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ABSTRACT In this work an NTT-based (Number Theoretic Transform) multiplier for code-based Post-
Quantum Cryptography (PQC) is presented, supporting Quasi Cyclic Low/Moderate-Density Parity-Check
(QC LDPC/MDPC) codes. The cyclic matrix product, which is the fundamental operation required in this
application, is treated as a polynomial product and adapted to the specific case of QC-MDPC codes proposed
for Round 3 and 4 in the National Institute of Standards and Technology (NIST) competition for PQC. The
multiplier is a fundamental component in both encryption and decryption, and the proposed solution leads to
a flexible NTT-basedmultiplier, which can efficiently handle all types of required products, where the vectors
have a length ≈ 104 and can be moderately sparse. The proposed architecture is implemented using both
Field Programmable Gate Array (FPGA) and Application Specific Integrated Circuit (ASIC) technologies
and, when compared with the best published results, it features a 10 times reduction of the encryption times
with the area increased by 3 times. The proposed multiplier, incorporated in the encryption and decryption
stages of a code-based PQC cryptosystem, leads to an improvement over the best published results between
3 to 10 times in terms of LC product (LUT times latency).

INDEX TERMS Number theoretic transform, accelerator, convolution, polynomial product, applied
cryptography, post-quantum cryptography, QC-MDPC codes, hardware design, ASIC, FPGA.

I. INTRODUCTION
Post-QuantumCryptography (PQC) is nowadays a promising
research field that aims at improving the security of currently
adopted cryptosystems. Indeed, a new approach in Public
Key Cryptography is required to handle the threats posed by
Quantum Computers [1].

The advancements in the field of computation capabilities
of modern computers and quantum technologies impose to
reconsider the way communication and data are encrypted
and keys are exchanged. As pointed out in [1], primitives
currently employed in Asymmetric Cryptography, which are
fundamental to establish a secure channel, are proved to
be broken by a quantum computer executing the algorithms
presented in [2] and [3]. Asymmetric Cryptography is also

The associate editor coordinating the review of this manuscript and

approving it for publication was Stavros Souravlas .

referred to as Public Key Cryptography, and it uses a pair
of keys, the Secret Key (SK) and the Public Key (PK).
The Secret Key is generated and then the Public key is
easily obtained, but the reverse of the function is hard to
obtain by using conventional computing. However, this is
not the case if a quantum computer is available. As an
example, the algorithm presented in [2] and a quantum
computer would make it possible to quickly solve the prime
factorization problem in the RSA (Rivest–Shamir–Adleman)
cryptosystem, so compromising its security. Additionally, in a
symmetric system, like the widely used AES-128 system,
the Grover quantum algorithm halves its security level, thus
requiring to double the size of the keys [4].

PQC addresses the study and implementation of new
asymmetric cryptosystems able to overcome these security
issues in the next future. In this scenario, theNational Institute
for Standardization (NIST), in 2016, launched a competition
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to find a new standard for Public Key Cryptography. The
best proposals rely on functions that are proven to be hard
to reverse, NP-hard problems, and admit efficient hardware
and software implementations.

The first cryptosystem based on error correcting codes
was proposed by McEliece, and uses Goppa codes [5], while
recent advancements employ Quasi-Cyclic Low/Moderate-
Density Parity-Check (QC LDPC/MDPC) codes, in order
to reduce the complexity and the memory requirements of
the whole system [6], [7]. The NIST competition has now
reached round 4, and three code-based cryptosystems are
still competing [8]: Classic McEliece [9], BIKE [10] and
HQC [11].

The polynomial product is one of the operations intensively
used in the encryption and decryption primitives of these
cryptosystems, including one of the winners of the selection
process in Public Key Encryption [12], [13]. Important
aspects that affect both computational complexity and latency
in polynomial multiplication are: the length of polynomials,
the number of non zero elements, and the type of coefficients.
In McEliece cryptosystems, based on LDPC/MDPC codes,
the encryption involves a dense variable, while the decryption
works on a sparse variable.

The main methods known in the literature for polynomial
product calculation are the Schoolbook, the Karatsuba [14]
and the Schönhage-Strassen [15] algorithms, which represent
the state of the art in this domain:

• The Schoolbook algorithm is widely adopted in systems
based on QC-LDPC/MDPC codes [16], [17], [18]. The
implementation efficiency of this approach strongly
depends on the density of the involved matrices: while
the efficiency is very good for a low density matrix,
it becomes rather poor when the density of the matrix
is large (as at the encoding side).

• The Karatsuba algorithm has a reduced time complexity,
if used to compute the polynomial products required
in the encryption [19], but its efficiency is drastically
reduced when applied in the decryption.

• The Schönhage-Strassen algorithm [20] can be imple-
mented to efficiently handle the sparse and medium
density vectors as well as the dense vectors. Therefore,
it is preferable as a solution applied to both encryption
and decryption.

This work presents a novel architecture supporting the
polynomial products involved both in the encryption and
in the decryption. The proposed multiplier is based on
the Number Theoretic Transform (NTT) and it has been
optimized for binary polynomial multiplications, where input
operands are binary and results can be either binary or integer.

The same datapath architecture operates with both sparse
and dense matrices. The proposed design has been synthe-
sized for both FPGA and ASIC technologies. Moreover, the
achieved results have been compared with state-of-the-art
architectures that were previously published for code-based
PQC and NTT multipliers able to support similar data sizes.

The work is organized as follows: in Section II, code-based
Cryptosystems are presented, while in Sections III and IV
the cyclic matrix product and the NTT-based multiplier are
described. The details of the proposed architecture are given
in Section V, and finally the results and the comparisons
against the state of the art are provided in Section VI.

II. CODE-BASED CRYPTOSYSTEMS
Code-based cryptosystems adopt error correcting codes to
encrypt a secret message. In communication systems, error
correcting codes are commonly employed to remove the
errors caused by a noisy channel; on the contrary, in code-
based cryptography, errors are intentionally inserted at the
encoding (encryption) side and then corrected at the decoding
(decryption) side.

The security is mainly guaranteed by the complexity of
the decoding of a codeword: with t errors and without
knowing the decoding matrix, the problem is proven to be
NP-hard [21].

In this approach, the encryption PK and decryption SK
keys are the encoding and decoding matrices of an LDPC
code:G, the generator matrix andH, the parity check matrix.
The structure of theHmatrix isH = [H0,H1, . . . ,Hn0−1],

where each block (0 to n0 − 1) is a binary square cyclic
matrix with dimension N and dv is the weight of each
column; therefore, the matrix H has size (N ,N · n0).
h = [h0, . . . ,hn0−1] indicates the first row in H. The G
matrix is obtained as G = H−1n0−1 · H = [IN ,Gl], where
IN is the identity matrix of size N , l = n0 − 1, Gl is a quasi
cyclic matrix with density at most dv × dv, and it is the result
of H−1n0−1 · [H1, . . . ,Hn0−1]. We also use gl to refer to the
first row of G. The encoding adds redundancy to the input
vectorm, of length N · (n0− 1), such that the encoded vector
c (the codeword), with length N ·n0, satisfies the set of parity
equations, defined by the matrix H.

Since PK and SK are large, cyclic matrices are adopted
to reduce the memory requirement. The structure of a cyclic
matrix is:

A =


a0 an−1 an−2 . . . a1
a1 a0 an−1 . . . a2
a2 a1 a0 . . . a3
...

...
...

. . .
...

an−1 an−2 an−3 . . . a0

 (1)

The first column of A, denoted as a (the first row is aT ),
is sufficient to describe the whole matrix. Moreover, since
the codes are sparse/moderate sparse, only few elements of
the row are asserted. Hence, only the positions of the ones in
a, instead of the complete column, can be stored to reduce the
memory footprint. Therefore, to describe matrices H and G,
we only store the asserted positions of the h and gl vectors.

A. ENCRYPTION
The encryption starts from the secret message, m, encoded
withG into c. The error e is a binary vector with lengthN ·(n0)
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and t positions asserted. Thus, the encryption can be written
as:

x = m ·G⊕ e. (2)

It is worth noting that the ⊕ operations is the sum in the
Galois fieldGF(2), thus, the error flips t bits of the codeword,
c = m ·G.

The codeword c satisfies the parity equations defined by
the code, and the errors introduced in c make some parity
equations unsatisfied.

B. DECRYPTION
The decryption removes the errors in x, in order to retrieve
the original message m. In LEDAcrypt and BIKE, the
iterative decoding is based on a modified Bit Flipping (BF)
algorithm [22]; in both schemes it has been designed such that
it is suitable for PQC. The decoder receives x and, by means
ofH, it evaluates the Syndrome (s) and the Unsatisfied Parity
Checks (upc), which are respectively the response to the
parity equations with the input x and the number of wrong
(unsatisfied) parity check equations, where each bit of x is
involved.

The bits with a value of upc over a specific threshold
(b) are flipped. The decoder iteratively evaluates s, upc and
flips specific bits until s becomes equal to 0 (vector with all
elements set to 0).

The LEDAcrypt and BIKE bit flipping based decoder is
reported in Algorithm 1, which incorporates two alternative
forms.

Algorithm 1 Bit Flipping Based Decoder

Input: ciphertext x0 ∈ FN2 , QC matrix H ∈ FN×n0N2 ,
Input: maximum number of iterations Itmax ∈ N
Output: secret message m or decoder failure
Initialization: It = 0, e0 = 0 ∈ Fn2
1: sIt = H · (xIt )T F Syndrome Evaluation
2: while It < Itmax or sIt = 0 do
3: upcIt = sIt ·H F UPC Evaluation
4: bIt = f (sIt ) F Flip Condition
5: for i ∈ [1, n] do
6: eIti = eIti ⊕ 1
7: end for F Error Position Selection
8: xIt+1 = xIt ⊕ eIt F Error Correction

〈sIt+1e = H · (eIt )T 〉 F Syndrome Correction
9: sIt+1 = H · (xIt+1)T F Syndrome Evaluation

〈sIt+1 = sIt ⊕ sIt+1e 〉 F Syndrome Update
10: It = It + 1 F Increase iteration counter
11: end while
12: if sIt = 0 then
13: return m F Decoding is successful
14: else
15: decoding failure
16: end if

Both LEDAcrypt and BIKE algorithms use the function
f (·) to evaluate the threshold bIt (line 4). Alternative options
to implement this function have been proposed in [10]
and [23].

As said, the algorithm can be written in two variants: in the
first one, the processing tasks at lines (8) and (9) are executed
(Error Correction and Syndrome Evaluation). Alternatively,
the correction step can be applied to the syndrome, by first
computing the Syndrome Correction, sIt+1e = H · (eIt )T ,
and then the Syndrome Update, sIt+1 = sIt ⊕ sIt+1e . This
alternative form is shown in Algorithm 1 using the italic
font and angle brackets. At the end of the algorithm, if the
syndrome is zero or the maximum number of iterations is
reached, then the algorithm stops.

As it can be observed, both encryption and decryption need
multiplications: in particular, c at the encryption side, and
s and upc in the decryption procedure are obtained as the
results of products involving a QC matrix. Given the cyclic
structure showed in (1), this product operation is referred to
as cyclic matrix product.

In order to obtain an efficient bit flipping decoding,
an effective implementation of the cyclic matrix product is
required. The proposed multiplier assumes the parameters
listed in Table 1, which are derived from the LEDAcrypt [24]
and BIKE [10] proposals.

TABLE 1. QC-MDPC McEliece crytopsystems parameters, with n0 = 2.

III. CYCLIC MATRIX PRODUCT
The generic cyclic matrix multiplication is intended as the
product r = v · A between a 1 × N vector v =
[v0, v1, . . . , vN−1] and a N × N cyclic matrix A.

The result of the multiplication is computed as

r0 = v0 · a0 v1 · a1 . . . vN−1 · aN−1
r1 = v0 · a1 v1 · a0 . . . vN−1 · a2
r2 = v0 · a2 v1 · a1 . . . vN−1 · aN−3
... =

...
...

. . .
...

rN−1 = v0 · aN−1 v1 · aN−2 . . . vN−1 · a0
(3)

A. POLYNOMIAL PRODUCT AND INTEGER
MULTIPLICATION
The vectors a and v can be seen as polynomials with
coefficients ai and vi. The same description holds for the
product A · v, and the result in Equation (3) is equivalent
to r = aT · V. Thus, the techniques applied in polynomial
and integer multiplication can be applied to the cyclic matrix
product in LEDAcrypt and BIKE.
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FIGURE 1. Complexity comparison among Schoolbook, Karatsuba and
Schönhage–Strassen algorithms.

The choice among the best known polynomial product
algorithms mentioned in Section I can be made based
on time complexity and implementation complexity. The
metric one can use to evaluate the time complexity is the
number of element-wise multiplications, which depends on
the length of the polynomials (N ). By using the big O
notation, the time complexity of the Schoolbook, Karatsuba
and Schönhage–Strassen algorithms can be expressed as
O(N 2),O(N log2 (3)) [14], andO(N ·log (N )·log (log (N ))) [25]
respectively (Figure 1).

LEDAcrypt and BIKE algorithms include cyclic products
with a binary cyclic matrix, where N ≈ 104. Therefore,
both the Karatsuba and Schönhage–Strassen algorithms are
preferable in terms of time complexity. Between these
two options, we choose the Schönhage–Strassen algorithm
because of its lower time complexity, especially with sparse
matrices [19], [20], [26].

IV. NTT BASED CIRCULANT MATRIX PRODUCT
The Schönhage-Strassen algorithm [25] is based on the
convolution theorem. Given a vector y and a cyclic matrix X,
the cyclic matrix product y · X is equivalent to the cyclic
convolution (conv) between x and y, where x is the first
column of X:

z = conv(x, y) = y · X (4)

By defining X , Y and Z as the frequency-domain
representations of signals x, y and z respectively, (4) can be
replaced with the element-wise multiplication:

Z = X � Y . (5)

Thus, if one applies known algorithms to calculate the
direct Fourier Tranform (DFT (·)) and the inverse Transform
(IDFT (·)), then (4) can be rewritten as:

z = conv(x, y) = IDFT (DFT (x)� DFT (y)) (6)

The direct Fourier Transform is conveniently replaced with
the Number Theoretic Transform (NTT) [27], as it is
specifically suited to transform and process integer vectors
without using floating point numbers and exploiting modular
arithmetic. Generally, an NTT-based multiplier involves the
transform of the input values, x and y, into X and Y , their
element-wise multiplication, and the inverse transform to
obtain z.

The NTT for the integer vector x is defined as

X (k) =
N−1∑
i=0

(x(i) · αik ) mod P, (7)

where N is the length of x; α and P are referred to as radix
and modulus, respectively.

The values of α and P depend on N and have to be selected
such that:

• The overflow condition does not occur during the
computation of the convolution; thus, P must be larger
thanM2N , withM being the largest integer in the input
signals (it is ’1’ for binary vectors).

• Pmust be a number for which we can define a primitive
root of unity r .1

• α is a function of r and P; if P is in the form kN + 1,
we have α = rk mod P.

Any prime value of P in the form kN + 1, for which
a primitive root of unity can be found, is valid; then α is
simply equal to rk mod P. The condition on P restricts the
possible values that can be employed, but, in general, it is not
mandatory for P to be prime and a low value of P has the
advantage of reducing the size of the operators in the NTT.

In this work, the NTT-based multiplier is conceived for
the length and type of vectors employed in LEDAcrypt and
BIKE cryptosystems, which use binary vectors. In the case
of the decoder, the involved operands are the ciphertext, x =
[x0, x1], and s, plus the first row of the H matrix, SK in the
Decoder, h = [h0, h1]. The QC-MDPC codes adopted here
are block codes, with n0 block, then the variable x andH have
a block structure.

As for the encoder, the operands are m and gl . It is worth
noting that the length of the vectors, as it is clear from
Table 1, is not a power of two; instead, these lengths are prime
numbers. In order to meet the NTT requirement, the vector
length is extended by means of different padding approaches
described in the following. Moreover, the sparsity of h is
exploited by the NTT-sparse algorithm, in order to reduce the
overall execution time.

The algorithm flow of the convolution-based multiplier
is shown in Figure 2. Since h is sparse, it is firstly padded
with a specific algorithm and then transformed by the NTT-
sparse algorithm, whereas for x a trivial padding is applied
and then it is transformed by the usual NTT algorithm; the
two transforms are then element-wise multiplied and finally

1A primitive root of unity is any number such that rx mod P = 1 and
ry mod P 6= 1 for any y < x [27].
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FIGURE 2. Convolution-based multiplication for Syndrome Evaluation.

FIGURE 3. The NTT parameters compared in terms of length of the
polynomial (N) and value of M.

the inverse transform (INTT) is computed to provide the
syndrome s.

Code-based PQC is not the only field in which the
NTT algorithm is required. It appears in a variety of
applications and the parameters of the involved polynomials
strongly depend on the domain. In the cryptography domain,
we can distinguish between two main applications: Fully
Homomorfic Encryption (FHE) and PQC. The difference in
the parameters is presented in Figure 3 where, despite Lattice
Based and Code-based cryptosystems are PQC primitives,
their values for N , M , and P are quite different.

In the following, the NTT and NTT-sparse algorithms
are described, as key elements in the implementation of the
multiplication in (4), where x is the sparse vector, y the
dense vector, and z the result. At the decoding side, the two
algorithms are applied to the evaluation of s and upc. At the
encoding side, only the NTT algorithm is required, as both
vectors are dense.

A. ALGORITHMS FOR NTT COMPUTATION
The well-known radix-2, Cooley-Tuckey, decimation-in-
frequency FFT structure, composed by several butterfly units
(see Figure 4) is used to efficiently implement the NTT. The
equation (7) can be rearranged as

X (k) =
N/2−1∑
j=0

x(2j)α(2j)k mod P

+

N/2−1∑
j=0

x(2j+ 1)α(2j+1)k mod P (8)

FIGURE 4. The basic butterfly unit. The input v0(1) is multiplied by the
twiddle factor W0(1) and the outputs are v1(0) = v0(0)+ v0(1) ∗W0(1),
and v1(1) = v0(0)− v0(1) ∗W0(1).

Figure 5 gives the structure of the butterfly graph to
compute the NTT of a vector x. The N = 8 example shows
the sequence of multiplications and additions/subtractions
computed in each stage of the NTT computation, and all of
them are implemented with the basic block in Figure 4. The
input vector x (listed in bit reverse order) is renamed as vj(i),
where the index j = 0, 1, 2 is referred to the computation
stage and i = 0, . . . , 7.

In a straightforward approach, the whole graph is com-
puted uniformly, with the same processing extended to
all stages. However, the computation can be drastically
simplified if a sparse input vector is received, where most of
the elements are equal to 0. It is convenient, for sparse vectors,
to process the asserted positions as separate values in the
NTT-graph, by propagating them independently of the others.
In the basic unit of Figure 4, no computation is needed if the
inputs are 0, and reduced complexity calculations are possible
when a single input is asserted: v1(0) = W0(1)v0(1) and
v1(1) = −W0(1)v0(1), when v0(0) = 0; or v1(0) = v1(1) =
v0(0) when v0(1) = 0 (where Wl(j) indicates the twiddle
factor at stage l and position j, corresponding to values α(2j)k

and α(2j+1)k in Equation (7)).
To exploit these simplifications, in our approach, the

NTT stages are split in two ranges: a sparse NTT com-
putation is applied from the input up to a limit stage
(llim); then, the asserted values are merged and the normal,
dense NTT computation is applied for the remaining
stages.

In the example of Figure 5, most of the inputs are 0, except
v0(3) and v0(4) (asserted positionPosx = [3, 4]). Since stages
l = 0 and l = 1 work on vectors having several elements
equal to 0s, in this case, llim = 2, and the sparse computation
is limited to stages l = 0 and l = 1. As it can be observed, the
asserted element v0(3) occupies a single position at stage l =
0. When this input propagates to stage l = 1, two values need
computation and four positions must be computed at stage
l = 2.

The computation required at each propagation of an
asserted value is based on the binary representation of the
input positions of the asserted inputs. For example, for the
asserted input v0(3), the binary representation of position 3 is
[0, 1, 1]. Every bit in this representation refers to a butterfly
stage, with the least significant bit corresponding to the first
stage. A bit equal to 0 implies that the corresponding value
only needs to be copied to the two butterfly outputs; on the
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FIGURE 5. 8-points NTT with asserted bit propagation highlighted. The
sparse and dense stages are divided by a bold line. The base butterfly
unit is highlighted for v0(3) propagation to stage l = 1.

contrary, a bit equal to 1 implies that both outputs of the
butterfly must be calculated in the simplified form. Thus,
for the asserted input v0(3) of Figure 5 with binary position
[0, 1, 1], we have a 1 at both stages l = 0 and l = 1. At stage
l = 0 one multiplication and one subtraction are required
to compute the two output values v1(2) = W0(3)v0(3) and
v1(3) = P − W0(3)v0(3). The same kind of processing
is needed at stage l = 1, where two multiplications are
performed and four values are computed as v2(0), v1(0),
P−v2(0) andP−v1(0). A different computation is done on the
asserted element v0(4), having binary position [1, 0, 0]. In this
case, we have bits equal to 0 for both stages l = 0 and l = 1;
therefore, just replica of the asserted inputs are required at the
butterfly outputs. Indeed, at stage 2, the same value, v2(4),
appears in positions from 4 to 7.

Because of the linearity of the NTT, the simplified
computations required for each asserted input can run inde-
pendently of the others, as a separate transform contribution.
When the llim stage is reached, the separate transforms
are merged and the computation proceeds with the normal,
dense NTT. In same cases, the merge operation is as simple
as the plain concatenation of values at stage llim: this is
the case for the example in Figure 5, where single values
are available at the output of stage 1 in every position;
therefore, they are concatenated to form the 8-input vector
for the last stage. In other cases, multiple values are available
for a position at the boundary between sparse and dense
computation, because of the separate contributions derived
with the described procedure. Under this case, the merge
operation needs a sum of the multiple values at a given
position, before concatenation. An example of this second
case is shown in Figure 6, where the asserted inputs v0(2)
and v0(3) are independently processed, leading to multiple
contributions, which are added at the input of the last
stage.

FIGURE 6. Sparse algorithm with the occurrence of two consecutive
asserted bits. The following elements are computed separately and then
merged at stage llim.

Algorithm 2 NTT, Sparse Computation
Input: Posx , asserted position in x,
Input: llim, the limit Stage,
Output: SX, Sparse Transform of x;
1: for iv = 1 : nze do
2: PosBin = to_bin(Posx(iv))
3: for l = 0 : llim do
4: SXold (iv) = SX(iv)
5: nop = 2l

6: for k = 1 : nop do
7: if PosBin(l) = 1 then
8: SX(iv, 2k) = Wl SXold (iv, k)
9: SX(iv, 2k + 1) = P−Wl SXold (iv, k)

10: else
11: SX(iv, 2k) = SXold (iv, k)
12: SX(iv, 2k + 1) = SXold (iv, k)
13: end if
14: end for
15: end for
16: end for

In a more formal way, the proposed approach can be
described with the pseudo-code in Algorithm 2, where the
received inputs are: the sparse stage limit llim, the number of
non-zero elements nze, and their positions in vector x, named
Posx . The binary representation of these positions is reported
as PosBin, and the single bit in the binary pattern is indicated
as PosBin(l) for stage l. Based on the value of PosBin(l), two
possible operations are performed:

1) If PosBin(l) = 1, a multiplication and a subtraction are
executed to update the butterfly outputs;

2) If PosBin(l) = 0, the first butterfly input is simply
copied to the two outputs.
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At every stage in the range 0 to llim, the computed transform
contributions are in a matrix SX(iv, k), this is updated at every
stage (l) and its rows, iv = 0 . . . nze correspond to the
asserted positions; the columns, k , are at most 2llim .
Later, in Section V, the multiplication by the twiddle factor

(the blu circle in Figure 4) is indicated as MPY, while ADD and
SUB correspond to the red and yellow boxes, respectively.

B. MODULAR ARITHMETIC AND NTT COMPUTATION
Modular arithmetic is fundamental in the computation of
the NTT. The result of every addition, or subtraction must
be in the range [0,P − 1], thus, if the value is outside
[0,P − 1], supplemental computation is needed to adapt
the result. Modular multiplication is similar, but it is more
complex, as the result is the reminder of the division between
the product and P. To have an efficient implementation,
the division must be avoided, and this can be achieved by
adopting the Montgomery reduction method [28], which
exploits a support modulo R, to be conveniently selected.

Let us consider the product a · b = c, where a
and b, the operands, and c, the result, are in the range
[0,P− 1]. To calculate the multiplication, the operands must
be converted to the Montgomery form [29]. The modulus
is evaluated with respect to a number R selected such that
R > P and GCD(R,P) = 1. The conversion is performed
by means of a multiplication by an integer yR ∈ [0,R − 1],
selected s.t. P · yR = −1 mod R.; thus, the equivalent of a
in the Montgomery form is am = (a · R) mod P. Similarly,
bm = (b · R) mod P.

Then, the Montgomery multiplication takes place accord-
ing to Algorithm 3.

Algorithm 3Montgomery Multiplication
Input: integer factors of the multiplication, am, bm;
Input: integer yR;
Output: product in Montgomery format, cm;
1: x = am · bm F Product
2: xR = x mod R FModular Reduction with R
3: s = (xR · yR) mod R
4: cR = (x + s · P)/R
5: if cR < P then
6: cm = cR
7: else
8: cm = cR − P
9: end if

Notice that, if R is conveniently selected as a power
of 2, then only multiplications by constants, bit shifting
and bit masking operations are required in lines 2 to 4 of
Algorithm 3. The result must be converted back from
Montgomery to integer domain, which requires additional
complexity. If this method is applied to compute a single
operation, the input and output conversions introduce a
relevant computational overhead, which limits the advantage
of the overall approach. However, since the Montgomery

method preserves the distributive property, it is not required
to apply the conversion to each single operation; thus, only
NTT inputs and INTT outputs are converted, instead.

C. PADDING
If the size of the inputs is not a power of 2, then a
proper padding is required. Alternatively, in the case of an
input vector length that is a prime number, the Bluestein
algorithm [30] could be used. This method efficiently
computes the NTT of a prime length vector with a time
complexity of N logN ; however, it does not support sparse
vectors.

Two padding methods have been selected in this work:
the PrimePadding applied to a and the ZeroPadding applied
to x. It is convenient to apply the PrimePadding to the sparse
vector, such that its sparsity remains unchanged, while the
dense vector is padded with zeros to reduce the complexity
of the computation.

1) PRIMEPADDING
The PrimePadding vector extension [30], is based on the idea
of extending a, the first row of A, to a′ such that A′, the new
matrix, is still circulant and contains A. The extension takes
a vector of length N and provides a vector of length N ′, with
N ′ > N and N ′ a power of 2.
An example of the PrimePadding extension is showed in

(9) for the extension from N to N ′, with dN = N ′ − 2N ,
applied to the first column in matrix A given in (1).[

a0 . . . aN − 1 0 . . . 0 aN − 1 . . . a1
]

(9)

The extension of the base vector consists in concatenating dN
zeros and then the mirrored N − 1 elements of a on the right
part of the vector.

The PrimePadding is applied to vector x, the sparse
vector in Equation (4). In the complete cryptosystems, this
corresponds to the first row in matrices H and HT and to the
error vectors eIt .

2) ZEROPADDING
The ZeroPadding is applied to vector x, in Equation (4). The
dense vector, in the cryptosystem, are the message m and the
encoding matrix G.

The whole convolution operation requires the first N
components of the output vector. The idea is shown in
(10), where the multiplication is the Syndrome evaluation
(s = H · x) in the Decoder,

(10)
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FIGURE 7. Data Path with elements for Sparse-NTT computation included. The MPY and ADD/SUB represents the basic units, in the complete architecture
nu elements has been instantiated.

In (10), the original circulant matrix is highlighted with a
red square, while the dashed orange box represents the first
row of the matrix, properly padded with the PrimePadding
technique. Similarly, the input vector (blue box) has been
zero-padded to N ′. For the result we need to consider only
the first N components,

(11)

which are highlighted in green in (11).
The advantage of this padding technique is that the matrix

is still sparse and N ′ −N elements of the input vector are set
to zero, which allows skipping part of the computation.

V. ARCHITECTURE
The NTT-based multiplier architecture handles four opera-
tions to compute the convolution: the sparse NTT compu-
tation, the dense NTT, the element wise multiplication and
the INTT. These four elements of the computation involve
multipliers and adders, as arithmetic units.

The whole architecture is divided in Data Path, Control
Unit and Memory. To save complexity, part of the Data Path
and part of the Memory are shared among the four mentioned
operations.

The NTT and INTT coefficients are in the form αik mod
P; they are pre-computed and stored in two dedicated
ROMs, referred to as Direct Constant Memory and
Inverse Constant Memory.

The intermediate values, involved in the computation of
the product, are stored in only two dedicated RAMs, named
Complete RAM 1 and2, that serve the twoNTT, the INTT
and the element wise product. The sparse NTT needs two
additional memories to store the expanded positions: these
are the Starting ROM and the Sparse RAM.

The core element in the Data Path is the butterfly unit
of Figure 4, which includes one multiplier, one adder and
a subtracter. The parallelism of the Data Path is nu = 8;
thus, 8 computations are handled at the same time. The basic
elements of the Data Path are showed in Figure 7, and will be
detailed in the following sub-sections.

The Control Unit (CU) is quite complex due to the presence
of shared arithmetic units and memories. A hierarchical
organization has been adopted in order to simplify the control
(Figure 8).
The Master control unit handles three separate con-

trollers, which manage the three main operations of the
multiplier, the Sparse NTT, the Dense NTT and the
INTT (plus the element wise product). Two additional control
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FIGURE 8. Control Unit hierarchical organization.

FIGURE 9. The content of Starting ROM.

units regulate the access of the MPY and ADD/SUB units to
the RAM memories, where the input and output values are
stored and to the ROM memories containing the direct and
inverse twiddle factors.

A. SPARSE-NTT
The Sparse-NTT controller has the most complex behaviour
when compared to the conventional NTT and INTT. The
computation is split in two phases. Initially, as described in
Algorithm 2, the asserted inputs are individually processed
and stored; then, after the merging, data are processed as
dense vectors.

According to the architecture in Figure 7, the sparse
execution works as follows: the asserted position in the
sparse vector, Posx(iv), is used to address the Starting
ROM memory, which contains the pre-computed transform
values for stage lp = log2(nu) = 3. Let us assume that
a single input is asserted within each block: in this case,
a single ’1’ is received, located at any position from 0 to
nu − 1. For each input, the resulting values up to stage lp
are stored in the memory with nu rows, corresponding to the
location of the input ’1’. As an example, Figure 9 shows the
content of the Starting ROM for the case of asserted v0(3)
(Figure 5).

The selected row is stored in Sparse RAM, where the
asserted position is expanded to stage l = llim. The value of
Posx(iv) is received by the Sparse NTT controller, which
is in charge of:

• providing the correct value of the addresses to Sparse
RAM;

• requesting the constants to Direct/Inverse
Constant Memory through theDirect/Inverse
Constant Management;

• executing the MPY then ADD/SUB;
• updating and expanding the content of the memory with
the results of MPY and ADD/SUB.
The MPY and ADD/SUB receive the inputs from
Sparse RAM and at each evaluation the control unit
updates and expands the content of the memory.

The Sparse RAM contains nze rows with the asserted
positions expanded up to stage llim; the expansion has length
2llim . The next step merges the values from Sparse RAM
to Complete RAM 1. The memory contains the transform
of the sparse input vector x, from Equation (4) up to stage
llim expressed as a vector. This memory content is then used
by the Dense-NTT controller, which starts at stage llim + 1.
The vector length is N ′: it is initially reset to 0 and then each
expanded Posx is assigned to an interval of the complete N ′

vector; when two positions point to the same interval, they
are summed together.

B. DENSE-NTT
The Dense-NTT controller evaluates the transform of the
sparse vector from stage llim and the complete transform
of the dense vector. As shown in Figure 7, the complete
transform of the dense vector has Complete RAM 1
as input and output of the computation. The Dense-NTT
takes in input the vector of length N ′ and evaluates its
transform at stage llim + 1, the vector is updated ‘‘nu =
8 elements at time’’, until all N ′ elements of the transform are
computed.

The Dense-NTT controller provides the addresses for
memory Complete RAM 1 that contains the inputs of the
nu MPY; the twiddle factors are provided by the Direct
Constant Management given the stage and the nu
section of the complete N ′ that is processed. The updated
values are obtained after the ADD/SUB is evaluated and
stored in Complete RAM 1.
The transform of the dense vector is computed from stage

l = 0 up to the end via the Dense-NTT, and the result is
stored in Complete RAM 2. The processing is the same as
the one described for stages l > llim in sparse vector.

The transform of the sparse vector is in Complete
RAM 1 and the transform of the dense vector is in
Complete RAM 2.

C. ELEMENT WISE MULTIPLICATION
The element wise multiplication evaluates the product
between the transforms stored in Complete RAM 1 and
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FIGURE 10. Direct/Inverse Constant Management.

in Complete RAM 2. The computation involves the MPY
units, with one input from Complete RAM 1 and the
second input from Complete RAM 2 (see Figure 7). Since
the data stored in Complete RAM 2 are not needed in
the following steps, they are overwritten with element wise
multiplication results.

D. DENSE-INTT
This part of the system drives the inverse transform of the
values stored in Complete RAM 2. The inverse transform
works in a similar way as the Dense-NTT, under control
of the Dense INTT controller. The inputs of the MPY
are read from Complete RAM 2 and the twiddle factors
are provided by the Inverse Constant Management
that is in charge of accessing Inverse Constant
Memory.

E. TWIDDLE FACTOR MANAGEMENT
The twiddle factors are pre-computed and stored in dedicated
memories. However, in the sparse processing, they are
accessed according to a different procedure than in the dense
case. The input twiddle factors for the MPY (the constants)
in the Sparse and Dense NTT and INTT are provided by the
the Direct Constant management for the NTT and
the Inverse Constant management for the INTT,
respectively. These units are connected to the memories,
Inverse Constants Memory which store the twiddle
factors.

As shown in Figure 10, the memories are organized in
4 blocks, referred to as Constants %4 = i (with i =
0, 1, 2, 3). In order to reduce the latency, nu constants are
read in parallel from the memories and forwarded to the nu
multipliers MPY. The Direct Constant Management
controller is in charge of driving the multiplexers and both
the Register File (RF) and Buffer units in order
to effectively provide constants for both the Sparse and
Dense-NTT; the execution is performed such that, while the
constants loaded in Buffer feed the MPY, the Direct
Constant Management controller loads the next set of
constants in RF.

FIGURE 11. Shared resources usage during the intermediate evaluations
of the NTT-based multiplier.

F. USE OF MAIN HARDWARE RESOURCES
The units in the Data Path and memory elements have been
widely reused during the NTT-based multiplication between
sparse and dense vectors.

The evolution of the resource use is shown in Figure 11 that
shows which unit is active in each stage of the computation.
The usage of the arithmetic units is highlighted in orange.
As for the RAM components, the use is in light-blue when
only read operations are involved (Direct Constant
Memory and Inverse Constant Memory), and in
light-blue/red color when the same memory is used for both
read and write operations.

VI. IMPLEMENTATION RESULTS
The NTT-based multiplier has been implemented as an ASIC
component, using Synopsys Design Compiler and the UMC
65 nm technology; the same architecture has also been
implemented for an Artix-7 200 FPGA target, using Vivado.

A. ASIC RESULTS
TheASIC synthesis results are reported in Table 2 and include
the occupied area A, when the clock period is set to tck = 5 ns
(column 3), the shortest achievable clock period tck,min before
obtaining a negative slack (column 4), and the occupied
area Af when the shortest clock period is set as a constraint
(column 5). The critical path, with the longest combinatorial
delay, is found within the element wise multiplier and it
depends on the choice of the modulus P, since P affects the
size of the arithmetic units.

The Table also provides the percentage area and delay
differences with respect to the synthesis case with clock
period set to 5 ns: for a large N ′, the feasible increment of
the clock frequency is higher than the corresponding area
penalty.

It is worth mentioning that the area occupation is referred
to a flexible kind of polynomial multiplier that performs the
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TABLE 2. ASIC synthesis results for the UMC 65 nm technology. dv = 10.
Percentage delay and area values are given with respect to the reference
synthesis with constraint tcp = 5 ns.

TABLE 3. FPGA resource utilization with Artix-7 200. The operating
frequency is set to 100 MHz and dv = 10.

product of binary vectors and computes the result either in
GF(2) or in the integer field.

B. FPGA RESULTS
The FPGA synthesis results are reported in Table 3 for several
choices of the input vector length (N ), while the density of
the vector is set dv = 10. The critical path has been set to
10 ns in order to enable a fair comparison against published
implementations, where the same constraint was imposed.
It has been verified that the effect of the density on the
number of required resources is negligible. In the Table, N ′ is
the length of the input vector extended with PrimePadding,
as defined in Section IV-C1. Columns 2-6 provide the
required number of hardware resources, namely Look-Up
Tables (LUT), Flip-Flops (FF), Block RAMs (BRAM), and
arithmetic processing units (DSP). It is worth noting that
the number of BRAMs increases almost linearly with N ′,
whereas the amount of allocated logic elements (LUTs and
FFs) is sub-linear with N ′, leading to hardware utilization
improvement.

C. LATENCY
The multiplier latency is reported in Table 4 in terms of
number of clock cycles, for a few choices of vector length
and sparsity. The last two columns also show the latency
value inms, assuming for each case the corresponding highest
clock frequency in the ASIC and FPGA synthesis. From
Table 4, it can be noticed that the latency scales linearly
with N ′, while it scales logarithmically with the matrix
density.

VII. COMPARISON
The latency values provided in Table 4 include three
components deriving from the three fundamental processing

TABLE 4. The execution time with different length N ′ and density (dv ).
The results are provided in terms of both number of clock cycles and ms,
assuming the largest achievable clock frequency.

TABLE 5. QC-MDPC encoding time in terms of number of clock cycles and
corresponding amount of allocated LUTs.

parts: i) the transform of the two input operands to the
frequency domain, ii) the element-wise multiplication, and
iii) the final inverse-transform. However, in LEDAcrypt
and BIKE decoders for PQC, the result of a cyclic
product frequently becomes the input of another cyclic
product. In such cases, it is convenient to keep the
results in the frequency domain and avoid unnecessary
transforms and inverse-transforms. Therefore, a comparison
among complete systems that incorporate the polynomial
product as one of the key operations is more meaning-
ful than the comparison between standalone multiplier
components.

In this paper, we consider the use of the NTT-based
multiplier in the context of a PQC application, encompassing
both encryption and decryption. We assume the adoption of
the QC-MDPC McEliece crytopsystem with the parameters
given in Table 1.

The encoding part requires one cyclic multiplication with
two dense vectors, as in (2), and the sum with the error
vector. For these operations, Table 5 reports both the latency
(expressed as the total number of required clock cycles)
and the complexity (limited for simplicity to the number
of allocated LUTs) when using the proposed NTT-based
architecture and three alternative multipliers from the recent
literature.

For the implementation in [17], the reported numbers of
cycles are derived from the available formulas. The number
of LUTs in [18] is referred to the whole system for the
parallelism set to nu = 8. In [19], the area and execution
time are related to a multiplier suitable for binary polynomial
multiplication, as necessary in the LEDAcrypt and BIKE
encoders. An additional implementation proposed in [16] has
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TABLE 6. The clock cycles required in each iteration of the decoder.

not been included in Table 5 as it is referred to an encoder
with a sparse multiplication.

The NTT-based products in the decoder can be arranged
by exploiting the properties of the convolution, with the
purpose of reducing the overall complexity. The decoding
Algorithm 1 includes two multiplications in sequence,
at steps 1 (Syndrome Evaluation) and 3 (UPC Evaluation).
Therefore, in the first iteration, one transform can be saved
by computing the syndrome transform SIt as:

SIt = NTT (xIt )� NTT (h),

where h is the first row of matrix H. The evaluation of upcIt

is then

upcIt = INTT (SIt � NTT (hT )).

where hT is the first row of matrix HT . Thus, one inverse
transform can be saved in the first iteration.

The upcIt vector is processed in the time domain, since
the error position over the threshold has to be derived.
The threshold is computed from the Syndrome sum, in the
frequency domain, which corresponds to the value of SIt (0),
associated to αi·0 from Equation (7).

The error vector, eIt , in the time domain is transformed in
the frequency domain to E It with the Sparse-NTT Algoritm.

The syndrome vector is then updated by exploiting the
linearity of the transform, the updated syndrome is:

SIt+1 = SIt + E It mod P (12)

Then, as in the decoder Algorithm 1, after the check on the
syndrome weight a new iteration of the procedure starts.

The execution time of the first iteration is strongly reduced
if some NTT/INTT unnecessary transforms are skipped.
Moreover, the execution time for the remaining iterations is
further reduced because the transforms of hT and h, have
been already computed during the first iteration and one
Sparse-NTT transform is enough.

The resulting decoding execution time, with mixed fre-
quency and time domain computation, is reported in the
third column of Table 6, in terms of number of cycles.
The remaining columns give the same information for three
previous implementations, while the last row shows the
required number of LUTs.

TABLE 7. LC figure of merit for combined encoder and decoder:
comparison between the proposed solution and state-of-the-art
solutions.

In Table 6, the total numbers of clock cycles reported
in [17] and [18] have been scaled to have N = 12, 323 and
dv = 100, using the formulas provided in the two works.
When comparing the different decoder implementations,
one can see that the proposed solution achieves a similar
latency as [16] and [17] (nu = 32), while it is much
slower than [18]. In terms of LUTs, the proposed decoder
is better than [16], very similar to [18] and more expensive
than [17].

We now consider the implementation of the cyclic
multiplier in the context of a complete system, able to perform
both encoding and decoding, and supporting both binary and
integer formats. To compare the alternative implementations,
we introduce the LC figure of merit, defined as a latency-
complexity product, where the complexity C is given by the
global number of LUTs allocated in the synthesis of both
encoder and decoder, while the latency L is the execution time
(in s) evaluated for encoder and decoder, assuming for the
case N = 12, 323, dv = 100, a clock frequency of 100 MHz,
and Itmax = 6 (when possible the numbers are scaled tomatch
these requirements).

Although the proposed NTT-based multiplier is not the
best option when comparing standalone arithmetic units, the
results in Table 7 show that it is more efficient than the other
implementations proposed in the literature, when the unit is
used in a complete application, where the same component
must be exploited for multiple products in the encoding and
decoding stages, which are characterized by different data
formats and computational structures. As seen from Table 7,
the advantage in terms of LC product over the alternative
approaches grows quickly with the size of the problem: when
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N moves from 12,323 to 37,813, LC is 5 times the initial one.
Considering the same N our proposal is almost 7 times more
efficient when compared to [17] and 3 times more efficient
than [18]. Moreover, the increase of N takes advantage of
the Schonhage Stressen algorithm and makes out proposal
even more efficient. The reported LC figure for [16] is better
than all the other ones in Table 7; however, this comparison
is not fair, because the encoding in [16] involves a product
between a sparse vector and a dense vector, which drastically
simplifies the computation with respect to the considered
applications.

VIII. CONCLUSION
The NTT-based multiplier offers a series of advantages when
applied to code-based cryptosystems. One relevant advantage
is the logarithmic increase of the latency with the increase of
the density of the variables. This property is important for
the implementation of a McEliece Cryptosystem, where both
sparse and dense cyclic products are required. This advantage
is more relevant if the complete execution time is considered
for both encoder and decoder, which involve operands with
different density values.

Moreover, in the decoding procedure, the computation can
be arranged to skip or reduce several operations, leading
to a shorted execution time, in the computation of the
multiplication.

A second advantage is in its adaptability of the NTT-based
approach to different data types. This is particularly impor-
tant for the implementation of code-based cryptosystems,
where variables with different densities and coefficients
are used. The flexibility of the proposed solution is not
limited to LEDAcrypt and BIKE cryptosystems, but it
can be extended to other primitives in the PQC domain,
where the polynomial product plays a key role is several
primitives.

The present work proves that a NTT-based multiplier,
with proper design choices, is efficient for code-based Post-
Quantum Cryptography, making the proposed unit a valid
accelerator for different applications.
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