POLITECNICO DI TORINO

Repository ISTITUZIONALE

A note on the distribution of weights of fixed-rank matrices over the binary field

Original
A note on the distribution of weights of fixed-rank matrices over the binary field / Sanna, Carlo. - In: FINITE FIELDS AND THEIR APPLICATIONS. - ISSN 1071-5797. - STAMPA. - 87:(2023), p. 102157. [10.1016/j.ffa.2022.102157]

Availability:
This version is available at: 11583/2974495 since: 2023-01-11T07:48:42Z
Publisher:
Elsevier

Published
DOI:10.1016/j.ffa.2022.102157

Terms of use.

This article is made available under terms and conditions as specified in the corresponding bibliographic description in the repository

Publisher copyright
Elsevier preprint/submitted version
Preprint (submitted version) of an article published in FINITE FIELDS AND THEIR APPLICATIONS © 2023,
http://doi.org/10.1016/j.ffa.2022.102157
(Article begins on next page)

A NOTE ON THE DISTRIBUTION OF WEIGHTS OF FIXED-RANK MATRICES OVER THE BINARY FIELD

CARLO SANNA ${ }^{\dagger}$

Abstract

Let \mathbf{M} be a random $m \times n$ rank- r matrix over the binary field \mathbb{F}_{2}, and let wt (\mathbf{M}) be its Hamming weight, that is, the number of nonzero entries of \mathbf{M}.

We prove that, as $m, n \rightarrow+\infty$ with r fixed and m / n tending to a constant, we have that $$
\frac{\mathrm{wt}(\mathbf{M})-\frac{1-2^{-r}}{2} m n}{\sqrt{\frac{2^{-r}\left(1-2^{-r}\right)}{4}(m+n) m n}}
$$ converges in distribution to a standard normal random variable.

1. Introduction

Let \mathbb{F}_{q} be a finite field of q elements and, for every matrix \mathbf{M} over \mathbb{F}_{q}, let $\mathrm{wt}(\mathbf{M})$ be the Hamming weight of \mathbf{M}, that is, the number of nonzero entries of \mathbf{M}.

Migler, Morrison, and Ogle [1] proved a formula for the expected value of $w t(\mathbf{M})$ when \mathbf{M} is a random $m \times n$ rank- r matrix over \mathbb{F}_{q} taken with uniform probability. Moreover, they suggested that if $m, n \rightarrow+\infty$, with fixed r and q, then $\mathrm{wt}(\mathbf{M})$ approaches a normal distribution; and they made some considerations on the cases $r=1,2$ (see Remark 1.1 below).

We prove the following result.
Theorem 1.1. Fix a positive integer r and a real number $\rho>0$. Let \mathbf{M} be a random $m \times n$ rank-r matrix over \mathbb{F}_{2} taken with uniform probability. Then, as $m, n \rightarrow+\infty$ with $m / n \rightarrow \rho$, we have that

$$
\frac{\mathrm{wt}(\mathbf{M})-\frac{1-2^{-r}}{2} m n}{\sqrt{\frac{2^{-r}\left(1-2^{-r}\right)}{4}(m+n) m n}}
$$

converges in distribution to a standard normal random variable.
It might be interesting to strengthen Theorem 1.1 by letting also r goes to infinity, but sufficiently slowly in terms of m and n. Furthermore, one could consider analogs of Theorem 1.1 for matrices over an arbitrary finite field \mathbb{F}_{q}, or over rings such as $\mathbb{Z} / n \mathbb{Z}$ (for a suitable definition of the rank). Then, instead of the Hamming weight, one could more generally consider the number of entries of \mathbf{M} that are equal to a prescribed fixed element.

Remark 1.1. Theorem 3 in [1] asserts that the weight distribution of $m \times n$ rank- 1 matrices over \mathbb{F}_{q} approaches a normal distribution as $m, n \rightarrow+\infty$. However, the proof provided in [1] is incorrect since, in order to apply the central limit theorem, it assumes that the random variables $X_{i} Y$ are independent, while in fact they are not (they are all multiple of the same random variable Y).

2. Preliminaries

Hereafter, let m, n, r be positive integers with $r \leq \min (m, n)$. For every field \mathbb{K}, let $\mathbb{K}^{m \times n}$ be the vector space of $m \times n$ matrices with entries in \mathbb{K}, and let $\mathbb{K}^{m \times n, r}$ be the set of matrices $\mathbf{M} \in \mathbb{K}^{m \times n}$ such that $\operatorname{rank}(\mathbf{M})=r$.

[^0]The following lemma regards the so-called "full rank factorization" of matrices and it is well known (cf. [2, Theorem 2]). We give a short proof for the sake of completeness.
Lemma 2.1. Let \mathbb{K} be an arbitrary field. For every $\mathbf{M} \in \mathbb{K}^{m \times n, r}$ there exist $\mathbf{X} \in \mathbb{K}^{m \times r, r}$ and $\mathbf{Y} \in \mathbb{K}^{r \times n, r}$ such that $\mathbf{M}=\mathbf{X Y}$. Moreover, if $\mathbf{M}=\mathbf{X}^{\prime} \mathbf{Y}^{\prime}$ for some $\mathbf{X}^{\prime} \in \mathbb{K}^{m \times r, r}$ and $\mathbf{Y}^{\prime} \in \mathbb{K}^{r \times n, r}$, then there exists $\mathbf{R} \in \mathbb{K}^{r \times r, r}$ such that $\mathbf{X}^{\prime}=\mathbf{X R}$ and $\mathbf{Y}^{\prime}=\mathbf{R}^{-1} \mathbf{Y}$.

Proof. Pick \mathbf{X} has a matrix whose columns form a basis of the column space of \mathbf{M}. Note that indeed $\mathbf{X} \in \mathbb{K}^{m \times r, r}$. Since each column of \mathbf{M} can be uniquely written as a linear combination of the columns of \mathbf{X}, we get that $\mathbf{M}=\mathbf{X Y}$ for a unique $\mathbf{Y} \in \mathbb{K}^{r \times n}$. Therefore, we have that

$$
\operatorname{rank}(\mathbf{Y})=\operatorname{rank}(\mathbf{X Y})=\operatorname{rank}(\mathbf{M})=r
$$

and so $\mathbf{Y} \in \mathbb{K}^{r \times n, r}$. If $\mathbf{M}=\mathbf{X}^{\prime} \mathbf{Y}^{\prime}$ for some $\mathbf{X}^{\prime} \in \mathbb{K}^{m \times r, r}$ and $\mathbf{Y}^{\prime} \in \mathbb{K}^{r \times n, r}$, then the columns of \mathbf{X}^{\prime} form a basis of the column space of \mathbf{M}. Hence, there exists $\mathbf{R} \in \mathbb{K}^{r \times r, r}$ such that $\mathbf{X}^{\prime}=\mathbf{X R}$. Consequently, we have that

$$
\mathbf{X} \mathbf{Y}=\mathbf{M}=\mathbf{X}^{\prime} \mathbf{Y}^{\prime}=\mathbf{X R} \mathbf{Y}^{\prime}
$$

By the uniqueness of \mathbf{Y}, we get that $\mathbf{Y}=\mathbf{R} \mathbf{Y}^{\prime}$ and so $\mathbf{Y}^{\prime}=\mathbf{R}^{-1} \mathbf{Y}$.
We identify \mathbb{F}_{2} with $\{0,1\}$ and we let \oplus and \otimes denote the addition and multiplication of \mathbb{F}_{2}, respectively. The next lemma relates the operations of \mathbb{F}_{2} with the usual addition and multiplication of \mathbb{N}.

Lemma 2.2. Let $a_{1}, \ldots, a_{r} \in \mathbb{F}_{2}$. Then:
(i) $\bigotimes_{k=1}^{r} a_{k}=\prod_{k=1}^{r} a_{k}$ and
(ii) $\bigoplus_{k=1}^{r} a_{k}=\sum_{\substack{\mathcal{S} \subseteq\{1, \ldots, r\} \\ \mathcal{S} \neq \varnothing}}(-2)^{|\mathcal{S}|-1} \prod_{k \in \mathcal{S}} a_{k}$.

Proof. Claim (i) is obvious. For claim (ii), let $\mathcal{T}:=\left\{k \in\{1, \ldots, r\}: a_{k}=1\right\}$. Then

$$
\bigoplus_{k=1}^{r} a_{k}=\left\{\begin{array}{ll}
1 & \text { if }|\mathcal{T}| \text { is odd } \\
0 & \text { if }|\mathcal{T}| \text { is even }
\end{array}=\frac{\left((1-2)^{|\mathcal{T}|}-1\right)}{-2}=\sum_{\substack{\mathcal{S} \subseteq \mathcal{T} \\
\mathcal{S} \neq \varnothing}}(-2)^{|\mathcal{S}|-1}=\sum_{\substack{\mathcal{S} \subseteq\{1, \ldots, r\} \\
\mathcal{S} \neq \varnothing}}(-2)^{|\mathcal{S}|-1} \prod_{k \in \mathcal{S}} a_{k},\right.
$$

as desired.
In what follows, let $\mathbf{X} \in \mathbb{F}_{2}^{m \times r}$ and $\mathbf{Y} \in \mathbb{F}_{2}^{r \times n}$ be independent uniformly distributed random matrices. Moreover, for each $\mathcal{S} \subseteq\{1, \ldots, r\}$, let

$$
X_{\mathcal{S}}:=\sum_{i=1}^{m} \prod_{k \in \mathcal{S}} x_{i, k} \quad \text { and } \quad Y_{\mathcal{S}}:=\sum_{j=1}^{n} \prod_{k \in \mathcal{S}} y_{k, j}
$$

and let also

$$
Z:=\sum_{i=1}^{m} \prod_{k=1}^{r}\left(1-x_{i, k}\right) \quad \text { and } \quad W:=\sum_{j=1}^{n} \prod_{k=1}^{r}\left(1-y_{k, j}\right)
$$

where $x_{i, j}$ and $y_{i, j}$ are the entries of \mathbf{X} and \mathbf{Y}, respectively.
We shall need the following two lemmas.
Lemma 2.3. We have

$$
\mathrm{wt}(\mathbf{X Y})-\frac{1}{2} m n=\sum_{\mathcal{S} \subseteq\{1, \ldots, r\}}(-2)^{|\mathcal{S}|-1} X_{\mathcal{S}} Y_{\mathcal{S}}
$$

Proof. By Lemma 2.2, we get that

$$
\mathrm{wt}(\mathbf{X Y})=\sum_{i=1}^{m} \sum_{j=1}^{n} \bigoplus_{k=1}^{r}\left(x_{i, k} \otimes y_{k, j}\right)=\sum_{i=1}^{m} \sum_{j=1}^{n} \bigoplus_{k=1}^{r} x_{i, k} y_{k, j}=\sum_{i=1}^{m} \sum_{j=1}^{n} \sum_{\substack{\mathcal{S} \subseteq\{1, \ldots, r\} \\ \mathcal{S} \neq \varnothing}}(-2)^{|\mathcal{S}|-1} \prod_{k \in \mathcal{S}} x_{i, k} y_{k, j} .
$$

Hence, since the empty product is equal to 1 , we obtain that

$$
\begin{aligned}
\mathrm{wt}(\mathbf{X Y})-\frac{1}{2} m n & =\sum_{i=1}^{m} \sum_{j=1}^{n} \sum_{\mathcal{S} \subseteq\{1, \ldots, r\}}(-2)^{|\mathcal{S}|-1} \prod_{k \in \mathcal{S}} x_{i, k} y_{k, j} \\
& =\sum_{\mathcal{S} \subseteq\{1, \ldots, r\}}(-2)^{|\mathcal{S}|-1} \sum_{i=1}^{m} \prod_{k \in \mathcal{S}} x_{i, k} \sum_{j=1}^{n} \prod_{k \in \mathcal{S}} y_{k, j}=\sum_{\mathcal{S} \subseteq\{1, \ldots, r\}}(-2)^{|\mathcal{S}|-1} X_{\mathcal{S}} Y_{\mathcal{S}},
\end{aligned}
$$

as claimed.
Lemma 2.4. We have

$$
\begin{gathered}
\mathrm{wt}(\mathbf{X Y})-\frac{1-2^{-r}}{2} m n=\sum_{\mathcal{S} \subseteq\{1, \ldots, r\}}(-2)^{|\mathcal{S}|-1}\left(X_{\mathcal{S}}-2^{-|\mathcal{S}|} m\right)\left(Y_{\mathcal{S}}-2^{-|\mathcal{S}|} n\right) \\
-\frac{1}{2} n\left(Z-2^{-r} m\right)-\frac{1}{2} m\left(W-2^{-r} n\right)
\end{gathered}
$$

Proof. From Lemma 2.3 and the identity

$$
X_{\mathcal{S}} Y_{\mathcal{S}}=\left(X_{\mathcal{S}}-2^{-|\mathcal{S}|} m\right)\left(Y_{\mathcal{S}}-2^{-|\mathcal{S}|} n\right)+2^{-|\mathcal{S}|} n X_{\mathcal{S}}+2^{-|\mathcal{S}|} m Y_{\mathcal{S}}-2^{-2|\mathcal{S |}|} m n
$$

it follows that

$$
\begin{align*}
& \mathrm{wt}(\mathbf{X Y})-\frac{1}{2} m n=\sum_{\mathcal{S} \subseteq\{1, \ldots, r\}}(-2)^{|\mathcal{S}|-1}\left(X_{\mathcal{S}}-2^{-|\mathcal{S}|} m\right)\left(Y_{\mathcal{S}}-2^{-|\mathcal{S}|} n\right) \tag{1}\\
& \quad-\frac{1}{2} n \sum_{\mathcal{S} \subseteq\{1, \ldots, r\}}(-1)^{|\mathcal{S}|} X_{\mathcal{S}}-\frac{1}{2} m \sum_{\mathcal{S} \subseteq\{1, \ldots, r\}}(-1)^{|\mathcal{S}|} Y_{\mathcal{S}}+\frac{1}{2} m n \sum_{\mathcal{S} \subseteq\{1, \ldots, r\}}\left(-\frac{1}{2}\right)^{|\mathcal{S}|} .
\end{align*}
$$

Furthermore, we have that

$$
\begin{aligned}
\sum_{\mathcal{S} \subseteq\{1, \ldots, r\}}(-1)^{|\mathcal{S}|} X_{\mathcal{S}} & =\sum_{\mathcal{S} \subseteq\{1, \ldots, r\}}(-1)^{|\mathcal{S}|} \sum_{i=1}^{m} \prod_{k \in \mathcal{S}} x_{i, k} \\
& =\sum_{i=1}^{m} \sum_{\mathcal{S} \subseteq\{1, \ldots, r\}} \prod_{k \in \mathcal{S}}\left(-x_{i, k}\right)=\sum_{i=1}^{m} \prod_{k=1}^{r}\left(1-x_{i, k}\right)=Z,
\end{aligned}
$$

and similary for the third sum in (1); while the fourth sum in (1) is equal to $\left(1-\frac{1}{2}\right)^{r}=2^{-r}$.
Hence, we get that

$$
\mathrm{wt}(\mathbf{X Y})-\frac{1}{2} m n=\sum_{\mathcal{S} \subseteq\{1, \ldots, r\}}(-2)^{|\mathcal{S}|-1}\left(X_{\mathcal{S}}-2^{-|\mathcal{S}|} m\right)\left(Y_{\mathcal{S}}-2^{-|\mathcal{S}|} n\right)-\frac{1}{2} n Z-\frac{1}{2} m W+\frac{1}{2} 2^{-r} m n
$$

and the claim follows.
Lemma 2.5. We have that

$$
\mathbf{P}[\operatorname{rank}(\mathbf{X})=\operatorname{rank}(\mathbf{Y})=r] \rightarrow 1,
$$

as $m, n \rightarrow+\infty$ with r fixed.
Proof. It is well-known (see, e.g., [1, Formula 3]) that

$$
\left|\mathbb{F}_{2}^{m \times r, k}\right|=\prod_{i=0}^{k-1} \frac{\left(2^{m}-2^{i}\right)\left(2^{r}-2^{i}\right)}{2^{k}-2^{i}},
$$

for every nonnegative integer $k \leq r$. Therefore, we have that

$$
\mathbf{P}[\operatorname{rank}(\mathbf{X})<r]=\frac{1}{2^{m r}} \sum_{k=0}^{r-1}\left|\mathbb{F}_{2}^{m \times r, k}\right|<\sum_{k=0}^{r-1} 2^{r k-m(r-k)} \rightarrow 0
$$

as $m \rightarrow+\infty$ with r fixed. A similar reasoning gives that $\mathbf{P}[\operatorname{rank}(\mathbf{Y})<r] \rightarrow 0$, as $n \rightarrow+\infty$ with r fixed. The claim follows.

3. Proof of Theorem 1.1

Fix a positive integer r and a real number $\rho>0$, and assume that $m, n \rightarrow+\infty$ with $m / n \rightarrow \rho$. By Lemma 2.5, the probability that \mathbf{X} and \mathbf{Y} have ranks equal to r tends to 1. Moreover, by Lemma 2.1, under the condition that \mathbf{X} and \mathbf{Y} have rank r, the random variable $\mathbf{X Y}$ is uniformly distributed in $\mathbb{F}_{2}^{m \times n, r}$. Therefore, for the sake of proving Theorem 1.1, we can assume that $\mathbf{M}=\mathbf{X Y}$.

It can be easily checked that $X_{\mathcal{S}}$ and $Y_{\mathcal{S}}$ are binomial random variables of m and n trials, respectively, and probabilities of success equal to $2^{-|\mathcal{S}|}$. Similarly, Z and W are binomial random variables of m and n trials, respectively, and probabilities of success equal to 2^{-r}. For the sake of brevity, for each random variable T that has finite expected value and finite nonzero variance, we put $T^{\prime}:=(T-\mathbf{E}[T]) / \sqrt{\mathbf{V}[T]}$. Then, by the central limit theorem, we have that $X_{\mathcal{S}}^{\prime}, Y_{\mathcal{S}}^{\prime}, Z^{\prime}, W^{\prime}$ converge in distribution to some standard normal random variables, which we call $\hat{X}_{\mathcal{S}}, \hat{Y}_{\mathcal{S}}, \hat{Z}, \hat{W}$, respectively.

Morever, from Lemma 2.4, it follows that

$$
\begin{gather*}
\frac{\mathrm{wt}(\mathbf{M})-\frac{1-2^{-r}}{2} m n}{\sqrt{\frac{2^{-r}\left(1-2^{-r}\right)}{4}(m+n) m n}}=\sum_{\mathcal{S} \subseteq\{1, \ldots, r\}} \frac{(-1)^{|\mathcal{S}|-1}\left(1-2^{-|\mathcal{S}|}\right)}{\sqrt{2^{-r}\left(1-2^{-r}\right)(m+n)}} X_{\mathcal{S}}^{\prime} Y_{\mathcal{S}}^{\prime} \tag{2}\\
-\frac{Z^{\prime}}{\sqrt{1+m / n}}-\frac{W^{\prime}}{\sqrt{1+n / m}} .
\end{gather*}
$$

Since $X_{\mathcal{S}}^{\prime}$ and $Y_{\mathcal{S}}^{\prime}$ are independent, their product converges in distribution to the product $\hat{X}_{\mathcal{S}} \hat{Y}_{\mathcal{S}}$. Therefore, from Slutsky's theorem, we get that the sum in (2) converges in distribution to the constant 0 . Consequently, the sum in (2) converges in probability to the constant 0.

Since Z^{\prime} and W^{\prime} are independent and $m / n \rightarrow \rho$, we get that

$$
\begin{equation*}
\frac{Z^{\prime}}{\sqrt{1+m / n}}+\frac{W^{\prime}}{\sqrt{1+n / m}} \rightarrow \frac{1}{\sqrt{1+\rho}} \hat{Z}+\frac{1}{\sqrt{1+1 / \rho}} \hat{W} \tag{3}
\end{equation*}
$$

in distribution. Also, since Z^{\prime} and W^{\prime} are independent, it follows that the right-hand-side of (3) is a standard normal random variable. Hence, again from Slutsky's theorem, we obtain that the left-hand-side of (2) converges in distribution to a standard normal random variable.

The proof is complete.

References

1. T. Migler, K. E. Morrison, and M. Ogle, How much does a matrix of rank k weigh?, Math. Mag. 79 (2006), no. 4, 262-271.
2. R. Piziak and P. L. Odell, Full Rank Factorization of Matrices, Math. Mag. 72 (1999), no. 3, 193-201.

Department of Mathematical Sciences, Politecnico di Torino
Corso Duca degli Abruzzi 24, 10129 Torino, Italy
Email address: carlo.sanna@polito.it

[^0]: 2010 Mathematics Subject Classification. Primary: 15B52, 11T99 Secondary: 15B33, 05A16.
 Key words and phrases. binary matrix; Hamming weight; normal distribution; random matrix; rank.
 \dagger C. Sanna is a member of GNSAGA of INdAM and of CrypTO, the group of Cryptography and Number Theory of Politecnico di Torino.

