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Abstract We experimentally demonstrate a nonlinear digital pre-distorter for PAM-M shaping in 

VCSEL+MMF IM-DD links able to operate at a generic baud rate using a fractional sample-per-symbol 

Neural Network. We focus on efficient and practical multi-rate operation, signal amplitude constraints, 

and linear equalizer at the receiver. 

Introduction 
Data Centers Interconnects (DCI) internal traffic 
is continuously growing, requesting a continuous 
increase in short-reach optical links data rates. 
Marketwise, about 50% of these DCI internal 
optical links are still using Multi-Mode Fibers 
(MMF) [1] and Vertical-Cavity Surface-Emitting 
Lasers (VCSEL) due to their high-power 
efficiency and significantly low manufacturing 
chip cost, and they exploit Intensity Modulation-
Direct Detection (IM-DD) On-Off Keying (OOK). 
Focusing on MMF lengths around 100 m, there is 
today a growing interest to find solutions targeting 

100+ Gbit/s per  using multilevel Pulse 

Amplitude Modulation (PAM) formats. To 
counteract the resulting bandwidth limitations 
and nonlinear distortions affecting MMF-VCSEL 
links at high data rates, linear and nonlinear 
equalization technologies have been widely 
investigated in recent years based on different 
Digital Signal Processing (DSP) techniques [2]. 
While part of the research is currently focused on 
nonlinear post-equalizers at the receiver (RX) 
[3,4], significant attention was also put on Digital 
Pre-Distorters (DPD), able to pre-equalize before 
transmission (TX), as nonlinear equalization DSP 
algorithms are usually easier to implement at the 
TX (on noiseless PAM-M) than at the RX. 

Besides the choice of the DPD typology, 
implementable either using Look-Up Tables [5,6], 
Volterra-series [7], or Neural Networks (NN) [8], 
another important issue is choosing the strategy 
used to optimize/train them. While the Indirect 
Learning (ILA) and Direct Learning Architecture 
(DLA) are the two mainly adopted strategies for 
training [7,9-11], several alternatives were also 
investigated, such as DPDs optimization based 
on reinforcement learning [12] or End-to-End 
(E2E) learning [13-16]. The latter approach, 
where the DPD is jointly optimized with the post-
equalizer as a unified autoencoder [17], 
theoretically leads to the “absolute” optimal 
performance under specific physical constraints, 
such as bounded VCSEL input and different 
Baud Rate, DAC and ADC sampling frequency. 
In fact, in this paper we propose a DPD 

optimization method whose novelty resides in 
natively taking into account different sampling 
rates for different parts of the DSP. In particular, 
our proposal can handle generic non-integer (but 
rationale) ratios among baud rate D, DAC 

sampling rate fDAC and ADC sampling rate fADC 

(i.e., dealing with a non-integer number of 
samples per symbol in both the TX and RX DSP). 

We thus show a novel E2E Neural Network 

(NN) architecture able to be optimized through 

forward and backward propagation at the 

aforementioned multiple sampling frequencies. 

Our method is capable to synthesize a nonlinear 

NN DPD that encodes PAM-M symbols into 

signals with an arbitrarily fractional sample-per-

symbol (sps) ratio, natively fulfilling the amplitude 

constraints imposed at the DAC output and 

VCSEL input. We demonstrate the proposed 

DSP on an experimental VCSEL-MMF IM-DD 

setup at 100+ Gbit/s bit rate per , showing that 

this DPD approach can provide a significant BER 

performance gain compared to a system using 

only feed-forward equalizer (FFE) at the RX side. 

We use a VCSEL with  𝐵3𝑑𝐵
𝑜𝑝𝑡.

=20 GHz and Pout=5 

mW and OM4 MMF fiber. 

The proposed approach for DPD optimization 

In this section, we outline a practical sequence of 

steps toward the optimization of the proposed 

fractionally spaced NN DPD in an experimental 

setup. In our notation in the rest of the paper, as 

shown in Fig. 1, for each discrete sequence, we 

add a subscript on its discrete-time index n to 

recall its related sampling frequency fs (i.e., fs =D 
→ nD, fs = fDAC → nDAC, fs = fADC → nADC). Moreover, 

the ratio between the involved sampling rates 

must be rationale. For instance, as in one of our 

experiments, D=50 GBaud, fDAC =92 GSa/s, and 

fADC=200 GSa/s. 

1) received signal acquisition, denoising and 

noise spectral estimation. We start our DPD 

optimization procedure by measuring several 

periods (~1000) of pseudo-random PAM-M 

signal at the RX. The obtained sequence 𝑦[𝑛𝐴𝐷𝐶], 
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is averaged over the PRBS repetitions, to obtain 

a denoised version 𝑦̅[𝑛𝐴𝐷𝐶], which is subtracted 

to each period of the original RX signal, to obtain 

an estimation of the receiver noise as the residual 

signal 𝑟[𝑛𝐴𝐷𝐶] = 𝑦[𝑛𝐴𝐷𝐶] − 𝑦̅[𝑛𝐴𝐷𝐶]. 
2) Multi-rate Channel modelization and colored 

noise filter design: The channel deterministic 

transformation (i.e., linear and nonlinear 

VCSEL+MMF induced distortions) is modeled 

through the optimization of a multi-rate neural 

network (see Fig. 1), that taking as input the 

transmitted sequence 𝑥[𝑛𝐷𝐴𝐶], is trained to output 

the signal 𝑦̂[𝑛𝐴𝐷𝐶] as a mimimum mean-square 

error (MSE) estimate of  𝑦̅[𝑛𝐴𝐷𝐶] (equivalently to 

the DLA first optimization step[11]). The 

VCSEL+MMF model is composed (in DSP) by a 

polyphase resampler cascaded to a Feed-

Forward Neural Network (FFNN), whose inputs 

are the entries of a digital delay line, and with a 

linear output activation. For receiver noise 

modeling, we start from a White Gaussian 

random generator injected into an FIR filter 

whose transfer function fits the Power Spectral 

Density (PSD) estimated on the previously 

described signal 𝑟[𝑛𝐴𝐷𝐶]. 
3) E2E Multi-rate optimization: based on the 

FFNN channel model found in the previous point, 

we then move to the E2E multi-rate system 

optimization (see again Fig. 1(a)), where a multi-

rate DPD is trained jointly with a 2 sps RX FFE 

equalizer. The DPD outputs a signal whose 

sampling rate is the same as the DAC rate and 

has a limited peak-to-peak swing compatible with 

the VCSEL allowable input. This signal amplitude 

limitation is key to our NN optimization, and it is 

natively taken into account in the back-

propagation algorithm. This last optimization is 

performed using a Stochastic Gradient Descent 

algorithm, minimizing the following MSE: 

MSE = E[|𝑎[𝑛𝐷 − 𝐿] − 𝑎̂[𝑛𝐷]|2] (2) 

where 𝐷 is the Baud rate, 𝑎[𝑛𝐷 − 𝐿] is the multi-

rate DPD input delayed by the E2E system 

latency L (in symbols) and 𝑎̂[𝑛𝐷] is the FFE 

output decimated by a factor 2.  

Our E2E optimization uses a specific 

backpropagation algorithm, which extends the 

one originally proposed in [18] to work at several 

sampling rates. While in the forward direction the 

signal propagates through a polyphase 

resampler and gets up-sampled, then passes 

through the antialiasing FIR filter and is then 

decimated, the relative loss gradient is back-

propagated in a symmetric fashion. In fact, the 

time-dependent loss derivative can be 

mathematically interpreted as a signal that gets 

up-sampled, backward filtered and decimated 

changing its sampling rate reciprocally to the 

forward propagated signal. 

As another novelty of our approach, aimed at 

efficient convergence, the receiver noise is not 

added as a time-domain signal at the FFE input, 

but it is added semi-analytically as an additive 

regularization term [19] in the FFE’s Stochastic 

Gradient Descent (SGD) update.  

Finally, since DPD’s amplitude constraint tends to 

penalize outer PAM-M levels, we introduce an 

optimization heuristic that gives them higher 

weights in the error function compared to the 

inner PAM-M levels. 

Experimental setup 
Tab. 1: E2E system parameters 

TX DPD FFNN depth: 1 hidden layer (ReLU) 

TX DPD FFNN input/hidden size 21 taps/neurons 

Channel FFNN depth: 1 hidden layer (ReLU) 

Channel FFNN input/hidden size 61 taps/neurons 

RX FFE length: 31 taps 

RX Noise FIR length: 61 taps 

A schematic of the experimental setup is 

illustrated in Fig. 1(b). In the training phase, a 

PAM-M sequence of period equal to 215 symbols 

is generated using an Arbitrary Waveform 

Generator (AWG) with sampling rate fDAC=92 

GSample/s and DAC peak-to-peak voltage DAC-
vpp = 700 mV (i.e., the maximum allowed). After 

9 mA of bias current addition (i.e. the optimal 

value for BER performances without DPD), the 

signal is injected into an 850 nm VCSEL  

(~14 𝑚𝐴𝑝𝑝 modulated current). The emitted light 

Figure 1: An overall schematic of the nonlinear predistortion experiment. On the upper part (a) the End-to-end multi-rate system. 

On the lower part (b) the experimental VCSEL-MMF IM-DD link. After DPD optimization, the pre-distorted PAM-M signal can be 

directly transmitted from the AWG. RF: Radio Frequency; DC: Direct Current; PD: Photo-Diode; TIA: Trans-Impedance Amplifier.  



is then collimated using a free-space lens setup 

into a 125 m long OM4 fiber and then converted 

to electric current by a PIN photodiode. Finally, 

the signal was acquired by a Real-Time 

Oscilloscope (RTO) with a sampling frequency 

equal to fDAC=200 GSample/s. The DSP internal 

parameters are reported in Table 1. The multi-

rate channel has been trained using an entire 

period of the transmitted sequence (215 symbols). 

The E2E optimization was then performed using 

1e5 PAM-M symbols, generated from a second 

random sequence different and decorrelated 

from the transmitted one.  

Results and discussion 
After training different DPDs to be used for 
several bit rates and for both PAM-4 and PAM-8 
modulations, we experimentally measure the 
resulting BER on a third PAM-M sequence with a 
period equal to 216 symbols (completely 
decorrelated from the other sequences to avoid 
NN overfitting issues). For comparison, we also 
measured the performances when the DPD is not 
applied, shaping the symbols with a Gaussian 
filter (with f3dB= 0.75∙D). We use the maximum 

allowed DAC-vpp=700 mV in both cases, training 

the FFE for 2e5 symbols and testing 5e5 symbols 
over 5 different measurements. Moreover, to get 
the best performances without DPD, we 
measured BER also when reducing the swing to 

500 mV in the non-pre-distorted scenario. In fact, 
we experimentally observed that for higher baud 
rates, the nonlinear distortions cause the main 
impairments to the signal: reducing DAC-Vpp 
thus gives advantages when DPD is not applied. 
In Fig. 2, the resulting BER versus Bit Rate is 

reported for the three considered scenarios, 
showing that our proposed nonlinear DPD 
method outperforms in all circumstances the best 
performances achieved without DPD. Using 
PAM-4, the DPD gives a performance gain of 
nearly 14 Gbps for a BER=1e-3 and more than 17 

Gbps for a BER=1e-2. Moreover, using PAM-8, it 

is possible to transmit at more than 150 Gbps for 
a BER=1e-2, where the best non-pre-distorted 

scenario can reach up to 140 Gbps. To better 
observe the effects of the DPD on the transmitted 
signals, in Fig. 3 we show the distribution of the 

received symbols after the FFE in the three 
scenarios for both PAM-4 and PAM-8 at D=56 

GBaud and D=46 GBaud, respectively. It can be 

seen that the distortions nonlinearly broaden the 
Gaussian distributions around their nominal 
PAM-M levels when the DPD is not applied, and 
this especially affects the two lower PAM-M 
levels. Reducing the DAC-vpp only mitigates this 

nonlinear effect. Applying instead the nonlinear 
DPD effectively overcomes this issue, 
diminishing the overall noise+Inter-symbol 
Interference impairments: the distributions 
around nominal levels in Fig. 3 are in fact 
significantly reduced when applying the DPD. 
Discussion and Conclusion 
In this paper we illustrated a general optimization 
method, based on an E2E system working at 
several sampling rates, to train a fractional sps 
nonlinear DPD natively fulfilling the amplitude 
constraints of an optical VCSEL-MMF IM-DD link 
and the multiple sampling rates. The proposed 
method enables in our experiments to reach 
150Gbit/s (PAM-8 after 125m OM4 at BER=10-2) 

using a 20-GHz VCSEL. In the latter condition, 
the DPD FFNN natively works at 1.84 sps ratio, 

performing ~850 multiplications per symbol 

(mps): as a comparison, using a more 
conventional 2-sps Volterra Nonlinear DPD with 
the same memory and order equal to 2 or 3 would 
require respectively 1150 mps or 13800 mps[20]. 
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Figure 3: Distributions of the received symbols after FFE for: 

(a) PAM-4; (b) PAM-8. Red histograms: no DPD, maximum 

voltage swing; Blue histograms: no DPD, reduced swing; 

Green histograms: DPD applied. 

Figure 2: BER versus Bit Rate curves after 125m OM4 MMF, transmitting (a) PAM-4 and (b) PAM-8 signals over the experimental 

transmission system. Red curves: no DPD, maximum voltage swing (700 mV); Blue curves: no DPD, reduced voltage swing (500 

mV); Green curves: DPD applied, maximum voltage swing (700 mV). Inset figures: (a) Optical Channel transfer function; (b) Power 

Spectral Density (PSD) normalized w.r.t DC component of RX signal before and after denoising.  
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