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Abstract 

The introduction of collaborative robots aims to make production more flexible, promoting a greater 
interaction between humans and robots also from physical point of view. However, working closely with a 
robot may lead to the creation of stressful situations for the operator, which can negatively affect task 
performance. 
In Human-Robot Interaction (HRI), robots are expected to be socially intelligent, i.e., capable of 
understanding and reacting accordingly to human social and affective clues. This ability can be exploited 
implementing affective computing, which concerns the development of systems able to recognize, interpret, 
process, and simulate human affects. Social intelligence is essential for robots to establish a natural 
interaction with people in several contexts, including the manufacturing sector with the emergence of 
Industry 5.0. 
In order to take full advantage of the human-robot collaboration, the robotic system should be able to 
perceive the psycho-emotional and mental state of the operator through different sensing modalities (e.g., 
facial expressions, body language, voice, or physiological signals) and to adapt its behaviour accordingly. 
The development of socially intelligent collaborative robots in the manufacturing sector can lead to a 
symbiotic human-robot collaboration, arising several research challenges that still need to be addressed. 
The goals of this paper are the following: (i) providing an overview of affective computing implementation 
in HRI; (ii) analyzing the state-of-art on this topic in different application contexts (e.g., healthcare, service 
applications, and manufacturing); (iii) highlighting research challenges for the manufacturing sector.  
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1. Introduction 

In past decades, humans have been gradually ousted from manufacturing systems and 

automated factories improved capacity and efficiency in industrial production. Automation has 

allowed large quantities of goods to be produced at low costs 1. This manufacturing paradigm 

has allowed an industry based on product standardization (mass production) to progress and 

expand 1. However, with the development of markets based on mass customization (i.e., the 

manufacturing of small customized batches of products with short life cycles 2,3), traditional 

automation may not be a viable cost-effective solution 4–6. For this reason, hybrid automation 



in which human workers and collaborative robots (cobots) interact within production systems 

is emerging7,8. The in-depth study of the interaction between humans and robots is therefore of 

fundamental importance, especially to investigate possible new hazards from an ergonomic 

point of view (both physical and cognitive) 9,10. 

Human-Robot Interaction (HRI) is a research field aimed at studying and improving interaction 

between humans and robots. The main characteristic of HRI is its multi-disciplinarity, primarily 

involving robotics, human-computer interaction, artificial intelligence, and social sciences 11. 

In order to optimally design HRI applications it is necessary not only to focus on the technical 

aspects of the robot, but also to take into account the humans involved 12,13. The analysis of 

aspects such as usability, workload, acceptability, and user's emotions is essential to obtain the 

full benefits from the interaction. In particular, the affective state of a person can play an 

important role in the success of the interaction or the performance of a task. 

The introduction of collaborative robots in the industrial field is leading to a progressive 

elimination of fences between humans and robots. The combination of the capabilities of the 

robot, which provides power, precision, and repeatability, with those of the human, 

characterized by problem-solving skills and flexibility, leads to the creation of a new paradigm. 

The introduction of this paradigm, which represents one of the cornerstones of Industry 4.0 and 

5.0, aims to make production more flexible, promoting greater interaction between humans and 

robots also from a physical point of view 14–16. However, working closely with a robot may lead 

to the creation of stressful situations for the operator, due to the behaviour of the robot or some 

operations in a collaborative task 17,18. Such situations can negatively affect the performance of 

the operator, also compromising his health in the long term. For this reason, the implementation 

of systems capable of monitoring and adapting to the cognitive and affective state of humans 

can help to create a healthier and more rewarding working environment for the operator. 

With the recent development of intelligent manufacturing systems, capable of combining smart 

sensing, embedded technologies and data analysis to realize adaptive behaviors, industrial 

research on human factors is becoming increasingly relevant 9,19,20. Design of human-centered 

adaptive production systems contributes to the creation of flexible working environments, able 

to adapt to the needs of individual workers considering the differences in their physical and 

cognitive abilities, thus improving human-machine interaction and the well-being of workers 
21. 

Affective computing is a research field focused on the development of systems able to 

recognize, interpret, process, and simulate human affects 22. The term "affective state" concerns 

psychophysiological constructs (i.e. mental and physical processes) and refers to the experience 



of feeling the underlying emotional state 23. Affective state of a human can be recognized 

through different modalities. The most used in affective computing are facial expressions, 

voice, body language, and physiological signals. In recent years, affective computing has also 

found application in HRI, especially in social robotics 24. 

Socially intelligent robots can provide more significant support in different scenarios. As robots 

are becoming more common in our daily life, they are expected to interact and communicate 

with people according to human social behaviours and rules 25,26. Thus, the robot capability to 

understand and recognize human emotions and intentions plays a fundamental role to provide 

practical and efficient support. 

So far, several works on this topic have been presented, however only few of them are focused 

on the manufacturing sector. The main goals of this paper are the following: (i) providing an 

overview of affective computing applications in HRI through a quantitative analysis of the 

literature; (ii) analyzing the state-of-art on this topic in various application contexts; (iii) 

highlighting the research challenges for the manufacturing sector. 

The paper is organized as follows. In Section 2, an overview on the use of affective computing 

in manufacturing is presented. Next, Section 3 provides the state-of-art of affective computing 

implementation in HRI in manufacturing and in other application contexts. Research challenges 

and prospects for manufacturing sector are discussed in Section 4. Finally, Section 5 covers 

conclusions and future work. The appendix contains the list of the main acronyms and 

abbreviations used in this paper. 

2. Affective computing in Manufacturing 

 
In order to study operator ergonomics in manufacturing settings, affective computing represents 

a valuable resource to overcome some of the main limitations of self-reporting tools. The use 

of affective computing techniques allows to obtain information about the human state in real 

time, without distracting him from his operations. In addition, it allows to obtain more objective 

measures related to the human state (e.g., stress, fatigue, and cognitive load). 

The most common methods used in the literature to assess the human state in manufacturing 

involve physiological parameters, such as Heart Rate (HR), respiration rate, Electrodermal 

Activity (EDA), Electromiogram (EMG), and Electroencephalogram (EEG). 

Ikuma et al. 27 explored the reliability of physiological responses (i.e., EMG and HR) to physical 

and psychosocial exposures in a simulated a manufacturing task. EMG was collected in order 

to measure muscle activity of the upper trapezius, middle deltoid, and anterior deltoid on the 

dominant side. HR was collected to account for fatigue and mental demand. 



Purwandini Sutarto et al. 28 presented a novel study aimed at examining the effect of resonant 

breathing biofeedback training for reducing stress among manufacturing operators. Along with 

self-reporting tools, HR and respiration rate analysis allowed for tracking operator stress, 

providing objective feedback.  

Attarchi et al. 29 assessed the relationship between shift working and occupational exposure to 

noise with blood pressure in a rubber manufacturing company. From the comparison between 

groups exposed to different levels of noise, it was noted that there was a significant difference 

in the ratio between people with normal blood pressure and those with hypertension. In 

particular, a higher frequency of hypertension was found in those exposed to more noise. This 

showed that constant exposure to high levels of noise causes greater stress on the operators, 

also having significant physiological repercussions. 

Sutarto et al. 30 evaluated the effect of biofeedback training on the cognitive performance of 

operators in an electronics manufacturing industry. In the study, heart activity was monitored 

to assess stress generated during cognitive tests focused on assessing attention, memory, and 

cognitive flexibility.  

Nakanishi and Sato 31 analyzed heart activity by Electrocardiogram (ECG) and brain blood flow 

in the right and left cerebral hemispheres by near infrared spectroscopy (NIRS) during an 

assembly task. The objective was to assess the stress digital manuals presented by a retinal 

imaging display (RID) on workers in the manufacturing industry. 

Mauss et al. 32 focused on the association of work-related stress and various bodily dysfunctions 

in German industrial employees. In addition to taking periodic blood and urine samples and 

collecting anthropometric data in order to monitor worker health, Heart Rate Variability (HRV) 

was used to quantify stress. 

Sedighi Maman et al. 33 proposed a data-driven approach for predicting occurrence and level of 

the physical fatigue using wearable sensors. 

Argyle et al. 34 implemented a quality control inspection task in order to observe the 

physiological effect of increasing fatigue and mental workload . Physiological parameters 

considered included HR, breathing rate, nose temperature and hemodynamic response in the 

prefrontal cortex and middle temporal gyrus. 

In the context of cloud manufacturing, Jiang et al. 35 proposed a study to investigate visual 

comfort of visual display terminal interfaces. The assessment of visual comfort was based both 

on subjective responses and EEG data. 



Arpaia et al. 36 designed a single-channel EEG instrument for real-time monitoring of worker 

stress. The main innovation consists in the proposal of a non-invasive, easily wearable EEG 

instrument that addresses manufacturing constrains. 

Another tool used to study human behavior in manufacturing is eye-tracking, which allows eye 

activity to be monitored to assess operator attention and mental workload.  

Wu et al. 37 carried out an experimental study on human–machine interface in LED 

manufacturing systems to measure the influence of information overload on user experience. 

Eye-tracking methods were implemented and eye-tracking metrics (e.g., time of first fixation 

and number of fixations before fixating the area of interest) were derived to assess mental 

workload. 

Huang et al. 38 focused on the detection of cognitive hacking (i.e., a cyberattack that seeks to 

manipulate the perception of humans by exploiting their psychological vulnerabilities) in visual 

quality inspections through physiological parameters. In particular, eye-tracking and EEG data 

were collected to this end. 

Van Acker et al. 39 implemented eye-tracking glasses in order to assess mental workload in 

manual assembly tasks of increasing complexity. The obtained eye-tracking data were used to 

identify a behavioral video coding scheme to detect mental workload. 

In the next section, a state-of-art focused on affective computing implementation in HRI in 

manufacturing will be presented. 

 

3. State-of-art of Affective Computing in HRI 

In this section, the state-of-art on affective computing in HRI applications is analyzed, in order 

to understand the current state and find possible gaps of the research.  

3.1. Data collection and dimensions of analysis  

Articles and conference papers concerning the human psycho-emotional state in HRI have been 

selected through the Scopus database 40. This database was chosen for two main reasons: (i) it 

is more accurate than Google Scholar database 41,42 and (ii) its coverage in the Engineering field 

is superior to that of the Web of Science, especially for emerging research fields 43.  

Journal articles and conference proceedings published in the last 15 years (from 2006 to 2020) 

written in English have been taken into account.  

Particular attention was given to the selection of keywords to be used in identifying relevant 

literature. The starting point was the topic-related keywords found on the IEEE keyword list 44. 



Following the backward and forward search approach proposed by Webster and Watson 45, the 

list of keywords of the search query was expanded. To further reduce the presence of "false 

positives", the set of documents returned by the database has been manually cleaned. After 

checking title, abstract and content, the authors excluded papers that did not concern the 

comprehension of the psycho-emotional state of humans interacting with robots through 

affective computing techniques. Literature reviews and papers focusing just on robot emotion 

expression were also excluded.  

The manual cleaning process also allowed to identify the articles with a specific application 

domain (context-oriented) and exclude those resulting in multipurpose contexts. The final 

number of papers considered was 430, of which 173 journal articles and 257 conference 

proceedings. 

Finally, in order to provide a structured analysis, each article has been manually classified 

according to the following three analysis dimensions summarised in Table 1:  

Table 1. Description of analysis dimensions and related categories. 

Dimension Category Description
Sensing 
modality 

Facial expressions Affect detection through analysis of voluntary or 
involuntary movements of facial muscles 

Body language Affect detection through analysis of physical behaviors (e.g., 
gesture, posture, gait, etc.) 

Voice Affect detection through analysis of paralanguage (e.g., 
intonation, pitch, volume, etc.) 

Physiological signals Affect detection through analysis of physiological responses 
(e.g., Heart Rate Variability (HRV), Skin Conductance 
Response (SCR), etc.) 

Research 
objective 

Human affective state 
evaluation  

Studies whose main objective is to evaluate the affective 
state of people interacting with a robotic system. 

Development of affect 
detection models  

Creation of models and methodologies to recognize affective 
state of people through different sensing modalities. 

Development of 
control and adaptation 
systems 

Development of systems that allow robots to change their 
behavior according to users' affective state. 

 Development of new 
robots and devices 

Development of devices or robots capable of perceiving 
human affective state. 

Application 
context 

Manufacturing Sector focused on the production and sale of products 
through material transformation processes. 

 Healthcare Sector focused on the maintenance or improvement of health 
via the prevention, diagnosis, or treatment of disease, injury, 
and other physical and mental impairments in people. 

 Service applications  Sectors involving the provision of intangible goods (e.g., 
tourism, education, entertainment, hospitality, foodservice) 

 



3.2. General overview  

The overview proposed in this section highlights the differences between the dimensions of the 

analysis in each context (see Table 1) and provides useful insights to anticipate future 

development directions. 

The sensing modalities most commonly used to detect affective state are the following 24: 

 Facial expressions are the result of the contraction of facial muscles. These movements 

can be voluntary or involuntary and, in conjunction with eye movements, allow to 

convey an individual's affective state 46. The detection of the affective state takes place 

through the analysis of data obtained by image acquisition systems, such as cameras. 

Moreover, the acquisition of affective state through facial expressions is usually not 

invasive, as it does not require to apply sensors on the individual. 

 Voice is another medium to convey affective state. Through the analysis of 

paralanguage, it is possible to detect the affective state of an individual 47,48. 

Paralanguage is the vocal component of language composed of elements that disregard 

verbal content, such as intonation, pitch, volume 49,50. Detection of voice is usually 

performed using sensors like microphones. 

 Body language is a form of non-verbal communication in which physical behaviors 

(e.g., gestures, posture, and gait) are used to convey information. Body language plays 

a fundamental role in everyday communication, conveying 55% of the information 51. 

It is also used to communicate affective states voluntarily or involuntarily. Given its 

essential role in communication, body language provides useful information to 

understanding an individual's internal state. The detection of an individual's affective 

state through this modality is usually performed using cameras or motion sensors 52. 

 Physiological signals represent another modality to estimate an individual's affective 

states. Human affective state is able to influence the whole body, generating 

physiological responses such as changes in heart rate, respiratory rate, muscle tension, 

or skin conductance 53,54. The evaluation of these physiological signals can provide 

useful information about an individual's affective state, even outside conscious 

awareness. Indeed, one of the main advantages of the analysis of this sensing modality 

is the possibility of identifying subconscious affective states. Another advantage is that, 

unlike other sensing modalities, individuals cannot manipulate the activities of their 

autonomic nervous system, which carries out automatic processes. For these reasons, 

physiological signals are well-suited to measure anxiety and mental strain 55. Depending 

on the physiological channel of interest, there are different methods to detect 



physiological signals. For instance, hearth rate can be measured through 

electrocardiography (ECG) or photoplethysmography (PPG), muscle tension through 

electromyography (EMG), brain activity through electroencephalography (EEG), and 

electrodermal activity (EDA) with a skin conductance sensor 53,54. These methods 

usually involve the use of wireless wearable sensors, which are suitable for real-time 

monitoring of affective state during HRI 24,56. 

 

The main research objectives of the papers in this field can be classified as follows (see Table 

1): 

 Human affective state evaluation includes papers focusing on the analysis of affective 

state during the interaction with a robotic system. This type of analysis provides useful 

insights into, for instance, the effectiveness of certain therapies, the perception that 

people have on certain services offered by a robot, or the fatigue caused by interaction. 

 Development of affect detection models considers articles where innovative models for 

affective state detection are presented to be integrated into a robotic system. These 

models, developed primarily through machine learning techniques, seek to overcome 

challenges and limitations arising from applied contexts (e.g., noisy and uncontrollable 

environment, affect detection of people with impairments or certain characteristics). 

 Development of control and adaptation systems involves papers introducing novel robot 

behavior adaptation systems based on the human affective state. Depending on the 

application context and the purpose of the interaction, different types of behaviors which 

the robot can adopt are explored, attempting to make HRI as natural as possible. 

 Development of new robots and devices concerns papers presenting affective robot 

prototypes or hardware/software systems for detecting affective state. These systems 

are developed with specific characteristics that allow to deal with particular situations 

arising from the application context (e.g., systems for tacking the operator’s affective 

state of during a collaborative task in a factory, or affective robots with soft components 

for interaction with children). 

Figure 1 shows the proportion of papers for three different application contexts. A significant 

number of papers can be found in the healthcare (59%) and service applications (36%) contexts, 

while manufacturing (5%) is still in an embryonic phase. In healthcare and service applications, 

the interaction with people plays a fundamental role, making the implementation of affective 

computing techniques in these contexts more natural. In manufacturing, on the other hand, the 

main value proposition is a product and over time more attention has been focused on improving 



production processes. However, in recent years, with the introduction of the concepts of human-

centered manufacturing and Human-Robot Collaboration (HRC), the affective state of 

operators involved in production processes is becoming more relevant. 

 

Figure 1. Proportion of publications found in the literature review for each application context. 

 

Having provided a broad "picture" of the scientific literature concerning affective computing 

implementation in HRI, it is important to analyze the state-of-art. In the next subsections, 

relevant and recent works in the manufacturing and in other application contexts will be 

reported. This overview may contribute to better understand the current advances in the research 

field and to identify some possible challenges. 

3.3. Application of Affective Computing in HRI: manufacturing context 

Manufacturing is one of the contexts in which robotics systems are widely used 16,57. However, 

as pointed out in Section 3.2, it is also the context in which affecting computing is still 

struggling to be implemented. Given the limited number of scientific contributions related to 

this sector, this section will try to provide a comprehensive picture of affective computing 

applications in industrial HRI scenarios. 
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Figure 2. Sensing modalities usage proportions (A) and research objective distribution (B) in manufacturing 
context. 
 

Fig.2.A shows the sensing modalities usage proportions in the manufacturing context. Most 

articles used physiological signals, followed by body language and facial expression. This 

might be due to the fact that operators often have to move during various operations and monitor 

their affective state through physiological signals (e.g., EDA, HRV) is an excellent solution. 

Monitoring through facial expressions and body language requires the use of a vision system, 

which can be suitable in situations where the operator's movements are rather limited. Voice is 

the least implemented sensing modality. One explanation could be that factories are often noisy 

environments where verbal communication can be difficult. 

Fig.2.B shows the research objective distribution in the manufacturing context. Although there 

are not many papers published in this context, it can be seen that most focused on the evaluation 

of the human affective state. This highlights the growing interest in recent years in aspects of 

psychological ergonomics involved in HRC. Very few papers dealt with the development of 

new robots and devices in this context. In particular, to the best authors knowledge, no affective 

collaborative robot prototype has yet been developed in an industrial setting. This fact 

highlights a still embryonic technological maturity in the manufacturing sector, with respect to 

healthcare and service application contexts. Some possible reasons are the following: (i) only 

in the last decade the operator's psychophysical wellbeing is gaining more attention through the 

concepts of human-centered manufacturing and Industry 5.0, since traditionally robots have 

been introduced in industries mainly to make production processes more efficient; (ii) several 

industrial tasks in which robots are involved can introduce safety issues for the operator (e.g., 

handling heavy, sharp or dangerous objects, welding, and blasting), thus placing limits on HRC 

that only in recent years are being overcome. 
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Tab.2 provides a summary of some of the most relevant and recent works dealing with affective 

state in HRI in the manufacturing context.  The first contributions in this field focused on the 

study of the operator's affective state induced by different movements of a robotic manipulator 

by analyzing physiological parameters 17,56,58. Among these contributions, some also proposed 

models to automatically detect operator's state through physiological signals, such as HRV, 

EDA and EMG 56,58,59. These models have subsequently allowed the development of robot 

adaptation systems, such as pre-collision strategies that consider the operator's affective state 
60.  

Later works analyzed user's state during the performance of industrial tasks with a robot. Some 

works analyzed the effect on the operator of different trajectory and speed profiles during a 

pick&place task 61,62; others developed support systems for teleoperation based on operator's 

stress level 63. 

Some recent contributions have used Virtual Reality (VR) to study user's affective state during 

interaction with industrial robots 64,65 and to evaluate affect-based control strategies for multiple 

robots 66. Since the implementation and verification of collaborative tasks can require a 

considerable investment of resources, VR is a valuable tool to simulate HRC in a safe and cost-

effective way.  

Some pioneering works focused on the development of a bioinstrumentation system to measure 

stress levels of operators involved in HRI 67–69. However, to the best authors' knowledge, there 

are no works in the literature that have proposed new industrial robot prototypes able to 

recognize operator's affective state. 

The contributions reviewed in this section provide some insights into the application of 

affecting computing in manufacturing contexts. However, they also provide a picture of a still 

embryonic research field. In this view, the next section will show possible research challenges 

to be addressed by academics and robot industry. 



Table 2 - Summary of papers considering affective state in HRI in manufacturing context. 
Main research 

objective 
Reference Content 

Elements 
of novelty 

Open issues 
(future work) 

Human affective 
state evaluation 

Kato et al.  
18 

The mental strain induced by movements of an industrial robotic arm is 
evaluated by analysing physiological parameters and subjective 
assessments. Skin Potential Response (SPR) is selected as physiological 
parameter for the evaluation. An experiment is carried out in which a 
robotic arm moves in front of the participants. 

 Assessment of mental 
strain induced by HRC 
though physiological 
responses. 

 Increasing the number of 
participants for more reliable 
results. 

 Conducting studies with 
other experimental settings. 

Kühnlenz 
and 
Kühnlenz 62 

The impact of various industrial robot trajectory profiles on physiological 
responses, namely HRV and SCR, is addressed. The results show that 
minimum-jerk trajectory significantly reduced HRV, implying significant 
stress reduction. 

 Comparison of different 
trajectory profiles in 
terms of emotional 
stress reduction. 

 Comparing different velocity 
profiles. 

 Increasing number of 
participants.

Kühnlenz et 
al. 61 

The impact of different velocity profiles on HRV and SCR is assessed. 
The velocity profiles considered were linear and trapezoidal. The linear 
velocity profile produces a significant reduction of both HRV and SCR 
compared to the trapezoidal one, implying less stressful situation. 

 Comparison of different 
velocity profiles in 
terms of emotional 
stress reduction. 

 Investigating long-term 
impact. 

 Exploring other application 
scenarios.

Etzi et al. 64 The effect of the velocity of an industrial robot arm on the human's 
responses is analyzed. The experiment consists of performing a simple 
assembly task on a virtual platform with two different robot velocities. 
Participants' right arm movements and gestures are tracked. Physiological 
signals are also recorded, namely HRV and SPR.

 Assessment of the 
human psychophysical 
stress in HRC using 
Virtual Reality (VR). 

 Comparing results on real 
interactions with physical 
robots. 

Fratczak et 
al. 65 

Different HRI situations are simulated on VR to study the influence of 
actions of an industrial dual-arm robot on human behaviour. The 
experiment consists of a pick&place task and involved 32 participants, 
collecting self-reports and recording their movement data, ECG and 
breathing waveform. The results showed that the robot's behaviour has a 
significant impact on operator's posture, focus and trust.  

 Study of human 
responses to different 
HRI hazards using VR. 

 Investigating long-term 
human behavior. 

 Comparing results with real-
life situations. 

Development of 
affect detection 
models 

Kulić and 
Croft 58 

A fuzzy inference system is developed to estimate human affective state 
in real-time. Affective state is estimated using the two-dimensional 
valence-arousal representation. The level estimations of valence and 
arousal are based on the analysis of several physiological signal, namely 
ECG, SCR, and EMG of the corrugator supercilii (eyebrow) muscle. 

 One of the first studies 
that estimates the 
affective state induced 
by an industrial robot 
through physiological 
signals.

 Identifying other 
physiological signals for 
valence estimation. 

 Improving the detection 
model. 

Kulić and 
Croft 56 

A new system based on Hidden Markov models (HMMs) for estimating 
human affective state in real-time is presented. Inputs of the models are 
several physiological signals (ECG, SCR, and EMG of the corrugator 
supercilia muscle) and affective state is estimated using a two-
dimensional valence-arousal representation. The new HMM-based affect-
detection system achieves overall better classification performances 
compared to the previous fuzzy inference system.

 Substantial 
improvement of a 
previously proposed 
affect detection model. 

 Exploring the combination of 
the previous fuzzy inference 
system with HMMs. 

 Investigating relationship 
between EMG responses and 
robot movements. 



Moualeu et 
al. 59 

Presentation of a methodology for creating a model to measure human 
endpoint stiffness levels using operator's EMG data for haptic control in 
physical HRI. EMG signals from two different pairs of antagonistic 
muscles (biceps brachii/triceps brachii and flexor carpi ulnaris/extensor 
carpi ulnaris) are collected to determine which pair best explains endpoint 
stiffness. SVM classifiers are used to analyze EMG signals. 

 Estimation of endpoint 
stiffness level using 
EMG for physical HRI. 

 Implementing the 
methodology to adapt robot 
behavior according to 
operator's state. 

Development of 
control and 
adaptation 
systems 

Kulić and 
Croft 60 

An HRI pre-collision safety strategy integrating human affective state is 
proposed. By monitoring environment, physiological signals and human 
posture and position, the system allows the robot to change trajectory and 
speed to avoid possible collisions. The integrated system is implemented 
and tested in some experimental HRI scenarios.

 Development of an HRI 
pre-collision strategy 
considering also human 
affective state.  

 Implementing and testing the 
system in real-life scenarios. 

Landi et al.  
63 

An affective adaptation system for industrial robot teleoperation is 
presented. The experimental HRI scenario consists of a user teleoperating 
an industrial robot in a pick&place task. Operator's mental workload is 
monitored through HRV. 

 Development of an 
affective control 
strategy for 
teleoperating an 
industrial manipulator. 

 Testing the adaptation 
system on more complex 
tasks. 

 Including additional sensing 
modalities.

Villani et 
al. 66 

An affect-based adaptation and control system for multiple mobile robots 
is presented. This system enabled an operator to interact with robots 
through a wrist device, which tracked wrist movements and stress. Wrist 
movements are used to teleoperate the robots, while stress is detected by 
HRV monitoring. When the stress state is detected, the behavior of the 
robots changes to relieve the operator.  

 Affective adaptation 
strategy for human-
multi-robot interaction. 

 Investigating whether 
disengagement, boredom 
and tiredness affect HRV. 

 Implementing multi-modal 
interaction exploiting 
speech inputs. 

Development of 
new technologies 

Itoh et al. 67 The bioinstrumentation system WB-1 is presented. This wearable system 
is able to measure arms movements, heart rate, respiration, EDA, pulse 
wave transit time, and blood pressure. Experiments are carried out to 
evaluate the accuracy motion capture system and show how to measure 
human stress. 

 New wearable system to 
track different human 
parameters during HRI. 

 Confirming whether humans 
feel unpleasantness by 
wearing WB-1 

Zecca et al. 
68 

A new bioinstrumentation system, called WB-2, is presented. This new 
system represents the evolution of WB-1 and introduces new features, 
among which the possibility to track head and hand motion. A comparison 
between WB-2 and WB-1 is carried out. 

 Upgrade of the previous 
wearable system WB-1. 

 Making completely wireless 
the wearable system for 
experiments outside the 
laboratory.  

 Increasing the modularity of 
the system.

 Al-Yacoub 
et al. 69 

A hardware and software framework for a set of wearable sensors is 
developed to identify human psychophysical states (i.e., muscle fatigue, 
frustration, and anxiety) and to perform online classification of human 
intentions and activities during HRC. Data acquired via sensors include 
muscle activity, head movement, heart rate, nose temperature, and brain 
activity. The proposed hardware and software framework is also tested on 
a teleoperation task.

 Integration of several 
wearable sensors for 
HRC. 

 Exploring different HRC 
applications. 

 Developing more efficient 
HRC systems. 
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3.4. Application of Affective Computing in HRI: other contexts 

As highlighted in previous sections, healthcare and service applications are to date the most 

prevalent contexts for the application of affective computing in HRI.  In these contexts, the 

deployment of social robots is becoming increasingly effective, thanks to the ability of these 

systems to interact with humans. 

 

3.4.1 Healthcare 
As highlighted in previous sections, healthcare is to date the most prevalent context for the 

application of affective computing in HRI. Social robots represent an important resource in 

healthcare, especially for taking care of the elderly, monitoring patients, and developing new 

treatment plans 70.  

 
Figure 3. Sensing modalities usage proportions (A) and research objective distribution (B) in healthcare 
context. 
 
Fig.3.A shows the sensing modalities usage proportions in the healthcare context. Facial 

expressions, voice, and physiological signals are the most implemented sensing modalities, 

followed by body language. Facial expressions and voice are the primary modes to 

communicate emotions in human-human interaction. However, there exist people who have 

difficulties in expressing their emotions in conventional ways, for instance, people affected by 

Autism Spectrum Disorder (ASD) 71. In such cases, the analysis of physiological parameters 

plays an important role in understanding affective state, also helping to customize therapy 

sessions and improving their effectiveness 72.  
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It should be noted that the sum of the percentages in Fig.3.A is more than 100%. The reason is 

that in the literature some works implemented more than one sensing modality to perceive an 

individual's internal state. Combining information of two or more sensing modalities has several 

advantages, among which enhancing the robustness of the results and compensating for 

weaknesses in sensing modalities. 

Fig.3.B shows the research objective distribution in the healthcare context. It can be observed 

that most of the papers (45%) focused on the evaluation of human internal state during HRI. 

This is due to the presence of several papers presenting case studies aimed at evaluating the 

effectiveness of specific therapies involving robots. It is interesting to note that a significant 

number of papers (21%) dealt with the development of and new robots and devices, highlighting 

a gradually growing technological maturity and significant interest in implementing affective 

robots in healthcare. 

The implementation of social robots in the healthcare context is becoming popular especially 

in in long-term care facilities. The adoption of social robots represents a valuable support to 

help elderly people to remain healthy and received special attention over the years 73–75. Several 

articles have shown the positive effects of interacting with affective robots, helping elders 

feeling considered 76, maintaining social relationships 77, improving their physical and mental 

health 78,79.  

Several works investigated the use of affective robots in the treatment of different types of 

patients, such as children with ASD 71,80–82, People with Dementia (PwDs) 83, and stroke 

patients 84. The results of these works have highlighted how the implementation of affective 

robots in therapy plans positively influences patients, increasing their motivation and 

engagement. 

 
 
3.4.2 Service applications 
With the gradual emergence of the Internet of Things (IoT), there is a strong interest in 

investigating what roles robots can play in society and how people perceive them. For effective 

integration, service robots need to be able to handle unexpected situations in unstructured 

places. Moreover, they need to be socially intelligent, i.e. able to fully understand the context 

and the people they interact with 85.  
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Figure 4. Sensing modalities usage proportions (A) and research objective distribution (B) in service context. 
 

Fig.4.A shows the sensing modalities usage proportions in the service context. The most 

implemented sensing modalities are voice and facial expression, followed by body language. 

In human-human interaction, face-to-face and verbal communication are the inherently natural 

ways in which affective information is communicated 86,87. Similarly, in the service sector, a 

robot needs to be able to establish the most natural possible interaction with people, 

understanding their affective state. Physiological signals are the least implemented modality in 

this context. This is due to the fact that in most cases the interaction takes place with bystanders 

and the use of sensors on these people is not always possible, significantly limiting the 

physiological signals that can be monitored. 

Fig.4.B shows the research objective distribution in the service context. It can be observed that 

several papers focused on the evaluation of human internal state during HRI and the 

development of affect detection models (34% and 31%, respectively). Analyses of this kind are 

critical to understanding the acceptance and effectiveness of robots in various settings, 

including education, foodservice, hospitality, tourism, retail and entertainment. Moreover, in 

such contexts interaction often takes place in public places, where it is difficult to have complete 

control over the environment, generating several challenges in creating artificial intelligence 

models capable of handling unexpected situations. 

It is worth noting that a consistent number of papers (19%) focused on the development of new 

robots and devices, highlighting a gradually growing technological maturity and significant 

interest in implementing affective robots in service applications. 
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Several contributions focused on the introduction of social robots in education and 

entertainment for children. Some studies examined the effects on students of robot lectures 88 

and how different ways of presenting a robot can affect children's learning processes 89.  Child-

robot interaction is a topic of particular interest 90, where the role of affective robots as 

playmates is also investigated 91.  Affect-sensitive robotic game companions allow to establish 

more engaging interactions with children, representing a valuable resource for learning new 

games, such as chess 92.   

The use of small Unmanned Aerial Vehicles (sUAVs) in public spaces for delivery, crowd 

control, rescue and entertainment is becoming increasingly common. For this reason, there is a 

strong interest in studying and improving the interaction between humans and sUAVs 93. 

Some works investigated behavioral strategies for affective robots in public places, such as 

information points 94, pubs 95, restaurants 96 or shops 97. In these contexts, service robots are 

expected to respond appropriately to clients' behavior and engage them in stimulating 

experiences. 

 

4. Research challenges for manufacturing sector 

In manufacturing, the implementation of affective computing techniques in HRI is currently 

rather limited compared to other sectors, such as healthcare and service applications. One 

reason may be due to the different centrality of humans. In healthcare and service applications, 

the human interacting with the robot plays a central role. The robotic system is developed with 

the aim of creating a relationship with the subject in order to improve the effectiveness or 

experience of a particular service. On the contrary, in manufacturing, performance and 

productivity have always played the main role in the choice of production technologies, 

relegating the emotional state of the operators to a marginal importance. However, in recent 

years, there has been a growing attention to emotional ergonomics in various sectors, where the 

psychological state of workers is taken into account and solutions capable of improving the 

working environment are designed98. The novel Industry 5.0 paradigm provides a vison of 

industry that aims beyond efficiency and productivity as the sole goals, and places the well-

being of the worker at the centre of the production process 99. 

To better support the operator in complex scenarios, a major gap still needs to be filled: cobots 

should be endowed with proper socio-cognitive processing skills and shared autonomy 

capabilities. That way, robots will be able to proactively take over some tasks and relieve the 

operator’s physical and cognitive load.  In this sense, we can say that the development of 
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collaborative robotic systems with the ability to adapt dynamically to the operator’s state is still 

in its infancy 66,100. The development of new affecting computing technologies in manufacturing 

can lead to the creation of solutions able to improve both the production performance and the 

operators' well-being.  

A certain consequentiality can be noted among the four research objectives considered in the 

review section. The development of new affective robots requires the development of an 

adaptation system. In turn, the development of an adaptation system requires studies that 

evaluate the effect of different robot behaviors and the creation of models for affect recognition. 

This consequentiality can be used to create an overall roadmap for the development of 

collaborative affective robots for manufacturing (Figure 5).  

 
Figure 5. Overall roadmap for full implementation of affecting computing in HRI in manufacturing sector. 
 

As a result of the state-of-art investigation reported in Section 3, a set of potential research 

challenges for manufacturing have been identified. These challenges were conceptualized 

through the analysis of: (i) advances in different sectors; (ii) open issues in different sectors; 

(iii) specific requirements of the manufacturing sector.  

The research challenges for manufacturing are reported in Table 3 with also some references to 

papers addressing similar issues in other contexts. This information may serve as useful 

reference and guiding means for future research. 
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Table 3. Research challenges concerning the development of recognition models and affective state 
evaluation (Phase 1) in manufacturing context. 

Development phase Research challenge for manufacturing 
Related papers 

in other contexts 
1. Development of 

recognition models 
and affective state 
evaluation 

Recognition of factors influencing the 
psychophysical state of the operator during 
collaborative industrial operations

71,93 

Exploration and selection of sensing modalities for 
different industrial contexts 

74,83,90,91 

Development of methodologies and models to 
overcome sensing modalities limitations 

74,82,94 

Conducting studies on operators' affective state in 
different real industrial HRI scenarios 

77,91,94 

Carrying out HRI studies on affective state with 
immersive virtual reality systems 

101,102 

2. Development of 
control and 
adaptation systems 

Identification of possible robot behaviours to 
improve the operator’s well-being. 

76,92 

Development of appropriate adaptation strategies 
for different industrial HRI scenarios. 

84,95 

Development of online learning methods to 
customize robot behaviour to specific operators (ad 
hominem) 

103,104 

Implementation of IoT and wearable technologies 
to enhance control and adaptation systems.  

85 

3. Development of 
new robots and 
devices 

Development of affective cobot prototypes for 
different industrial contexts 

78,85,96 

Evaluating and improving acceptance of new 
technologies for different industrial contexts 

78,79 

Analysis of ethical and legal (e.g., data protection) 
implications of implementing affecting computing 
in industrial contexts. 

105,106 

 

 Development of solutions for real industrial 
applications (e.g., design-to-cost; fulfilments of 
stakeholders’ requirements) 

85 

 
 
 

4.3.Phase 1: Development of recognition models and affective state evaluation 

The first phase of the proposed roadmap is related to preliminary studies to develop 

collaborative affective robots in manufacturing context. Given the embryonic state of the 

research field, initial efforts should be directed towards the understanding how to develop affect 

recognition models and how to evaluate affective state in manufacturing contexts (Table 3). 

One of the first steps to be addressed is identification of the factors that most influence the 

psychophysical state of operators (e.g., robot speed and trajectory, level of experience, 

contextual and psychological factors such as noise and lighting, mental weariness, 
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psychophysiological stress, and subjective representation of the robot). Understanding these 

factors is critical to develop adaptation models aimed at improving the well-being of the 

operator during HRC.  

Manufacturing context is characterized by many different working environment settings, which 

vary considerably depending on production tasks. Each task implies different environmental 

characteristics that can influence the way humans and robots interact. For example, in a welding 

workstation it is likely to have a high noise level, a fairly high ambient temperature and a 

variable illuminance level, which may hinder HRI. Such environmental conditions may cause 

a limitation on the use of sensing modalities to detect the affective state of operators. For 

example, noisy environments may limit the use of voice; humid environments may affect the 

detection of physiological signals (e.g., EDA); personal protective equipment may cover part 

of the operator's face. These particular conditions pose multiple challenges in the development 

of psychophysical state recognition methodologies and models, the overcoming of which may 

allow a greater implementation of affective computing in manufacturing. Further experimental 

investigations are needed to identify the most suitable sensing modalities for different industrial 

contexts. 

At present, most studies have focused on pick&place, assembly and navigation tasks. However, 

collaborative robots can be used for a variety of tasks, including, for example, welding, gluing, 

sanding, 3D printing, milling, polishing and pelletizing 16,107–109. Furthermore, in most cases the 

applications of affective computing in HRI relate to the manufacturing sector in general, there 

is a lack of investigations focused on specific manufacturing sectors (e.g., semiconductor, 

automotive, aerospace).  

Virtual reality allows simulating complex HRI scenarios with a modest use of resources. 

However, mainly exploiting vision, certain environmental factors characterizing some tasks 

may not be taken into account or are difficult to reproduce. Further research should focus on 

the creation and use of more immersive virtual reality systems, able to involve all the senses of 

the participant during a collaborative industrial task. 

 

4.4.Phase 2: Development of control and adaptation systems 

In order to achieve a symbiotic HRC, able to integrate human and robot's abilities, it is 

necessary: 

1. collect and integrate different information about the context and the operator, including 

his affective state (e.g., fatigue, stress level). 
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2. develop robotic systems able to implement strategies appropriate to the situation. 

For each industrial context, it is necessary to identify the behaviors that the collaborative robot 

can adopt and establish which are the most suitable to improve the interaction. Considering, for 

instance, a collaborative assembly task, the cobot might decrease its speed or change its 

trajectory according to the affective state of the human operator interacting with it. 

It is important to understand in which situations the robot must change its behavior and which 

one to adopt in order to preserve the benefits of collaboration and operator’s well-being. In this 

view, a crucial aspect to be addressed concerns evaluating whether the robot will have to 

proactively adapt its behavior to the changes in the operator’s psychophysiological states (e.g., 

fluctuation of vigilance, degree of mental weariness, physiological stress level) or, instead, 

whether this modification should occur in response to a request from the operator. The 

behavioural strategy can be initially hard-wired based on the output of the operator’s 

psychophysical state. However, further analysis should focus on the application of online 

learning methods (e.g., reinforcement learning), in which the operator becomes part of the 

learning/adaptation process by producing real-time feedback mediated by the psychophysical 

state detector. The implementation of ad hominem approaches might improve, production 

performance, operator well-being and cobot acceptance by operators. 

Existing research recognizes the critical role played by communication to achieve a good 

synergy between cobots and human operators. Referring to other application sectors of 

collaborative robotics (i.e., service or healthcare), a considerable amount of literature has been 

published on these issues. The manufacturing sector, however, requires different approaches 

that merits further research. In this consideration, the creation of affective robot interfaces, i.e., 

robot control system interfaces able to adapt according to the affective state of the operator, for 

different industrial contexts, may represents a valuable challenge.  

As manufacturing systems are increasingly becoming more geographically distributed 

(distributed manufacturing), further work is also needed to explore how information originating 

from different manufacturing contexts or sensors can be merged (i.e., data-fusion) and how they 

can be exploited for the development of optimal behavioral adaptation strategies and policies. 

In this perspective, trends related to the establishment of IoT and wearable technologies can be 

a development driver for increasingly high-performance adaptation systems 110.  

4.5.Phase 3: Development of new robots and devices 

The development of new technologies is a natural progression after the consolidation of the 

previous phases (Table 3). To this end, user-centered approaches should be employed.  



22 
 

The first step is the development of affective robotic system prototypes that optimally integrates 

the different hardware and software components (e.g., sensors, communication protocols, 

artificial intelligence algorithms, actuators). Considering the characteristics of each industrial 

sector, it is necessary to develop specific technological frameworks for various tasks, taking 

into account:  

(i) reconfigurability of the system, in order to improve the usage flexibility; 

(ii) non-invasiveness of sensors, to allow workers to operate without any constraints; 

(iii) the user-friendliness of interfaces, to improve human-robot communication and 

fluency. 

Prototype testing should be designed to demonstrate the effectiveness in reducing operators’ 

cognitive load and improving their well-being. The synergy between research and industry 

could generate the development of living labs where users can participate directly in the 

development and validation of innovations. 

As seen for other application contexts, an important aspect related to the development of new 

technologies concerns their acceptance by end-users. It is necessary to understand which factors 

influence acceptance and how it can be improved.  Moreover, further experimental 

investigations are needed to compare the impact on operators’ acceptance of traditional 

collaborative robotic systems and socially intelligent ones. 

Special attention should also be devoted to the ethical and legal implications that can be 

generated by collaborative robots endowed with affecting computing algorithms. Modeling of 

the human involved in HRC is crucial to reach symbiotic collaboration. However, there are 

several issues related to the collection, storage and management of data generated by an 

operator (e.g., physiological, vocal, and facial data).  Affective data should only be used to 

enable the robot to work effectively with the operator and protected using appropriates methods 

(e.g., blockchain). In addition, the operator should be given the freedom to decide when his or 

her emotional state can be monitored.  

Finally, an important aspect is the transition from experimental prototypes to final solutions 

that can find an extensive use in real industrial contexts. For an effective deployment and 

implementation of new collaborative affective robots, in addition to meeting the requirements 

of potential stakeholders, it is important to pursue an efficient design-to-cost. This process 

requires the cost optimization of materials, components and features while preserving 

performances. In this view, the provision of product-related services may represent a strategy 

to accelerate and sustain the diffusion of affective computing technologies in manufacturing 

contexts 111,112. 
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5. Conclusions 

This paper provides an overview of the implementation of affective computing techniques in 

HRI. Affective computing in HRI has been mainly explored in the healthcare and service 

contexts. Although the implementation of affective computing in manufacturing is still in an 

embryonic phase, in recent years it has been receiving more attention. This is mainly due to the 

gradual establishment of Industry 4.0, in which collaborative robots allow close interaction with 

humans sharing the same workspace. Both physical and psychological ergonomics of the 

operator must be taken into account to fully exploit the benefits of HRC. In addition, the 

collaboration between robots and humans needs to be as similar as possible to collaboration 

between humans. The adoption of collaborative robotics with greater empathy towards 

operators will allow to limit workspace alienation and support operators’ well-being. 

Understanding the mental and affective state of the operator allows robotic systems to be more 

context-aware and to provide support at the right time in different tasks. This ability is 

fundamental for the establishment of a symbiotic HRC in manufacturing. In this perspective, 

developing industrial robotic systems with social intelligence is one of the main objectives to 

be pursued.  

In support of this aim, this paper proposed a detailed survey concerning the state-of-art of 

affective state in HRI in manufacturing The main elements of novelty and issues addressed by 

each paper on the topic has been highlighted  and discussed. Being the study focused on 

practical applications of affecting computing in HRI in specific contexts, this study did not 

investigate general-purpose applications. However, this allowed for a greater emphasis on the 

distinctive characteristics of manufacturing compared to other sectors by pin-pointing the 

challenges addressed and the objectives.  

With particular attention to the manufacturing sector, a roadmap for the full implementation of 

affecting computing in HRI has been proposed. This roadmap was developed taking inspiration 

from the research challenges addressed in other sectors and adapted to needs and goals of the 

manufacturing sector.  

The roadmap's key-objectives highlight the need for greater integration between engineering, 

social, and life sciences. To this end, it will be necessary to develop multidisciplinary research 

projects capable of integrating researchers with different backgrounds and expertise. 

Taken together, the findings of this study show that industrial robotic systems capable of 

adapting their behaviour to the psychophysical state of the operator are not "science fiction". 

Most of the necessary technologies and knowledge are already available. What is now needed 
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is to take advantage of them, promoting an inclusive and human-centered manufacturing 

(Industry 5.0) culture. 
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Appendix - List of acronyms and abbreviations 

AC Affective Computing 
ECG  Electrocardiography 
EDA  Electrodermal Activity 
EEG  Electroencephalography 
EMG  Electromyography 
GSR  Galvanic Skin Response 

HRC  Human-Robot Collaboration 
HRI  Human-Robot Interaction 
HRV  Hearth Rate Variability 
SCR  Skin Conductance Response 
SPR  Skin Potential Response 

 

   

 


