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A B S T R A C T

The study of solute transport in porous media is of interest in many chemical engineering systems. Some
example applications include packed bed catalytic reactors, filtration devices, and batteries. The pore scale
modeling of these systems is time consuming and may require large computing resources, for this reason
computational fluid dynamics (CFD) simulations are not practical if a large number of simulations is required,
like in multiscale modeling, where a model at a large scale calls for pore scale simulations. It has been shown
that neural networks can be trained with a dataset of flow simulations and then predict fields orders of
magnitude faster, and with less computational resources, in new domains. However, it is crucial to provide
the neural network with an effective description of the domain and the undergoing operating conditions to
be able to train models that generalize accurately in unseen samples. Therefore, research is needed to employ
neural networks in new complex systems. The appropriate training of a network for predicting coupled flow
and solute transport processes is an outstanding problem due to the complex interplay between geometry and
operating conditions. In this work, we train a multi scale convolutional neural network (MSNet) with a diverse
dataset of simulations of transport and chemical reaction in porous media to predict the local concentration
fields in images of porous media. Our dataset contains a wide diversity of sphere pack arrangements under
different operating conditions (Péclet and Reynolds numbers). We train a robust model by employing different
input descriptors that represent the medium and the different operating conditions of each system. Our trained
model is able to provide nearly instantaneous predictions, compared to around twenty hours of the CFD
workflow, with less than 3.5% error on new geometries and transport conditions. Thus the model could be
easily integrated in a multiscale workflow where fast response is needed.
. Introduction

Computational fluid dynamics (CFD) is a well-established modeling
pproach for flow and transport in porous media. Some classical appli-
ations in chemical and environmental engineering involving the mod-
ling of porous media systems include packed bed chemical reactors [1–
], aquifer remediation [5,6], subsurface flows [7], filtration [8–11],
nd separation devices [12,13]. In the last decade the contribution of
hemical engineering research towards new energy solutions has been
rucial in the field of carbon capture and storage [14–17], and batter-
es [18,19], where, at different scales, rocks and electrodes are modeled
s porous media. All these relevant applications require the modeling of
omplex phenomena through CFD simulations, that provide pore scale
ccurate solutions of the transport quantities of interest.

∗ Corresponding author.
E-mail address: agnese.marcato@polito.it (A. Marcato).

Depending on the complexity of the physical problem, and on het-
erogeneity and size of the domains, both meshing and the subsequent
simulation can be highly time consuming and computationally expen-
sive to run. For this reason, the use of high-performance computing
(HPC) systems is often required to solve the simulations in parallel.

When numerous simulations are needed (like in optimization algo-
rithms and in multiscale modeling [20–22]) or when real-time pre-
dictions are necessary (like in-line plant control [23]), it would be
extremely useful to have fast and accurate models to predict the sys-
tem behavior (or performance) based on locally changing microscale
conditions. Given the clear multi-scale nature of porous media trans-
port phenomena, historically a lot of effort went into the develop-
ment of such tools, differing widely in approach, from theoretical
Please cite this article as: Agnese Marcato, Chemical Engineering Journal, htt
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upscaling approaches to the development of phenomenological consti-
tutive equations.

An example of the first class of solutions, aside from well known
averaging procedures [24] is the analytical development of models by
means of asymptotic homogenization, which has enjoyed great success
in obtaining closed forms of macroscale transport equations [25,26]
but which suffer (due to the complicated analysis involved) in limits
to its applicability both in treatable geometrical structures [27] and
transport regimes [28]. Other approaches are based on building con-
stitutive equations from both empirical or computational results and
while they have been vastly employed in many different fields [29–
31], these relations are still prone to fail when the geometries be-
come random [32] and are hardly parametrizable [33]. Many solid
research works have thus focused on simpler models [34,35] and
even slightly more complicated pore/collector geometries have been
found to noticeably complicate things in terms of obtaining upscaled
laws [36].

Then, one alternative to the mentioned approaches, which is gaining
momentum in the last few years, is to train specific neural network
models in order to obtain these fast response surrogate models. How-
ever, as of now, problem-specific design choices have to be made to
identify the most suitable neural network architecture for each problem
to be solved.

In the porous media research, different kinds of neural networks
have been trained on datasets of physics-based simulations. Fully con-
nected neural networks have been employed for the prediction of
integral quantities, such as the permeability, from effective, hand-
picked features (such as the porosity or the surface area). This approach
can be found in literature [37,38], and in our earlier works for the
study of flow and transport in porous media [39,40]. These techniques
are effective and their training is easy to carry on, but the resulting
model is very sensitive to the choice of input parameters, since the
domain is described via upscaled parameters (say, porosity) that have
no way of relaying spatial heterogeneity. This choice relies both on
user expertise, and at least as importantly on their accurate calculation
from the system under investigation. Therefore, these models tend
to fail in heterogeneous domains (since the effective features are an
oversimplification) and cannot easily be transferred to a new dataset.

The increasing availability of GPUs (graphics processing units) and
open-source deep learning libraries have made the training of more
complex neural networks computationally feasible. The use of deep
learning techniques such as convolutional neural networks (CNN) ease
the choice of the right integral descriptors of the porous media since
the entire system geometry is fed to the network as an image, and
the network autonomously detects the most effective features for the
prediction of the objective output. It has to be remarked that this does
not result just in an automatic choice of relevant integral features, but
in a trained network that operates by ‘‘seeing’’ the system geometry and
is then able to make predictions based on the experience thus acquired.
Most of the works in the porous media field employed these techniques
to predict the medium permeability [41,42], whereas in our latest work
physics informed neural networks were employed to predict also other
relevant quantities in process engineering, such as the filtration rate
(or reaction rate) in porous media over a range of certain operating
conditions [43].

Given this context, what seems a natural evolution of this research
is to build CNN that can be employed to surrogate the microscale
local solution of the transport equations too. In fact, CNN with en-
coding and decoding architectures have been used to train surrogate
models able to predict the flow field in different microscale porous me-
dia systems [44–46] and for uncertainty quantification in macroscale
subsurface applications [47–51]. Our latest architecture, Multi Scale
Neural Network (MSNet) [52] came out to be a preferred alternative
to the previous ones, from both the computational point of view and,
2

notably, its generalization capability. In fact, it is possible to train the
network with larger geometric samples than what more classical ap-
proaches allow, which is fundamental when dealing with representative
elementary volumes of heterogeneous geometries and/or complicated
transport phenomena. This was possible thanks to the employment of
a series of different fully convolutional neural networks that focus on
different resolutions of the input features, each contributing to the final
prediction. This feature makes it able of understanding, and correlating,
transport phenomena at different length scales. In turn, this capability
of grasping the correlations between different scales is what makes the
network able to predict the flow fields in new geometries, different
from the ones learnt during the training.

Nonetheless, as the main effort in the last years was addressed to
the development of architectures for the microscale prediction of flow
fields, little was done to expand these methodologies to more complex
physical systems, which are of common experience in the chemical
engineering field.

The complexity does not arise only from the different prediction
objectives, but also from the kind of input necessary for the network.
When the main objective is the prediction of the permeability, as in the
above-mentioned studies, it can be evaluated from the prediction of the
flow fields. In laminar flow regime the permeability is just related to the
geometry of the porous media [53,54], so a dataset at constant pressure
drop is sufficient. Instead, in coupled flow and solute transport prob-
lems, different pressure drops (or other operating conditions) impact
the ultimate solute concentration field even if the flow regime does
not change. In this work we provide proof of the capability of these
CNN models to surrogate CFD simulations of transport and reaction
under a wide range of different transport conditions that are common
in chemical engineering problems.

Thus, the objective we set for this work was to obtain a net-
work able to predict concentration fields in porous media in the case
of a heterogeneous surface reaction (or equivalently filtration) when
dealing with a wide range of Reynolds and Péclet numbers. To this
end, we modified the original MSNet and trained it with a ‘‘ground
truth’’ dataset of CFD simulations of flow and reactive transport over
many geometrical realizations and different operating conditions. The
concentration fields to be predicted depend on the geometry, on the
pressure drop between input and output of the porous media, and on
the diffusion coefficient of the chemical species transported. Beyond
only having a working neural network for the solution of this problem,
we also propose a wide-ranging study of the different possible input
features employable, resulting in the best set of features that allows the
network to satisfactorily generalize its predictions to new geometries
and operating conditions.

For the interested reader (and to give a glimpse of the possible appli-
cation of the results we present in this work) we refer to the first Section
of the Supporting Information document. There, we detail a specific
multiscale problem (prediction of colloid filtration in different porous
media structures and under different conditions) and how specifically
this approach may help when the available constitutive equations fail.

2. Methods

In this section the governing equations and the computational setup
of the CFD simulations are detailed. Then the approach for the creation
of the dataset is described. Finally, a theoretical background about CNN
and the details about MSNet are reported.

2.1. Computational fluid dynamics simulations

The flow in porous media at the microscale, or pore scale, is gov-
erned by the continuity equation, Eq. (1), and the Navier–Stokes equa-
tion, Eq. (2). Under the hypotheses of incompressible and Newtonian
fluid those read as follows:
𝜕𝑈𝑖 = 0, (1)

𝜕𝑥𝑖
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𝜕𝑈𝑖
𝜕𝑡

+ 𝑈𝑗
𝜕𝑈𝑖
𝜕𝑥𝑗

= −1
𝜌
𝜕𝑝
𝜕𝑥𝑖

+ 𝜈
𝜕2𝑈𝑖

𝜕𝑥2𝑗
, (2)

where 𝑈𝑖 is the 𝑖𝑡ℎ component of the velocity, 𝑝 is the pressure, 𝜌 is the
fluid density, and 𝜈 is the kinematic viscosity.

The scalar transport of a species can be modeled by the advection–
diffusion equation, Eq. (3), if the species is considered to move with the
fluid at the same velocity. In this case the diffusion can be described
by the Fick’s law, and the equation reads:

𝜕𝐶
𝜕𝑡

+ 𝑈𝑖
𝜕𝐶
𝜕𝑥𝑖

= 𝜕
𝜕𝑥𝑖

(

 𝜕𝐶
𝜕𝑥𝑖

)

, (3)

where 𝐶 is the species concentration and  is its diffusion coefficient.
The modeling of transport by the advection–diffusion equation holds
for chemical species and colloids under the hypotheses of dilute sys-
tem and negligible particle Stokes number. In fact, colloids filtration
modeling by using the previous equations was explored together with
a detailed presentation of the validity of the hypotheses by Boccardo
et al. [32].

These equations were numerically solved by the finite volume
method implemented in the CFD open-source code OpenFOAM v7. First
the continuity and the Navier–Stokes equations are solved, then the
resulting velocity field is employed for the solution of the advection–
diffusion equation, so two subsequent CFD simulations are run to obtain
the steady-state concentration field — which is the prediction objective
of this work.

The geometries created for this work are bi-dimensional: given
a chosen porosity and their diameter, a number of non-overlapping
circles are placed in a square while respecting a periodic constraint at
the top/bottom boundaries of the image, Fig. 1.

The number of circles was chosen in order to obtain a representa-
tive elementary volume for this geometry, following the results from
our previous work [40]. The mesh was computed by means of the
OpenFOAM tools blockMesh and snappyHexMesh.

The fluid considered is water at room temperature with density
equal to 997 kg m−3 and kinematic viscosity equal to 0.89 ×10−6 m2 s−1.
The SIMPLE algorithm implemented in the solver simpleFoam was
employed for the coupled solution of the continuity and the Navier–
Stokes equations in steady-state and laminar conditions. In order to
obtain a system with an identifiable main flow direction aligned with
the Cartesian axes (i.e. left–right direction, see Fig. 1), boundary con-
ditions resulting in a pressure drop between input and output of the
porous medium are set, together with zero gradient conditions for the
velocity. Then, the impermeability of the circular objects was expressed
by no-slip velocity conditions and null gradient for pressure on the
circles surface. Periodic flow boundary conditions were set on the
remaining boundaries.

The advection–diffusion equation was solved in steady-state condi-
tions by means of the solver scalarTransportFoam. The boundary
conditions set were a normalized unitary inlet concentration, a null
concentration on the grains surface, a null gradient conditions at the
outlet, and periodic conditions on the remaining boundaries. The null
concentration on the circles surface was set in order to represent an in-
stantaneous reaction of a chemical species on the surface; alternatively,
this model is also appropriate to represent the problem of filtration
of colloidal particles in the case of favorable colloid-filter interaction.
The reader interested to the latter is referred again to our previous
work [32], as a bridge to the relevant literature on colloid filtration
theory. In S2 of the Supplementary Information the numerical setup of
the CFD simulations is detailed.

2.2. Creation of the dataset

The training of the neural network requires a dataset that en-
compasses a wide variety of geometries and operating conditions, in
3

this work we carried out 800 CFD simulations of flow and transport
Fig. 1. Bi-dimensional porous medium geometry created by setting a periodic
constraint at the top/bottom boundaries.

Table 1
Range of variation of the features chosen for the creation of the
geometries and the solution of the CFD simulations.
Parameter Range of variation

𝑝 0.30–0.50 Pa
𝑑𝑔 100–200 μm
𝜀 0.5–0.65 (–)
 3.13 × 10−11–5.71 × 10−10 m2s−1

in porous media, all with different operating conditions and domain
geometries. We have chosen to perform this quite extensive number of
simulations precisely for the purpose of exploring the effect of the size
of the training dataset on the neural network performance.

The samples of the dataset are chosen so to explore a wide range of
diameter of the circles, porosity of the 2D packing, pressure drop across
the porous medium, i.e. the Reynolds number, and diffusion coefficient,
i.e. the Péclet number, Eq. (4):

Pe =
𝑞𝑑𝑔


. (4)

where 𝑞 is the superficial velocity, and 𝑑𝑔 is the diameter of the grains
(circles in this 2D case). These features range of variation is listed in
Table 1.

The mesh created for the CFD simulations is stair-stepped (castellated
in OpenFOAM parlance) in order to ease the use of the resulting concen-
tration fields for the training of the neural networks without needing
an interpolation from a body-fitted mesh (with non-Cartesian structure)
to the matrix-like data structure needed by the neural network training
calculations.

Then, a grid independence study was performed in order to choose
the size of these computational grid elements, by monitoring the
medium permeability and the average concentration in the domain
with varying mesh cell size. Since in the dataset of CFD simulations
a wide range of operating conditions was explored, the grid indepen-
dence study was performed on the sample subjected to the highest
Péclet number, which is the most critical condition from the computa-
tional point of view, due to the smaller boundary layer on the surface
of the grains caused by the null concentration boundary condition.
In Fig. 2 the study is reported, with the green line highlighting the
chosen mesh strategy, corresponding to a linear discretization of the
square domain of 1536 cells. The relative error between the average
concentration and the permeability calculated from the simulations
performed with the chosen meshing strategy and the most refined
grid tested is, respectively, 0.5% and 0.1%. The results of the chosen
strategy can thus be considered fully grid independent.

2.3. Convolutional neural networks

CNN are a class of neural networks suited to deal with grid-like
objects as input features [55], like images. The CNN layers implement
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Fig. 2. Grid independence study performed for the CFD simulations. The average concentration in the domain (blue diamond markers) and the permeability (red bullet markers)
were monitored. The green line indicates the grid independent result whose strategy was chosen.
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the convolution operation:

𝑦 = 𝑓

( 𝐹
∑

𝑖=1
𝑥 ∗ 𝑘𝑖 + 𝑏𝑖

)

, (5)

where ∗ denotes the convolution operation, 𝑥 is the input, 𝑦 is the
output of the operation, 𝑓 is the activation function, 𝑘𝑖 is the kernel,
𝐹 is the number of kernels, and 𝑏𝑖 is the bias term. The kernel is a
trainable array of floating-point numbers of a chosen size that is applied
on the image. In this work the input features are images, so the filter
is two-dimensional of size 3-by-3, which is the most computationally
efficient size for GPU computations [56].

CNNs have exhibited excellent performance in deep learning tasks
compared to classical fully connected neural networks both in terms of
generalization capability and computational cost of the training [57].
This is partly due to the fact that convolutional kernels share their
parameters, because the same filter slides on the image and is applied in
different regions, thus every output is connected just on a small portion
of the input, which is referred to as sparse connectivity. Consequently,
CNN are characterized by equivariance to translation, so the layers
learn the influence of the images features independently from their
location.

The training of neural networks aims to optimize the trainable
parameters of the network to minimize the loss function, which is
done with the back-propagation algorithm. In this work we used the
Pytorch [58] implementation of Adam [59], which is one of the most
employed and stable gradient descent optimizers [60].

As with other deep learning algorithms, CNN may suffer of gradient
vanishing issues [61], thus the choice of an appropriate activation
function is crucial to assure the contribution of each neuron to the final
prediction. The selection of the activation function is one of the many
choices to be made for the design of the neural network model.

The most used activation functions nowadays are the Exponential
Linear Units (ELUs), nevertheless activation functions like the Gaussian
Error Linear Unit (GELU) seems to be a promising alternative for convo-
lutional networks [62]. For this work we tested both the use of a ELU,
the continuously differentiable exponential linear unit (CELU), and
GELU (the reader is referred to the Supporting information section for a
deeper discussion about this comparison). Since there was no apparent
impact of the activation function on the accuracy of the predictions
for our trainings, we decided to use CELU, the original and widely
4

tested activation function of MSNet. The continuously differentiable
exponential linear unit (CELU) reads as follows [63]:

CELU(𝑥) = max(0, 𝑥) + min
(

0, 𝛼 ⋅
(

𝑒
𝑥
𝛼 − 1

))

(6)

where 𝛼 is a parameter controlling saturation for negative inputs [64].
CELU avoids saturation of the output unlike other activation functions
traditionally employed in neural networks, such as the sigmoid func-
tion, and avoids the dead ReLU problems being an ELU activation
function [65].

2.4. MSNet: Multi Scale Neural Network

In this section the main characteristics of MSNet are summarized.
This architecture was originally presented by Santos et al. [52], for a
detailed description the reader may refer to this work.

MSNet is a convolutional neural network structured in scales, where
each scale aims to predict the property field structure at a different
level: a sketch of the mechanism is presented in Fig. 3. The architecture
has two purposes: (1) letting each scale focus on different length scales
of the field (i.e. the scale with the largest field of vision can capture
the global trend of the field) and (2) allowing to train computationally
large images in a single-GPU (which is not feasible with a model such as
U-Net [66] or Res-Net [67]). The scale that deals with the full domain
size is denoted as scale 0, subsequent scales (1 through 𝑁) receive the
same input as the previous scale but coarsened by a factor of two. The
last scale 𝑁 receives the coarsest representation of the input feature,
consequently, its output is the coarsest representation of the predicted
field. This output is refined and fed to the previous scale together with
the refined input feature. The output of the 𝑁 −1 scale is summed with
he refined output of scale 𝑁 . This procedure is replicated for all the

intermediate scales, and can be summarized as follows:

�̂�𝑁−1 = CNN𝑁 (𝑋𝑁 ,R(�̂�𝑁 )) + R(�̂�𝑁 ), (7)

here �̂�𝑁 is the predicted field at scale 𝑁 , CNN𝑁 is the fully con-
olutional neural network of scale 𝑁 , 𝑋𝑁 is the set of input features
oarsened by a factor 2𝑁 , R() is the refinement operation.

The coarsening of the input features and the output fields is per-
ormed by a nearest neighbor averaging, meaning that the value of
very 22 group of pixels is averaged into a single pixel. Instead, the
efinement procedure consists in a masked nearest-neighbors re-scaling
hat maintains the shape of the geometry of the solid portion. For a
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Fig. 3. MSNet workflow (left) and CFD workflow (right). A set of input features is chosen for the prediction of the steady-state concentration field (presented in rainbow color
scale in the figure). The input features tested are the Euclidean distance transform, the time of flight, the local thickness, the operating pressure drop, and the diffusion coefficient.
Each scale is made by a convolutional network block that is detailed on the left. The coarsening and masked refinement operations are employed to transfer information between
scales. The CFD workflow is summarized on the right. The output of the simulations is the ground truth for the training of neural network.
more detailed explanation of the operation the reader may refer to
Section 2 of the original MSNet work [52]. The coarsening and refine-
ment operations conserve the average over space, and the coarsening
of a refined image gives back the original image. It is important to
notice that the coarsening operation is performed just once before the
training in order to calculate the coarse fields of the input features
and of the true concentration fields, that will be employed during the
training as ground truth at each scale. The time required to perform
the refinements is not rate determinant during the training. Just 0.8%
of the time of the training is spent in the refinement calculations.

The loss function employed in the training of MSNet considers the
prediction error of each scale. The contribution of each scale is given
by the mean squared error between the predicted field �̂� and the true
field 𝑦 (coarsened at the corresponding level) divided by the variance
of the true field, 𝜎2𝑦𝑖 , so the global loss function 𝐿 is:

𝐿 =
𝑁
∑

𝑠=0

𝑁𝑆
∑

𝑖=0

⟨

(

𝑦𝑖,𝑠 − �̂�𝑖,𝑠
)2
⟩

𝜎2𝑦𝑖
, (8)

where the index 𝑠 refers to the scale, 𝑖 refers to the sample, 𝑁𝑆 is the
number of samples in the training set, the operator ⟨⋅⟩ refers to the
spatial average on the domain.

The architecture of the neural network is the same for each scale
and is summarized in Fig. 3. The networks are fully convolutional, and
the size of the images is maintained along the layers of the scale. The
first four blocks are made by a convolutional layer whose kernel size
is 32, followed by a normalization layer, after that the CELU activation
function is applied. A fifth block without activation function is then
added in order to not constrain the output. The number of kernels
of each convolutional layer depends on the scale: 22𝑠+1. Finally, the
network ends with a convolutional layer with a single kernel size of 12
in order to reduce the dimensionality of the output to a single image,
which is the predicted field.

Conceptually MSNet can grasp both short-range and long-range
correlations in the field thanks to the use of the same features at
5

different resolutions, resulting in good generalization capability for the
flow field prediction, and the related permeability prediction. From the
computational point of view, using the same input features at different
resolutions allows for a higher number of kernels at the coarsest scales
and a lower number of them at the finest scales: as a consequence, the
training is faster, and the memory requirements are decreased.

2.4.1. MSNet for the prediction of concentration fields
The MSNet architecture was originally conceived for the prediction

of flow fields. Since the main objective was the prediction of the
permeability, a dataset of simulations in laminar conditions at constant
pressure drop was employed [52]. As mentioned, while permeability is
strictly related to fluid flow, it is determined only by the geometric
features of the porous medium [53,54]: therefore, this geometrical
description was the only input feature needed by the network for the
prediction of the field. In this work the architecture was employed for
the prediction of concentration fields, and the main effort was headed
in the choice of the most appropriate input features. In this section
the input features tested are described and information about their
extraction is provided, while their effectiveness on the prediction of the
concentration field is discussed in the following section. In the proposed
dataset both the porous media geometries and the operating conditions
of transport affect the concentration fields, so the neural network must
be provided with both features.

Concerning the geometrical description of the porous media the fea-
tures tested are: the Euclidean distance transform, the linear variation
distance from a boundary, the time of flight, and the local thickness,
Fig. 4.

The Euclidean distance transform is applied to the binary images of
the porous media, where 0 labels the solid phase and 1 the fluid phase.
As a result, for each pixel of the fluid phase the Euclidean distance
is calculated from the closest solid pixel, i.e. the closest solid grain,
Fig. 4A.

As stated in the previous section, CNN are invariant to translation,
but the concentration values in the pore space are linked to their
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Fig. 4. Geometrical input features tested as input to MSNet for the prediction of the concentration fields. A — Euclidean distance transform of the binary image; B — Linear
variation of the coordinate in the main flow direction; C — Time of flight in the main flow direction; D — Local thickness.
position with respect to the inlet boundary. Even though MSNet can
grasp the spatial correlations at different scales, being the transport of
species concentration a strictly oriented phenomenon, it is necessary to
provide the neural network with this information. It can be conveyed by
a simple linear variation of the coordinate in the flow direction, Fig. 4B,
or with more informative features that can account for the tortuosity
of the porous medium.

The time of flight describes the tortuosity in the porous medium as
the shortest distance of a point from a chosen boundary, Fig. 4C. In
order to calculate it a boundary value problem of the Eikonal equation
is solved:

𝐹 (𝑥)|∇(𝑡(𝑥))| = 1, (9)

where 𝐹 (𝑥) is the speed at which the boundary 𝑥 evolves in time 𝑡. The
fast marching method implemented in scikit-fmm [68] was employed
in this work to compute the time of flight.

The boundary selected is the inlet boundary of the transport sim-
ulations, and the speed field is the Euclidean distance field, Fig. 4A.
Commonly the speed field is set with a constant value in the pore
space and zero in the solid phase: however, the resulting time of flight
field does not highlight the preferential paths and a mostly linear
variation of the coordinate is returned, since the circular obstacles have
a negligible influence on the boundary path. If a non-constant speed
field as the Euclidean distance is employed, it is possible to extract
a more informative feature describing the preferential paths in the
porous media that are of the utmost importance in the shape of the
concentration fields.

Other geometric features have been taken into consideration to
aid the neural network for the non-trivial prediction of the concentra-
tion field, such as the local thickness, i.e. maximum inscribed sphere,
Fig. 4D. To obtain this feature, we used the approach implemented
in PoreSpy [69] which consists in finding which group of pixels can
accommodate a sphere of a given radius. Given the number of sizes
and the bins in the size distribution, the algorithm detects the largest
pore applying the Euclidean distance transform to the image. Then the
algorithm searches for all the smaller spheres between zero and the
largest one by using the Fast Fourier Transform convolution.

All the above-mentioned features are not computationally expen-
sive, the time required for their calculation is in the order of a few
seconds per sample. Consequently, the choice of these features can
easily scale to a three-dimensional dataset.

The operating conditions characterizing the dataset are the pressure
drop across the porous media, and the diffusion coefficient of the
chemical species transported. The latter is provided to MSNet as an
image with the value of the diffusion in each pixel of the pore space.
The pressure drop feature can also be supplied to the network in
this way, like the diffusion coefficient, or it can be merged with the
information about the distance from the inlet boundary (Fig. 4B) since
the pressure decreases along the flow direction. Scaling the features
6

of this kind (linear variation and time of flight) by the value of inlet
pressure allows for a more compact set of features to pass to the CNN.
Lastly, a unique feature for the operating conditions such as the ratio
between the pressure drop and the diffusion coefficient was tested in
this work too.

Concerning the scaling of the input features, those are scaled by
their mean value over the whole dataset. In the case of the output
concentration field instead, no further scaling is needed, as it is already
normalized between 0 and 1 from the CFD simulations.

Since the output concentration is always between 1, at the inlet
boundary, and 0, at the grain surface, a normalizing layer was added
at the output layer of MSNet to prevent the prediction of nonphysical
results.

The number of scales chosen for the MSNets trained in this work
is 6, which represents a good tradeoff between limiting the number of
trainable parameters and obtaining a well coarsened representation at
the last scale. In fact, the field of vision (FoV), i.e. the number of pixels
of the input affecting each pixel of the output, is defined as follows for
MSNet:

FoVMSNet = (𝐿(𝑘𝑠𝑖𝑧𝑒 − 1) + 1)2𝑛, (10)

where 𝐿 is the number of convolutional layers of the network (5 in
this MSNet), 𝑘𝑠𝑖𝑧𝑒 is the size of the kernels (3 in this MSNet), and 𝑛
is the number of scales. Given the size of the CFD simulations fields
(1536 × 1536), the FoV of the finest scale (𝑛 = 0) is equal to 11 voxels
and the one of the coarser scale (𝑛 = 5) is equal to 352. We performed
the trainings on NVIDIA Volta V100 GPUs, Nvlink 2.0, 16 GB.

3. Results and discussion

3.1. CFD simulations for the creation of the dataset

The neural network for the prediction of concentration fields is
trained on a dataset made by CFD simulations. Two CFD simulations are
solved to obtain the concentration fields, as summarized in the work-
flow of Fig. 3. At first the velocity field is obtained from the coupled
solution of the continuity and Navier–Stokes equations, after that the
scalar transport is simulated by the solution of the advection–diffusion
equation.

Each complete simulation constitutes a sample point of the dataset.
The total number of simulations solved is larger than the minimum set
size required for the training of an MSNet for concentration prediction:
this was done to perform a sensitivity analysis on the number of actual
samples required to obtain a satisfactory accurate prediction.

An HPC cluster was employed to solve many (single core) simula-
tions at the same time. In this way, 800 simulations have been solved.
The time required to create the castellated mesh, and to solve the two
CFD simulations is about 20 h on an HPC cluster equipped with 29
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Fig. 5. Contour plots of the velocity and concentration fields for three samples of the dataset. A lowest Péclet number — the diffusive term prevails. B intermediate Péclet number.
C highest Péclet number — advection term prevails, the chemical species flows easily through the porous medium.
nodes with CPU 2x Intel Xeon E5-2680 v3 2.50 GHz 12 cores RAM of
384 GB.

A random combination of the input features in the range displayed
in Table 1 results in a range of Reynolds numbers of 3.96 × 10−4–
1.58×10−2, and in a range of variation of the Péclet number of 23–1500.
Thus, a wide range of transport conditions in laminar flow was explored
in the dataset resulting in a challenging dataset for MSNet.

In Fig. 5 the flow field and the concentration fields for three samples
of the dataset are shown. The lower is the Péclet number, the higher
is the contribution of diffusion with respect to the convective term
(which regulates the residence time of the chemical species in this
reactive system). As a result, the average concentration in A is lower
than the average concentration in B, which is lower than the average
concentration in C.

3.2. Neural networks

The choice of the input features for the prediction of the concentra-
tion field is of the utmost importance for the generalization capability
of the neural network.

The prediction accuracy of the networks is visually depicted with
the fields of local errors between the predicted concentration field and
the CFD result. In addition, three metrics are employed in order to
easily compare the prediction accuracy on the test set:

• The percentage error on the average concentration of the field;
• The root mean squared error (RMSE) of the concentration profiles

in the flow direction;
• The RMSE of the concentration profiles in the direction perpen-

dicular to the flow.

The result of these metrics for each sample of the test set is averaged
in order to obtain a metric for the entire test set.

In Table 2 the different combinations of input features tested are
summarized, and the metrics previously described are reported for each
set of features. In case A, just the basic features are provided, so the
operating conditions (pressure drop and diffusion coefficient) and the
geometrical conditions, by means of the Euclidean distance, Fig. 4 A.
The three metrics show the highest error, in fact, the predicted field is
not physical since there are zones in the fluid where the concentration
increases moving towards the outlet boundary; in a filtration, or deplet-
ing reaction problem, this obviously should not happen (Fig. S2 of the
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Supporting information). This happens because of the lack of information
about the distance from the inlet boundaries: in fact, the convolutional
layers are invariant to translation, so it is necessary to provide the
network with the position with respect to the inlet boundary.

If the distance from the inlet boundary is given as a coordinate
linear variation, Fig. 4B, normalized by the pressure drop, case B, the
accuracy remarkably improves. The error on the average concentration
in the fields decreases from 13.5% to 5.7%, the RMSE for the concen-
tration profile in the flow direction decreases from 0.104 to 0.034, and
the RMSE for the concentration profile in the perpendicular direction
to flow decreases from 0.074 to 0.054.

The time of flight, Fig. 4 is an alternative option to provide the
information about the distance from the inlet boundary. Compared
to the linear variation of the coordinate, the time of flight embeds
the description of the tortuosity in the geometry and underlines the
presence of preferential paths. If both features (time of flight and
linear variation of the coordinate) are fed to the network, case C, the
improvement of the generalization capability does not increase in a
relevant manner.

On the other hand, if just the time of flight is employed, together
with the Euclidean distance, the diffusion coefficient and the pressure
drop, case D, the accuracy remarkably increases. This results in an
error on the average concentration of 3.3%. The redundant information
about the distance is not useful for the network, so it is preferable to
just provide the network with the time of flight.

Then, since it is desirable to reduce the number of input features,
in order to decrease the memory load on the GPU and the number
of trainable parameters, and as a consequence the computational cost
of the trainings, the compression of the two operating conditions
features into a single one was tested. Employing the ratio of pressure
drop and diffusion coefficient, case E, the prediction accuracy remains
unchanged, so this solution is preferable to the previous one.

Following the same approach, a training without the Euclidean
distance feature was performed in order to reduce the number of input
features to the minimum, case G. In this case the generalization capa-
bility is not preserved, in fact, the error on the average concentration
increases again from 3.3% to 5.5%. Thus, the Euclidean distance cannot
be missed in the set of features for the prediction of the concentration
fields.

The last set of features tested is the same of case D but with the
additional feature of the local thickness, case F. The new geometrical
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Fig. 6. Prediction of MSNet for four samples of the test set. From left to right: concentration field resulting from the CFD simulations, concentration field predicted by MSNet
with the input features of case E Table 2, field of local error computed as the pixel-wise difference between the CFD result and the MSNet prediction.
feature does not improve the accuracy, so it is not worth it to add local
thickness to the set of input features.

Given the presented results, the best set of features was found to
be the one from case E, where the operating conditions are provided
8

in a single feature in the form of the ratio of the pressure drop and
the diffusion coefficient, and the geometric features into two features,
the Euclidean distance and the time of flight. This last feature is
particularly effective since the preferential paths information is clearly
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Fig. 7. Profiles of average concentration in the direction of flow and in the perpendicular direction to flow (CFD: solid, MSNet: dashed) for the four samples of Fig. 6.
correlated to the concentration field patterns. The results of the training
of MSNet with the best set of features are reported in Fig. 6, where the
predictions for four samples of the test set are shown. The percentage
error on the average concentration between the result of the CFD and
the prediction of MSNet is in the label of each sample. One point of note
is that, beyond quantitative error measure, the network is can predict
qualitative transport features with satisfactory precision, for example
the low-concentration tails in the wake of the grains.

Since the samples in the test set differ from those in the training
set for all the input features, including circles diameter and most
importantly their placement, it is significant to note that these results
describe the performance of this model on a generalized form of this
transport and reaction problem. If this model were employed on a
similar system (one never seen in the training of the network), similar
performances to those reported would be expected.

In Fig. 7 the profiles corresponding to the fields of Fig. 6 represent
an alternative way to evaluate the prediction error of the network. Also
in this case, it can be appreciated that the average profiles predicted by
MSNet quite closely follow the shape of the profiles calculated from the
results of the CFD simulations.

It is important to notice that the accuracy of the results obtained
is deeply connected to the multiscale approach of the network. The
architecture of the network permit to use a larger number of trainable
parameters compared to other CNN of common use. We compared the
prediction accuracy of MSNet with a fully convolutional neural network
and it results that, using the same GPU, the amount of trainable
parameters that we can fit into the GPU is lower than MSNet (just 1.3
million instead of 161 million), and the accuracy of the predictions
is highly decreased. These results are compared in section S5 of the
Supporting information.

A sensitivity analysis on the dimension of the dataset was performed
in order to detect the minimum number of samples necessary to achieve
the accuracy presented previously. An increasing number of samples
are employed during training, from 200 to 800 (the entire dataset). In
Fig. 8 the results are reported, for each dataset size the training was re-
produced three times. It is possible to conclude that at least 400 samples
are required to achieve an accuracy on the average concentration of
around 3.5%. The test set used to evaluate the generalization capability
9

Table 2
Input features tested for the training of MSNet. The different combinations are
compared on the error on the prediction of the average concentration, on the RMSE
of the concentration profiles in the flow direction and in the perpendicular direction
to flow.

A B C D E F G

Linear variation normalized
by the pressure drop

✓ ✓

Pressure drop ✓ ✓ ✓

Pressure drop/Diffusion
coefficient

✓ ✓

Diffusion coefficient ✓ ✓ ✓ ✓ ✓

Euclidean distance ✓ ✓ ✓ ✓ ✓ ✓

Time of flight ✓ ✓ ✓ ✓ ✓

Local thickness ✓

⟨𝑒⟩𝑡𝑒𝑠𝑡
on average concentration

13.5% 5.7% 5.3% 3.3% 𝟑.𝟑% 5.3% 5.5%

𝑅𝑀𝑆𝐸𝑡𝑒𝑠𝑡
on concentration profile
parallel to flow

0.104 0.034 0.027 0.023 𝟎.𝟎𝟐𝟒 0.032 0.027

𝑅𝑀𝑆𝐸𝑡𝑒𝑠𝑡
on concentration profile perp
to flow

0.074 0.054 0.042 0.042 𝟎.𝟎𝟒𝟐 0.044 0.044

of the networks was the same. The use of a specialized neural network
architecture and of appropriate input features, both conceived for the
prediction objective, is essential to decrease the amount of samples
necessary to obtain a satisfactory accuracy.

4. Conclusions

Neural networks, both fully connected and convolutional, have been
widely employed to train data-driven models that quickly reproduce the
results of more computationally expensive physics-based simulations.

In this work a multi-scale convolutional neural network was trained
to reproduce the full concentration profile of different samples, which
is commonly obtained via CFD simulations. This approach differs from
other recently proposed machine learning workflows by being able to
predict the entire concentration field of a large image, instead of just a
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Fig. 8. Effect of the number of samples on the accuracy of the predicted fields. On
the right: variation of the average error on the average concentration in the test set.
On the left: variation of the root mean squared error in the parallel and perpendicular
direction to flow on the average concentration in the test set. The test set is the same
in all the cases.

scalar quantity. Our approach yields a a robust and flexible surrogate
model that can be integrated in multiscale modeling workflows.

We studied the effect of different input features to inform the model
about the structure of the domain and the boundary conditions, we
showed that the Euclidean distance, the time of flight, the pressure
drop, and the diffusion coefficient are sufficient to obtain very accurate
predictions for a wide range of sphere pack arrangements under varying
operative conditions.

This workflow is applicable to a wide range of systems that in-
volve transport and reaction in porous media. The input features we
proposed describe uniquely the domain, hence these can be employed
in new geometries. The dimension of the domain does not represent
a problem for this approach, in fact, it is possible to train MSNet on
three-dimensional datasets to create a model able to infer into 3D
domains.

We showed how these models can be of use in aiding scale-bridging
procedures for multi-scale simulations, or for the prediction of process-
scale performance of reaction phenomena determined by complex
micro-scale structures.

In conclusion, we demonstrated a methodology that can successfully
provide predictions in a split-second of otherwise computationally
intensive CFD simulations.
10
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