
20 March 2024

POLITECNICO DI TORINO
Repository ISTITUZIONALE

Channel-wise Mixed-precision Assignment for DNN Inference on Constrained Edge Nodes / Risso, M.; Burrello, A.;
Benini, L.; Macii, E.; Poncino, M.; Jahier Pagliari, D.. - ELETTRONICO. - (2022), pp. 1-6. (Intervento presentato al
convegno 13th IEEE International Green and Sustainable Computing Conference, IGSC 2022 tenutosi a Pittsburgh, PA,
USA nel 2022) [10.1109/IGSC55832.2022.9969373].

Original

Channel-wise Mixed-precision Assignment for DNN Inference on Constrained Edge Nodes

IEEE postprint/Author's Accepted Manuscript

Publisher:

Published
DOI:10.1109/IGSC55832.2022.9969373

Terms of use:

Publisher copyright

©2022 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any
current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating
new collecting works, for resale or lists, or reuse of any copyrighted component of this work in other works.

(Article begins on next page)

This article is made available under terms and conditions as specified in the corresponding bibliographic description in
the repository

Availability:
This version is available at: 11583/2974504 since: 2023-01-11T10:45:01Z

Institute of Electrical and Electronics Engineers Inc.

Channel-wise Mixed-precision Assignment for
DNN Inference on Constrained Edge Nodes

Matteo Risso†, Alessio Burrello∗, Luca Benini∗, Enrico Macii‡, Massimo Poncino†, Daniele Jahier Pagliari†
†Department of Control and Computer Engineering, Politecnico di Torino, Turin, Italy

∗Department of Electrical, Electronic and Information Engineering, University of Bologna, 40136 Bologna, Italy
‡Inter-university Department of Regional and Urban Studies and Planning, Politecnico di Torino, Turin, Italy

Corresponding Email: matteo.risso@polito.it

©2022 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including
reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or
reuse of any copyrighted component of this work in other works.
Accepted as a conference paper at the 2022 IEEE 13th International Green and Sustainable Computing Conference (IGSC).

Abstract—Quantization is widely employed in both cloud and
edge systems to reduce the memory occupation, latency, and
energy consumption of deep neural networks. In particular,
mixed-precision quantization, i.e., the use of different bit-widths
for different portions of the network, has been shown to provide
excellent efficiency gains with limited accuracy drops, especially
with optimized bit-width assignments determined by automated
Neural Architecture Search (NAS) tools. State-of-the-art mixed-
precision works layer-wise, i.e., it uses different bit-widths for
the weights and activations tensors of each network layer. In this
work, we widen the search space, proposing a novel NAS that
selects the bit-width of each weight tensor channel independently.
This gives the tool the additional flexibility of assigning a higher
precision only to the weights associated with the most informative
features. Testing on the MLPerf Tiny benchmark suite, we obtain
a rich collection of Pareto-optimal models in the accuracy vs
model size and accuracy vs energy spaces. When deployed on the
MPIC RISC-V edge processor, our networks reduce the memory
and energy for inference by up to 63% and 27% respectively
compared to a layer-wise approach, for the same accuracy.

Index Terms—Deep Learning, NAS, Quantization, TinyML

I. INTRODUCTION

Deep Learning (DL) models can enhance the “smartness’
of many edge systems, such as drones [1], wearables [2],
and smart assistants [3]. However, the traditional paradigm
based on offloading Deep Neural Networks (DNNs) execution
to the cloud has several limitations in terms of latency, energy
efficiency, and privacy, as it relies on continuous data exchange
over the network, often through an unpredictable, unreliable
and energy hungry wireless channel [4]. Furthermore, the
huge carbon footprint of data center processing makes the
sustainability of this approach questionable [5].

These limitations have spurred an increasing academic and
industrial interest for Tiny Machine Learning (TinyML), i.e.,
the study of efficiency-driven optimizations of ML and DL
models aimed at making their energy and memory require-
ments compatible with the tight constraints of edge devices.
Quantization is a key step of most TinyML pipelines, which
takes advantage of the inherent resilience of DNNs to replace
the floating point data representations typically used during
training with integers on a limited number of bits [6]. This
is extremely beneficial for edge deployment, as it reduces the

This work has received funding from the ECSEL Joint Undertaking (JU)
under grant agreement No 101007321. The JU receives support from the
European Union’s Horizon 2020 research and innovation programme and
France, Belgium, Czech Republic, Germany, Italy, Sweden, Switzerland,
Turkey.

memory footprint of the model and avoids the use of slow,
power-hungry floating point operations [6].

Conventional quantization strategies use the same preci-
sion for the entire DNN (so-called fixed-precision) [7], [8],
but several recent works have shown that a mixed-precision
scheme, using different bit-width for different network por-
tions, can further reduce the DNN complexity without ac-
curacy drops [2], [9]. However, the additional flexibility of
mixed-precision comes with the new challenging problem of
optimizing the bit-width assignment to different parts of the
network. Partially to limit the scope of such optimization,
state-of-the-art mixed-precision solutions currently assign bit-
widths layer-wise. That is, the data representation is optimized
independently for each network layer, possibly differently for
weights and activations [9]. Even in this setting, the search
space is huge; for example, considering a small MobileNet
V1 [10] and 2/4/8-bit as available bit-widths, the number of
possible solutions is 1026. Accordingly, a proper optimization
cannot be performed by hand, but requires automated Neural
Architecture Search (NAS) tools. Recent works such as [9],
[11] have therefore proposed different optimization methods
to find precision assignments offering good trade-offs between
the task accuracy and the total memory occupation of the
network, or the latency on the final deployment target.

In this work, we assess for the first time the potential of
an even finer-grain channel-wise mixed-precision assignment.
That is, we explore the space of all possible bit-width assign-
ments to each channel of each weight tensor in a Convolutional
Neural Network (CNN), while maintaining layer-wise quanti-
zation granularity for activations. We achieve this goal thanks
to a light-weight gradient-based search method, which belongs
to the family of Differentiable NAS (DNAS). Our channel-
wise scheme is fully compatible with existing hardware and
software libraries, since the resulting multi-weights-precision
convolutions can be easily reconverted into multiple smaller
convolutions working in parallel. With experiments on the four
benchmarks of the MLPerf Tiny suite [12] we show that our
tool is able to find a rich front of Pareto-optimal solutions.
When deployed on the MPIC [13] RISC-V edge processor, the
networks found by our DNAS are able to reduce memory foot-
print/energy up to 63%/27% at iso-accuracy with respect to a
per-layer mixed-precision search. Our code is open-sourced at:
https://github.com/EmbeddedML-EDAGroup/multi-prec-nas.

https://github.com/EmbeddedML-EDAGroup/multi-prec-nas

II. BACKGROUND AND RELATED WORKS

Quantization. Quantization is used ubiquitously in TinyML
to improve DNN compression and energy-efficiency [6].
Quantization-aware training (QAT) [7] is a de-facto standard
technique that simulates the effect of quantization during
training, through so-called fake-quantization operations, in
order to improve the final accuracy of the quantized model.
Post-training quantization [14] is a viable alternative when re-
training is not possible.

This work targets the popular affine quantization
scheme [6], that maps float tensors t to n-bit integers as:

tn = clamp
0:2n−1

(
round

(
t− αt

εt

))
(1)

where clamp simply restricts the values to [0 : 2n − 1],
[αt, βt) is the range of values that can be mapped without
saturation, and εt = (βt − αt)/(2

n − 1) is the quantization
step. Notable works that explore this quantization scheme are
LQ-Net [15] and PACT [7], which learn the optimal step and
value range during training. Note that our mixed-precision
NAS can be be easily extended to non-linear quantization
schemes [16], but this paper focuses on affine quantization
due to its hardware friendliness, which results in a lightweight
implementation on most deployment targets [6].

Neural Architecture Search. NAS tools are usually de-
signed to explore the space of possible network topologies
(e.g., selecting among alternative layers or tuning their ge-
ometric hyper-parameters). In that, they constitute a more
effective alternative to the manual rules of thumb derived from
experience that drove the design of early efficient DNNs [10].

In particular, NAS tools oriented at TinyML co-optimize
the network performance (e.g., classification accuracy) and
some cost metric (e.g., memory occupation, latency or energy
consumption). Seminal approaches leverage an iterative pro-
cedure consisting of: i) sampling one ore more architectures,
ii) training them to estimate task accuracy and iii) profiling
their cost either through direct deployment or through some
proxy model [17], [18]. Sampling is driven by black-box
optimizers such as Evolutionary Algorithms (EA) [17] or
Reinforcement Learning (RL) [18]. While powerful, these
algorithms require thousands of iterations (hence GPU hours)
per search, impairing their sustainability.

To cope with these limitations, Differentiable NAS (DNAS)
techniques use gradient descent to simultaneously train the
network and optimize its architecture, relaxing the topology
optimization problem to make it differentiable [19]. Accu-
racy/cost co-optimization is achieved adding to the standard
training loss a regularization term LR, modeling the target
cost metric (size, energy, etc) in a differentiable way. Thus,
the loss function becomes:

L(W ; θ) = LT (W ; θ) + λLR(θ) (2)

where LT is the standard task loss, W is the set of network
weights, and θ is the set of NAS parameters that determine
the network topology. The scalar regularization strength λ
can be tuned to guide the research towards more accurate

or more lightweight networks. The encoding of alternative
topologies is obtained from the values θ either: i) using
them to perform a soft-selection among alternative versions
of each layer, typically through a softmax (so-called super-net
approaches) [19], [20], or ii) using them as masks to prune
away parts of a large seed model, e.g., some channels in a
Conv. layer (so-called mask-based approaches) [21], [22].

Mixed-Precision Assignment. Recently, NAS techniques
have also been employed to address the bit-width assignment
problem in mixed-precision DNNs. Similarly to topology-
NAS, the goal is to simultaneously maximize accuracy and
minimize inference costs. Some methods, such as RELEQ [23]
and HAQ [11] use RL agents. While the black-box optimizer
allows them to guide the precision search with actual
latency or energy measurements from the target hardware,
these methods suffer from the same efficiency downsides
described previously for other RL-based NAS. The authors
of EdMIPS [9], instead, proposed the first DNAS for mixed-
precision assignment. To learn the optimal precision, EdMIPS
simulates the effect of quantization at different bit-widths for
the input activations and weights of each layer, similarly to
fake-quantization in QAT [6]. The fake-quantized tensors are
combined through “softmax-ed” NAS parameters, optimized
during training. Using the formulation of (2), gradient-descent
is encouraged to increase the parameters associated with lower
bit-widths, if doing so does not harm accuracy. Since our
method is inspired by [9] more details are provided in Sec. III.

III. PROPOSED METHOD

Mixed-Precision NAS methods like HAQ [11] and
EdMIPS [9] assign an independent precision to the weights
and activations of each network layer. Their rationale is that
different layers exhibit different degrees of redundancy and
feature extraction power, thus using the same precision for
the entire network would be sub-optimal.

In this work we push this idea forward, proposing a
lightweight DNAS method able to learn an independent pre-
cision assignment for each weight tensor channel in convo-
lutional (Conv) or fully-connected (FC) layers, i.e., the two
layer types that mostly influence the inference complexity of
CNNs. In other words, we assign an independent precision
to the weights of each filter in Conv layers1, and to the
weights associated with each output neuron in FC layers. We
maintain the activation bit-width assignment layer-wise, for
implementation reasons clarified below. In the following, we
discuss the details of our method for Conv layers only, since
the extension to FC is straight-forward.

Our channel-based precision assignment explores a larger
and finer-grain solution space. For instance, considering the
same MobileNetV1 mentioned in Sec I and a width multiplier
of 0.25, the number of solutions grows from 1026 in a layer-
wise approach to 1074 in ours. However, this allows our
method to exploit the different relative importance of extracted
features within a single layer to further optimize the model.

1By filter, we mean a slice of weights that processes all channels of an
input activation patch, and produces a single output channel.

Fig. 1. Overview of the proposed approach.

A. Precision Assignment Optimization Method

Fig. 1 summarizes the flow of our approach. For each
optimized layer of the target DNN, we first fake-quantize
the activation tensor X at all supported bit-widths px ∈ Px,
e.g., Px = {2, 4, 8} bit. We then combine the fake-quantized
tensors through a vector of NAS parameters δ(n) ∈ R|Px|,
where the n superscript refers to the n-th layer, in a way sim-
ilar to [9]. Specifically, we first compute δ̂(n) = SM(δ(n); τ)
where SM(x; τ) is the softmax with temperature:

SM(x; τ) =
exi/τ∑
i e

xi/τ
, ∀i (3)

so that the elements of δ̂(n) sum to 1. As detailed in
Sec. III-B, the temperature τ is progressively annealed during
training, driving the softmax to increasingly resemble a non-
differentiable argmax, which is the function used to select the
final precision at the end of the optimization.

Then, the effective activation tensor is obtained as:

X̂(n) =
∑

px∈PX

δ̂(n)px
·Xpx

(4)

where Xpx
is the px-bit fake-quantized version of the original

float tensor X , and we loosely use px to indicate both a
precision and an index in the δ̂ array. Similarly to [9], the
rationale of (4) is that the larger δ̂(n)px , the more X̂(n) becomes
similar to the result of a px-bit quantization.

To explore the channel-wise assignments of bit-widths
pw ∈ PW for weights, which is the main novelty of our
work, we further associate each layer with a 2D matrix
γ(n) ∈ RC

(n)
out×|PW |, where C

(n)
out is the number of output

channels/filters in the layer. The i-th row of the matrix γ
(n)
i

contains the NAS parameters that will determine the bit-width
assignment for the i-th channel. Accordingly, each row is ap-
plied an independent softmax to obtain γ̂

(n)
i = SM(γ

(n)
i ; τ).

Next, the i-th effective weight tensor slice Ŵ
(n)
i , i.e., the

i-th effective filter, is obtained similarly to (4), as:

Ŵ
(n)
i =

∑
pw∈PW

γ̂
(n)
i,pw

·W (n)
i,pw

(5)

Lastly, the stack of these slices along the Cout dimension is
used, together with X̂(n) to produce the layer output:

Y (n) = Conv(X̂(n), stack
i

(Ŵ
(n)
i)) (6)

Our method uses weight sharing, that is, all fake-quantized
weights and activations are obtained from a single float tensor,
and are generated just once per-layer on the fly, i.e., we have
|PW | and |PX | temporary copies of X and W during forward
DNN passes. Thus, the memory overhead of our method dur-
ing training is almost identical to [9], except for the new γ(n)

matrix, whose impact is negligible. A key difference between
our method and [9] is instead in the quantization scheme, i.e.,
the function mapping X → Xpx

and W → Wpw
. Namely, we

replace the original Gaussian quantizer used in [9] with the
PaCT method described in [7]. The main reason is that PaCT
layers are fully compatible with our deployment target [13].
Further, we found that it also yields superior results.

We optimize the precision assignment while training the
DNN weights by minimizing the loss formulation of (2), where
θ = {δ(1), ..., δ(n), γ(1), ..., γ(n)} is the set of NAS trainable
parameters for all layers.

We use two different expressions for the complexity regular-
izer LR depending on the optimization objective. Specifically,
when the goal is to minimize the model size, i.e., the total
amount of non-volatile memory required to store the network,
the NAS should be guided to select smaller bit-widths for
weights tensors channels where possible, whereas activations
bit-widths have no impact. A simple regularizer that achieves
this objective for a single Conv layer is:

LR
(n) = C

(n)
in K(n)

x K(n)
y

C
(n)
out∑

i=1

∑
pw∈PW

γ̂
(n)
i,pw

· pw (7)

where C
(n)
in K

(n)
x and K

(n)
y are number of input channels

and the horizontal and vertical convolution kernel sizes. In
practice, this regularizer computes the effective number of
weight bits in the layer, multiplying each softmax coefficient
γ̂
(n)
i,pw

times the corresponding bit-width pw. Thus, for
instance, it assigns a double cost to the coefficient associated
with 4bit precision with respect to the 2bit one. Note that
when optimizing the model size, we disable the search over
activation bit-widths and fix all X̂(n) tensors to 8bit.

We also consider the optimization of the energy consump-
tion of the network, which depends both on weights and
activations precision. The corresponding regularizer is:

LR
(n) = Ω(n) ·

∑
px∈PX

δ̂(n)px

C
(n)
out∑

i=1

∑
pw∈PW

γ̂
(n)
i,pw

C(px, pw) (8)

where Ω(n) is the total number of operations required to
produce the n-th layer output, which is independent from the
precision assignment and can be computed from well-known
formulas for Conv or FC layers. The rest of (8) computes
the expected average energy per operation of the layer.
Specifically, C(px, pw) is a Look-Up Table (LUT) returning
an estimate of the energy/OP of a px-bit ×pw-bit convolution.
The LUT is populated profiling the target hardware, and is nec-
essary because for most hardware platforms, the energy cost of
arithmetic operations at sub-byte precision is not linearly pro-
portional to the bit-width. The regularizer simply weighs each

Algorithm 1
1: for i← 1, . . . ,Epochswu do # warmup loop
2: Update W based on ∇WLT (Wpmax)

3: while not converged do # search loop
4: if #samples < 20% current epoch then
5: Update θ based on ∇θ(LT (W ; θ) + λLR(θ))
6: else
7: Update W based on ∇W (LT (W ; θ))

8: Anneal temperature τ

9: for i← 1, . . . ,Epochsft do # fine-tuning loop
10: Freeze θ
11: Update W based on ∇WLT (W)

combination of NAS parameters for activations and weights
with the cost of the corresponding mixed-precision operation.

The overall regularization loss for the NAS is obtained
summing either (7) or (8) over all layers.

B. Training Procedure

Alg. 1 shows the training scheme of our method, which is
made of three distinct phases. In the initial warmup phase,
the network is trained normally with QAT at the maximum
supported precision pmax, while keeping NAS parameters
frozen. Thus, only the task-specific loss function LT and the
normal W weights are optimized. In all our experiments, we
consider pmax = 8bit. Warmup needs to be performed only
once, reusing the result for multiple searches.

The second phase represents the core of the optimization.
In it, both weights W and NAS parameters θ are trained to
minimize (2). Following the scheme proposed in [21] we train
NAS parameters and normal weights in an alternated fashion
within each epoch. First, only the NAS parameters are trained
on a random 20% split of the training samples. Then, only
the network weights are trained on the remaining 80%. At
the end of each epoch we anneal the softmax temperature
τ to make the choice among alternative bit-widths more
“decisive”. In all our experiments, τ is initially set to 5 and
progressively annealed by e−0.0045 as in [21]. Note that in
our closest prior work [9], the alternate W and θ training
and the softmax temperature were not present. However, we
found experimentally that both techniques improve the training
stability and final result quality, not only for our approach but
also for [9].

Lastly, in the fine-tuning phase, the θ parameters are frozen
to the final learned values, and the softmax is replaced with
an argmax to select a single precision for each weight channel
or activation layer. Then, only the weights W are fine-tuned
based on LT . In all our experiments, the warmup and fine-
tuning epochs Epochswu and Epochsft are set equal to the
training epochs reported in the papers describing the reference
DNNs. Conversely, the search phase termination is controlled
with an early-stop mechanism.

C. Implementation Details

In this section, we show that besides having the potential to
improve the theoretical compression and efficiency of DNNs
compared to standard mixed-precision, our method is also fully

Fig. 2. Layer re-organization to support channel-wise precision assignment.

compatible with existing hardware and software libraries for
mixed-precision inference, with minimal overheads. The top-
left part of Fig. 2 shows the DNAS output for a generic Conv
layer, with all filters of assigned 2,4 or 8-bit, independently
from their ordering in memory (e.g., the 3rd and last filter are
8-bit, while the 4th filter is 2bit, etc). To deploy such a layer,
we first reorder the filters grouping them by bit-width (top-
right of the figure). Importantly, this also affects the order of
the output activations channels. Accordingly, to preserve the
functionality of the following layer, its weight tensor has to
be re-organized along the Cin axis, so that each weight is still
multiplied with the correct input activation. In the figure, we
show this associating a color pattern to the two filters that
change position due to reordering, and using the same pattern
to highlight the change in activations and the corresponding
reorganization of the next layer weights.

After this re-organization, which is performed offline and
does not have run-time overheads, the layer can be split into
|PW | separate convolutions working in parallel, each with a
fraction of the original output channels. These sub-layers have
a single bit-width for W , hence they are fully compatible with
existing mixed-precision hardware and libraries [13], [14].
Moreover, since the activation bit-width is assigned layer-
wise, all outputs have the same precision, and can be simply
concatenated (i.e., stored in adjacent memory locations) to
be readily usable as inputs for the next layer. Allowing this
simple concatenation is the reason why we do not perform
channel-wise precision assignment for activations too. In fact,
in that case the next layer’s filters would have to process an
interleaved mix of different precision inputs, which is not
currently supported by inference libraries. Nevertheless, the
study of fine-grain activation precisions will be subject of our
future work. In the current version, instead, the only overhead
of our method compared to standard mixed-precision is the
control flow to schedule the three sub-layers. However, this
cost is negligible compared to the benefits of the proposed
fine-grain assignment.

IV. EXPERIMENTAL RESULTS

A. Setup

We evaluate our channel-wise mixed-precision DNAS on
the four benchmarks of the MLPerf Tiny suite [12]. Below
is a summary of each task, while more details can be found
in [12]. Image Classification (IC) targets the CIFAR-10 dataset

IC KWS VWW

A
cc

 [
%

]

88
86
84
82
80

78
76
74
72

95

90

85

80

75

70

A
U

C
 [

%
]

Energy [uJ]
80 1201006040

86

84

82

80

78

76

74
40

Ours EdMIPS FP w8x8 w4x8 w2x8 w8x4 w4x4 w2x4 w8x2 w4x2 w2x2

A
cc

 [
%

]

88

87

86

85

84

83

82
IC

0.40.30.2

90

85

80 KWS

0.080.060.04 0.14 0.16 0.18 1.00.80.60.4

88

87

86

85

84

83

82

VWW

A
U

C
 [

%
]

AD

86

84

82

80

78

1.00.80.6 1.2 1.4 1.6 1.8

Size [Mb]

1.4

86

84

82

80

78

76

74
AD

0.5 0.6 0.1 0.12

35 45 50 55 60 65 7010.0

1.2 1.4 1.6 2.0

12.5 15.0 17.5 20.0 22.5 25.0 27.5 75 1.6 1.8 2.0 2.2 2.4 2.6

Fig. 3. Pareto fronts obtained for the four MLPerf Tiny benchmarks, and comparison with EdMIPS and fixed-precision solutions.

using a custom ResNet-like CNN with a backbone of 8 con-
volutional layers. Keyword Spotting (KWS) targets the Google
Speech Commands (GSC) v2 dataset with a small Depthwise
Separable CNN (DS-CNN) originally proposed in [3]. Visual
Wake Word (VWW) uses the MSCOCO 2014 dataset for a
presence detection task, solved with a MobileNetV1 [10] with
a width-multiplier of 0.25. Lastly, Anomaly Detection (AD)
targets the Toy-car subset of the DCASE2020 dataset, with a
simple Dense Autoencoder.

The proposed DNAS is implemented in Python 3.9 using
PyTorch v1.10.2. Our deployment target is MPIC [13], a
RISC-V core including optimized hardware units for the exe-
cution of MAC operations with inputs independently quantized
to pw/x ∈ {2, 4, 8} bit. The LUT implementing the cost
function of (8) is built using the energy/OP values profiled
from the MPIC core running at 250MHz, for all combinations
of activations and weights precisions within the pw/x set.

B. Search-Space Exploration

Fig. 3 shows the results of applying our mixed-precision
assignment method to the four MLPerf Tiny benchmarks. The
vertical axes of all graphs report the task scores, i.e. the
accuracy for IC, KWS and VWW and the Area Under the
ROC Curve (AUC) for AD. The horizontal axes of the first row
of graphs report the energy consumption of the models in µJ ,
whereas those in the second row report the model sizes in Mb.

Each plot compares the mixed-precision solutions found
with our tool (blue dots) with the results of EdMIPS [9] (or-
ange dots). To have a fair comparison, in which our method’s
advantages are solely due to the channel-wise precision as-
signment, we run our NAS and EdMIPS with identical training
protocols, including the 20/80% alternate θ/W training and the
τ annealing. Moreover, we replace the original quantization
algorithm of [9] with PaCT [7], since the former would not
be compatible with deployment on MPIC.

We also compare against all relevant fixed-precision quanti-
zation baselines, denoted as “wNxM”, where N and M are the
W and X bit-widths taken from the {2, 4, 8} bit set. In mem-
ory plots, we only report wNx8 baselines, since the activations

bit-width is not relevant for model size. Lastly, the accuracy of
a floating point version of each model is shown as a horizontal
dashed line. We do not report the float model energy and size
since MPIC does not have a Floating Point Unit (FPU).

Each of the Pareto-optimal points reported in the graphs for
our method and for [9] refers to a DNN with a different pre-
cision assignment. Multiple points are obtained changing the
regularization strength λ in (2). We use the regularizer expres-
sions of (7) and (8) for memory and energy results respectively,
both for our tool and for [9]. Noteworthy, for all the bench-
marks neither the float models nor the full 8-bit one outperform
the best mixed-precision assignment, due to the well-known
overfitting reduction effect of low bitwidth quantization [6].

The left-most part of Fig. 3 shows the results obtained on the
IC task. Our fine-grain mixed-precision approach outperforms
all fixed-precision baselines and EdMIPS, both in terms of
energy and model size. Noteworthy, it saves up to 26.4%
energy and 35% memory with respect to EdMIPS at iso-
accuracy, while also obtaining a higher maximum accuracy,
+0.5%/+1% depending on the regularizer used. Similar re-
sults are obtained also for KWS (middle-left part of Fig. 3).
Again, our method Pareto-dominates all comparison baselines,
finding solutions that save up to 27.2% energy and 15.6%
memory for the same accuracy, and improve the best score by
+4.3% and +0.7% respectively.

The middle-right part of Fig. 3 reports the results on VWW.
On this benchmark, we Pareto-dominate fixed-precision net-
works both in terms of memory and energy. Conversely,
compared to EdMIPS, our method is particularly beneficial
to reduce the memory footprint of the network, with up to
63.4% saving at equal accuracy, and a maximum accuracy
improvement is +0.4%. Instead, the benefit in terms of energy
is limited, although we are still able to find a larger number
of Pareto-optimal points with respect to EdMIPS, which
translates to more flexibility for designers. Note that, for this
benchmark, the fixed-precision networks with 2bit activations
are not shown because their training does not converge.

Lastly, the right-most part of Fig. 3 shows the results on
AD. As for all other benchmarks, our method obtains superior

ResNet8 - Ours

c0 c1 c2 r0 c3 c4 c6r1 c5 fc

ResNet8 - EdMIPS

8
1

%
6

%
1

3
%

1
0

0
%

2
5

%

3
%

1
0

0%

1
0

0%

1
0

0
%

1
0

0
%

1
0

0%

1
0

0%

1
0

0%

1
0

0%

1
0

0%

1
0

0%

7
5% 9
7%

9
1%

9%

3%
5

9
%

3
8%

1
0

0
%

3
8

%
6

2
%

6
1

%
3

9
%

1
0

0%

Fig. 4. Example of found architectures for the IC benchmark.

results in terms of AUC versus model size. The memory
saving is at most 46.1% for the same AUC with respect to
EdMIPS. In this case however, [9] outperforms our method in
terms of AUC versus energy in the high score regime (up
to 21.8% saving), while our method is superior for lower
AUC values (up to 11.6%). We attribute this result to the
more difficult optimization problem solved by our tool. In
fact, the AD Autoencoder is composed solely of FC layers
with 128 channels (i.e., neurons), except for the bottleneck.
With so many channels, the difference between the search
space explored by our method and by [9] explodes. Hence,
the gradient-based DNAS optimization likely ends up in a
local minimum. Nonetheless, we think that this issue could
be solved by tuning the training hyper-parameters specifically
for this task, whereas in our experiments we keep all settings
identical across benchmarks for fairness and reproducibility.

C. Results Analysis

Fig. 4 shows an example of the precision assignments
determined by our tool and by [9]. The two architectures are
ResNet-8 for the IC task, obtained with the energy regularizer
of (8), and correspond to the two circled Pareto points of
Fig. 3, i.e., those for which our method obtains the largest en-
ergy saving with no accuracy drop. Specifically, our channel-
wise model saves 26.4% energy with an accuracy improvement
of +0.5%. Each rectangle represents a Conv (cn or rn, where
the latter are those in residual branches) or FC layer, with the
activation bit-width reported on the left, and the fraction of
weight channels associated to each precision on the right.

This example shows some interesting insights about the ef-
fectiveness of our approach. For instance, it can be noticed that
EdMIPS quantizes most of the activations with 8bit, whereas
our method exploits its additional flexibility to reduce the ac-
tivation precision, compensating it with an increase in the bit-
width assigned to an often small subset of the weights channels
(e.g., only 3% in c4), in order to obtain the same final accuracy.
Eventually, only the first and last layer activations, which
notoriously often require higher precision [24] remain at 8bit.
Although we report a single example for sake of space, similar
considerations apply to the results on the other 3 benchmarks.

As a last remark, Fig. 3 results show that our method saves
more memory than energy on MPIC. However, these memory
savings could translate into further energy (and latency) reduc-
tions when considering more complex hardware, with multiple

memory hierarchy levels, as larger portions of the DNN can
be kept in faster and more efficient L1 memories [25].

V. CONCLUSIONS

In this work, we have proposed a new fine-grain mixed-
precision search algorithm, able to efficiently select the
optimal precision for each channel of each convolutional
layer in CNNs. When compared with a state-of-the-art
mixed-precision DNAS, and on four edge-relevant use-cases,
our tool finds richer and better trade-offs in the accuracy
vs. latency/energy-consumption space, showing up to 27%
energy consumption reduction and up to 63% memory
reduction with no accuracy penalty.

REFERENCES

[1] D. Palossi et al., “Fully onboard ai-powered human-drone pose es-
timation on ultralow-power autonomous flying nano-uavs,” IEEE IoT
Journal, vol. 9, no. 3, pp. 1913–1929, 2022.

[2] A. Burrello et al., “Q-ppg: Energy-efficient ppg-based heart rate moni-
toring on wearable devices,” IEEE Trans. Biomed. Circuits Syst., 2021.

[3] Y. Zhang et al., “Hello edge: Keyword spotting on microcontrollers,”
arXiv:1711.07128, 2017.

[4] F. Daghero et al., “Energy-efficient deep learning inference on edge
devices,” in Hardware Accelerator Systems for Artificial Intelligence
and Machine Learning, Eds. Elsevier, 2021, vol. 122, pp. 247–301.

[5] B. Ramprasad et al., “Sustainable computing on the edge: A system
dynamics perspective,” in ACM Proc. of HotMobile ’21, 2021, p. 64–70.

[6] B. Jacob et al., “Quantization and Training of Neural Networks for
Efficient Integer-Arithmetic-Only Inference,” in IEEE CVPR, 2018.

[7] J. Choi et al., “Pact: Parameterized clipping activation for quantized
neural networks,” arXiv:1805.06085, 2018.

[8] Y. Choukroun et al., “Low-bit quantization of neural networks for
efficient inference,” in 2019 IEEE/CVF ICCVW, 2019, pp. 3009–3018.

[9] Z. Cai et al., “Rethinking differentiable search for mixed-precision
neural networks,” in Proc. IEEE/CVF CVPR, 2020, pp. 2349–2358.

[10] A. G. Howard et al., “Mobilenets: Efficient convolutional neural net-
works for mobile vision applications,” arXiv:1704.04861, 2017.

[11] K. Wang et al., “Haq: Hardware-aware automated quantization with
mixed precision,” in Proc. IEEE/CVF CVPR, 2019, pp. 8612–8620.

[12] C. Banbury et al., “Mlperf tiny benchmark,” arXiv:2106.07597, 2021.
[13] G. Ottavi et al., “A mixed-precision risc-v processor for extreme-edge

dnn inference,” in 2020 IEEE ISVLSI, 2020, pp. 512–517.
[14] A. Capotondi et al., “CMix-NN: Mixed Low-Precision CNN Library

for Memory-Constrained Edge Devices,” IEEE Tran. Circuits Syst. II:
Express Briefs, 2020.

[15] D. Zhang et al., “Lq-nets: Learned quantization for highly accurate and
compact deep neural networks,” in Proc. ECCV, 2018, pp. 365–382.

[16] S. Han et al., “Deep compression: Compressing deep neural net-
works with pruning, trained quantization and huffman coding,”
arXiv:1510.00149, 2015.

[17] E. Real et al., “Large-scale evolution of image classifiers,” in Proc.
ICML. PMLR, 2017, pp. 2902–2911.

[18] M. Tan et al., “Mnasnet: Platform-aware neural architecture search for
mobile,” in Proc. IEEE CVPR, 2019, pp. 2820–2828.

[19] H. Liu et al., “Darts: Differentiable architecture search,”
arXiv:1806.09055, 2018.

[20] H. Cai et al., “Proxylessnas: Direct neural architecture search on target
task and hardware,” arXiv:1812.00332, 2018.

[21] A. Wan et al., “Fbnetv2: Differentiable neural architecture search for
spatial and channel dimensions,” in CVPR, 2020, pp. 12 965–12 974.

[22] M. Risso et al., “Lightweight neural architecture search for temporal
convolutional networks at the edge,” IEEE Trans. Comp., pp. 1–1, 2022.

[23] A. Elthakeb et al., “Releq: an automatic reinforcement learning approach
for deep quantization of neural networks,” in NeurIPS, 2018, 2019.

[24] F. Daghero et al., “Ultra-compact binary neural networks for human
activity recognition on risc-v processors,” in Proc. 18th ACM CF, 2021.

[25] A. Burrello et al., “Dory: Automatic end-to-end deployment of real-
world dnns on low-cost iot mcus,” IEEE Trans. Comput., 2021.

	Introduction
	Background and Related Works
	Proposed Method
	Precision Assignment Optimization Method
	Training Procedure
	Implementation Details

	Experimental Results
	Setup
	Search-Space Exploration
	Results Analysis

	Conclusions
	References

