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Abstract—Collaborative Inference (CI) optimizes the latency
and energy consumption of deep learning inference through
the inter-operation of edge and cloud devices. Albeit beneficial
for other tasks, CI has never been applied to the sequence-
to-sequence mapping problem at the heart of Neural Machine
Translation (NMT). In this work, we address the specific issues
of collaborative NMT, such as estimating the latency required
to generate the (unknown) output sequence, and show how
existing CI methods can be adapted to these applications. Our
experiments show that CI can reduce the latency of NMT by up
to 44% compared to a non-collaborative approach.

Index Terms—Machine Translation, Collaborative Inference.

I. INTRODUCTION AND RELATED WORKS

Deep learning (DL) obtains outstanding results in many
Artificial Intelligence (AI) tasks that are relevant for embedded
systems, such as computer vision and natural language pro-
cessing (NLP). In order to deploy DL models on embedded
devices, research and industry are increasingly resorting to
Collaborative Inference (CI) [2]–[4] a paradigm that com-
bines edge and cloud computing, in an attempt to improve
performance and energy efficiency. In a CI system, deep
learning inference executions are distributed among a set of
collaborating edge and cloud devices, with policies based
on their relative compute speeds and on their current state
(workload, connection speed, etc).

Seminal works in this field mainly targeted Convolutional
Neural Networks (CNNs) for computer vision [4]–[8]. One
of the earliest approaches is [4], which partitions a CNN
execution layer-wise between edge and cloud devices, trying
to minimize its latency or energy consumption. The underlying
principle is that feature tensor sizes tend to shrink for deeper
layers in a CNN. Therefore, computing a few layers at the edge
reduces the amount of data that needs to be sent to the cloud,
and consequently the time/energy costs for transmission, pos-
sibly yielding a lower overall cost compared to pure edge and
pure cloud processing. The optimal split point is adapted at
runtime based on the connection latency and bandwidth, and
the load of the cloud server. This approach is extended in [6],
where additionally the CNN is modified to favor partitioned
execution, by inserting layers that compress and decompress
the feature maps respectively before and after transmitting
them to the cloud. Further layer-wise partitioning approaches
for feed-forward networks are found in [5], which manages
multiple partition points for cases where tensor sizes are

not monotonically decreasing (e.g. autoencoders), and in [7]
which combines partitioning with an inference early-stopping
mechanism for additional speed-ups. The authors of [8] extend
these concepts to more than two offloading levels (e.g. end-
device, edge gateway and cloud).

More recently, the CI paradigm has also been applied
in [9], [10] to the processing of variable-length input sequences
using Recurrent Neural Networks (RNNs). [11] extended the
approach to more than two offloading levels and multiple
devices in each level. Both works, however, focused solely
on sequence-to-class problems, such as text classification and
search. In contrast, Neural Machine Translation (NMT), one
of the most important DL-based tasks for smart embedded
devices [12], belongs to the family of so-called sequence-to-
sequence (seq2seq) problems, where both inputs and outputs
are variable-length sequences. Previous works have shown
that, when dealing with variable-length sequences, the opti-
mal (edge or cloud) device to execute an inference depends
strongly on the sequence length, which influences the compu-
tational costs [10], [11]. However, while for sequence-to-class
problems the length of the input sequence is always known
beforehand, in case of a seq2seq task, computation costs also
depend on the (unknown) length of the output.

In this work, we address this problem for the specific case of
NMT. We show that low-cost regression models can efficiently
predict the length of an output translation given the length of
the input sentence, thus enabling the successful application
of CI techniques. With experiments on 3 datasets and 3 DL
models, based on both RNNs and Transformers [1], we show
that our proposed Collaborative-NMT (C-NMT) can reduce
the average inference latency by up to 44% compared to purely
edge-based and cloud-based approaches, and by up to 21%
compared to a “naive” approach that does not account for the
output length. To the best of our knowledge, ours is the first
work applying CI to a seq2seq problem; we are also the first
to study Transformer models from the point of view of CI.

II. PROPOSED C-NMT FRAMEWORK

In this work, we propose C-NMT, a CI strategy aimed at op-
timizing the latency of NMT, one of the most relevant seq2seq
tasks. We build upon the work of [10], [11], where two key
peculiarities of (sequence-to-class) NLP tasks that influence
the optimal CI decisions are highlighted. First, input/output
sizes are small: encoding a sentence with the dictionary



index of each word does not require more than 2 bytes per
word. Thus, differently from CNNs, intermediate tensors tend
to be larger than inputs, which means that partitioning the
execution between edge and cloud is not beneficial, as it
doesn’t help reducing data transmission costs. Instead, the
optimal strategy consists in mapping an entire inference either
to edge or cloud. Second, the length of the processed inputs
is a key parameter to be taken into account when deciding
whether to run an inference at the edge or in the cloud, as
it strongly influences the compute time. In Section II-A we
analyze how these observations extend to NMT and the novel
challenges introduced by this task , showing in particular that
estimating the computational complexity of a translation is
more complicated due to the fact that the length of the output
sequence is unknown. In Section II-B we then propose a
simple yet effective way to solve these challenges.

A. CI for Seq2Seq Deep Learning Models

Fig. 1a shows the most common architecture for seq2seq
problems, the so called encoder/decoder. The system is
composed of two separate neural networks: the encoder
(blue block) processes the variable-length input X =
x<1>, ...x<N>, (e.g. a sentence in English) and converts it into
a fixed-size, high-dimensional vector representation, called
context. The end of the input sequence is signaled to the
encoder by a special <EOS> symbol. The context is then
fed to the decoder (green block), whose goal is to produce
the output sequence Y = y<1>, ..., y<M> (e.g. the translation
of the input in German). Notice that, in general, N 6= M .
More specifically, so-called autoregressive decoding is used in
NMT, where the decoder iteratively takes as input a partially
translated sentence (initially null), together with the encoder’s
context, and predicts the next token in the translation.

State-of-the-art models for implementing encoders and de-
coders are RNNs and Transformers. Here, we briefly discuss
them from a computational standpoint, leaving out the details
of their functionality, which can be found in [1], [13].

RNNs are composed of one or more cells, such as the Long-
Short Term Memory (LSTM), that perform the same set of
operations on each step of the input sequence, as shown in
Fig. 1b. Each step requires the output of the previous one,
i.e. the hidden and cell state vectors (hi and ci). The last cell
state is used as context in encoders, whereas for decoding,
hidden states are further processed with one or more fully-
connected layers and softmax activations to produce word
probabilities. As analyzed in [10], [11], the data dependency
among subsequent steps makes the inference time of RNNs
linearly dependent on the processed sequence length. This
highlights a key problem of CI for RNN-based NMT. That
is, estimating the total execution time of both encoder and
decoder is key to perform correct edge/cloud mapping deci-
sions. However, while the compute time of the encoder linearly
depends on the (known) input sentence length N , the decoder
RNN’s execution time depends on the unknown (prior to the
completion of the translation) output length M .

Fig. 1: Encoder/decoder for seq2seq mapping and key layers.

A similar issue arises also for Transformers. These models
include several layers, but the most computationally critical
is self-attention [1], [14], shown in Fig. 1c. For each input
element, this layer generates three vectors called query (qi),
key (ki) and value (vi) through learned linear mappings,
omitted in the figure for space reasons. The scalar product
of each query with all keys, followed by a softmax, produces
the so-called attention weights wji. Finally, the i-th output
is generated by summing together all vjs, each weighted by
the corresponding wji. In the figure, the flow of operations to
generate the first two outputs is shown by red and green arrows
respectively. State-of-the-art transformers combine multiple of
such structures (so-called attention heads) for higher accuracy.
As for RNNs, transformer encoders typically use the output
corresponding to the last (or first) input, further processed by
fully-connected layers, as context.

The complexity of self-attention is quadratic in the input
length due to query-key products; however, differently from
RNNs, the processing of different sequence elements can
be parallelized [14]. Consequently, for relatively short input
sequences (< 100 tokens) and considering a highly parallel
platform (e.g., an embedded GPU) we found that the inference
time of Transformer encoders is approximately constant w.r.t.
N . In contrast, autoregressive decoding, which is implemented
in Transformers with masked attention [1], imposes a strict
dependency among subsequent tokens, i.e., the i-th predicted
word is needed as input for predicting the (i+ 1)-th, limiting



Fig. 2: (a) Linear dependency of the total inference time on the
output length for a Transformer. Scores of a linear fit: Jetson
R2 = 0.99, MSE = 0.13ms, Titan R2 = 0.85, MSE =
1.2ms. (b) General principle of C-NMT.

parallelization. In practice, the execution of the decoder has to
be repeated M times, which: 1) makes it significantly slower
than the encoder and 2) makes the total translation time once
again linearly dependent on the output length M . This is
clearly shown in Fig. 2a, which reports the total translation
time of a Transformer as a function of M , for an embedded
(red) and a cloud (green) GPU. The model, dataset and devices
are detailed in Sec. III. Dots represent the average execution
time for all outputs of the same length in the dataset, while
colored bands represent standard deviations.

B. Linear N-to-M Mapping

Fig. 2b shows visually the idea behind C-NMT. Given the
analysis of Section II-A, the dependency of the compute time
of an NMT model on the input/output lengths approximately
defines a plane in the (N,M, Texe) space, possibly horizontal
with respect to N in case of transformers. Clearly, the slopes of
this plane on the z-axis are smaller for a fast cloud device than
for an edge one. However, running inference on the former has
an additional latency cost related to input/output transmission
(Ttx), which shifts up the “cloud” execution time, as shown
by the yellow arrow. This generates an interesting trade-
off from the point of view of CI since shorter input/output
sequences are processed faster at the edge (Edge Region)
whereas cloud offloading becomes convenient only for longer
input/outputs (Cloud Region). The intersection of the two
planes, and therefore the optimal inference device for a given
input depends on N and M , on the relative speed of the
involved devices, and on the time-varying Ttx. Mathematically,
C-NMT selects the target device for inference dtgt as:

dtgt =

{
de if Texe,e(N,M) ≤ Ttx + Texe,c(N,M)

dc otherwise
(1)

where suffixes e and c indicate edge and cloud respectively.
Given, the compact encoding of inputs/outputs in NMT dis-
cussed above, in this work we model Ttx as being dominated
by the connection’s round-trip time, and roughly dependent on
N and M . As shown also in [10], [11], although this is an ap-
proximation, it yields quite accurate CI decisions. Concerning
Texe, given the analysis of Sec II-A, we model it as a linear
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Fig. 3: Regression models for the output length esti-
mate. IWSLT’14,DE-EN: R2-score=0.99, MSE=0.57; OPUS-
100,FR-EN: R2-score=0.99, MSE=0.15; OPUS-100,EN-ZH
R2-score=0.99, MSE=0.73.

function of N and M , that is Texe,i = αN,i ·N+αM,i ·M+βi,
where i ∈ {e, c} and αN/M,i, βi depend on the compute power
of device di and on the NN model. These parameters can be
computed with a once-for-all offline characterization.

The most critical quantity in the above equation is M , which
only becomes known after the completion of a translation.
However, for the particular case of NMT, it is reasonable to
assume that there is a correlation, to some extent, between
the length of an input sentence and the one of its translation.
As an example, Fig. 3 shows the average M for a given N
and the corresponding standard deviation for three different
language pairs. The caption reports the excellent regression
scores obtained by a simple linear model relating the two
quantities. These results show that, even for very different
languages, such as Chinese and English, an accurate estimate
of the output length can be obtained with a simple linear N -
to-M mapping. This is the strategy used in our proposed CI
system, which eventually estimates Texe,i as:

Texe,i = αN,i ·N + αM,i · (γ ·N + δ) + βi (2)

where γ and δ are correcting factors that only depend on the
target language pair, and are independent from the device and
neural network model. The need for this correction is evident
from Fig 3, which clearly shows that γ < 1 is needed to
account for the lower verbosity of the English language (EN)
with respect to French (FR) in Fig. 3b, and of Chinese (ZH)
with respect to English in Fig. 3c.

C. Implementation Details

After the offline characterization of the target NN model,
the C-NMT decision has negligible overheads, as it simply
consists of evaluating (2) and (1). For what concerns Ttx,
although this quantity is roughly independent of N and M , it
still changes over time due to the variability of the edge-cloud
connection signal quality or data traffic. As in [11], we attach
timestamps to each inference request/response sent to/from
the cloud to obtain a recent estimate of Ttx. However, on
end-nodes (e.g., smartphones), translation tasks are typically
performed sporadically, rendering the timestamp mechanism
ineffective. For this reason, we consider a system where the
edge device is a gateway which aggregates the requests of
multiple end-nodes and therefore can be assumed to be almost
continuously fed with inference requests. The C-NMT decision
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Fig. 4: Connection profiles.

TABLE I: Execution time variation (in %) for two different variable connection profiles.

Dataset Strategy
Connection Profile (CP) 1 Connection Profile (CP) 2

Ex. Time Ex. Time Ex. Time Ex. Time Ex. Time Ex. Time
vs. GW vs. Server vs. Oracle vs. GW vs. Server vs. Oracle

DE-EN Naive +11.74 -4.78 +29.17 -16.16 -5.28 +13.25
C-NMT -13.55 -26.15 +0.11 -24.34 -17.65 +0.15

FR-EN Naive -5.74 -40.80 +8.03 -7.15 -32.13 +15.46
C-NMT -12.29 -44.32 +1.24 -18.00 -41.06 +1.13

EN-ZH Naive -17.11 -8.08 +15.49 -36.31 -10.41 +8.51
C-NMT -21.17 -12.46 +9.83 -35.66 -10.58 +8.77

then becomes whether to perform inference locally at the
gateway or in a more powerful cloud server.

III. EXPERIMENTAL RESULTS

We assess the effectiveness of C-NMT considering: i) an
edge gateway (GW) made of an NVIDIA Jetson TX2, includ-
ing a Pascal GPU with 256 CUDA cores, and ii) a cloud server
equipped with a Dual Intel Xeon E5-2630@2.40GHz, 128GB
RAM and an NVIDIA Titan XP GPU. Both devices run Linux
and perform inference with PyTorch. For repeatability, the
network connection between the devices is simulated using 2
real round-trip-time (Trtt) profiles taken RIPE Atlas [15], and
assuming a constant and symmetric bandwidth of 100Mbps.
The simulation time vs Trtt traces are shown in Fig 4, and
refer to the following RIPE Atlas query: meas id: 1437285;
probe id: 6222; Date = 03/05/2018; Time = 3-7 p.m. (CP1),
7:30-12:30 a.m. (CP2).

The experiment consists in sending 100K translation re-
quests to the GW, which uses C-NMT to decide, for each
input, whether to process it locally or offload it to the cloud.
The Texe model of (2) is fitted on the result of 10k inferences
per device, with inputs not included in the 100k set.

We repeat the experiment for 3 different NMT architectures
and datasets: i) A 2-layer BiLSTM model [16] with a hidden
size of 500, tested on the IWSLT’14 German-English (DE-EN)
corpus [17]; ii) A single-layer Gated Recurrent Unit (GRU)
RNN [18] with hidden size 256, tested on the OPUS-100
French-English (FR-EN) corpus [19]; iii) The “MarianMT”
attention-based Transformer [20] tested on the OPUS-100
English-Chinese (EN-ZH) corpus [19]. For each dataset, the
correcting factors γ and δ in (2) are computed on the ground-
truth (N,Mreal) pairs in the corpus, where Mreal may in
general differ from the output length M produced by the
NMT model. Further, when computing γ and δ, we remove
outliers (e.g., wrongly matched sentence pairs) following the
pre-filtering rules described in [21].

Table I reports the obtained results. As baselines for compar-
ison, we consider the 2 single-device approaches, i.e., the sce-
narios in which all 100k inputs are processed in the GW or in
the server. Moreover, to have an ideal lower bound on latency,
we consider an Oracle policy capable of always selecting the
fastest inference device, without being affected by the sources
of sub-optimality of C-NMT, such as the imperfect N-to-M
regression, the linear Texe model, the outdated Ttx estimates,

etc. Lastly, we compare C-NMT against a CI strategy that uses
the same mapping policy, but simply assumes M equal to the
average output length of the reference dataset when estimating
Texe. We call this approach Naive, and we use it to show the
positive impact of N-to-M mapping in C-NMT. The results in
the table are reported as percentage variations in the total ex.
time for the 100k inferences, with respect to the 3 baselines
(single devices and Oracle), where negative/positive numbers
indicate an ex. time reduction/increase respectively.

The results show that, by mapping each translation either
to the GW or to the server based on the input and (predicted)
output lengths, C-NMT is able to significantly reduce the
execution time compared to purely edge-based and cloud-
based approaches. The total time reduction is up to 26%,
44% and 36% respectively for DE-EN, FR-EN and EN-ZH
translations. As expected, the benefit of C-NMT w.r.t to a
cloud based approach is larger with the first connection profile
(CP1), which is slower on average, and therefore makes cloud
offloading sub-optimal except for very long sentences, most
of the time. The opposite reasoning applies to the comparison
with a pure edge computing approach.

Also expectedly, the overhead of C-NMT w.r.t. an Oracle
policy are larger for the EN-ZH transformer than for the two
RNNs. This is because, as analyzed in Sec. II-A, decoding
dominates the total latency of Transformers-based NMT on
GPU platforms. Therefore, the Texe estimate for this type of
model relies more heavily on the unknown M , thus suffering
more from the approximated N-to-M mapping. Lastly, C-NMT
is significantly more effective than the Naive approach (up to
21% larger ex. time reduction for the DE-EN dataset), except
for EN-ZH translation with CP2, where the two approaches
achieve very similar results.

IV. CONCLUSIONS

We have presented C-NMT, the first collaborative inference
framework for NMT applications based on deep learning. We
have tested our approach on RNNs and Transformers, the
two state-of-the-art architectures for this type of problem,
demonstrating significant execution time reductions (up to
44%) with respect to any static mapping solution. Future
works will focus on the study of more advanced output length
estimation methods.
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