
25 April 2024

POLITECNICO DI TORINO
Repository ISTITUZIONALE

Infrastrutture globali e divenire urbano. Pireo, Trieste e il ‘Corridoio Adriatico’. Special Issue / Governa, Francesca;
Sampieri, Angelo. - In: TERRITORIO. - ISSN 1825-8689. - STAMPA. - 103:(2023), pp. 23-52. [10.3280/TR2022-
103002OA]

Original

Infrastrutture globali e divenire urbano. Pireo, Trieste e il ‘Corridoio Adriatico’. Special Issue

Publisher:

Published
DOI:10.3280/TR2022-103002OA

Terms of use:

Publisher copyright

(Article begins on next page)

This article is made available under terms and conditions as specified in the corresponding bibliographic description in
the repository

Availability:
This version is available at: 11583/2987301 since: 2024-03-25T15:13:14Z

Franco Angeli

EURO Journal on Transportation and Logistics 10 (2021) 100041

Available online 11 May 2021
2192-4376/© 2021 The Authors. Published by Elsevier B.V. on behalf of Association of European Operational Research Societies (EURO). This is an open access
article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

The Baggage Belt Assignment Problem

David Pisinger a,*, Rosario Scatamacchia b

a Technical University of Denmark, DTU Management Engineering, Akademivej, Building 358, 2800, Kgs. Lyngby, Denmark
b Dipartimento di Ingegneria Gestionale e della Produzione, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129, Torino, Italy

A R T I C L E I N F O

Keywords:
Combinatorial optimization
Baggage belt assignment problem
Inbound baggage handling
Branch and price
Knapsack problem

A B S T R A C T

We consider the problem of assigning flights to baggage belts in the baggage reclaim area of an airport. The
problem is originated by a real-life application in Copenhagen airport. The objective is to construct a robust
schedule taking passenger and airline preferences into account. We consider a number of business and fairness
constraints, avoiding congestion, and ensuring a good passenger flow. Robustness of the solutions is achieved by
matching the delivery time with the expected arrival time of passengers, and by adding sufficient buffer time
between two flights scheduled on the same belt. We denote this problem as the Baggage Belt Assignment Problem
(BBAP). We first derive a general Integer Linear Programming (ILP) formulation for the problem. Then, we
propose a Branch-and-Price (B&P) algorithm based on a reformulation of the ILP model tackled by Column
Generation. Our approach relies on an effective dynamic programming algorithm for handling the pricing
problems. We tested the proposed algorithm on a set of real-life data from Copenhagen airport as well as on a set
of instances inspired by the real data. Our B&P scheme outperforms a commercial solver launched on the ILP
formulation of the problem and is effective in delivering high quality solutions in limited computational times,
making it possible to use the solution approach in daily operations in medium-sized and large airports.

1. Introduction

We consider the problem of assigning flights to a fixed set of baggage
belts (carousels) for arriving luggage in an airport. The objective is to
construct a robust schedule taking passenger and airline preferences into
account. We denote this problem as the Baggage Belt Assignment
Problem (BBAP). This work is motivated by a real-life application in
Copenhagen airport and may as well find application in daily operations
of other airports. We focus on the following aspects in the delivery
process of bags to passengers. Depending on the arrival gate of an
airplane, the passengers may have a quite long walking distance to the
baggage claim area. If the passengers, furthermore, have to go through
passport control, it can take up to 1 h before the passengers can pick up
their luggage. If the bags are delivered to the baggage belts before the
passengers arrive, it can cause serious congestion problems, since the
belts are filled to the limit and cannot accept further bags. In the light of
this, we will consider solutions where the bags are not delivered before
the arrival of the passengers at the baggage claim area. On the other
hand, if the passengers arrive much earlier to the baggage claim area
than their luggage, then it will lead to dissatisfied passengers, and
overcrowded waiting areas. Hence, we assume that every flight has a

preferred time for starting the delivery of bags at the baggage claim area.
This requested time coincides with the arrival of the passengers at the
baggage area. If the bags are delivered later than the requested start
time, it will be penalized in the objective function. Also, there may be a
maximum start time of the delivery, to ensure an upper limit on when
bags must be delivered to the passengers. For obvious reasons, every
flight has a minimum start time for the delivery of the bags. The delivery
cannot be scheduled before the arrival time to the gate (time on block,
TOB) plus the minimum unloading time and driving time. In our study,
we reasonably assume that this delivery time is always smaller than the
arrival time of passengers at the belts.

For each flight, we have an expected number of bags. This number
can either be reported by the airline, or it can be forecasted from historic
information for the same route. Based on the expected number of bags,
we can calculate the expected unloading time of the bags to the baggage
belts. This time can be shortened, but it will be strongly penalized in the
objective, since it means in practice that two flights will be unloading
bags to the same baggage belt at the same time.

Due to an inherent uncertainty in the walking times of the passen-
gers, number of bags to deliver, and productivity of unloading, a robust
plan should assign some buffer time between the delivery of bags of two

* Corresponding author.
E-mail addresses: dapi@dtu.dk (D. Pisinger), rosario.scatamacchia@polito.it (R. Scatamacchia).

Contents lists available at ScienceDirect

EURO Journal on Transportation and Logistics

journal homepage: www.sciencedirect.com/journal/euro-journal-on-transportation-and-logistics

https://doi.org/10.1016/j.ejtl.2021.100041
Received 10 September 2020; Received in revised form 24 April 2021; Accepted 27 April 2021

mailto:dapi@dtu.dk
mailto:rosario.scatamacchia@polito.it
www.sciencedirect.com/science/journal/21924376
https://www.sciencedirect.com/journal/euro-journal-on-transportation-and-logistics
https://doi.org/10.1016/j.ejtl.2021.100041
https://doi.org/10.1016/j.ejtl.2021.100041
https://doi.org/10.1016/j.ejtl.2021.100041
http://crossmark.crossref.org/dialog/?doi=10.1016/j.ejtl.2021.100041&domain=pdf
http://creativecommons.org/licenses/by-nc-nd/4.0/

EURO Journal on Transportation and Logistics 10 (2021) 100041

2

flights to the same belt. The buffer time is rewarded in the objective
function in such a way that the first minutes of buffer time get a large
reward, while following minutes of buffer time get a smaller and smaller
reward. It is assumed that after a given upper limit on the buffer time,
the solution does not become more robust by adding additional buffer
time.

Some flights may be incompatible with a given belt. For instance,
large flights cannot be assigned to small belts or flights arriving from
non-Schengen countries must be assigned to specific belts. For every
flight we may have preferences to the chosen baggage belts. Airline
companies may prefer to use baggage belts close to their customer ser-
vice, so passengers easily can solve questions related to damaged/
missing bags. Furthermore, if the baggage claim area has several en-
trances, it will be preferred to use baggage belts close to the entrance
where the passengers will come from.

Finally, we may assume that the schedule should be fair in the sense
that if a flight j has a requested time for delivery smaller than the time of
another flight j′ , and both flights are scheduled on the same belt, then
flight j must be scheduled before flight j′ . If two flights are scheduled to
different belts, then no constraint is imposed on the ordering, since
waiting passengers are not standing at the same belt, and hence do not
block for each other.

The problem is dynamic in nature, since arrival times of flights may
change due to weather, delays, or technical issues. Therefore, the
problem is solved using a rolling horizon with segments of about 2 h.
Once a plane is on block (i.e. after TOB), the assignment cannot be
changed, but all other assignments can be continuously amended to
account for new information about forecasted arrival times, and ex-
pected number of bags. The assignment problem is typically solved
several times per hour, hence fast solution times below, say, 5 min are
needed.

For an excellent overview of baggage handling at airports we refer to
the comprehensive theses by Barth (2013b) and Frey (2015). Different
variants of the Baggage Belt Assignment Problem have been studied in
the literature. Barth (2013a) and Barth and Böckmann (2012) study the
assignment of incoming flights to baggage belts. They model the prob-
lem as an extended assignment problem and present a detailed verifi-
cation study as well as some sensitivity analysis. Delonge (2012)
presents a model for local and global load balancing of baggage belts.
Frey, Kiermaier and Kolisch (Frey et al., 2017) consider inbound
baggage handling at airports, and present a hybrid heuristic combining a
greedy randomized adaptive search procedure (GRASP) with a guided
fast local search (GLS) and path-relinking. Barth and Pisinger (2021)
formulate a variant of the Baggage Belt Assignment Problem as an
extended assignment problem, and solve it as a MIP problem. The
objective is to balance customer satisfaction with operational needs.
Computational results are reported for real-life instances from Frankfurt
Airport. Pisinger and Rude (2020) report results for a variant of the
Baggage Belt Assignment Problem that minimizes overlap of
aircraft-to-belt assignments, and passenger cross-flow. A simulation
analysis presented in Borille and Correia, 2013a, 2013b investigates
how different factors impact the service level of arriving passengers.

However, none of the above papers try to match arrival times of bags
to the arrival times of passengers in order to avoid congestion and ensure
a good passenger flow. Furthermore, nearly all algorithms solve the
problem heuristically, and hence optimality cannot be guaranteed.

For the problem we consider in this study, we first present a general
Integer Linear Programming (ILP) formulation. Next, we propose a
reformulation of the ILP model of the problem and propose a Branch-
and-Price (B&P) algorithm using Column Generation (CG) to derive
bounds in each node. Our approach relies on an effective dynamic
programming algorithm for handling the pricing problems. We tested
our solution methods on a set of real-life data from Copenhagen airport
as well as on a set of synthetic instances inspired by the real data. Our
B&P scheme appears to strongly outperform the commercial solver

CPLEX 12.9 launched on the ILP model, and we show that the solution
approach is fast enough to be used in a dynamic environment of an
airport, improving the daily operational processes.

The main contribution of this paper is threefold: We present a new
formulation of the Baggage Belt Assignment Problem that aims at
matching the arrival time of bags with the expected arrival time of
passengers. We develop an exact algorithm for solving the problem
based on Branch-and-Price. Finally, we show that the pricing problem
can be solved efficiently using dynamic programming.

The paper is organized as follows. In Section 2, we formally intro-
duce the BBAP and a related ILP formulation. We outline the proposed
Branch-and-Price scheme in Section 3 and discuss the computational
experiments in Section 4. Section 5 draws some conclusions.

2. Notation and formal problem definition

In BBAP, let there be given a set N = {1,…, n} of flights, a set M =

{1,…,m} of baggage belts and a set of time steps T = {0,…,(tmax − 1)},
where tmax is the time horizon. All flights have to be scheduled within
the time horizon, i.e., for each flight, the start time of the delivery of the
bags plus the corresponding duration on a belt must not exceed tmax.
Each belt i ∈ M has associated a set of compatible flights Ni and a pro-
ductivity πi (e.g., bags per minute) for the unloading operations of the
bags. For every flight j ∈ N, let bj denote the number of bags and let tjreq

denote the requested delivery start time corresponding to the arrival of
passengers at the baggage area. Thus, for each flight j we have a set of
possible start times Tj = {tj

req,(tjreq + 1),…,(tmax − 1)}. For every belt i ∈
M and flight j ∈ Ni we have a set of possible unloading durations Wij. Set
Wij includes a nominal duration w′

ij = bj/πi and other durations that
may reflect a minimum allowed unloading time, and a maximum time
including buffer time. Since the productivity of each belt may differ, the
unloading time may be faster at some belts than others. Therefore, the
set of possible durations Wij depends on the belt i. Let pijtw be the profit
that can be obtained by assigning flight j ∈ Ni to belt i with start time t
and duration w. The profit is a sum of scores reflecting:

• Capacity: A score is assigned depending on whether the capacity of
belt i is sufficient for flight j.

• Preferences: A score is obtained if belt j is located close to the entry
gate, or close to the help desk of the handling agent.

• Start time: The closer the scheduled belt time is to the expected
arrival of passengers, the higher score.

• Duration: A score is given if sufficient time w is scheduled for
unloading.

Buffer time, and hence implicitly robustness, is modeled by
increasing the profits for longer durations w. If a flight has a nominal
duration w′ , then we increase the profit of all durations w > w′ . Simi-
larly, we penalize durations w < w′ to reflect that this may mean that
baggage from two different flights will be unloaded at the same time to
the same belt. We also penalize situations where the delivery of the bags
of a flight j starts after the requested start time tj

req. In these cases, lower
profits reflect the presence of disappointed passengers and overcrowded
waiting areas.

Finally, to ensure a fair schedule, we have a set of precedences to
consider, namely we must ensure that each belt processes flights in
increasing order of the requested start times tjreq (j = 1,…,n). From now
on, we assume this ordering of the flights. In order to derive an ILP
formulation for the BBAP, we introduce binary variables xijtw equal to
one if and only if flight j is assigned to belt i with start time t and duration
w. Clearly, the relevant variables xijtw are the ones with t + w ≤ tmax and
j ∈ Ni. The problem can be formulated as the following ILP model,
denoted as BBAPILP.

D. Pisinger and R. Scatamacchia

EURO Journal on Transportation and Logistics 10 (2021) 100041

3

BBAPILP :

max
∑

i∈M

∑

j∈Ni

∑

t∈Tj

∑

w∈Wij :

t+w≤tmax

pijtwxijtw (1)

s.t.
∑

i∈M

∑

t∈Tj

∑

w∈Wij :

t+w≤tmax

xijtw = 1, j ∈ N (2)

∑

t∈Tj

∑

w∈Wij :

t+w≤tmax

(t+w) ⋅ xijtw ≤
∑

t∈T
j′

∑

w∈Wij :

t+w≤tmax

t⋅xij′ tw

+tmax

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

2 −
∑

t∈Tj

∑

w∈Wij :

t+w≤tmax

xijtw −
∑

t∈T
j′

∑

w∈W
ij′
:

t+w≤tmax

xij′ tw

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

,

i∈M, j, j′ ∈ Ni (j< j
′

) (3)

xijtw ∈{0, 1}, i∈M, j∈Ni, t∈ Tj,w∈Wij : t+w ≤ tmax (4)

The objective (1) maximizes the profits of the assignments. The first
constraints (2) ensure that every flight j is assigned to exactly one belt
with a certain duration and start time. Constraints (3) ensure that if two
flights j, j′ are both assigned to belt i (i.e.

∑

t∈Tj

∑

w∈Wij

xijtw =
∑

t∈T
j′

∑

w∈W
ij′

xij′ tw =

1), they will not overlap on the belt and will fulfill the precedence
constraints. Otherwise, the constraints are inactive. Finally, constraints
(4) define the domain of the decision variables.

Using the fact that
⃒
⃒Wij

⃒
⃒ ≤ |T| we can estimate the size of the model.

The formulation contains O(

⃒
⃒
⃒M

⃒
⃒
⃒

⃒
⃒
⃒N|

2
) constraints, and O(

⃒
⃒
⃒M

⃒
⃒
⃒

⃒
⃒
⃒N

⃒
⃒
⃒

⃒
⃒
⃒T|2)

variables.
It is easy to see that the BBAP is strongly NP-hard by a reduction from

the bin-packing problem. In the bin-packing problem, we are given a set
of items to be packed in bins. Each item has a weight and all bins have
the same capacity. The goal is to find the minimum number of bins that
permits the packing of all items. Consider the decision version of the
problem that asks whether all items can be packed by using at most K
bins. Given an instance of the bin-packing problem, we can construct an
instance of the BBAP by associating items with flights and bins with K
identical belts. Each belt can process each flight with one possible
duration that reflects the weight of the corresponding item. The reduc-
tion is completed by setting tmax equal to the capacity of the bins,
identical and time invariant profits for all the flights and request start
times equal to zero. Solving the BBAP instance and checking if it admits
a feasible solution allows us to decide the corresponding instance of the
bin-packing problem.

3. A Branch-and-price approach

We propose a B&P approach to effectively tackle the BBAP. The
approach is based on a reformulation of model BBAPILP in which Column
Generation is used to solve the LP relaxation. The ingredients of the
algorithm and related CG framework are described in the following
sections. For an excellent introduction to Column Generation see, e.g.,
(Desaulniers et al., 2005).

3.1. ILP formulation with fewer constraints, but an exponential number of
variables

We derive an alternative ILP formulation with an exponential num-

ber of variables. Assume that for each belt i we have a set S i of all
feasible schedules of the flights. For every schedule s ∈ S i, let qsi denote
the profit of the schedule, and let the binary parameter asij be one if
schedule s for belt i covers flight j. We introduce binary variables xsi
equal to one if schedule s is used for belt i. We obtain the following
formulation, denoted as BBAPexp.

BBAPexp :

max
∑

i∈M

∑

s∈S i

qsixsi (5)

s.t.
∑

i∈M

∑

s∈S i

asijxsi = 1 j ∈ N (6)

∑

s∈S i

xsi ≤ 1 i ∈ M (7)

xsi ∈{0, 1} i∈M, s ∈ S i (8)

The objective (5) maximizes the profits of the selected schedules.
Constraints (6) ensure that every flight j is assigned to exactly one belt.
The next constraints (7) ensure that at most one schedule will be selected
for each belt i. Finally, constraints (8) define the binary domain of the
variables.

3.2. Master problem

Since model BBAPexp may contain an exponential number of sched-
ules in sets S i, it may be intractable to solve. Therefore, we replace the
integrality constraints (8) with non-negativity constraints on variables
xsi and solve the LP-relaxed problem for a subset R i⫅S i of the schedules
for each belt i. We obtain the following Restricted Master Problem
(RMP) from model BBAPexp.

RMP :

max
∑

i∈M

∑

s∈R i

qsixsi (9)

s.t.
∑

i∈M

∑

s∈R i

asijxsi = 1 j ∈ N (10)

∑

s∈R i

xsi ≤ 1 i ∈ M (11)

xsi ≥ 0 i ∈ M, s ∈ R i (12)

In our algorithmic implementations, we initialize the RMP with a
dummy schedule for each belt in order to guarantee the feasibility of the
RMP in any node of the B&P tree. Each dummy schedule processes all
flights and has a profit equal to − ∞ (i.e., an arbitrarily negative value).

3.3. Pricing problem

Let yj (j ∈ N) denote the dual variables corresponding to constraints
(10), and let ui (i ∈ M) denote the dual variables corresponding to con-
straints (11). For each belt i ∈ M, we consider the following Pricing
Problem PPi with binary variables x′

jtw representing the assignment of
flight j to belt i with duration w and start time t.

PPi :

max
∑

j∈Ni

∑

t∈Tj

∑

w∈Wij :

t+w≤tmax

(
pijtw − yj

)
x′ jtw − ui (13)

D. Pisinger and R. Scatamacchia

EURO Journal on Transportation and Logistics 10 (2021) 100041

4

s.t.
∑

t∈Tj

∑

w∈Wij :

t+w≤tmax

x′ jtw ≤ 1, j ∈ Ni (14)

∑

t∈Tj

∑

w∈Wij :

t+w≤tmax

(t+w) ⋅ x′ jtw ≤
∑

t∈T
j′

∑

w∈W
ij′
:

t+w≤tmax

t⋅x′ j′ tw

+tmax

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

2 −
∑

t∈Tj

∑

w∈Wij :

t+w≤tmax

x′ jtw −
∑

t∈T
j′

∑

w∈W
ij′
:

t+w≤tmax

x′ j′ tw

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

,

j, j′ ∈ Ni (j< j
′

) (15)

x′ jtw ∈{0, 1}, j∈Ni, t∈ Tj,w∈Wij : t+w ≤ tmax (16)

The objective (13) maximizes the reduced cost of the schedule of
flights to be determined. Notice that ui is a fixed contribution in the
objective function and can be ignored in the computation of an optimal
solution to PPi. Constraints (14) state that each flight j ∈ Ni could be
assigned to belt i. Constraints (15), in combination with constraints (14),
ensure that two flights j, j′ ∈ Ni do not overlap if they are processed on
belt i (as constraints (3)). Also, these constraints ensure the precedence
constraints.

It is easy to see that PPi contains the 0–1 Knapsack Problem (see
monographs (Kellerer et al., 2004), (Martello and Toth, 1990)) as special
case, using the same arguments as for BBAP. The input size of PPi is
Θ(nwmaxtmax) if the parameters are given explicitly, where wmax denotes
the maximum size of an interval Wij. If instead the parameters can be
calculated ad-hoc when needed, the order of magnitude of the number of
parameters is Θ(log2wmaxtmax) for each flight, thus reducing the input
size to only Θ(n log2wmax + n log2tmax).

At each node of the Branch-and-Price tree, we solve the RMP and
obtain the corresponding values of dual variables yj, ui. Then, we solve
to optimality the pricing problems PPi for every belt i ∈ M. If a schedule
for belt i with positive reduced cost is found, the schedule is added to set
R i. Then, we solve the RMP again and the CG process is repeated until
no schedules with positive reduced costs can be determined. An optimal
solution of the RMP provides an Upper Bound (UB) on the BBAP. Also,
we keep track of integer solutions of the RMP along the CG iterations to
possibly update the current Lower Bound (LB), namely the best feasible
solution computed so far.

Clearly, the pricing problems should be solved effectively to speed up
the convergence of the iterative process. Here, we notice that each
pricing problem PPi can be seen as a variant of the Knapsack Problem
where the position of the packed items impacts the profits and there are
precedence constraints among the items in addition to the standard
capacity constraint. We denote this problem as the Position Dependent
Knapsack Problem (PDKP). A crucial observation is that, in each problem
PPi, we have an implicit capacity constraint because two flights cannot
overlap on a belt and the flights must be scheduled within the specified
time horizon. Since we assume that flights (items) in Ni are sorted by
increasing requested start times, we design a recursion that implicitly
satisfies the non-overlap requirement and iteratively processes flights
according to the specified order to satisfy the precedence constraints.
This means that we only have to choose flights and their duration,
considering the flights in Ni, up to (capacity) tmax. This leads to an
effective dynamic programming algorithm to solve the PPi related to a
belt i.

In the Dynamic Program (DP), let f(t, j) be the maximum profit we
can obtain by considering only the first j flights in Ni and a time horizon
of t. For each j = 1,…, |Ni| we indicate by [j] the associated flight in set N.

As initial conditions, we set f(0, j) = 0 for j = 1,…, |Ni| and f(t,0) = 0
for t = 0,…, tmax. We also assume f(t, j) = − ∞ if t < 0 or j < 0. We then
have the following recursion within two nested for-loops:

∀j= 1,…, |Ni|, ∀t = 1,…, tmax :

f (t, j)=max

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

f (t, j − 1),
f (t − 1, j),

max
w∈Wi[j] , t[j]req≤t− w

{
f (t − w, j − 1) +

(
pi[j](t− w)w − y[j]

)}

⎫
⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎭

(17)

The term f(t, j − 1) in the recursion represents the case where flight j
is not selected. The inner maximization expression considers the selec-
tion of flight j with different durations on belt i and finish time t. Clearly,
the relevant cases here are only the ones with a start time (t − w) larger
than (or equal to) the requested start time t[j]req. The term f(t − 1, j) in-
dicates a possible update from the subproblem with the first j flights and
the immediately preceding time (t − 1). Notice that this term is needed
to guarantee the correctness of the recursion for any arbitrary distri-
bution of the profits, as a-priori we do not know if the schedule of flight j
should finish in time t in an optimal solution of subproblem f(t, j).

The time complexity of the recursion for any pricing problem is
O(nwmaxtmax). The space complexity of the recursion is O(ntmax). Notice
that we have wmax≪tmax in realistic BBAP instances (see Section 4). The
time complexity of PPi is linear in the input size Θ(nwmaxtmax) if the
parameters are given explicitly, but pseudo-polynomial if the parame-
ters can be calculated ad-hoc.

The optimal solution value is given by f(tmax, |Ni|). Correspondingly,
the maximum reduced cost in problem PPi is equal to f(tmax, |Ni|) − ui.
Without going into details, we point out that an optimal schedule of a
given pricing problem, i.e. a new column for the RMP, can be recovered
from the DP entries by implementing an appropriate backtracking pro-
cedure and using auxiliary data structures (without increasing the space
and time complexities).

3.4. Branching strategy

In our B&P approach we adopt a branching strategy where at most m
children are created from a father node by assigning a flight to each
compatible belt. We branch on the flight that appears more times in the
fractional columns of an optimal solution of the RMP in the father node.
Clearly, if no fractional columns exist, the father node can be pruned.

Else, each child node inherits all the columns of the father node that
are not forbidden by the branching decisions. Correspondingly, the RMP
is solved by taking into account the previous branching operations in the
pricing problems. More precisely, when we solve the pricing problem for
a given belt, we artificially increase all profits of the flights that must be
assigned to the belt, namely we add a sufficiently large value to the
profits of the flights to ensure their selection by the dynamic program
depicted in Section 3.3. Notice that if the time horizon is not large
enough to process all flights assigned to the belt, we can prune the node
by infeasibility. Likewise, in the pricing problem of a belt we do not
consider the flights that must be assigned to other belts. Finally, we
adopt a Best First Search strategy in the exploration of the B&P tree,
namely we first select the node with the largest UB.

4. Computational experiments

We tested the B&P algorithm on a set of real-life data from Copen-
hagen airport as well as on a set of randomly generated instances
inspired by the real data. We compared the proposed approach with the
commercial solver CPLEX 12.9 launched on the ILP formulation of the
problem. We first provide a description of the features of the instances
and then discuss the performance of our approach.

D. Pisinger and R. Scatamacchia

EURO Journal on Transportation and Logistics 10 (2021) 100041

5

4.1. Instances and experimental settings

We first consider real data from Copenhagen airport on five repre-
sentative days. In order to simulate the rolling horizon, for each day, we
considered time slots of 2 h (00:00–02:00, 02:00–04:00,…,
22:00–24:00). The corresponding instances have tmax = 120 minutes.
The number of flights per time slot was 22 on average with up to 44 in
the peak hours. Copenhagen airport normally has 7 belts but at the
considered days 2 belts were closed due to infrastructure changes,
leaving only 5 belts open. All flights could be assigned to 5 claim belts (i.
e., Ni = N for each belt i). The belts had the same productivity πi
(unloading speed) of 10 bags per minute. Besides, the unloading speed of
the last belt could be doubled for flights with 100 bags or more, since it
has two unloading stations. We derived the requested delivery time tj

req

for each flight j by considering the arrival time of the flight and the time
needed for passengers to get to the baggage claim area. For each belt i
and flight j, we considered a nominal duration (in minutes) equal to the
ratio, rounded up to the nearest integer value, between the number of
bags and the productivity of the belt, i.e., w′

ij =
⌈
bj /πi

⌉
. According to

the value of w′
ij, we defined a set of durations Wij with five duration

values (including w′
ij) and at most two positive duration values smaller

than w′
ij (so there are at least two durations larger than w′

ij to represent
buffer times). Two consecutive durations have a difference of 2 min.
Profits pijtw were generated taking into account both start time t and
duration w. Due to lack of information, we did not consider in the profits
possible preferences of air companies for specific belts. More precisely,
each profit pijtw is set to the rounded value (to the nearest integer) of the
following weighted sum

αf (w) + (1 − α)g(t),

with 0 < α < 1, f(w) = β1
e(w− w′

ij)

1+e(w− w′ ij)
, g(t) = β2

tmax − t
tmax − tjreq

. The sigmoid function

f(w) is used to model decreasing durations and increasing buffer times.
Function g(t) contributes to decreasing profits with the increase of start
time t: Starting from a value of β2 for t = tj

req, the profits are linearly
decreased towards 0 as the value of t gets closer to tmax. In our tests, we
consider parameters β1 = 500, β2 = 500, α = 0.5 and α = 0.8 to induce
more robust solutions by increasing the contributions of buffer times in
the objective function. We considered a total number of 78 instances
related to the data from Copenhagen airport.

To get a larger test-bed, we also generated further instances inspired
by the real-life data from Copenhagen airport. We considered instances
with different number of flights/belts, i.e., n = 30/m = 5 and n =

50/m = 10 and with tmax = 120 minutes. We focused on instances
where each belt can schedule each flight as these instances are expected
to be more difficult to solve. For each belt i, we generated its produc-
tivity πi (baggage per minute) uniformly random in [10, 20]. We gener-
ated for each flight j a number of bags bj uniformly random in [50,300]

and a requested start time tj
req uniformly random in

[
0, tmax

2

]
and in

[

0,

3tmax
4

]

to evaluate different congestion scenarios of the baggage claim

area. Nominal durations w′
ij, sets Wij and profits pijtw were generated as

described above. For each category (identified by the values of n, m, α
and the way of generating times tj

req), we generated 10 instances for a
total number of 80 instances.

All computational tests were performed on an Intel i5 CPU at 3.0 GHz
with 16 GB of RAM. We implemented our B&P scheme in C++ pro-
gramming language. The Restricted Master Problem in the B&P was
solved by CPLEX 12.9 with a relative gap set to 0 and the barrier
(interior point) algorithm. We benchmarked the performances of our
B&P algorithm on the considered instances against the performances of
CPLEX 12.9 launched on model BBAPILP. In the performance comparison
the parameters of the solver were set to their default values. We

considered a time limit of 300 s for both CPLEX 12.9 and the B&P al-
gorithm. The choice of the time limit was related to the use of the pro-
posed approach in daily operations, which usually require the
computation of schedules in short running times.

4.2. Results

We report the computational results for the instances from Copen-
hagen airport in Table 1. In the considered operational days, there were
time slots, such as the late night slots, with very few flights. Since the
corresponding instances were trivial to solve, we present only the results
for the instances with at least 20 flights landed at the airport in the
associated time slot. In Table 1, we report, for each day, the minimum
and maximum number of flights n in a time slot, the number of belts m,
the value of α considered for profit generation. Each day has 8 instances
but the third day for which 7 instances were considered. The table re-
ports the performance of CPLEX 12.9 launched on model BBAPILP in
terms of average computational time (column time), average percentage

gap
(

UB’
LB’ − 1

)

⋅100 between the best upper bound obtained (UB’) and the

best solution computed (LB’) within the time limit (column gap (%)), the
number of instances solved to optimality within the time limit (column
opt). For the B&P algorithm, the table also reports the average number
of nodes explored in the search tree (column # nodes). The average
values consider also the instances where the solution methods reach the
time limit.

Our B&P algorithm managed to solve to optimality 74 out of 78 in-
stances with limited computational times. Notice that the percentage
gaps were very small in the instances where the time limit was reached.
The number of explored nodes along the branch operations was also
reasonably limited. The proposed approach outperformed the solver
CPLEX 12.9 that solved to optimality 48 instances. The solver had
smaller computational times only in the instances of day 1.

The same trend on the performance emerged in the results reported
in Table 2 for the randomly generated instances. The table has the same
entries as those of Table 1 except for the first column. In this column, we
report the range of values of the requested times tj

req.
The generated instances turned out to be more challenging to solve.

This could reasonably be due to more narrow distributions of the de-
livery requested times and to the presence of belts with different pro-
ductivity. Our B&P algorithm solved to optimality 56 out of 80
instances. Still, the percentage gaps were significantly small and the
approach strongly outperformed CPLEX 12.9. The solver was capable of
solving to optimality 3 instances only. We also remark that our approach
always provided better feasible solutions and upper bounds than CPLEX
12.9 in all instances where the time limit was reached.

Finally, we notice that the proposed B&P algorithm on average,
spent about 90% of the overall computational time in each tested
instance for solving the restricted master problems. This highlights the
effectiveness of the dynamic programming algorithm in solving the
pricing problems. Besides, the number of columns generated in the root
node of the search tree was large enough (about 1068 on average) to
allow a quick computation of feasible solutions either in the root node or
during the exploration of the subsequent nodes.

5. Conclusions

We have presented a B&P scheme for an optimal assignment of
flights to baggage belts in the baggage reclaim area. The assignment
ensures that for each belt, only one flight is serviced at each time. The
approach takes care of a number of business and fairness constraints,
avoiding congestion, and ensuring a good passenger flow. Robustness of
the solutions is achieved by matching the delivery time with the ex-
pected arrival time of passengers, and by adding buffer time between
two flights on the same belt. Computational experiments, based on real

D. Pisinger and R. Scatamacchia

EURO Journal on Transportation and Logistics 10 (2021) 100041

6

data from Copenhagen airport and on randomly generated instances,
show that the proposed algorithm is effective in delivering high quality
solutions in limited computational times, making it possible to use the
solution approach in daily operations in medium-sized and large air-
ports. In future research, it would be interesting to extend the proposed
algorithm to similar real-life applications and to further investigate the
Position Dependent Knapsack Problem from both a theoretical and
practical point of view.

Acknowledgements

The authors would like to thank Copenhagen Airport for having
provided data and insightful comments for this project.

References

Barth, T., 2013a. Optimal Assignment of Incoming Flights to Baggage Carousels at
Airports. DTU Management Engineering. Technical Report Report 5.

Barth, T., 2013b. Optimization Of Baggage Handling at Airports. PhD Thesis. Department of
Management Engineering, Technical University of Denmark (DTU).

Barth, T., Böckmann, F., 2012. Baggage carousel assignment at airports: Model and case
study. In: International Conference for Airport Operations Management in Munich,
pp. 27–30.

Barth, T.C., Pisinger, D., 2021. Baggage carousel assignment at airports: Model and case
study. SN Operations Research Forum 2.

Borille, G.M.R., Correia, A.R., 2013a. Determining factors in airport baggage claim level
of service. Int. J. Aviat. Manag. 2, 66–79.

Borille, G.M.R., Correia, A.R., 2013b. A method for evaluating the level of service arrival
components at airports. Air Transport Management 27, 5–10.

Delonge, F., 2012. Balancing load distribution on baggage belts at airports. In:
Operations Research Proceedings, International Annual Conference of the German
Operations Research Society in Hannover. Springer, pp. 499–505.

Desaulniers, G., Desrosiers, J., Solomon, M.M., 2005. Column Generation. Springer US.
Frey, M., 2015. Models and Methods for Optimizing Baggage Handling at Airports. PhD

thesis. TUM-Bibliothek.
Frey, M., Kiermaier, F., Kolisch, R., 2017. Optimizing inbound baggage handling at

airports. Transport. Sci. 51, 1210–1225.
Kellerer, H., Pferschy, U., Pisinger, D., 2004. Knapsack Problems. Springer.
Martello, S., Toth, P., 1990. Knapsack Problems: Algorithms and Computer

Implementations. Wiley.
Pisinger, D., Rude, S. í H., 2020. Advanced algorithms for improved baggage handling. J.

Airpt. Manag. 14.

Table 1
Results for real-life BBAP instances from Copenhagen airport.

CPLEX 12.9 B&P

day n m α time gap (%) # opt time gap (%) # opt # nodes

1 [20,35] 5 0.5 5.83 0.00 8/8 12.35 0.00 8/8 381.00
0.8 6.24 0.00 8/8 11.30 0.00 8/8 361.00

2 [20,43] 5 0.5 46.32 0.02 7/8 16.63 0.00 8/8 401.00
0.8 49.79 0.04 7/8 13.97 0.00 8/8 320.38

3 [25,41] 5 0.5 173.48 1.66 3/7 50.65 0.02 6/7 547.14
0.8 176.18 1.51 3/7 48.70 0.00 6/7 396.71

4 [23,41] 5 0.5 226.08 1.25 2/8 3.55 0.00 8/8 67.25
0.8 226.08 1.10 2/8 55.88 0.03 7/8 1018.50

5 [22,44] 5 0.5 152.24 0.78 4/8 7.18 0.00 8/8 84.75
0.8 152.32 0.74 4/8 40.30 0.00 7/8 272.88

Table 2
Results for randomly generated BBAP instances.

CPLEX 12.9 B&P

treq ∈ n m α time gap (%) # opt time gap (%) # opt # nodes
[

0,
1
2
tmax

]
30 5 0.5 300.00 10.74 0/10 100.74 0.00 9/10 1347.00

0.8 300.00 4.70 0/10 120.91 0.01 7/10 1531.90
[

0,
3
4
tmax

]
30 5 0.5 300.00 4.16 0/10 116.71 0.03 7/10 1456.00

0.8 300.00 1.79 0/10 77.82 0.00 8/10 996.80
[

0,
1
2
tmax

]
50 10 0.5 300.00 7.62 0/10 187.85 0.01 5/10 1463.30

0.8 300.00 4.77 0/10 230.31 0.00 4/10 1901.00
[

0,
3
4
tmax

]
50 10 0.5 285.72 1.34 1/10 100.86 0.00 7/10 1106.50

0.8 257.42 0.67 2/10 63.98 0.00 9/10 666.60

D. Pisinger and R. Scatamacchia

http://refhub.elsevier.com/S2192-4376(21)00013-3/sref1
http://refhub.elsevier.com/S2192-4376(21)00013-3/sref1
http://refhub.elsevier.com/S2192-4376(21)00013-3/sref2
http://refhub.elsevier.com/S2192-4376(21)00013-3/sref2
http://refhub.elsevier.com/S2192-4376(21)00013-3/sref3
http://refhub.elsevier.com/S2192-4376(21)00013-3/sref3
http://refhub.elsevier.com/S2192-4376(21)00013-3/sref3
http://refhub.elsevier.com/S2192-4376(21)00013-3/sref4
http://refhub.elsevier.com/S2192-4376(21)00013-3/sref4
http://refhub.elsevier.com/S2192-4376(21)00013-3/sref5
http://refhub.elsevier.com/S2192-4376(21)00013-3/sref5
http://refhub.elsevier.com/S2192-4376(21)00013-3/sref6
http://refhub.elsevier.com/S2192-4376(21)00013-3/sref6
http://refhub.elsevier.com/S2192-4376(21)00013-3/sref7
http://refhub.elsevier.com/S2192-4376(21)00013-3/sref7
http://refhub.elsevier.com/S2192-4376(21)00013-3/sref7
http://refhub.elsevier.com/S2192-4376(21)00013-3/sref8
http://refhub.elsevier.com/S2192-4376(21)00013-3/sref9
http://refhub.elsevier.com/S2192-4376(21)00013-3/sref9
http://refhub.elsevier.com/S2192-4376(21)00013-3/sref10
http://refhub.elsevier.com/S2192-4376(21)00013-3/sref10
http://refhub.elsevier.com/S2192-4376(21)00013-3/sref11
http://refhub.elsevier.com/S2192-4376(21)00013-3/sref12
http://refhub.elsevier.com/S2192-4376(21)00013-3/sref12
http://refhub.elsevier.com/S2192-4376(21)00013-3/sref13
http://refhub.elsevier.com/S2192-4376(21)00013-3/sref13

	The Baggage Belt Assignment Problem
	1 Introduction
	2 Notation and formal problem definition
	3 A Branch-and-price approach
	3.1 ILP formulation with fewer constraints, but an exponential number of variables
	3.2 Master problem
	3.3 Pricing problem
	3.4 Branching strategy

	4 Computational experiments
	4.1 Instances and experimental settings
	4.2 Results

	5 Conclusions
	Acknowledgements
	References

