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A B S T R A C T   

We consider the problem of assigning flights to baggage belts in the baggage reclaim area of an airport. The 
problem is originated by a real-life application in Copenhagen airport. The objective is to construct a robust 
schedule taking passenger and airline preferences into account. We consider a number of business and fairness 
constraints, avoiding congestion, and ensuring a good passenger flow. Robustness of the solutions is achieved by 
matching the delivery time with the expected arrival time of passengers, and by adding sufficient buffer time 
between two flights scheduled on the same belt. We denote this problem as the Baggage Belt Assignment Problem 
(BBAP). We first derive a general Integer Linear Programming (ILP) formulation for the problem. Then, we 
propose a Branch-and-Price (B&P) algorithm based on a reformulation of the ILP model tackled by Column 
Generation. Our approach relies on an effective dynamic programming algorithm for handling the pricing 
problems. We tested the proposed algorithm on a set of real-life data from Copenhagen airport as well as on a set 
of instances inspired by the real data. Our B&P scheme outperforms a commercial solver launched on the ILP 
formulation of the problem and is effective in delivering high quality solutions in limited computational times, 
making it possible to use the solution approach in daily operations in medium-sized and large airports.   

1. Introduction 

We consider the problem of assigning flights to a fixed set of baggage 
belts (carousels) for arriving luggage in an airport. The objective is to 
construct a robust schedule taking passenger and airline preferences into 
account. We denote this problem as the Baggage Belt Assignment 
Problem (BBAP). This work is motivated by a real-life application in 
Copenhagen airport and may as well find application in daily operations 
of other airports. We focus on the following aspects in the delivery 
process of bags to passengers. Depending on the arrival gate of an 
airplane, the passengers may have a quite long walking distance to the 
baggage claim area. If the passengers, furthermore, have to go through 
passport control, it can take up to 1 h before the passengers can pick up 
their luggage. If the bags are delivered to the baggage belts before the 
passengers arrive, it can cause serious congestion problems, since the 
belts are filled to the limit and cannot accept further bags. In the light of 
this, we will consider solutions where the bags are not delivered before 
the arrival of the passengers at the baggage claim area. On the other 
hand, if the passengers arrive much earlier to the baggage claim area 
than their luggage, then it will lead to dissatisfied passengers, and 
overcrowded waiting areas. Hence, we assume that every flight has a 

preferred time for starting the delivery of bags at the baggage claim area. 
This requested time coincides with the arrival of the passengers at the 
baggage area. If the bags are delivered later than the requested start 
time, it will be penalized in the objective function. Also, there may be a 
maximum start time of the delivery, to ensure an upper limit on when 
bags must be delivered to the passengers. For obvious reasons, every 
flight has a minimum start time for the delivery of the bags. The delivery 
cannot be scheduled before the arrival time to the gate (time on block, 
TOB) plus the minimum unloading time and driving time. In our study, 
we reasonably assume that this delivery time is always smaller than the 
arrival time of passengers at the belts. 

For each flight, we have an expected number of bags. This number 
can either be reported by the airline, or it can be forecasted from historic 
information for the same route. Based on the expected number of bags, 
we can calculate the expected unloading time of the bags to the baggage 
belts. This time can be shortened, but it will be strongly penalized in the 
objective, since it means in practice that two flights will be unloading 
bags to the same baggage belt at the same time. 

Due to an inherent uncertainty in the walking times of the passen-
gers, number of bags to deliver, and productivity of unloading, a robust 
plan should assign some buffer time between the delivery of bags of two 
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flights to the same belt. The buffer time is rewarded in the objective 
function in such a way that the first minutes of buffer time get a large 
reward, while following minutes of buffer time get a smaller and smaller 
reward. It is assumed that after a given upper limit on the buffer time, 
the solution does not become more robust by adding additional buffer 
time. 

Some flights may be incompatible with a given belt. For instance, 
large flights cannot be assigned to small belts or flights arriving from 
non-Schengen countries must be assigned to specific belts. For every 
flight we may have preferences to the chosen baggage belts. Airline 
companies may prefer to use baggage belts close to their customer ser-
vice, so passengers easily can solve questions related to damaged/ 
missing bags. Furthermore, if the baggage claim area has several en-
trances, it will be preferred to use baggage belts close to the entrance 
where the passengers will come from. 

Finally, we may assume that the schedule should be fair in the sense 
that if a flight j has a requested time for delivery smaller than the time of 
another flight j′ , and both flights are scheduled on the same belt, then 
flight j must be scheduled before flight j′ . If two flights are scheduled to 
different belts, then no constraint is imposed on the ordering, since 
waiting passengers are not standing at the same belt, and hence do not 
block for each other. 

The problem is dynamic in nature, since arrival times of flights may 
change due to weather, delays, or technical issues. Therefore, the 
problem is solved using a rolling horizon with segments of about 2 h. 
Once a plane is on block (i.e. after TOB), the assignment cannot be 
changed, but all other assignments can be continuously amended to 
account for new information about forecasted arrival times, and ex-
pected number of bags. The assignment problem is typically solved 
several times per hour, hence fast solution times below, say, 5 min are 
needed. 

For an excellent overview of baggage handling at airports we refer to 
the comprehensive theses by Barth (2013b) and Frey (2015). Different 
variants of the Baggage Belt Assignment Problem have been studied in 
the literature. Barth (2013a) and Barth and Böckmann (2012) study the 
assignment of incoming flights to baggage belts. They model the prob-
lem as an extended assignment problem and present a detailed verifi-
cation study as well as some sensitivity analysis. Delonge (2012) 
presents a model for local and global load balancing of baggage belts. 
Frey, Kiermaier and Kolisch (Frey et al., 2017) consider inbound 
baggage handling at airports, and present a hybrid heuristic combining a 
greedy randomized adaptive search procedure (GRASP) with a guided 
fast local search (GLS) and path-relinking. Barth and Pisinger (2021) 
formulate a variant of the Baggage Belt Assignment Problem as an 
extended assignment problem, and solve it as a MIP problem. The 
objective is to balance customer satisfaction with operational needs. 
Computational results are reported for real-life instances from Frankfurt 
Airport. Pisinger and Rude (2020) report results for a variant of the 
Baggage Belt Assignment Problem that minimizes overlap of 
aircraft-to-belt assignments, and passenger cross-flow. A simulation 
analysis presented in Borille and Correia, 2013a, 2013b investigates 
how different factors impact the service level of arriving passengers. 

However, none of the above papers try to match arrival times of bags 
to the arrival times of passengers in order to avoid congestion and ensure 
a good passenger flow. Furthermore, nearly all algorithms solve the 
problem heuristically, and hence optimality cannot be guaranteed. 

For the problem we consider in this study, we first present a general 
Integer Linear Programming (ILP) formulation. Next, we propose a 
reformulation of the ILP model of the problem and propose a Branch- 
and-Price (B&P) algorithm using Column Generation (CG) to derive 
bounds in each node. Our approach relies on an effective dynamic 
programming algorithm for handling the pricing problems. We tested 
our solution methods on a set of real-life data from Copenhagen airport 
as well as on a set of synthetic instances inspired by the real data. Our 
B&P scheme appears to strongly outperform the commercial solver 

CPLEX 12.9 launched on the ILP model, and we show that the solution 
approach is fast enough to be used in a dynamic environment of an 
airport, improving the daily operational processes. 

The main contribution of this paper is threefold: We present a new 
formulation of the Baggage Belt Assignment Problem that aims at 
matching the arrival time of bags with the expected arrival time of 
passengers. We develop an exact algorithm for solving the problem 
based on Branch-and-Price. Finally, we show that the pricing problem 
can be solved efficiently using dynamic programming. 

The paper is organized as follows. In Section 2, we formally intro-
duce the BBAP and a related ILP formulation. We outline the proposed 
Branch-and-Price scheme in Section 3 and discuss the computational 
experiments in Section 4. Section 5 draws some conclusions. 

2. Notation and formal problem definition 

In BBAP, let there be given a set N = {1,…, n} of flights, a set M =

{1,…,m} of baggage belts and a set of time steps T = {0,…,(tmax − 1)}, 
where tmax is the time horizon. All flights have to be scheduled within 
the time horizon, i.e., for each flight, the start time of the delivery of the 
bags plus the corresponding duration on a belt must not exceed tmax. 
Each belt i ∈ M has associated a set of compatible flights Ni and a pro-
ductivity πi (e.g., bags per minute) for the unloading operations of the 
bags. For every flight j ∈ N, let bj denote the number of bags and let tjreq 

denote the requested delivery start time corresponding to the arrival of 
passengers at the baggage area. Thus, for each flight j we have a set of 
possible start times Tj = {tj

req,(tjreq + 1),…,(tmax − 1)}. For every belt i ∈
M and flight j ∈ Ni we have a set of possible unloading durations Wij. Set 
Wij includes a nominal duration w′

ij = bj/πi and other durations that 
may reflect a minimum allowed unloading time, and a maximum time 
including buffer time. Since the productivity of each belt may differ, the 
unloading time may be faster at some belts than others. Therefore, the 
set of possible durations Wij depends on the belt i. Let pijtw be the profit 
that can be obtained by assigning flight j ∈ Ni to belt i with start time t 
and duration w. The profit is a sum of scores reflecting:  

• Capacity: A score is assigned depending on whether the capacity of 
belt i is sufficient for flight j.  

• Preferences: A score is obtained if belt j is located close to the entry 
gate, or close to the help desk of the handling agent.  

• Start time: The closer the scheduled belt time is to the expected 
arrival of passengers, the higher score.  

• Duration: A score is given if sufficient time w is scheduled for 
unloading. 

Buffer time, and hence implicitly robustness, is modeled by 
increasing the profits for longer durations w. If a flight has a nominal 
duration w′ , then we increase the profit of all durations w > w′ . Simi-
larly, we penalize durations w < w′ to reflect that this may mean that 
baggage from two different flights will be unloaded at the same time to 
the same belt. We also penalize situations where the delivery of the bags 
of a flight j starts after the requested start time tj

req. In these cases, lower 
profits reflect the presence of disappointed passengers and overcrowded 
waiting areas. 

Finally, to ensure a fair schedule, we have a set of precedences to 
consider, namely we must ensure that each belt processes flights in 
increasing order of the requested start times tjreq (j = 1,…,n). From now 
on, we assume this ordering of the flights. In order to derive an ILP 
formulation for the BBAP, we introduce binary variables xijtw equal to 
one if and only if flight j is assigned to belt i with start time t and duration 
w. Clearly, the relevant variables xijtw are the ones with t + w ≤ tmax and 
j ∈ Ni. The problem can be formulated as the following ILP model, 
denoted as BBAPILP. 
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BBAPILP :

max
∑

i∈M

∑

j∈Ni

∑

t∈Tj

∑

w∈Wij :

t+w≤tmax

pijtwxijtw (1)  

s.t.
∑

i∈M

∑

t∈Tj

∑

w∈Wij :

t+w≤tmax

xijtw = 1, j ∈ N (2)  

∑

t∈Tj

∑

w∈Wij :

t+w≤tmax

(t+w) ⋅ xijtw ≤
∑

t∈T
j′

∑

w∈Wij :

t+w≤tmax

t⋅xij′ tw  

+tmax

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

2 −
∑

t∈Tj

∑

w∈Wij :

t+w≤tmax

xijtw −
∑

t∈T
j′

∑

w∈W
ij′
:

t+w≤tmax

xij′ tw

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

,

i∈M, j, j′ ∈ Ni (j< j
′

) (3)  

xijtw ∈{0, 1}, i∈M, j∈Ni, t∈ Tj,w∈Wij : t+w ≤ tmax (4) 

The objective (1) maximizes the profits of the assignments. The first 
constraints (2) ensure that every flight j is assigned to exactly one belt 
with a certain duration and start time. Constraints (3) ensure that if two 
flights j, j′ are both assigned to belt i (i.e. 

∑

t∈Tj

∑

w∈Wij

xijtw =
∑

t∈T
j′

∑

w∈W
ij′

xij′ tw =

1), they will not overlap on the belt and will fulfill the precedence 
constraints. Otherwise, the constraints are inactive. Finally, constraints 
(4) define the domain of the decision variables. 

Using the fact that 
⃒
⃒Wij

⃒
⃒ ≤ |T| we can estimate the size of the model. 

The formulation contains O(

⃒
⃒
⃒M

⃒
⃒
⃒

⃒
⃒
⃒N|

2
) constraints, and O(

⃒
⃒
⃒M

⃒
⃒
⃒

⃒
⃒
⃒N

⃒
⃒
⃒

⃒
⃒
⃒T|2)

variables. 
It is easy to see that the BBAP is strongly NP-hard by a reduction from 

the bin-packing problem. In the bin-packing problem, we are given a set 
of items to be packed in bins. Each item has a weight and all bins have 
the same capacity. The goal is to find the minimum number of bins that 
permits the packing of all items. Consider the decision version of the 
problem that asks whether all items can be packed by using at most K 
bins. Given an instance of the bin-packing problem, we can construct an 
instance of the BBAP by associating items with flights and bins with K 
identical belts. Each belt can process each flight with one possible 
duration that reflects the weight of the corresponding item. The reduc-
tion is completed by setting tmax equal to the capacity of the bins, 
identical and time invariant profits for all the flights and request start 
times equal to zero. Solving the BBAP instance and checking if it admits 
a feasible solution allows us to decide the corresponding instance of the 
bin-packing problem. 

3. A Branch-and-price approach 

We propose a B&P approach to effectively tackle the BBAP. The 
approach is based on a reformulation of model BBAPILP in which Column 
Generation is used to solve the LP relaxation. The ingredients of the 
algorithm and related CG framework are described in the following 
sections. For an excellent introduction to Column Generation see, e.g., 
(Desaulniers et al., 2005). 

3.1. ILP formulation with fewer constraints, but an exponential number of 
variables 

We derive an alternative ILP formulation with an exponential num-

ber of variables. Assume that for each belt i we have a set S i of all 
feasible schedules of the flights. For every schedule s ∈ S i, let qsi denote 
the profit of the schedule, and let the binary parameter asij be one if 
schedule s for belt i covers flight j. We introduce binary variables xsi 
equal to one if schedule s is used for belt i. We obtain the following 
formulation, denoted as BBAPexp. 

BBAPexp :

max
∑

i∈M

∑

s∈S i

qsixsi (5)  

s.t.
∑

i∈M

∑

s∈S i

asijxsi = 1 j ∈ N (6)  

∑

s∈S i

xsi ≤ 1 i ∈ M (7)  

xsi ∈{0, 1} i∈M, s ∈ S i (8) 

The objective (5) maximizes the profits of the selected schedules. 
Constraints (6) ensure that every flight j is assigned to exactly one belt. 
The next constraints (7) ensure that at most one schedule will be selected 
for each belt i. Finally, constraints (8) define the binary domain of the 
variables. 

3.2. Master problem 

Since model BBAPexp may contain an exponential number of sched-
ules in sets S i, it may be intractable to solve. Therefore, we replace the 
integrality constraints (8) with non-negativity constraints on variables 
xsi and solve the LP-relaxed problem for a subset R i⫅S i of the schedules 
for each belt i. We obtain the following Restricted Master Problem 
(RMP) from model BBAPexp. 

RMP :

max
∑

i∈M

∑

s∈R i

qsixsi (9)  

s.t.
∑

i∈M

∑

s∈R i

asijxsi = 1 j ∈ N (10)  

∑

s∈R i

xsi ≤ 1 i ∈ M (11)  

xsi ≥ 0 i ∈ M, s ∈ R i (12) 

In our algorithmic implementations, we initialize the RMP with a 
dummy schedule for each belt in order to guarantee the feasibility of the 
RMP in any node of the B&P tree. Each dummy schedule processes all 
flights and has a profit equal to − ∞ (i.e., an arbitrarily negative value). 

3.3. Pricing problem 

Let yj (j ∈ N) denote the dual variables corresponding to constraints 
(10), and let ui (i ∈ M) denote the dual variables corresponding to con-
straints (11). For each belt i ∈ M, we consider the following Pricing 
Problem PPi with binary variables x′

jtw representing the assignment of 
flight j to belt i with duration w and start time t. 

PPi :

max
∑

j∈Ni

∑

t∈Tj

∑

w∈Wij :

t+w≤tmax

(
pijtw − yj

)
x′ jtw − ui (13)  
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s.t.
∑

t∈Tj

∑

w∈Wij :

t+w≤tmax

x′ jtw ≤ 1, j ∈ Ni (14)  

∑

t∈Tj

∑

w∈Wij :

t+w≤tmax

(t+w) ⋅ x′ jtw ≤
∑

t∈T
j′

∑

w∈W
ij′
:

t+w≤tmax

t⋅x′ j′ tw  

+tmax

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

2 −
∑

t∈Tj

∑

w∈Wij :

t+w≤tmax

x′ jtw −
∑

t∈T
j′

∑

w∈W
ij′
:

t+w≤tmax

x′ j′ tw

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

,

j, j′ ∈ Ni (j< j
′

) (15)  

x′ jtw ∈{0, 1}, j∈Ni, t∈ Tj,w∈Wij : t+w ≤ tmax (16) 

The objective (13) maximizes the reduced cost of the schedule of 
flights to be determined. Notice that ui is a fixed contribution in the 
objective function and can be ignored in the computation of an optimal 
solution to PPi. Constraints (14) state that each flight j ∈ Ni could be 
assigned to belt i. Constraints (15), in combination with constraints (14), 
ensure that two flights j, j′ ∈ Ni do not overlap if they are processed on 
belt i (as constraints (3)). Also, these constraints ensure the precedence 
constraints. 

It is easy to see that PPi contains the 0–1 Knapsack Problem (see 
monographs (Kellerer et al., 2004), (Martello and Toth, 1990)) as special 
case, using the same arguments as for BBAP. The input size of PPi is 
Θ(nwmaxtmax) if the parameters are given explicitly, where wmax denotes 
the maximum size of an interval Wij. If instead the parameters can be 
calculated ad-hoc when needed, the order of magnitude of the number of 
parameters is Θ(log2wmaxtmax) for each flight, thus reducing the input 
size to only Θ(n log2wmax + n log2tmax). 

At each node of the Branch-and-Price tree, we solve the RMP and 
obtain the corresponding values of dual variables yj, ui. Then, we solve 
to optimality the pricing problems PPi for every belt i ∈ M. If a schedule 
for belt i with positive reduced cost is found, the schedule is added to set 
R i. Then, we solve the RMP again and the CG process is repeated until 
no schedules with positive reduced costs can be determined. An optimal 
solution of the RMP provides an Upper Bound (UB) on the BBAP. Also, 
we keep track of integer solutions of the RMP along the CG iterations to 
possibly update the current Lower Bound (LB), namely the best feasible 
solution computed so far. 

Clearly, the pricing problems should be solved effectively to speed up 
the convergence of the iterative process. Here, we notice that each 
pricing problem PPi can be seen as a variant of the Knapsack Problem 
where the position of the packed items impacts the profits and there are 
precedence constraints among the items in addition to the standard 
capacity constraint. We denote this problem as the Position Dependent 
Knapsack Problem (PDKP). A crucial observation is that, in each problem 
PPi, we have an implicit capacity constraint because two flights cannot 
overlap on a belt and the flights must be scheduled within the specified 
time horizon. Since we assume that flights (items) in Ni are sorted by 
increasing requested start times, we design a recursion that implicitly 
satisfies the non-overlap requirement and iteratively processes flights 
according to the specified order to satisfy the precedence constraints. 
This means that we only have to choose flights and their duration, 
considering the flights in Ni, up to (capacity) tmax. This leads to an 
effective dynamic programming algorithm to solve the PPi related to a 
belt i. 

In the Dynamic Program (DP), let f(t, j) be the maximum profit we 
can obtain by considering only the first j flights in Ni and a time horizon 
of t. For each j = 1,…, |Ni| we indicate by [j] the associated flight in set N. 

As initial conditions, we set f(0, j) = 0 for j = 1,…, |Ni| and f(t,0) = 0 
for t = 0,…, tmax. We also assume f(t, j) = − ∞ if t < 0 or j < 0. We then 
have the following recursion within two nested for-loops: 

∀j= 1,…, |Ni|, ∀t = 1,…, tmax :

f (t, j)=max

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

f (t, j − 1),
f (t − 1, j),

max
w∈Wi[j] , t[j]req≤t− w

{
f (t − w, j − 1) +

(
pi[j](t− w)w − y[j]

)}

⎫
⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎭

(17) 

The term f(t, j − 1) in the recursion represents the case where flight j 
is not selected. The inner maximization expression considers the selec-
tion of flight j with different durations on belt i and finish time t. Clearly, 
the relevant cases here are only the ones with a start time (t − w) larger 
than (or equal to) the requested start time t[j]req. The term f(t − 1, j) in-
dicates a possible update from the subproblem with the first j flights and 
the immediately preceding time (t − 1). Notice that this term is needed 
to guarantee the correctness of the recursion for any arbitrary distri-
bution of the profits, as a-priori we do not know if the schedule of flight j 
should finish in time t in an optimal solution of subproblem f(t, j). 

The time complexity of the recursion for any pricing problem is 
O(nwmaxtmax). The space complexity of the recursion is O(ntmax). Notice 
that we have wmax≪tmax in realistic BBAP instances (see Section 4). The 
time complexity of PPi is linear in the input size Θ(nwmaxtmax) if the 
parameters are given explicitly, but pseudo-polynomial if the parame-
ters can be calculated ad-hoc. 

The optimal solution value is given by f(tmax, |Ni|). Correspondingly, 
the maximum reduced cost in problem PPi is equal to f(tmax, |Ni|) − ui. 
Without going into details, we point out that an optimal schedule of a 
given pricing problem, i.e. a new column for the RMP, can be recovered 
from the DP entries by implementing an appropriate backtracking pro-
cedure and using auxiliary data structures (without increasing the space 
and time complexities). 

3.4. Branching strategy 

In our B&P approach we adopt a branching strategy where at most m 
children are created from a father node by assigning a flight to each 
compatible belt. We branch on the flight that appears more times in the 
fractional columns of an optimal solution of the RMP in the father node. 
Clearly, if no fractional columns exist, the father node can be pruned. 

Else, each child node inherits all the columns of the father node that 
are not forbidden by the branching decisions. Correspondingly, the RMP 
is solved by taking into account the previous branching operations in the 
pricing problems. More precisely, when we solve the pricing problem for 
a given belt, we artificially increase all profits of the flights that must be 
assigned to the belt, namely we add a sufficiently large value to the 
profits of the flights to ensure their selection by the dynamic program 
depicted in Section 3.3. Notice that if the time horizon is not large 
enough to process all flights assigned to the belt, we can prune the node 
by infeasibility. Likewise, in the pricing problem of a belt we do not 
consider the flights that must be assigned to other belts. Finally, we 
adopt a Best First Search strategy in the exploration of the B&P tree, 
namely we first select the node with the largest UB. 

4. Computational experiments 

We tested the B&P algorithm on a set of real-life data from Copen-
hagen airport as well as on a set of randomly generated instances 
inspired by the real data. We compared the proposed approach with the 
commercial solver CPLEX 12.9 launched on the ILP formulation of the 
problem. We first provide a description of the features of the instances 
and then discuss the performance of our approach. 
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4.1. Instances and experimental settings 

We first consider real data from Copenhagen airport on five repre-
sentative days. In order to simulate the rolling horizon, for each day, we 
considered time slots of 2 h (00:00–02:00, 02:00–04:00,…, 
22:00–24:00). The corresponding instances have tmax = 120 minutes. 
The number of flights per time slot was 22 on average with up to 44 in 
the peak hours. Copenhagen airport normally has 7 belts but at the 
considered days 2 belts were closed due to infrastructure changes, 
leaving only 5 belts open. All flights could be assigned to 5 claim belts (i. 
e., Ni = N for each belt i). The belts had the same productivity πi 
(unloading speed) of 10 bags per minute. Besides, the unloading speed of 
the last belt could be doubled for flights with 100 bags or more, since it 
has two unloading stations. We derived the requested delivery time tj

req 

for each flight j by considering the arrival time of the flight and the time 
needed for passengers to get to the baggage claim area. For each belt i 
and flight j, we considered a nominal duration (in minutes) equal to the 
ratio, rounded up to the nearest integer value, between the number of 
bags and the productivity of the belt, i.e., w′

ij =
⌈
bj /πi

⌉
. According to 

the value of w′
ij, we defined a set of durations Wij with five duration 

values (including w′
ij) and at most two positive duration values smaller 

than w′
ij (so there are at least two durations larger than w′

ij to represent 
buffer times). Two consecutive durations have a difference of 2 min. 
Profits pijtw were generated taking into account both start time t and 
duration w. Due to lack of information, we did not consider in the profits 
possible preferences of air companies for specific belts. More precisely, 
each profit pijtw is set to the rounded value (to the nearest integer) of the 
following weighted sum 

αf (w) + (1 − α)g(t),

with 0 < α < 1, f(w) = β1
e(w− w′

ij )

1+e(w− w′ ij )
, g(t) = β2

tmax − t
tmax − tjreq

. The sigmoid function 

f(w) is used to model decreasing durations and increasing buffer times. 
Function g(t) contributes to decreasing profits with the increase of start 
time t: Starting from a value of β2 for t = tj

req, the profits are linearly 
decreased towards 0 as the value of t gets closer to tmax. In our tests, we 
consider parameters β1 = 500, β2 = 500, α = 0.5 and α = 0.8 to induce 
more robust solutions by increasing the contributions of buffer times in 
the objective function. We considered a total number of 78 instances 
related to the data from Copenhagen airport. 

To get a larger test-bed, we also generated further instances inspired 
by the real-life data from Copenhagen airport. We considered instances 
with different number of flights/belts, i.e., n = 30/m = 5 and n =

50/m = 10 and with tmax = 120 minutes. We focused on instances 
where each belt can schedule each flight as these instances are expected 
to be more difficult to solve. For each belt i, we generated its produc-
tivity πi (baggage per minute) uniformly random in [10, 20]. We gener-
ated for each flight j a number of bags bj uniformly random in [50,300]

and a requested start time tj
req uniformly random in 

[
0, tmax

2

]
and in 

[

0,

3tmax
4

]

to evaluate different congestion scenarios of the baggage claim 

area. Nominal durations w′
ij, sets Wij and profits pijtw were generated as 

described above. For each category (identified by the values of n, m, α 
and the way of generating times tj

req), we generated 10 instances for a 
total number of 80 instances. 

All computational tests were performed on an Intel i5 CPU at 3.0 GHz 
with 16 GB of RAM. We implemented our B&P scheme in C++ pro-
gramming language. The Restricted Master Problem in the B&P was 
solved by CPLEX 12.9 with a relative gap set to 0 and the barrier 
(interior point) algorithm. We benchmarked the performances of our 
B&P algorithm on the considered instances against the performances of 
CPLEX 12.9 launched on model BBAPILP. In the performance comparison 
the parameters of the solver were set to their default values. We 

considered a time limit of 300 s for both CPLEX 12.9 and the B&P al-
gorithm. The choice of the time limit was related to the use of the pro-
posed approach in daily operations, which usually require the 
computation of schedules in short running times. 

4.2. Results 

We report the computational results for the instances from Copen-
hagen airport in Table 1. In the considered operational days, there were 
time slots, such as the late night slots, with very few flights. Since the 
corresponding instances were trivial to solve, we present only the results 
for the instances with at least 20 flights landed at the airport in the 
associated time slot. In Table 1, we report, for each day, the minimum 
and maximum number of flights n in a time slot, the number of belts m, 
the value of α considered for profit generation. Each day has 8 instances 
but the third day for which 7 instances were considered. The table re-
ports the performance of CPLEX 12.9 launched on model BBAPILP in 
terms of average computational time (column time), average percentage 

gap 
(

UB’
LB’ − 1

)

⋅100 between the best upper bound obtained (UB’) and the 

best solution computed (LB’) within the time limit (column gap (%)), the 
number of instances solved to optimality within the time limit (column 
# opt). For the B&P algorithm, the table also reports the average number 
of nodes explored in the search tree (column # nodes). The average 
values consider also the instances where the solution methods reach the 
time limit. 

Our B&P algorithm managed to solve to optimality 74 out of 78 in-
stances with limited computational times. Notice that the percentage 
gaps were very small in the instances where the time limit was reached. 
The number of explored nodes along the branch operations was also 
reasonably limited. The proposed approach outperformed the solver 
CPLEX 12.9 that solved to optimality 48 instances. The solver had 
smaller computational times only in the instances of day 1. 

The same trend on the performance emerged in the results reported 
in Table 2 for the randomly generated instances. The table has the same 
entries as those of Table 1 except for the first column. In this column, we 
report the range of values of the requested times tj

req. 
The generated instances turned out to be more challenging to solve. 

This could reasonably be due to more narrow distributions of the de-
livery requested times and to the presence of belts with different pro-
ductivity. Our B&P algorithm solved to optimality 56 out of 80 
instances. Still, the percentage gaps were significantly small and the 
approach strongly outperformed CPLEX 12.9. The solver was capable of 
solving to optimality 3 instances only. We also remark that our approach 
always provided better feasible solutions and upper bounds than CPLEX 
12.9 in all instances where the time limit was reached. 

Finally, we notice that the proposed B&P algorithm on average, 
spent about 90% of the overall computational time in each tested 
instance for solving the restricted master problems. This highlights the 
effectiveness of the dynamic programming algorithm in solving the 
pricing problems. Besides, the number of columns generated in the root 
node of the search tree was large enough (about 1068 on average) to 
allow a quick computation of feasible solutions either in the root node or 
during the exploration of the subsequent nodes. 

5. Conclusions 

We have presented a B&P scheme for an optimal assignment of 
flights to baggage belts in the baggage reclaim area. The assignment 
ensures that for each belt, only one flight is serviced at each time. The 
approach takes care of a number of business and fairness constraints, 
avoiding congestion, and ensuring a good passenger flow. Robustness of 
the solutions is achieved by matching the delivery time with the ex-
pected arrival time of passengers, and by adding buffer time between 
two flights on the same belt. Computational experiments, based on real 
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data from Copenhagen airport and on randomly generated instances, 
show that the proposed algorithm is effective in delivering high quality 
solutions in limited computational times, making it possible to use the 
solution approach in daily operations in medium-sized and large air-
ports. In future research, it would be interesting to extend the proposed 
algorithm to similar real-life applications and to further investigate the 
Position Dependent Knapsack Problem from both a theoretical and 
practical point of view. 
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Table 1 
Results for real-life BBAP instances from Copenhagen airport.      

CPLEX 12.9 B&P 

day n m α time gap (%) # opt time gap (%) # opt # nodes 

1 [20,35] 5 0.5 5.83 0.00 8/8 12.35 0.00 8/8 381.00    
0.8 6.24 0.00 8/8 11.30 0.00 8/8 361.00 

2 [20,43] 5 0.5 46.32 0.02 7/8 16.63 0.00 8/8 401.00    
0.8 49.79 0.04 7/8 13.97 0.00 8/8 320.38 

3 [25,41] 5 0.5 173.48 1.66 3/7 50.65 0.02 6/7 547.14    
0.8 176.18 1.51 3/7 48.70 0.00 6/7 396.71 

4 [23,41] 5 0.5 226.08 1.25 2/8 3.55 0.00 8/8 67.25    
0.8 226.08 1.10 2/8 55.88 0.03 7/8 1018.50 

5 [22,44] 5 0.5 152.24 0.78 4/8 7.18 0.00 8/8 84.75    
0.8 152.32 0.74 4/8 40.30 0.00 7/8 272.88  

Table 2 
Results for randomly generated BBAP instances.      

CPLEX 12.9 B&P 

treq ∈ n m α time gap (%) # opt time gap (%) # opt # nodes 
[

0,
1
2
tmax

]
30 5 0.5 300.00 10.74 0/10 100.74 0.00 9/10 1347.00    

0.8 300.00 4.70 0/10 120.91 0.01 7/10 1531.90 
[

0,
3
4
tmax

]
30 5 0.5 300.00 4.16 0/10 116.71 0.03 7/10 1456.00    

0.8 300.00 1.79 0/10 77.82 0.00 8/10 996.80 
[

0,
1
2
tmax

]
50 10 0.5 300.00 7.62 0/10 187.85 0.01 5/10 1463.30    

0.8 300.00 4.77 0/10 230.31 0.00 4/10 1901.00 
[

0,
3
4
tmax

]
50 10 0.5 285.72 1.34 1/10 100.86 0.00 7/10 1106.50    

0.8 257.42 0.67 2/10 63.98 0.00 9/10 666.60  
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