
13 March 2024

POLITECNICO DI TORINO
Repository ISTITUZIONALE

Mathematical and Physical Properties of Three-Band s± Eliashberg Theory for Iron Pnictides / Ummarino, Giovanni. - In:
MAGNETOCHEMISTRY. - ISSN 2312-7481. - ELETTRONICO. - 9:1(2023), p. 28. [10.3390/magnetochemistry9010028]

Original

Mathematical and Physical Properties of Three-Band s± Eliashberg Theory for Iron Pnictides

Publisher:

Published
DOI:10.3390/magnetochemistry9010028

Terms of use:

Publisher copyright

(Article begins on next page)

This article is made available under terms and conditions as specified in the  corresponding bibliographic description in
the repository

Availability:
This version is available at: 11583/2974521 since: 2023-01-11T16:19:25Z

MDPI



Citation: Ummarino, G.A.

Mathematical and Physical Properties

of Three-Band s± Eliashberg Theory

for Iron Pnictides. Magnetochemistry

2023, 9, 28. https://doi.org/10.3390/

magnetochemistry9010028

Academic Editor: Evgeny Katz

Received: 30 November 2022

Revised: 4 January 2023

Accepted: 9 January 2023

Published: 11 January 2023

Copyright: © 2023 by the author.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

magnetochemistry

Article

Mathematical and Physical Properties of Three-Band s±
Eliashberg Theory for Iron Pnictides
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Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Torino, Italy; giovanni.ummarino@polito.it
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Abstract: The phenomenology of the iron pnictide superconductor can be described by the three-
band s± Eliashberg theory in which the mechanism of superconducting coupling is mediated by
antiferromagnetic spin fluctuations and whose characteristic energy Ω0 scales with Tc according to the
empirical law Ω0 = 4.65kBTc. This model presents the universal characteristics that are independent
of the critical temperature, such as the link between the two free parameters λ13 and λ23 and the ratio
∆i/kBTc.

Keywords: antiferromagnetic spin fluctuations; superconducting materials; Fe-based superconductors;
multiband Eliashberg theory

1. Introduction

The superconductive compounds based on iron and arsenic have been discovered for
more than fifteen years, and all experimental data have been successfully reproduced using
the multiband Eliashberg theory. The mechanism responsible for the pairing is mainly due
to antiferromagnetic spin fluctuations. The various compounds can be described mainly
by three- [1–5], four- [6] or five- [7] band models, while the two-band model is purely
phenomenological, and, in this case, the values of the electron–boson coupling constants
have no physical significance. In most cases, the three-band model is sufficient to describe
the experimental data relating to these materials. Therefore, we will consider the properties
of a three-band model in which a fundamental role will be played by the assumption that
the representative energy of these systems Ω0 is related to the critical temperature by a
universal linear relationship [8,9] Ω0 = 4.65kBTc, and the symmetry of the order parameter
is s± [10–12]. In the past, J.M. Coombes and J.P. Carbotte [13–15] found that, if all of the
energy scales of the electron–phonon spectral function, in the single band s-wave Eliashberg
equations shrink or expand, the rate between the gap and the critical temperature does not
change. This result is exact if the Coulomb pseudopotential is zero. When examining the
Eliashberg equations for a multiband system, it is possible to see that this scaling theorem
continues to hold, and the values of the gaps and of the critical temperature have increased
or decreased by the same factor with which the energy scale has increased or decreased.
In fact, Eliashberg’s equations for a multiband system are the sum of individual pieces
where, in each of which, we can expand or restrict the energy scale. Additionally, in this
case, the result is correct only if all values of the Coulomb pseudopotential are zero. The
novelty of our work is, essentially, that it sheds light on the universal bond that exists
between the coupling constants as they relate to the single band.

2. The Model

The simplest model to describe the phenomenology of iron pnictides within Eliash-
berg’s theory consists of a three-band s±model with two holonic and one electronic. In this
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way, the two gaps of the hole bands, ∆1 and ∆2, have an opposite sign from the gap resid-
ing on the electron band, i.e., ∆3. The interband coupling between the hole and electron
bands is mainly provided by antiferromagnetic spin fluctuations (sf ), while phonons can
be responsible for the intraband coupling (ph) [10]. The antiferromagnetic spin fluctuation
coupling between bands with the same type of charge carriers (holes with holes and elec-
trons with electrons) is zero, while the total phonon coupling is very small (<0.35) [16]. We
assume that the symmetry of this system is s±, and the electron–boson coupling is from
antiferromagnetic spin fluctuations and, in very small part, from phonons. The interband
coupling constants in this paper are just relative to the antiferromagnetic spin fluctuations
and are positive because we, as usual, change the sign inside the equations. To calculate
the gaps and the critical temperature, we use the three-band s± wave Eliashberg equa-
tions with infinite bandwidth [17–20]. The infinite bandwidth approximation is always
applicable in iron pnictides. Eliashberg’s equations, without this approximation, are more
complicated [21,22], and the solutions diverge appreciably only in striking cases, such as,
for example, in strontium titanate (SrTiO) [23]. In the case of one-band systems, the same
results are obtained except in extreme cases in which the width of the conduction band
is comparable to the phonon energies [24]. We have to solve six coupled equations: three
for the gaps ∆i(iωn) and three for the renormalization functions Zi(iωn), in which i is
a band index (that ranges between one and three), and ωn are the Matsubara frequen-
cies. The imaginary axis equations [25–27], when the Migdal theorem [28] is valid, read
as follows:

ωnZi(iωn) = ωn + πT ∑
m,j

ΛZ
ij (iωn, iωm)NZ

j (iωm) +

+∑
j

[
ΓN

ij + ΓM
ij
]
NZ

j (iωn) (1)

Zi(iωn)∆i(iωn) = πT ∑
m,j

[
Λ∆

ij(iωn, iωm)− µ∗ij(ωc)
]
×

×Θ(ωc − |ωm|)N∆
j (iωm) + ∑

j
[ΓN

ij − ΓM
ij ]N

∆
j (iωn) (2)

where ΓN
ij and ΓM

ij are the scattering rates from the non-magnetic and magnetic impurities,

ΛZ
ij (iωn, iωm) = Λph

ij (iωn, iωm) + Λs f
ij (iωn, iωm) and Λ∆

ij(iωn, iωm) = Λph
ij (iωn, iωm) −

Λs f
ij (iωn, iωm) for which

Λph,s f
ij (iωn, iωm) = 2

∫ +∞

0
dΩΩα2

ijF
ph,s f (Ω)/[(ωn −ωm)

2 + Ω2].

where Θ is the Heaviside function, and ωc is a cutoff energy. The quantities µ∗ij(ωc)

are the elements of the 3 × 3 Coulomb pseudopotential matrix. Finally, N∆
j (iωm) =

∆j(iωm)/
√

ω2
m + ∆2

j (iωm), and NZ
j (iωm) = ωm/

√
ω2

m + ∆2
j (iωm). The electron–boson

coupling constants are defined as λ
ph,s f
ij = 2

∫ +∞
0 dΩ

α2
ij F

ph,s f (Ω)

Ω .
To solve Equations (1) and (2), it is first necessary to specify a certain number of input

parameters, which depends on particular characteristics of the studied system. Often, it
is possible through drastic approximations to reduce the number of input parameters,
which are not always known, without renunciation to accurately describe the physics of the
system. In the case of a three-band model, we have nine electron–phonon spectral functions
α2

ijF
ph(Ω), nine electron–antiferromagnetic spin fluctuation spectral functions, α2

ijF
s f (Ω),

nine elements of the Coulomb pseudopotential matrix µ∗ij(ωc), and nine nonmagnetic ΓN
ij

and nine paramagnetic ΓM
ij = 0 impurity-scattering rates. Luckily, a lot of these parameters

can be extracted from experiments, and some can be fixed by suitable approximations. In
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fact, fortunately, the system that we want to describe, the iron pnictides, has particular
characteristics that allow numerous strong approximations aimed at reducing the number
of free parameters. Despite this, the model still allows the main properties of these materials
to be described in an extremely precise way. In particular, we refer to experimental data
taken on high-quality samples, so we can rather safely assume a negligible disorder and put
the scattering from the non-magnetic and magnetic impurities ΓN,M

ij equal to zero. We know
that in these materials the total electron–phonon coupling constant is small (the upper limit
of these compounds is ≈0.35 [16]), and the phonons mainly provide intraband coupling so
that λ

ph
ij ≈ 0 [10]. Furthermore, it is well-established that the superconducting glues are

provided by antiferromagnetic spin fluctuations. These last bosons mainly provide [10]
interband coupling between holes and electron bands, so that λ

s f
12 = λ

s f
21 = λ

s f
ii = 0. To

reduce the number of free parameters without altering the physics of the system, we set,
in the first approximation, the phonon intraband coupling equal to 0.1 so that λ

ph
ii = 0.1, and

the Coulomb pseudopotential matrix [12,25–27] µ∗ii(ωc) = µ∗ij(ωc) = 0. As we discussed
before, the maximum value of the total electron–phonon coupling is estimated at less than
0.35, which is a bit larger than the Coulomb pseudopotential that has the opposite sign,
so, in the first approximation, and to reduce the number of free parameters, we set the
pseudopotential equal to zero, and the intraband phonon coupling equal to 0.1 because the
second reduces the first. Of course, this does not mean that the phonons are absent—just
that the final result in the calculus of a lot of physical properties is not influenced by their
presence. Within these approximations, the electron–boson coupling constant matrix λij
becomes [25–27]:

λij =

 0.1 0 λ
s f
13

0 0.1 λ
s f
23

λ
s f
31 = λ

s f
13ν13 λ

s f
32 = λ

s f
23ν23 0.1

 (3)

where νij = Ni(0)/Nj(0), and Ni(0) is the normal density of the states at the Fermi

level for the i-th band. The coupling constants λ
s f
ij are defined through the electron–

antiferromagnetic spin fluctuation spectral functions (Eliashberg functions) α2
ijF

s f
ij (Ω). We

chose for these functions to have a Lorentzian shape [25–27], which reproduces the experi-
mentally measured form quite well [29]:

α2
ijF

s f
ij (Ω) = Cij

{
L(Ω + Ωij, Yij)− L(Ω−Ωij, Yij)

}
, (4)

where
L(Ω±Ωij, Yij) =

1
(Ω±Ωij)2 + Y2

ij

and Cij are the normalization constants necessary to obtain the proper values of λij, while
Ωij and Yij are the peak energies and the half-widths of the Lorentzian functions, respec-
tively [27]. In all calculations, we set Ωij = Ω0, i.e., we assume that the characteristic energy
of antiferromagnetic spin fluctuations is a single quantity for all of the coupling channels
and that Yij = Ω0/2, based on the results of inelastic neutron scattering measurements [29].

The peak energy of the Eliashberg functions, Ω0, can be directly associated with the
experimental critical temperature, Tc, by using the empirical law Ω0 = 4.65kBTc, which
has been demonstrated to hold, at least approximately, for iron pnictides [8,9]. With all
of these approximations, which are necessary to reduce the number of free parameters,
this is the simplest model that can still grasp the essential physics of iron compounds. The
cutoff energy is ωc = 6.7568Ω0. We assume, just for simplicity, that the electron–phonon
spectral functions have the same shape as the electron–antiferromagnetic spin fluctuation
spectral functions.

The factors νij =
Ni(0)
Nj(0) that enter the definition of λij (Equation (3)) are free parameters,

so we examine five different exhaustive situations: the first case is ν13 = 0.2 and ν23 = 1;
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the second case is ν13 = 0.5 and ν23 = 1; the third case is ν13 = 1 and ν23 = 1; the fourth
case is ν13 = 2 and ν23 = 1; and the fifth case is ν13 = 5 and ν23 = 1. At the end, we fixed
the Ni(0) for each case; we have just two free parameters λ13 and λ23, so we change λ13,
and we fix λ23 in order to obtain the correct critical temperature. In the known multiband
superconductors and, specifically, in the iron pnictides, the values of the densities of the
states at the Fermi level Ni(0) relating to the various bands are roughly of the same order
of magnitude. Therefore, in the five cases examined, we have exhausted all of the possible
cases that have occurred to date. In principle, it is easy to calculate the densities of the states
at the Fermi level for the bands of a given material, while it is much more complicated
to calculate the electron–boson coupling constants, especially when the mechanism is the
antiferromagnetic spin fluctuations. It is possible to define a total electron boson coupling
constant (with sign) λtot = ∑2

i,j=1 Ni(0)λij/ ∑2
i=1 Ni(0) where the coupling constant related

to antiferromagnetic spin fluctuations are negative.

3. Discussion

In Figures 1 and 2, it is possible to see |λ23| (λtot) as a function of |λ13| in the various
cases examined. The relevant thing is that these curves are universal; they are valid for
any critical temperature. In Figure 1, it is possible to see that all curves pass through the
point |λ13| = 0.95 and |λ23| = 2.37. With the same values of |λ13| and |λ13| = 0.953, what
changes is only the total value of the electron–boson coupling. Then, in the particular case
in which |λ13| = 0.95 and |λ23| = 2.37, the variation range of the total electron–boson
coupling is: −2.2 < λtot < −1.9. The universality derives from the fact that we impose a
very strong (experimental) constraint on the energy of the peak of the spectral functions
Ω0 = 4.65kBTc. The universality of Figures 1 and 2 lies in the fact that, once the densities
of the states at the Fermi level Ni(0) relating to the single bands have been fixed, there is
an unequivocal relationship between the two coupling constants λ13 and λ23: once one is
fixed, there can exist only one value of the other that reproduces the correct Tc. From these
curves, it is also possible to see that 0 < |λ23| < 3.5, and 0 < |λ13| < 7.5. Additionally, this
result does not depend on the particular critical temperature 1.1 < |λtot| < 2.3. This means
that, in principle, for all iron pnictides, the total coupling is, in absolute value, less than 2.3,
and this fact means that they can be just in a state of moderate strong coupling. In Figure 3,
the |∆i|/kbTc ratios are shown for the three gaps with three different critical temperatures
(Tc = 37 K, Tc = 57 K and Tc = 200 K), and, as you can see, the results are perfectly
superimposable. Here, of course, |∆i| is calculated from the solution to the Eliashberg
equations, at T << Tc, by using Padè approximants. The same happens also for the
superconducting densities of states, as it is possible to see in Figure 4. The superconducting
densities of states, calculated at T = Tc/12, for Tc = 37 K, Tc = 57 K and Tc = 200 K
versus ω/Ω0 in the first (ν13 = 0.2 and ν23 = 1 with λ13 = 6.0000 and λ23 = 1.1577) and
third cases (ν13 = 1 and ν23 = 1 with λ13 = 0.95 and λ23 = 2.37) are very different in the
two cases, but, within each case, for different values of the critical temperature, they are
perfectly superimposable. The first case with λ13 = 6 can be considered extreme, but, in
any case, the scaling law continues to hold perfectly. Finally we have tried to study what
happens in the case of extreme strong coupling when the ratio kBTc

Ω0
is equal to one. We

will study the third case (ν13 = ν23 = 1). The rate kBTc
Ω0

= 1 is considered extreme strong
coupling and not physical because we find, as1 it is shown in Figure 5, λtot ≥ 20. For
these values of the coupling constants it becomes problematic to define the value of the
gap as well because the equation that defines it has more solutions [30]. Furthermore, in
this regime it is probable that Migdal’s theorem no longer holds and Eliashberg’s equations
become enormously more complicated. Obviously this situation has no connection with
iron pnictides or any other known multiband systems.
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Figure 1. (Color online) |λ23| versus |λ13|.
Figure 1. (Color online) |λ23| versus |λl3|.

Figure 2. (Color online) λtot versus |λl3|.
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Mathematical and physical properties of three bands s± Eliashberg theory for iron pinictides10

Figure 3. (Color online) |∆i|/kBTc for Tc = 37 K, Tc = 57 K and Tc = 20 K versus

|λ13| in the case where the values of the partial dos at the Fermi level (Ni(0)) are all

equals (ν13 = ν23 = 1).

Figure 3. (Color online) |∆i|/kBTc for Tc = 37 K, Tc = 57 K and Tc = 20 K versus |λl3| in the case
where the values of the partial dots at the Fermi level (Ni(0)) are all equals (ν13 = ν23 = 1).

Figure 4. (Color online) Densities of states calculated at T = Tc/12 for Tc = 37 K (red line), Tc = 57 K
(black line) and Tc = 200 K (open black circles) versus ω/Ω0 in the first (ν13 = 0.2 and ν23 = 1
with λ13 = 6.0000 and λ23 = 1.1577) and third cases (ν13 = 1 and ν23 = 1 with λ13 = 0.9500 and
λ23 = 2.3657).
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Mathematical and physical properties of three bands s± Eliashberg theory for iron pinictides12

Figure 5. (Color online) λtot versus |λ13| (solid red line) and λ23 versus |λl3| (black
solid line) in the extreme strong coupling case (kBTc

Ω0
= 1) when the values of the partial

dos at the Fermi level (Ni(0)) are all equals (ν13 = ν23 = 1).

Figure 5. (Color online) λtot versus |λ13| (solid red line) and λ23 versus |λl3| (black solid line) in the
extreme strong coupling case ( kBTc

Ω0
= 1) when the values of the partial dos at the Fermi level (Ni(0))

are all equals (ν13 = ν23 = 1).

4. Conclusions

In this article, it has been shown that the three-band model has universal aspects as the
link between λ23 and λ13 or the value of |∆i|/kbTc, which are independent of the particular
features of a given system and from a particular critical temperature. These universal
aspects are related to the assumption that the typical bosonic energy correlates with the
critical temperature, as shown by the experimental data. By assuming Ω0 = 4.65kBTc, a
strict constraint is imposed on the value of the electron–boson coupling constant. A similar
conclusion may be derived from the analysis of the Allen–Dynes formula [31] for the
critical temperature in a one-band model. Here, we prove, in a fully numerical solution
to the Eliashberg equation for a multi-band model, that such a constraint holds with
great accuracy.
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