in spatial dimension of an input
and then produces the output, as presented in Figure 15. Note
that the dimension of the output is smaller. This operation
is known as valid convolution and the Kernel does not go
outside the matrix border. On the contrary, there are the zero
padding, where everything outside the border is set to 0, and
symmetric padding, where the terms beyond the border are
mirrored. In both cases, the dimension of the input can be
kept or increased.

After the operation with the convolutional layer, ReLU
is applied, and then the pooling layer may be used. It re-
duces the size of the resulting matrix by using the max
pooling or average pooling. The first approach constructs
an output matrix by considering the maximum values of
different regions of the input, while the second averages these
values. Convolutional, ReLU, and pooling form one layer of a
convolutional neural network. The output may have a smaller
dimension and contains local patterns of the input matrix.

A big advantage of CNNs is that, different from Figure
10 where all nodes of the input layer are fully connected
to the nodes of the hidden one, neurons between input and
hidden layers or between each hidden layer may be connected
just to some in the next layer, since CNNs need to identify
localized features. This reduces the number of parameters to
be determined during the training. Besides, different Kernels
can be used in a single convolutional layer, where the re-
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FIGURE 16. Standard architecture of a CNN.

sulting matrices (called feature maps) are stacked, and later
flattened. The case with 3 Kernels is illustrated in Figure 16.
Note that the output of the pooling layer could be the input
of another convolutional layer. This procedure would lead to
higher feature extraction, since each CNN layer is trained to
detect a specific pattern.

Similar analysis can be extended to 3-D cases, where the
concept of tensors is used.

Many papers that apply ANNs to predict time-series, as
Ong et al. [62] and Deng et al. [63], use tensors. Basically,
they are generalization of scalars (rank-0 tensor), vectors
(rank-1 tensor), and matrices (rank-2 tensor). For instance,
a rank-3 tensor can be seen as a 3-D matrix, which is
very useful for traffic load prediction: consider a tensor Λ
whose elements are λijk, where i and j are related to the
geographical position of a tower, and λ is its traffic load at
time step k; this is a way to store spatio-temporal information
of all towers that belong to a network (this is done in Bega
et al. [16]).

5) Graph Neural Networks
In many of the data sets containing information about the
network traffic demand, the location of towers, routers, or
switches are also available. Hence, the entire network can
be seen as a graph whose nodes and links are the hardware
generating the network and their connections, respectively. In
recent years, Graph Neural Networks (GNNs), introduced by
Scarselli et al. [64], are on the rise and have provided results
superior to the aforementioned approaches when dealing
with road traffic forecasting problems. As discussed by Jiang
and Luo [4], GNNs have the property of learning directly
from graphs, which makes them capable of extracting fea-
tures from data represented by these structures.

In Wu et al. [65], an extensive survey on GNNs is devel-
oped. The authors propose a taxonomy, dividing GNNs into
four groups, briefly commented below.

• Recurrent GNNs: also called RecGNNs, they are the
first type of GNNs. In summary, it is considered that two
neighbor nodes in a graph exchange information until
some stop criterion or convergence is reached. The node
representation learning is based on RNNs.

• Convolutional GNNs: known as ConvGNNs, they ex-
tend the idea of convolution from matrix (or tensor)

to graph. Similarly to RecGNNs, a node representation
is given by its features and its neighbors ones. Subse-
quently, multiple graph convolutional layers can be used
to learn the graph main features.

• Graph Autoenconders: unsupervised learning that,
different from the two aforementioned approaches, en-
codes the graph in a vector space, from where features
can be learned and subsequently a decoder reconstructs
the graph.

• Spatio-temporal GNNs: these GNNs consider space
and time features simultaneously. They can combine
graph convolutional layers with CNN and RNN.

It is important to emphasize that the GNNs above have
different mathematical formulations and applications, where
the details of each case are also discussed by Wu et al. [65].

In Wang et al. [66], the authors propose a type of GNN,
named Time-Series Graph Attention Network (TSGAN),
with the previously discussed elastic distance metric DTW to
forecast the cellular network traffic in a real world data set.
The prediction results obtained with TSGAN outperformed
three standard GNNs and a GRU model in short-term, mid-
term, and long-term scenarios. In Zhou et al. [67], a Spatio-
temporal Graph Convolutional Neural Network is presented
and leads to better results than many state-of-art forecasting
models: historical averaging, vector autoregressive, LSTM,
ConvLSTM, GCN-CNN, attention mechanism GCN-CNN,
and diffusion CNN-RNN.

Some characteristics of the approaches discussed above
are shown in Table 5.

V. EXTENDED BIBLIOGRAPHY
In this Section, we present, in Table 6, a detailed list of
papers using the different approaches discussed in the pre-
vious sections for network traffic prediction. In each row, the
reader finds the authors, year of publication, the prediction
technique, training/testing data set, and evaluation metrics for
the respective paper. Besides, the Table is divided into three
subgroups:

• Yellow subgroup: Autoregressive Moving Average
based approaches;

• Blue subgroup: RNN, LSTM, GRU, or CNN based
approaches;

• Green subgroup: diversified approaches.
The error acronyms are given in Table 2.

VI. NUMERICAL EXPERIMENTS
To compare many of the approaches described above and
used in many of the previously cited papers, we apply
SARIMA and RNN models on mobile phone activity data
set from the city of Milan. The data set contains information
about received and sent SMS, incoming and outgoing calls,
internet activity, and geographical position of all antennas.
Each of these operations is named as call detail record
(CDR). Our goal is to predict the hourly aggregate CDRs for
one week of cell ID 1051, based on previous 55 days traffic
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TABLE 5. Summary of limitations and advantages of techniques previously discussed.

Technique Limitations Advantages

St
at
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al
ARMA Stationary data;

Non-periodical data; Data prediction
based exclusively
on past values;

Mathematical
simplicity; High parameters

interpretability;ARIMA Non-periodical data; Deals with non-
stationary data;

SARIMA Parameters definition
complexity;

Deals with non-
stationary and
seasonal data;

N
eu

ra
lN

et
w

or
ks

NN Vanishing gradient
descent; Low parameters

interpretability;

High number of
hyper-parameters
to set;

Non-convex;

High computational
cost in training
phase;

Universal function
approximator;

In general, better results
when compared to
statistical approaches;

They can be used
simultaneously in
different layers to
extract spatio-temporal
features.

RNN
Vanishing gradient
descent for long
sequences; Feedback in

hidden layers;LSTM Time consuming
GRU training;

CNN Sizable training data
set required;

Spatio-temporal
pattern recognition;

Localized features
identification;

GNN
Difficulty to deal
with heterogeneous
graphs;

Direct learning
from graphs;

load. The hyper parameters of the numerical experiments
performed with the approaches discussed in the survey were
defined according to the authors’ criteria, described below for
each forecasting technique

A. SARIMA
The results presented below regarding the SARIMA models
were obtained under the following assumptions:

• models with all possible combinations of parameters
p, d, q, P,D,Q = {0, 1, 2} were fitted;

• the model with the smallest AIC is used to predict the
CDR traffic behavior;

• S = 24 (time-series with period of one day).
• the training data set is standardized according to

ãt =
xt − µ

σ
, (49)

with µ and σ being the mean and standard deviation of
the samples belonging to the training data set.

1) Regular SARIMA
In this approach, the standardized time-series regarding the
training data set, without any previous filtering technique,
is used to design the model. After fitting all possible mod-
els according to the interval declared above, they were
compared according to AIC criterion, which is a parame-
ter that considers not just how well the model fits to its
observations, but also its simplicity (number of parame-
ters). The optimum value (minimum) for AIC is obtained
for SARIMA(2, 0, 2)(1, 1, 2)24. With these parameters, the
MAE and MSE between the measured 7 days time-series
and predictions given by the model for the same period are,
respectively, 2.911 and 12.827.
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FIGURE 17. One week of measured CDRs traffic load for cell ID 1051
(observed data), its correspondents components, and filtered signal (sum of
trend and periodic components).

2) SARIMA with Decomposed Time-Series
In this approach, the time-series of the respective cell ID was
decomposed, Figure 17, according to equations (32)-(38) and
S = 24. The resulting time-series, which was standardized
according to equation (49) and used to fit the models, is the
sum of trend and periodic components. The model with the
smallest AIC is achieved for SARIMA(2, 0, 1)(1, 0, 1)24 and
provides MAE = 2.733 and MSE = 11.452 between the
predictions given by the model and the real measured traffic
load for the same period.
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TABLE 6. Traffic network prediction: detailed bibliography.

Paper Year Technique Data set Evaluation
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Shu et al. [49] 2003 Extended SARIMA. GSM network of China
Mobile Tianjin. RE.

Chen and Trajković [37] 2004 SARIMA;
Cluster SARIMA.

Trunked radio network system
from Vancouver. NMSE.

Papagiannaki et al. [68] 2005 ARIMA.
Incoming and outgoing link

utilization of all routers
in the Sprint IP backbone.

RE.

Mao [69] 2005 Multiscale ARIMA. LAN traffic at the
University of Auckland.

NMSE;
MARE.

Vujičić et al. [36] 2006 SARIMA. Trunked radio network system
from Vancouver. NMSE.

Zhou et al. [70] 2006 ARIMA/GARCH. LBL-TCP-3 traffic: TCP traffic
from the Lawrence Berkeley Laboratory. SER.

Moayedi and Masnadi-Shirazi [71] 2008 ARIMA. Simulated network.
MSE;

NMSE;
SER.

Chen et al. [72] 2009 SARIMA. WLAN traffic from study
laboratories. Average RE.

Suarez et al. [47] 2009
AR;
MA;

ARIMA.

Traffic load in
Wi-fi network.

MSE;
SDAV;

CC.

Guo et al. [73] 2009 Multiplicative SARIMA.
Network management systems

of CMCC Heilongjiang
Co LTD.

NRMSE;
Average NRMSE.

Christodoulos et al. [74] 2010 ARIMA with
diffusion models.

World broadband and mobile
telecommunications’ penetration-ITU.

MSE;
MAE;

MAPE.

Tan et al. [29] 2010 ARMA. TCP network traffic
volume data. Log returns.

Yu et al. [33] 2010 SARIMA. Heilongjiang province in China.
MAPE;

AE;
APE.

Hoong et al. [75] 2011 ARMA. Number of packets in
a private network. MSE.

Hoong [28] 2012 ARMA. BitTorrent network
traffic. MSE.

Miao et al. [40] 2014 SARIMA. 2G/3G data sets from
China Mobile. MAPE.

Haviluddin and Rayner [76] 2014 SARIMA. Network internet traffic from
Mulawarman University.

Ljung-Box;
Q statistic .

Yoo and Sim [77] 2015 STL-ARIMA. 6 directional paths connecting
2 sites on the ESnet, US.

RMSE;
MAE;
ME;

Training time.

Xu et al. [34] 2016 SARIMA. 9000 cellular towers
from Shanghai. AVRE.

Medhn et al. [78] 2017 SARIMA. Ethio Telecom. APE;
MAPE.

Zhang et al. [79] 2017

Combined SARIMA
(SARIMA, Decision Tree,

Spreading Model, and
Top-K Regression Tree).

Traffic load of base stations
from a big city of China. ARMSE.

Madariaga et al. [80] 2018 ARIMA;
SARIMA.

Android App Adkintun
Mobile.

RMSE;
MAE.

Zhang et al. [35] 2019 SARIMA. 6400 cellular towers
from Shanghai. MSE.

Bastos [81] 2019

Random Walk;
Linear Trend;

Theta;
Exponential Smoothing;

ARIMA.

Radio network controllers in a
3G network of an operator

from northern Europe.

RMSE;
MAPE.

Arifin and Habibie [82] 2020 ARIMA with
disruptive formula.

2G, 3G, and LTE mobile
network traffic from a site

in Indonesia.
PE.

Yang et al. [83] 2021 SA ARIMA-BP. WIDE project.
MAPE;
MAE;
RMSE.
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Oliveira et al. [84] 2016
MLP;
SAE;
RNN.

Private ISP from 11
European cities.

MSE;
NRMSE.

Fu et al. [60] 2016 GRU;
LSTM.

15000 sensors deployed statewide
California: PeMS dataset.

MSE;
MAE.

Wang et al. [55] 2017 LSTM. 2844 BSs from China Mobile
at Suzhou.

MSE;
MAE;

Log loss.

Huang et al. [3] 2017
LSTM;

3D-CNN;
CNN-LSTM.

Telecom Italia 2015.
RMSE;
MAPE;
MAE.

Vinayakumar et al. [85] 2017

FFNN;
RNN;

LSTM;
GRU;
IRNN.

1200 traffic matrices from
GÉANT network. MSE.

Ramakrishnan and Soni [54] 2018
RNN;

LSTM;
GRU.

Abilene network;
GEANT network. MSE.

Qiu et al. [86] 2018 LSTM. 16 base stations from a big
city in Asia: 15 days period. MSE.

Hua et al. [87] 2018 LSTM;
RCLSTM. GÉANT network data set. MSE;

MAE.

Trinh et al. [88] 2018 LSTM. LTE scheduling information of
users connected to a eNodeB. NRMSE.

Feng et al. [89] 2018 DeepTP
(LSTM based).

9600 BS from a mobile
cellular network from Shanghai, China. NRMSE.

Li et al. [56] 2019 LSTM.
Transportation research data
laboratory from University

of Minnesota.

RMSE;
ACC.

Andreoletti et al. [90] 2019 Diffusion
Convolutional-RNN. Backbone Abilene network.

MAE;
MAPE;
RMSE;

Convergence Epoch;
Convergence Time.

Shihao et al. [91] 2019 LSTM-DNN.
Network service from 11 European cities;

UKERNA website;
Beijing University.

MAPE.

Bega et al. [16] 2019 3D-CNN.
Network datacenter with 470 4G eNodeBS;

Mobile Edge Computing datacenters;
C-RAN datacenters.

Monetary cost;
MAE;

Overprovisioning/SLA.

Sone et al. [92] 2020

Holt-Winters;
SARIMA;

LSTM;
GRU;
CNN;

CNN-LSTM;
CNN-GRU.

470 APs in the Linnanmaa campus
of the University of Oulu, Finland.

RMSE;
MAE;

NRMSE;
R2 score.

Li et al. [93] 2020 LA-ResNet (LSTM). Telecom Italia: Milan 2013. RMSE;
Average accuracy.

Elsherbiny et al. [94] 2020

KNN;
SVR;

Ridge Regression;
Random Forest;

ARIMA;
LSTM.

Multiple network parameters
from a public transit bus in Canada. RMSE;

R2 score.

Deng et al. [63] 2021 RNN 2020 MathorCup
(upstream and downstream traffics). MSOE.

Patil et al. [59] 2021
ARIMA;

GRU;
LSTM.

IoT basic-traffic.

MAE;
RMSE;
MSE;
MRE.

Alsaade and Al-Adhaileh [95] 2021 SES-LSTM. 3 months of 4G LTE network
traffic in 2018.

MSE;
RMSE;

NRMSE;
R2.

Chien and Huang [96] 2021 CNN. Telecom Italia: Milan 2013.
MAE;

RMSE;
MAPE.

Gao et al. [97] 2021 Ensemble Model;
CNN. Telecom Italia: Milan 2013. ANRMSE.

Wu et al. [98] 2021 GS-STN (CNN-LSTM). Telecom Italia: Milan 2013.
NMAE;

NRMSE;
Training time.
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Zhan et al. [99] 2021 CNN. Telecom Italia: Milan 2013.

RMSE;
MAE;

MAPE;
DirAcc.

Shen et al. [100] 2021 TWACNet (CNN). Telecom Italia: Milan 2013.
MAE;

RMSE;
Training time.

Kuber et al. [101] 2021 LSTM. Telecom Italia: Milan 2013. RMSE;
MAE.

Lo Schiavo et al. [102] 2022 TES-RNN. More than 400 4G/LTE base stations
in a metropolitan area.

Training time;
Average MSE;

F1 score;
ROC curve.

Hasegawa et al. [103] 2001
LLA;
RBF;
SVM.

Packet trace taken from
US-Japan link of WIDE backbone. CC.

Cortez et al. [104] 2006 Ensemble NN. Private ISP from 11 European cities;
UK academic network. MAPE.

Tikunov and Nishimura [105] 2007 Holt-Winters. Commercial GMS/GPRS network. NRMSE.

Filho and Maia [106] 2010 PCA with
K-means. GÉANT network. MAPE.

Shafiq et al. [107] 2011 Zipf-like;
Markov model.

Mobile device traffic data from cellular
operator’s core network in US.

MSE;
Fit quality.

Li et al. [108] 2014 Spatial-temporal
compressive sensing.

2 weeks of traffic load
of 64 BSs from Hangzhou. NRMSE.

Nikravesh et al. [109] 2016
MLP;

MLPWD;
SVM.

5840 cells from a commercial
trial mobile network.

MAPE;
RMSE.

Zhang and Patras [110] 2017 STN;
D-STN. Telecom Italia for Milan. NRMSE.

Wang et al. [111] 2017 Graph Neural Network-D;
Graph Neural Network-A.

5959 cell towers covering 1.5 million
users in a major city of China.

MAE;
MARE.

Li et al. [112] 2017 ADM-LARS;
ADM-OMP.

Traffic records from
China Mobile in Hangzhou. NMAE.

Narejo and Pasero [113] 2018 DBN. UK academic internet
traffic from 2004 to 2005.

MSE;
RMSE.

Stepanov et al. [19] 2020
Bagging;

Random Forest;
SVM.

Traffic of a LTE network.
RMSE;
MAE;
R2.

Vinchoff et al. [114] 2020 Adversarial NN. Complex Elastic Optical Network Simulator;
Short-Term Real-life Fiber Network Data. MSE.

Yang [115] 2021 STFT. Generated network traffic. AE;
RE.

Sun and Guo [116] 2021 Feature Embedding
Gaussian Process.

4G BS from a
metropolitan area. ACE.

Ale et al. [117] 2021 Bayesian Hierarchical
Learning. China Telecom: Shanghai.

PMCC;
MSE;
MAE;

MAPE;
RMSEP;
RMSE.

Tomic et al. [118] 2022

Naive Model;
Linear Regression;

XGBoost;
FFNN.

Tier 1 Mobile Operator: 3000 BS operating
in various LTE frequency bands.

MAPE;
Training time.

Wang et al. [66] 2022 Graph Neural Network. Telecom Italia: Milan 2013.
MAE;

MAPE;
RMSE.

Zhou et al. [67] 2022 Spatio-temporal Graph
Convolutional Neural Network.

Telecom Italia: Milan 2013;
Caltrans Performance Measurement System.

MAE;
RMSE;

Epoch efficiency.
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B. RECURRENT NEURAL NETWORKS
When training a neural network, some hyper parameters may
affect the results, leading to over-fitting or under-fitting. As
example, it is possible to cite epochs and batch size, defined
as:

• epochs (epc): hyper parameter that is used to determi-
nate how many times the learning algorithm will work
through the entire data set;

• batch size (bs): hyper parameter that defines the number
of samples that the learning algorithm should work with,
before updating its internal weights. In brief, at the end
of the batch, the error between prediction and output
is calculated, then the gradient descent algorithm is
applied to update the model’s weights.

For instance, consider a data set with 100 samples, batch size
set to 5, and 100 epochs, then:

1) the data set is divided into 20 batches, each with 5
samples. The model‘s weights are updated after each
batch;

2) 1 epoch allows the model to update its weights and bias
20 times;

3) since there are 100 epochs, there are 2000 updates for
the internal parameters of the model.

In the following subsections, the traffic load is predicted
under the assumptions:

• epc = 1000;
• bs = 32;
• the number of neurons nn in each hidden layer is nn =
{32, 64, 128, 256};

• the number of LSTM, GRU or simple RNN hidden
layers is nhl = {1, 2, 3, 4};

• tests run with Adam optimizer, introduced by [119] and
proved to be computationally efficient with little mem-
ory requirements, and appropriate for non-stationary
objectives;

• loss function as MSE;
• learning rate set to 0.0001;
• activation function of LSTM, GRU or simple RNN

layers: tanh;
• each input vector (at in Figures 13 and 14) consists of

24 samples, that is, at = {ãt−23, . . . , ãt−2, ãt−1, ãt},
where each ãt is calculated by using equation (49). This
standardization is may improve the network training;

• the algorithms have access to 55 days of CDR traffic: 50
are used to train the models and 5 days to validate them;

• the last 7 days are used just to evaluate the models
performance by comparing their predictions and the real
measured values.

Besides, after the last LSTM, GRU or simple RNN hidden
layer, there are two layers: a flatten layer with 32 neurons
and reLU activation function, an output layer with a single
neuron (which is the predicted value) and linear activation
function.

TABLE 7. RNN forecasting errors for one week of CDRs predictions.

Number of RNN hidden layers
nn 1 2 3 4

32 MAE
MSE

4.424
26.151

4.258
33.939

4.976
42.344

3.626
22.303

64 MAE
MSE

4.622
30.537

5.958
48.103

5.126
38.203

5.370
42.261

128 MAE
MSE

3.716
21.320

4.087
24.592

5.480
42.603

3.743
21.744

256 MAE
MSE

2.982
14.275

4.842
32.687

2.705
10.887

3.863
22.700

TABLE 8. LSTM forecasting errors for one week of CDRs predictions.

Number of LSTM hidden layers
nn 1 2 3 4

32 MAE
MSE

3.240
14.456

3.829
19.818

3.262
17.861

3.504
18.108

64 MAE
MSE

2.400
9.796

3.104
15.046

4.946
46.799

5.296
39.411

128 MAE
MSE

3.700
19.017

4.923
34.720

4.898
35.358

4.229
27.686

256 MAE
MSE

3.642
20.644

2.820
14.511

4.163
24.801

3.552
20.591

1) RNN
The results obtained with the simplest recurrent neural net-
work, RNN, are presented in Table 7.

2) LSTM
The results obtained with LSTM recurrent NN are presented
in Table 8.

3) GRU
The results obtained with GRU recurrent NN are presented
in Table 9.

The previous three models have different numbers of train-
ing parameters, leading to specific computational costs. The
quantity of training parameters of each approach for different
numbers of layers is presented in Figure 18.

It is clear that the number of training parameters grows
when more neurons are considered inside the same layer,
which is illustrated in Figure 19.

C. CONVOLUTIONAL NEURAL NETWORKS
The data set contains the geographical positions of all an-
tennas, which are distributed in a matrix M ∈ R100×100.

TABLE 9. GRU forecasting errors for one week of CDRs predictions.

Number of GRU hidden layers
nn 1 2 3 4

32 MAE
MSE

3.158
15.048

2.863
12.748

3.152
15.350

3.149
14.927

64 MAE
MSE

3.170
14.949

3.583
18.122

4.034
21.723

2.484
10.254

128 MAE
MSE

2.845
12.123

4.490
32.631

2.563
11.034

3.737
23.611

256 MAE
MSE

3.403
18.469

2.797
12.363

3.663
20.699

3.286
16.782
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FIGURE 18. Training parameters for the three types of recurrent neural
network considering different numbers of the hidden layers, each with 32
neurons.
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19009
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20801
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4449
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FIGURE 19. Training parameters for the three types of recurrent neural
network considering different numbers of neurons, with 1 hidden layer.

As previously mentioned, CNNs are able to capture local
patterns in a feature space of a matrix. Hence, one could
consider all adjacent towers to the one in cell ID 1051 to
predict the traffic load for one week of CDRs. In this case, the
input of the CNNs is a tensor presented in Figure 20, where
each tensor position is the traffic load of a specific cell ID at
a time step. Notice that we have both geographical and time
information as input.

For the CNN simulations, we used the same number of
epochs, batch size, optimizer, loss function, and learning rate
from the RNNs neural networks. Besides, we consider the
following network architecture:

• 3D CNN layer with 32 filters, Kernel size of {k, 2, 2},
with k = {1, 2, 3} being the time-dimension and
padding set to "same";

1051

951950 952

1050 1052

1150 1151 1152

1051

951950 952

1050 1052

1150 1151 1152

1051

951 950 952

1050 1052

1150 1151 1152

...

FIGURE 20. Spatio-temporal input tensor.

TABLE 10. Results obtained via 3D-CNN considering MaxPooling layers.

Number of 3D-CNN layers
and Pooling layers

k 1 2

1
MAE
MSE
T.P.

3.186
15.020
49,641

3.617
18.893
10,761

2
MAE
MSE
T.P.

2.527
10.421
49,769

3.337
15.159
13,961

3
MAE
MSE
T.P.

2.668
10.959
49,897

4.039
24.857
18,185

TABLE 11. Results obtained via 3D-CNN considering Average Pooling layers.

Number of 3D-CNN layers
and Pooling layers

k 1 2

1
MAE
MSE
T.P.

2.895
13.213
49,641

2.096
6.718

10,761

2
MAE
MSE
T.P.

2.872
12.984
49,769

3.676
20.807
13,961

3
MAE
MSE
T.P.

3.159
16.191
49,897

3.458
19.804
18,185

• 3D Pooling layer of dimension {2, 2, 2} and padding set
to "same";

• for the simulations with 2 sequences of feature extrac-
tions (Figure 16), after the layers above, we have:

– 3D CNN layer with 32 filters, Kernel size of
{k, 2, 2} and padding set to "valid";

– 3D Pooling layer of dimension {2, 1, 1} and
padding set to "valid";

• flatten layer followed by dense layer with 32 neurons;
• output dense layer with 9 neurons;
Note that the output layer has 9 neurons because each one

is the prediction for a position of the spatio-temporal input
tensor in Figure 20 at time t. Then, the input tensor is updated
with these new values and the last 24 hours are used for a
new prediction. The results considering MAE, MSE, and the
number of training parameters (T.P.) are presented in Tables
10 and 11.

D. COMPARISON BETWEEN TECHNIQUES
The time-series predictions for hourly aggregated CDRs con-
sidering the previous approaches are presented in Figure 21.

Comparing the results obtained via NN and SARIMA
models, we notice that the neural network approaches pro-
vided at least one configuration with smaller MAE and MSE,
see Table 12, where the best results of each model are shown.
These differences in results may grow even more when the
time-series to predict is highly nonlinear or the amount of
data to be analyzed is very big. In such cases, SARIMA
models may present degradation, leading to higher errors.

It is important to emphasize that the results obtained
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FIGURE 21. Time-series prediction of the three recurrent neural networks, CNN and SARIMA models.

TABLE 12. Smallest MAE and MSE obtained with previous approaches.

Approach MAE MSE
SARIMA 2.911 12.827

Decomposed SARIMA 2.733 11.452
Simple RNN 2.705 10.887

3D-CNN (MaxPool) 2.527 10.421
GRU 2.484 10.254

LSTM 2.400 9.976
3D-CNN (AvgPool) 2.096 6.718

via neural networks approaches may vary a little, even if
all parameters are kept the same, in case new training of
the models is performed. Due to the highly non-convexity
of such functions, different training phases may end up in
different local minima. On the contrary, the SARIMA models
have a closed-formula of calculation, which leads to the same
results if their parameters (p, d, q)(P,D,Q)S do not change.
Hence, the order presented in Table 12 may vary if new ex-
periments are performed. Our goal, besides presenting NNs
outperforming the statistical models, is to study different
strategies, so they can be used in different situations or even
together. In fact, many papers design prediction models based
on a combination of these approaches. For instance, Huang
et al. [3] presents a formulation where the model extracts
spatial and time correlations based on 3d-CNN and LSTM,
respectively, leading to very accurate results.

VII. OPEN RESEARCH DIRECTIONS
Our tutorial and survey let us overall highlight that, even
though network traffic prediction has been extensively stud-
ied over the recent years, there are still gaps in the literature
and several clear directions for improvement.

A. GAPS IN THE LITERATURE
As far as gaps are concerned, the search for models capable
of forecasting the traffic demand with an accuracy as high

as possible is intrinsically related to computational costs,
due to model complexity and the time associated not just
with its training, but also with its output predicted value.
Yet, many papers do not present a formal analysis of model
complexity, or results about the computational time of the
solution. We argue that the community should make an effort
of always including comparative analyses of new models
with the state of the art not only in terms of performance but
also complexity, so as to reveal the trade-off between these
two key metrics.

Also, recent challenges in time series forecasting that are
general purpose and not specific to network traffic have
proven how many proposed models may fail to outperform
simple baselines, as summarized by Makridakis et al. [120,
121]. In this regard, many studies in the literature do not pro-
vide direct comparison against naive or classical approaches,
or do so with unclear parametrization of such benchmarks.
Our conclusions is that the availability of a ready-to-use set
of baseline models usable by the whole community would
benefit the direct comparability of newly proposed solutions.
We hope that the implementations developed for the tutorial
and comparison parts of this document, which we provide
as open-source software, can become the first core of such a
toolbox.

It is also worth noting that, although the biggest part
of papers cite the importance to predict the network traffic
load (e.g., resource allocation and utilization, anticipatory
decisions making, or network design), there is a gap on
how these forecasting models could be used in a real world
scenario to design optimization problems regarding energy
saving, quality of service, close-loop control of the entire
network, etc. We consider that there is a clear need that new
solutions are not only compared to existing ones in terms of
absolute or relative errors in the prediction (e.g., via MAE or
MAPE metrics), but also deployed in practical applications;
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in this way, one can really appreciate the gain that a model
would grant over another in production settings.

Another obstacle, related to benchmarking and even harder
to surpass than those above, is that of the lack of a reference
dataset of network traffic that is consistently adopted across
performance evaluations of proposed models –opposed to
what happens in other communities like the image processing
one. Unfortunately, traffic data is often regarded as sensi-
tive by operators, and only disclosed under restrictive Non-
Disclosure Agreements (NDAs). Publicly available datasets
are scarce and outdated. A promising option in this sense may
be provided by emerging efforts on the generation of realistic
synthetic spatial and temporal network traffic: early models
proposed by Lin et al. [122] and Xu et al. [123] can produce
vast amounts of traffic data that can be openly released,
towards building a reference dataset to be commonly adopted
by the community.

B. DIRECTIONS FOR IMPROVING FORECASTING
MODELS

Our survey of forecasting models for network traffic ev-
idences how, as in many other scientific and application
domains, deep learning is revolutionizing the approaches for
predicting future demands, thanks to significant accuracy im-
provements. Yet, it also outlines several emerging pathways
for the improvement of existing deep learning architectures,
which go beyond now rather standard RNNs, CNNs or GNNs
and are aimed at further increasing the quality of predictions.

An interesting direction is that of hybrid strategies that mix
deep learning and statistical modeling, jointly parametrized
via a single training precess. As proven by early works, such
as that of Lo Schiavo et al. [102], such combined approaches
shows promises of improving the performance of the fore-
cast with respect to pure deep learning solutions. However,
current studies in this direction are fairly preliminary and
additional research is needed to unveil the potential of hybrid
models.

In addition, the vast majority of network traffic predictors
employ legacy loss functions, such as MAE or MSE, which
are an ideal choice when the target of the forecast is antici-
pating the future traffic. Yet, in many practical applications,
such as for network management, the value of the prediction
is in how it can support effective decision-making: in these
settings a predictor that minimizes the error to the future de-
mand in not necessarily the optimal choice. On a related note,
seminal studies, such as those of Bega et al. [16] have started
exploring how to cope with the limitation above directly at
model design stage. The concept is introducing loss functions
that are designed by network experts and are tailored to the
downstream application: such custom functions can train the
predictor model to produce an output that is aligned with the
requirements of the end user. Loss meta-learning frameworks
such as that by Collet et al. [124] also start being proposed,
which automate the definition of the most appropriate loss
function to the target performance objective prediction.

Another relevant direction concerns the fact that forecast
models are today evaluated in non-real-time settings. This
implies that the current practice in performance assessment
involves (i) off-line training with historical data; (ii) test-
ing with limited re-played historical data typically recorded
immediately after the training data; and, (iii) little or no
attention to inference latency. Together, these habits lead
to predictor implementations that are hardly validated in
production-like settings. The situations calls for forecasting
frameworks that can operate in on-line settings, e.g., by
ensuring inference delays that are consistent with the require-
ments of the downstream applications, which can be down
to milliseconds in radio access operations. It also requires
in=depth studies of the prediction accuracy decrease over
time, and need for re-training or, better, continual learning.
Finally, evaluations should be designed so that it is ensured
that models can correctly operate on live streaming data.

Finally, generalization is also a widely open research sub-
ject. Most models proposed in the literature are tested in
specific scenarios, which, even when covering large urban
areas, are still representative of a given network deployment.
There are unanswered questions about how models trained
in specific regions generalize to other areas. Recent studies
of transfer learning approaches, such as those by Wu et al.
[125] are promising in this sense, and pave the way for further
investigations.

VIII. CONCLUSION
In this survey, we presented distinct approaches used to
design network traffic prediction models. Different mathe-
matical formulations were discussed and the most relevant
were fully explained, so the reader is able to gain a deep
understanding of each one. Based on the state of art, the
network traffic prediction task was divided into three main ar-
eas (clustering, prediction model, and time-series decomposi-
tion) that were separately explained. A detailed list of papers
addressing such a problem was also presented, allowing the
reader to find some of the most relevant papers in this field
of research. We also performed numerical experiments in a
real world scenario data set to compare some of the explained
mathematical models in terms of accuracy and computational
cost. All the codes are publicly available, so other researchers
can compare their approaches with the ones we provided or
even use them as a foundation for more advanced solutions.
Gaps in the literature were also listed, allowing the readers
not just to use our codes and have a full understanding of
network traffic prediction, but also giving possible directions
for future works.
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APPENDIX.
In the numerical experiments, six different prediction models
were designed and tested in a real world scenario data set.
We provide the codes for all approaches, so other researches
can use these models and perform a direct comparison in
terms of computational cost and prediction accuracy. All the
codes, written in Python 3, have comments to allow their easy
use/understanding and are available in GitHub 2. We also
made available a small pre-processed subset of the data used
to train the models. A description of the data set is provided
by Barlacchi et al. [17] and its full version can be downloaded
from the Harvard Dataverse Italia [126].
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