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Non-Euclidean Monotone Operator Theory
with Applications to Recurrent Neural Networks

Alexander Davydov∗, Saber Jafarpour∗, Anton V. Proskurnikov, and Francesco Bullo

Abstract— We provide a novel transcription of monotone
operator theory to the non-Euclidean finite-dimensional spaces
ℓ1 and ℓ∞. We first establish properties of mappings which
are monotone with respect to the non-Euclidean norms ℓ1 or
ℓ∞. In analogy with their Euclidean counterparts, mappings
which are monotone with respect to a non-Euclidean norm
are amenable to numerous algorithms for computing their
zeros. We demonstrate that several classic iterative methods for
computing zeros of monotone operators are directly applicable
in the non-Euclidean framework. We present a case-study in
the equilibrium computation of recurrent neural networks and
demonstrate that casting the computation as a suitable operator
splitting problem improves convergence rates.

I. INTRODUCTION

Monotone operator methods have become prevalent to
solve problems in optimization and control [4], [20], game
theory [17], systems analysis [5], and to better understand
machine learning models [8], [22]. However, monotone op-
erator techniques are primarily based on the theory of Hilbert
and Euclidean spaces, while many problems are well-posed
or better-suited for analysis in a Banach space or finite-
dimensional non-Euclidean space. For example, in machine
learning, it is known that robustness analysis of artificial
neural networks is naturally performed via the ℓ∞ norm and
that such a norm is most appropriate for high-dimensional
input data. Additionally, in the field of robust control, H∞
techniques are naturally stated over an infinite-dimensional
Banach space, so monotone operator techniques do not apply.

Problem description and motivation: In this paper, we aim
to provide a natural transcription of many monotone operator
techniques for computing zeros of monotone operators for
operators which are naturally “monotone” with respect to an
ℓ1 or ℓ∞ norm in a finite-dimensional space.

Monotone operator theory is a fertile field of nonlinear
functional analysis that generalizes the notion of monotone
functions on R to mappings on arbitrary Hilbert spaces
and examines the properties of such maps. In particular, an
integral component of monotone operator theory is the design
of algorithms to compute zeros of monotone operators. This
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aspect makes monotone operator theory compatible with
convex optimization since the subdifferential of any convex
function is monotone and minimizing a convex function is
synonymous with finding a zero of its subdifferential. To
this end, there has been an extensive amount of work in the
last decade in applying monotone operator theory to convex
optimization; e.g., see [7], [18], [19].

Through the lens of duality theory, the theory of dissipative
and accretive operators on Banach spaces mirrors monotone
operators on Hilbert spaces [?]. Despite these parallels, the
theory of dissipative and accretive operators has largely fo-
cused on iteratively computing solutions of integral equations
and PDEs in Lp spaces for p ̸= 2; see [6] for a relevant book.
Moreover, many works in this direction focus on Banach
spaces that additionally have a uniformly smooth or uni-
formly convex structure; this structure is not possesed by the
finite-dimensional ℓ1 and ℓ∞ spaces. Ultimately, in contrast
to monotone operator theory, the theory of dissipative and
accretive operators has found far fewer direct applications to
systems, control, and machine learning.

A notion similar to a monotone operator in a Hilbert
space is that of a contracting vector field [16]. In fact, a
vector field F : Rn → Rn is contracting with respect to
an ℓ2 norm if and only if the negative vector field −F is
monotone when thought of as an operator. However, vector
fields are not restricted to being contracting with respect to a
Euclidean norm. In general, a vector field may be contracting
with respect to a non-Euclidean norm but not a Euclidean
one [1]. Recently, there has been an increased interest in
studying vector fields that are contracting with respect to
the non-Euclidean norms ℓ1 and ℓ∞ [2], [10], [11]. Due to
the connection between monotone operators and contracting
vector fields, it is of interest to explore the properties of
operators that may be thought of as monotone with respect
to an ℓ1 or ℓ∞ norm.

Contributions: To facilitate the application of monotone
operator theory techniques to problems naturally arising in
non-Euclidean spaces, we propose a novel non-Euclidean
monotone operator framework based on the theory of loga-
rithmic norms [21]. We use the logarithmic norm as a substi-
tute for inner-products in Hilbert spaces and we demonstrate
that many results from monotone operator theory directly
carry over to their non-Euclidean counterpart. Specifically,
we show that the resolvent and reflected resolvent operators
of a non-Euclidean monotone operator have properties anal-
ogous to those arising in Euclidean spaces.

Second, we demonstrate that classical iterative algorithms
such as the forward step method and proximal point method



allow us to compute zeros of non-Euclidean monotone op-
erators in a manner identical to the procedure for traditional
monotone operators. We present estimates for Lipschitz
constants of these iterative methods and demonstrate that,
for diagonally weighted ℓ1 and ℓ∞ norms, these algorithms
achieve improved rates of convergence compared to their Eu-
clidean counterparts. As a clear distinction from the classical
theory, we prove that the forward step method is convergent
for an operator which is (weakly) monotone with respect to
an ℓ1 or ℓ∞ norm, but that the method need not converge if
the operator is monotone with respect to a Euclidean norm.
This result is analogous to the result on weakly-contracting
ODEs as in [13, Theorem 21].

Third, we study operator splitting methods. We prove that
the forward-backward, Peaceman-Rachford, and Douglas-
Rachford splitting algorithms all apply in our framework and
that improved convergence may be achieved for these non-
Euclidean norms compared to their Euclidean counterparts.

Fourth, as an application, we present methods to compute
equilibria for recurrent neural networks. We extend the recent
work of [?], [14] to demonstrate that our non-Euclidean
monotone operator theory is readily applicable and can
provide accelerated convergence of iterations when viewing
the problem of computing an equilibrium as an appropriate
operator splitting problem. Finally, we present numerical
simulations presenting rates of convergence of the different
iterations when applied to this problem.

II. PRELIMINARIES

A. Notations

For differentiable F : Rn → Rn, we let DF(x) := ∂F(x)
∂x ∈

Rn×n denote its Jacobian evaluated at x. For an arbitrary
mapping F, we let Dom(F) be its domain. For F : Rn → Rn,
we let Zero(F) := {x ∈ Rn | F(x) = 0} and Fix(F) = {x ∈
Rn | F(x) = x} be the sets of zeros of F and fixed points
of F, respectively. We let Id : Rn → Rn be the identity map
and In ∈ Rn×n be the n× n identity matrix.

B. Norms and Logarithmic Norms

Definition 1 (Logarithmic norm). Let ∥ · ∥ be a norm on
Rn and its corresponding induced norm on Rn×n. The
logarithmic norm of a matrix A ∈ Rn×n is

µ(A) := lim
h→0+

∥In + hA∥ − 1

h
. (1)

It is well-known that this limit is well posed. We refer to
[12] for properties enjoyed by log norms.

We will be specifically interested in diagonally weighted
ℓ1 and ℓ∞ norms defined by

∥x∥1,[η] =
∑
i

ηi|xi| and ∥x∥∞,[η]−1 = max
i

1

ηi
|xi|,

where, given a positive vector η ∈ Rn
>0, we use [η] to denote

the diagonal matrix with diagonal entries η. For A ∈ Rn×n,

the corresponding induced and log norms are1

∥A∥∞,[η]−1 = max
i∈{1,...,n}

n∑
j=1

ηj
ηi
|aij |,

µ∞,[η]−1(A) = max
i∈{1,...,n}

(
aii +

∑n

j=1,j ̸=i
|aij |

ηj
ηi

)
,

∥A∥1,[η] = ∥A⊤∥∞,[η]−1 , µ1,[η](A) = µ∞,[η]−1(A⊤).

C. Contractions, nonexpansive maps, Banach-Picard and
Krasnosel’skii–Mann iterations

For the remainder of the paper, we assume all mappings
are continuously differentiable unless otherwise stated.

Definition 2 (Lipschitz continuity). Let ∥ · ∥ be a norm and
F : Rn → Rn be a map. F is Lipschitz continuous with
constant Lip(F) ∈ R≥0 if for all x1, x2 ∈ Rn

∥F(x1)− F(x2)∥ ≤ Lip(F)∥x1 − x2∥. (2)

Definition 3 (Contractions and nonexpansive maps). Let T :
Rn → Rn be Lipschitz with respect to a norm ∥ · ∥. We say

(i) T is a contraction if Lip(T) ∈ [0, 1[,
(ii) T is nonexpansive if Lip(T) = 1.

Definition 4 (Krasnosel’skii–Mann iterations [3, Sec-
tion 5.2]). Let T : Rn → Rn be nonexpansive with respect
to a norm ∥ · ∥. For θ ∈ ]0, 1[, the Krasnosel’skii–Mann
iterations applied to T defines the sequence {xk}∞k=0 by

xk+1 = (1− θ)xk + θT(xk). (3)

Lemma 5 (Convergence of Krasnosel’skii–Mann itera-
tions [9]). Let T : Rn → Rn be nonexpansive with respect to
a norm ∥·∥ and consider the Krasnosel’skii–Mann iterations
as in (3). Suppose Fix(T) ̸= ∅ and let x∗ ∈ Fix(T). Then

∥xk − T(xk)∥ ≤ 2∥x0 − x∗∥√
kπθ(1− θ)

. (4)

In particular, ∥xk − T(xk)∥ → 0 as k → ∞.

III. NON-EUCLIDEAN MONOTONE OPERATORS

A. Definitions and Properties

Definition 6 (Non-Euclidean monotone operator). A con-
tinuously differentiable operator F : Rn → Rn is strongly
monotone with monotonicity parameter c > 0 with respect
to a norm ∥ · ∥ on Rn provided for all x ∈ Rn,

−µ(−DF(x)) ≥ c. (5)

If the inequality holds with c = 0, we say F is monotone2

(or weakly monotone) with respect to ∥ · ∥.

Remark 7 (Comparison to the Euclidean case). For an
operator F : Rn → Rn, let ∥ · ∥2 be the Euclidean norm
with corresponding inner product ⟨·, ·⟩. Then following [3,
Definition 20.1], F is monotone with respect to ∥ · ∥2 if

⟨F(x)− F(y), x− y⟩ ≥ 0, for all x, y ∈ Rn. (6)

1We note also that for the Euclidean norm ∥ · ∥2, the corresponding log
norm is µ2(A) = 1

2
λmax(A+A⊤).

2If F is only locally Lipschitz, we ask that (5) holds almost everywhere.



If F is continuously differentiable, (6) is known to be equiv-
alent to (e.g., [18]) DF(x) +DF(x)⊤ ⪰ 0, or equivalently
−µ2(−DF(x)) ≥ 0, which coincides with Definition 6.

By subadditivity of µ, a sum of operators which are
monotone with respect to the same norm is also monotone.
Additionally, if F is (strongly) monotone with monotonicity
parameter c ≥ 0, then for any α ≥ 0, Id + αF is strongly
monotone with monotonicity parameter 1 + αc.

Remark 8 (Connection with contracting vector fields [16]).
A mapping F : Rn → Rn is strongly contracting with
rate c > 0 with respect to a norm ∥ · ∥ on Rn provided
µ(DF(x)) ≤ −c, for all x ∈ Rn. If c = 0, we say F is weakly
contracting with respect to ∥ · ∥. Clearly, F is (strongly)
monotone if and only if −F is (strongly) contracting.

Lemma 9. Let F : Rn → Rn be globally Lipschitz with
respect to a diagonally-weighted ℓ1 or ℓ∞ norm ∥ · ∥ with
constant Lip(F) = ℓ. If F is (possibly strongly) monotone
with respect to ∥ ·∥ with monotonicity parameter c ≥ 0, then

Lip(Id− αF) = 1− αc, for all α ∈
]
0, (diagL(F))−1

]
,

where diagL(F) := supx∈Rn maxi∈{1,...,n}(DF(x))ii ≤ ℓ.

Note that for Euclidean norms, if F is monotone, but not
strongly monotone, then (Id−αF) need not be nonexpansive
for any α > 0. Indeed, consider F(x) =

(
0 1
−1 0

)
x, which

is monotone with respect to the ℓ2 norm, but (Id − αF) is
expansive for every α > 0.

B. Resolvent and reflected resolvent operators

Definition 10 (Resolvent and reflected resolvent). Let F :
Rn → Rn be a mapping and α > 0. The resolvent of αF is
defined as

JαF := (Id+ αF)−1. (7)

The reflected resolvent of αF is RαF := 2JαF − Id.

Note for any α > 0, Zero(F) = Fix(JαF) = Fix(RαF).

Lemma 11 (Lipschitz constant of the resolvent operator).
Suppose F : Rn → Rn is (strongly) monotone with parame-
ter c ≥ 0. Then for every α > 0,

Lip(JαF) =
1

1 + αc
. (8)

Theorem 12 (Lipschitz constant of the reflected resolvent).
Suppose F : Rn → Rn is globally Lipschitz with respect to a
diagonally weighted ℓ1 or ℓ∞ norm ∥·∥. Moreover, suppose F
is (strongly) monotone with respect to ∥·∥ with monotonicity
parameter c ≥ 0. Then for α ∈ ]0, (diagL(F))−1[,

Lip(RαF) =
1− αc

1 + αc
≤ 1. (9)

IV. FINDING ZEROS OF NON-EUCLIDEAN MONOTONE
OPERATORS

Consider the problem of finding an x ∈ Rn that satisfies
F(x) = 0, where F is monotone. We present several well-
known algorithms for finding zeros of monotone operators
(see, e.g., [18]) and show how the non-Euclidean monotone

operator framework allows the same algorithms to compute
zeros of non-Euclidean monotone operators.

Algorithm 13 (Forward step method). The forward step
method corresponds to the fixed point iteration

xk+1 = (Id− αF)(xk). (10)

Theorem 14 (Forward step method convergence). Let x0 ∈
Rn. Suppose F : Rn → Rn is globally Lipschitz with respect
to a diagonally-weighted ℓ1 or ℓ∞ norm ∥ · ∥ and

(i) F is strongly monotone with respect to ∥ · ∥ with
monotonicity parameter c > 0. Then the sequence
generated by (10) converges to the unique x∗ ∈ Zero(F)
for every α ∈ ]0, (diagL(F))−1]. Moreover, for every
k ∈ Z≥0,

∥xk+1 − x∗∥ ≤ (1− αc)∥xk − x∗∥,

with convergence rate optimized at α = 1/ diagL(F).
(ii) F is monotone with respect to ∥ · ∥. Then if Zero(F) ̸=

∅, (10) converges to an element of Zero(F) for every
α ∈ ]0, (diagL(F))−1[.

Algorithm 15 (Proximal point method). The proximal point
method corresponds to the fixed point iteration

xk+1 = JαF(xk) = (Id+ αF)−1(xk). (11)

Theorem 16 (Proximal point method convergence). Let x0 ∈
Rn. Suppose F : Rn → Rn is

(i) strongly monotone with respect to ∥·∥ with monotonicity
parameter c > 0. Then for any x0 ∈ Rn, the sequence
generated by (11) converges to the unique x∗ ∈ Zero(F)
for every α ∈ ]0,∞[. Moreover, for every k ∈ Z≥0,

∥xk+1 − x∗∥ ≤ 1

1 + αc
∥xk − x∗∥.

(ii) monotone and globally Lipschitz with respect to a
diagonally weighted ℓ1 or ℓ∞ norm. Then if Zero(F) ̸=
∅, (11) converges to an element of Zero(F) for every
α ∈ ]0,∞[ and x0 ∈ Rn.

Algorithm 17. The Cayley method corresponds to the fixed
point iteration

xk+1 = RαF(xk) = 2(Id+ αF)−1(xk)− xk. (12)

Theorem 18 (Cayley method convergence). Let x0 ∈ Rn.
Suppose F : Rn → Rn is globally Lipschitz with respect to
a diagonally-weighted ℓ1 or ℓ∞ norm ∥ · ∥ and

(i) F is strongly monotone with respect to ∥ · ∥ with
monotonicity parameter c > 0. Then for any x0 ∈
Rn, the sequence generated by (12) converges to the
unique x∗ ∈ Zero(F) for every α ∈ ]0, (diagL(F))−1].
Moreover, for every k ∈ Z≥0,

∥xk+1 − x∗∥ ≤ 1− αc

1 + αc
∥xk − x∗∥,

with convergence rate optimized at α = 1/ diagL(F).



Algorithm
F strongly monotone and globally Lipschitz

ℓ2 Diagonally weighted ℓ1 or ℓ∞
α range Optimal Lip α range Optimal Lip

Forward step
]
0,

2c

ℓ2

[
1−

1

2κ2
+O

( 1

κ3

) ]
0,

1

diagL(F)

]
1−

1

κ∞

Proximal point ]0,∞[ N/A ]0,∞[ N/A

Cayley method ]0,∞[ 1−
1

2κ
+O

( 1

κ2

) ]
0,

1

diagL(F)

]
1−

2

κ∞
+O

( 1

κ2
∞

)
TABLE I

STEP SIZE RANGES AND LIPSCHITZ CONSTANTS FOR ALGORITHMS FOR FINDING ZEROS OF MONOTONE OPERATORS. FOR F STRONGLY MONOTONE,
LET c BE ITS MONOTONICITY PARAMETER, ℓ ITS APPROPRIATE LIPSCHITZ CONSTANT, AND diagL(F) := supx∈Rn maxi∈{1,...,n}(DF(x))ii ≤ ℓ.
ADDITIONALLY, κ := ℓ/c ≥ 1 AND κ∞ := diagL(F)/c ∈ [1, κ]. RANGES OF α AND OPTIMAL LIPSCHITZ CONSTANTS FOR THE EUCLIDEAN CASE

ARE PROVIDED IN [18]. WE DO NOT ASSUME THAT THE STRONGLY MONOTONE F IS THE GRADIENT OF A STRONGLY CONVEX FUNCTION.

(ii) F is monotone with respect to ∥·∥. Then if Zero(F) ̸= ∅,
the averaged iterations

xk+1 = 1
2xk + 1

2RαF(xk)

converge to an element of Zero(F) for every α ∈ ]0,∞[.

We provide a comparison of the range of step sizes and
Lipschitz constants as provided by the classical monotone
operator theory [18] and Theorems 14, 16, and 18 in Table I.

V. FINDING ZEROS OF A SUM OF NON-EUCLIDEAN
MONOTONE OPERATORS

In many instances, one may wish to execute the proxi-
mal point method, Algorithm 15, to compute a zero of a
monotone operator N : Rn → Rn. However, in general, the
implementation of the iteration (11) may be hindered by the
difficulty in evaluating JαN. To remedy this issue, it is often
assumed that N can be expressed as the sum of two monotone
operators F and G where JαG may be easy to compute and
F satisfies some regularity condition. Alternatively, in some
situations, decomposing N = F+G and finding x ∈ Rn such
that (F+G)(x) = 0 provides additional flexibility in choice
of algorithm and may improve convergence rates.

Motivated by the above, we consider the problem of
finding an x ∈ Rn such that (F + G)(x) = 0, where
F,G : Rn → Rn are monotone with respect to a diagonally
weighted ℓ1 or ℓ∞ norm.

Algorithm 19 (Forward-backward splitting). Assume α > 0.
Then by [18, Section 7.1]

(F+ G)(x) = 0 ⇐⇒ x = (JαG ◦ (Id− αF))(x).

The forward-backward splitting method corresponds to the
fixed point iteration

xk+1 = (JαG ◦ (Id− αF))(xk). (13)

Additionally, if both F and G are monotone, define the
averaged forward-backward splitting iterations

xk+1 = 1
2xk + 1

2 (JαG ◦ (Id− αF))(xk). (14)

Theorem 20 (Forward-backward splitting convergence). Let
x0 ∈ Rn. Suppose F : Rn → Rn is globally Lipschitz with

respect to a diagonally weighted ℓ1 or ℓ∞ norm ∥ · ∥ and
G : Rn → Rn is monotone with respect to the same norm.

(i) If F is strongly monotone with respect to ∥·∥ with mono-
tonicity parameter c > 0, then the sequence generated
by (13) converges to the unique x∗ ∈ Zero(F + G) for
every α ∈ ]0, 1

diagL(F) ]. Moreover, for every k ∈ Z≥0,

∥xk+1 − x∗∥ ≤ (1− αc)∥xk − x∗∥,

with convergence rate optimized at α = 1/ diagL(F).
(ii) If F is monotone with respect to ∥·∥ and Zero(F+G) ̸=

∅, then (14) converges to an element of Zero(F+G) for
every α ∈ ]0, (diagL(F))−1].

Algorithm 21 (Peaceman-Rachford and Douglas-Rachford
splitting). Let α > 0. Then by [18, Section 7.3],

(F+G)(x) = 0 ⇐⇒ (RαF◦RαG)z = z and x = JαGz.
(15)

The Peaceman-Rachford splitting method corresponds to the
fixed point iteration

xk+1 = JαG(zk),

zk+1 = zk + 2JαF(2xk+1 − zk)− 2xk+1.
(16)

If both F and G are monotone, the term RαF ◦ RαG in (15)
is averaged to yield the fixed point equation

1
2 (Id+ RαF ◦ RαG)z = z and x = JαGz. (17)

The fixed point iteration corresponding to (17) is called the
Douglas-Rachford splitting method and is given by

xk+1 = JαG(zk),

zk+1 = zk + JαF(2xk+1 − zk)− xk+1.
(18)

Theorem 22 (Peaceman-Rachford and Douglas-Rachford
splitting convergence). Let x0 ∈ Rn. Suppose both F,G :
Rn → Rn are globally Lipschitz with respect to a diagonally
weighted ℓ1 or ℓ∞ norm ∥·∥ and (without loss of generality)
G is monotone with respect to the same norm.

(i) If F is strongly monotone with respect to ∥·∥ with mono-
tonicity parameter c > 0, then the sequence generated
by (16) converges to the unique x∗ ∈ Zero(F + G)



for every α ∈
]
0,min

{
(diagL(F))−1, (diagL(G))−1

}]
.

Moreover, for every k ∈ Z≥0,

∥xk+1 − x∗∥ ≤ 1− αc

1 + αc
∥xk − x∗∥,

with convergence rate optimized at α =
min

{
(diagL(F))−1, (diagL(G))−1

}
.

(ii) If F is monotone with respect to ∥·∥ and Zero(F+G) ̸=
∅, then (18) converges to an element of Zero(F+G) for
every α ∈

]
0,min

{
(diagL(F))−1, (diagL(G))−1

}]
.

VI. APPLICATION TO RECURRENT NEURAL NETWORKS

A. Analysis and various iterations

Consider the continuous-time recurrent neural network

ẋ = −x+Φ(Ax+Bu+ b) =: F (x, u), (19)

where x ∈ Rn, u ∈ Rm, A ∈ Rn×n, B ∈ Rn×m, b ∈
Rn, and Φ : Rn → Rn is an activation function applied
entrywise, i.e., Φ(x) = (ϕ(x1), . . . , ϕ(xn))

⊤. We consider
the case that ϕ is a LeakyReLU activation function, i.e.,
ϕ(x) = max{x, ax} for some a ∈ ]0, 1[. In [?], it was
shown that a sufficient condition for the contractivity of (19)
is the existence of η ∈ Rn

>0 such that µ∞,[η]−1(A) < 1. If
this condition holds, then (19) is contracting with respect to
∥ · ∥∞,[η]−1 with rate 1 − ϕ(µ∞,[η]−1(A)). In what follows,
we define γ := µ∞,[η]−1(A) < 1.

Suppose that, for fixed u, we are interested in efficiently
computing the unique equilibrium point x∗(u) of F (x, u).
Since F (x, u) is contracting with respect to ∥ · ∥∞,[η]−1 ,
−F (x, u) is strongly monotone with monotonicity parameter
1 − ϕ(γ). As a consequence, applying the forward step
method, Algorithm 10 to compute x∗(u) yields the iteration

xk+1 = (1− α)xk + αΦ(Axk +Bu+ b), (20)

which is the iteration proposed in [14]. This it-
eration is guaranteed to converge for every α ∈]
0, (1−mini∈{1,...,n} min{a · (A)ii, (A)ii})−1

]
with con-

traction factor 1− α(1− ϕ(γ)).
However, rather than viewing finding an equilibrium

of (19) as finding a zero of a non-Euclidean monotone
operator, it is also possible to view it as an operator splitting
problem. In particular, in the spirit of [22, Theorem 1],
we prove that finding a fixed point of Φ(Ax + Bu + b)
corresponds to an appropriate operator splitting problem
under suitable assumptions on Φ. However, first we must
define the proximal operator.

Definition 23 (Proximal operator [3, Definition 12.23]). Let
f : Rn → ]−∞,∞] be a convex closed proper function.
Then the proximal operator of f evaluated at x ∈ Rn is

proxf (x) = argminz∈Rn
1
2∥x− z∥22 + f(z). (21)

Proposition 24. Suppose ϕ is the proximal operator of a
continuously differentiable convex function f . Then finding
an equilibrium point x∗(u) of (19) is equivalent to the
operator splitting problem (F+ G)(x∗(u)) = 0, where

F(z) = (In −A)z − (Bu+ b), G(z) = df(z), (22)

where we denote df(z) = (f ′(z1), . . . , f
′(zn))

⊤.

For the LeakyReLU activation function, it is known
that the f corresponding to ϕ is given by f(zi) =
1−a
2a min{zi, 0}2, [15, Table 1] which is continuously differ-

entiable with derivative df(z) = 1−a
a min{z, 0}. Moreover,

df is Lipschitz with constant (1− a)/a. Now we will show
that under the sufficient condition γ < 1, F is strongly
monotone and G is monotone with respect to ∥ · ∥∞,[η]−1 .

Since γ < 1, we see that F is strongly monotone with
monotonicity parameter 1−γ since −µ∞,[η]−1(−(In−A)) =
1 − γ > 0. Moreover, checking that G is monotone is
straightforward since df is Lipschitz and Ddf(z) is diagonal
for every z ∈ Rn for which it exists and has diagonal entries
in [0, (1−a)/a]. As a consequence, for almost every z ∈ Rn,
µ∞,[η]−1(−Ddf(z)) ≤ 0, which implies monotonicity of G
with respect to ∥ · ∥∞,[η]−1 .

Therefore, we can consider different operator splitting
algorithms to compute the equilibrium of (19). First, the
forward-backward splitting method may be applied:

xk+1 = proxαf ((1− α)xk + α(Axk +Bu+ b)). (23)

Since F is Lipschitz, this iteration is guaranteed to converge
to the unique fixed point of (19). Moreover, the contrac-
tion factor for this iteration is 1 − α(1 − γ) for α ∈
]0, 1

1−mini(A)ii
], with contraction factor being maximized at

α∗ = 1
1−mini(A)ii

. Note that compared to the iteration (20),
the forward-backward iteration has a larger allowable range
of step sizes and improved contraction factor at the expense
of computing a proximal operator at each iteration.

Alternatively, the fixed point may be computed by means
of the Peaceman-Rachford splitting algorithm, which is

xk+1 = (In + α(In −A))−1(zk + α(Bu+ b)),

zk+1 = zk + 2proxαf (2xk+1 − zk)− 2xk+1.
(24)

Since both F and G are Lipschitz, this iteration converges to
the unique fixed point of (19). Moreover, the contraction fac-
tor is 1−α(1−γ)

1+α(1−γ) for α ∈
]
0,min

{
1

1−mini(A)ii
, a
1−a

}]
, which

comes from the Lipschitz constants of F and G. In other
words, the contraction factor is improved for Peaceman-
Rachford compared to forward-backward splitting, but the
stepsize is limited by the Lipschitz constant of df .

B. Numerical implementations

To assess the iterations in (20), (23), and (24), we
generated A,B, b, u in (19) and applied the iterations to
compute the equilibrium. We generate A ∈ R200×200, B ∈
R200×50, u ∈ R50, b ∈ R200 with entries normally distributed
as Aij , Bij , bi ∼ N (0, 1/

√
200) and ui ∼ N (0, 1/

√
50).

To ensure that A ∈ R200×200 satisfies the constraint
µ∞,[η]−1(A) < 1 for some η ∈ Rn

>0, we pick [η] = In and
project A onto the convex polytope {A ∈ Rn×n | µ∞(A) ≤
0.99}. We additionally computed µ2(A) ≈ 1.0034, so F is
not strongly monotone with respect to ∥ · ∥2.

For all iterations, we initialize x0 at the origin and for the
Peaceman-Rachford iteration, we initialize z0 at the origin.
We set a = 0.1 in LeakyReLU and for each iteration pick
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Fig. 1. Residual versus number of iterations for forward-step method (20),
forward-backward (F-B) splitting (23), and Peaceman-Rachford (P-R) split-
ting (24) for computing the equilibrium of the recurrent neural network (19).
Curves for the forward-step method and forward-backward splitting are
directly on top of one another.

the largest theoretically allowable stepsize, which for the
forward-step method and forward-backward splitting was

1
1−mini(A)ii

≈ 0.9015. For Peaceman-Rachford splitting, the
largest theoretically allowable stepsize was a/(1 − a) ≈
0.1111, but we also simulated using α = 0.9015. The plots
of the residual ∥xk −Φ(Axk +Bu+ b)∥∞ = ∥F (xk, u)∥∞
versus the number of iterations is shown in Figure 1.

Both forward-step and forward-backward splitting meth-
ods for computing the equilibrium of (19) converge at the
same rate. This result agrees with the theory since ϕ(γ) = γ
and the estimated contraction factor for both the forward step
method and forward-backward splitting is 1 − α(1 − γ) ≈
0.9910. For the Peaceman-Rachford splitting method, for
the theoretically largest allowable α = 1/9, the estimated
contraction factor is 1−α(1−γ)

1+α(1−γ) ≈ 0.9978, which is very close
to 1 and thus justifies the slow rate of convergence for the
iterations in this case. However, if we let α = 0.9015 as in
the other methods, we observe a significant acceleration in
the convergence of these iterations.

VII. CONCLUSION

We develop a non-Euclidean monotone operator frame-
work with an emphasis on operators which are monotone
with respect to ℓ1 and ℓ∞ norms. Classical algorithms
for computing zeros of monotone operators and splitting
methods are applicable in our framework and can exhibit
improved convergence rates compared to their corresponding
algorithms in Euclidean spaces. We apply our results to
RNN equilibrium computation and demonstrate that applying
splitting methods yields improved rates of convergence to the
equilibria as compared to other methods.

Topics of future research include (i) tightening the Lip-
schitz estimates of the operator splitting techniques, (ii)
extending the results to include infinite-dimensional Banach
spaces and set-valued operators F, and (iii) applying this
framework for robustness analysis of control systems and
machine learning models.
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