Design of Injectable Bioartificial Hydrogels by Green Chemistry for Mini-Invasive Applications in the Biomedical or Aesthetic Medicine Fields

Rossella Laurano ^{1,8,*}, Monica Boffito ^{1,2,8}, Claudio Cassino ³, Francesco Liberti¹, Gianluca Ciardelli ^{1,2,‡} and Valeria Chiono ^{1,2,‡}

¹ Department of Mechanical and Aerospace Engineering, Politecnico di Torino, 10129, Torino, Italy

² Institute for Chemical-Physical Processes, National Research Council (CNR-IPCF), 56124, Pisa, Italy

³ Department of Science and Technological Innovation, Università del Piemonte Orientale, 15121, Alessandria, Italy

* Correspondence: rossella.laurano@polito.it;

§ These authors equally contributed to this work

[#] These authors share the last co-authorship

Figure S1. (a) Ellman's colorimetric assay performed on HA (left) and HA-SH_pH5 (right): the strong yellowish color of HA-SH_pH5 compared to HA (control) proves the successful exposure of free sulfhydryl groups along Cys-functionalized HA; (b) Number of exposed –SH groups along HA-SH_pHX samples as quantified through the Ellman's colorimetric assay. Results for HA-SH_pH4, HA-SH_pH5 and HA-SH_pH7 are reported in light blue, blue and dark blue, respectively.

Figure S2. SEM images of samples based on virgin polymers (i.e., S-DHP407 and HA) and on their 50/50 w/w blend. Scale bar: 100 μ m.

Figure S3. Representative photo of the Luer-lock double syringe system used for bioartificial hydrogel preparation. To ensure complete mixing, polymeric formulations were pipetted up and down 5 times.