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ASYNCHRONOUS SEMI-ANONYMOUS DYNAMICS OVER
LARGE-SCALE NETWORKS

C. RAVAZZI∗, G. COMO*† , M. GARETTO‡ , E. LEONARDI*§ , AND A. TARABLE*

Abstract. We analyze a class of stochastic processes, referred to as asynchronous and semi-
anonymous dynamics (ASD), over directed labeled random networks. These processes are a natural
tool to describe general best-response and noisy best-response dynamics in network games where
each agent, at random times governed by independent Poisson clocks, can choose among a finite
set of actions. The payoff is determined by the relative frequency of the different actions among
neighbors, while being independent of the specific identities of neighbors.

Using a local mean-field approach, we prove rigorously that, under certain conditions on the
network and initial node configuration, the evolution of ASD can be approximated, in the large-scale
limit, by the solution of a system of non-linear ordinary differential equations. Our framework is very
general and applies to a large class of graph ensembles for which the typical random graph is locally
tree-like. In particular, we focus on labeled configuration-model random graphs, a generalization
of the traditional configuration model which allows different classes of nodes to be mixed together
in the network, permitting us, for example, to incorporate a community structure in the system.
Our analysis also applies to configuration-model graphs having a power-law degree distribution, an
essential feature of many real systems. To demonstrate the power and flexibility of our framework, we
consider several examples of dynamics belonging to our class of stochastic processes. Moreover, we
illustrate by simulation the applicability of our analysis to realistic scenarios by running our example
dynamics over a real social network graph.

Key words. Asynchronous semi-anonymous dynamics, Networks games, Best-response dynam-
ics, Evolutionary game theory, Linear threshold models, Local Weak Convergence.

AMS subject classifications. 68Q25, 68R10, 68U05

1. Introduction. Many complex systems arising in different domains exhibit
cascading phenomena that spread through networks of local interactions. Examples
of such cascades include, but are not limited to, infrastructure failures [49], adoption
of innovations, conventions and technologies [38, 45, 32], diffusion of beliefs, opinions,
fake news [46], memes, and the like [48]. These phenomena can have profound effects
on politics [15], social norms [4], financial networks [23], marketing campaigns [24].

The standard mathematical approach to modeling cascading processes is to con-
sider a graph (finite or infinite) in which nodes stand for individuals that can be in one
of several (discrete or continuous) states, and edges (directed or undirected, possibly
weighted) represent interactions with neighboring nodes. Individuals are supposed to
repeatedly update their state over (discrete or continuous) time, depending on the
current state of their neighbors [43, 10, 19].

Simple epidemic models in which nodes can change their state as consequence of
a single contact with a neighboring node [34] turn out to be too simplistic to describe
systems in which individuals tend to react to the joint states of their neighbors.
To represent such combined effect, one of the most commonly used models in the
literature is the linear threshold model, originally introduced by Granovetter [23] and
widely investigated in several variants [50, 17]. The general idea behind such models
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is to assume that a node adopts a given state if the fraction of neighbors (possibly
weighted by edges) currently adopting that state exceeds a certain threshold. More in
general, researchers have considered so-called networked coordinated games, in which
nodes adopt the best-response (according to some payoff matrix) in reaction to the
strategies adopted by neighbors [11].

Some fundamental distinctions in this wide class of models are the following. In
progressive processes, state transitions are irreversible: once a node joins a given state,
it keeps such state indefinitely, irrespective of what happens to neighbors [25, 13, 1,
30, 4]. In non-progressive processes transitions are, instead, reversible, since nodes
still remain under the influence of their neighbors after the adoption of a given state
[2, 33, 40]. Another crucial distinction concerns the update rule of the nodes: does
the future state of a node also depend on the current state of the node, in addition
to the states of neighbors, or is it uniquely determined by the neighbors? Indeed the
above distinctions, combined to the nature of edges (i.e., directed or undirected), lead
to models of widely different nature and analytical tractability.

In this paper we analyze a class of cascading processes, referred to as Asyn-
chronous and Semi-anonymous Dynamics (ASD), with the following characteristics:
i) nodes update their (discrete) state over continuous time, according to independent
Poisson clocks, following an arbitrary rule that depends on the number (or relative
fraction) of neighbors in each possible state, but not on the specific identities of neigh-
bors (which are order-independent); ii) edges are directed; iii) state transitions are
reversible (non-progressive model).

In this paper we extends previous work in [40], where authors analyze a two-state,
deterministic linear threshold model with synchronous node update over a bounded
degree graph, by adopting a mean-field approach. Here, we seek to understand how
this approach can be pushed to its greatest generality, extending the class of networks
and underlying node dynamics to which it can be rigorously applied. We mention,
however, that in [40] authors consider also the progressive variant of their model,
while here we focus only on the non-progressive model. The interested reader can
refer to [20] for new methods to approximate the dynamics on large networks sampled
from a graphon. Although this framework is flexible, it works well on dense network
formation models, such as stochastic block models, but not on sparse networks.

One stream of related work [9, 33, 26] analyzes the possible equilibria of a binary-
decision game in the case of undirected graphs and synchronous update. Similarly to
these works, we study a game where players’payoffs depend on the actions taken by
their neighbors in the network but not on the specific identities of these neighbors.

Another huge stream of related work is concerned with the algorithmic aspects of
influence maximization [25, 31], where the goal is to find the initial node configuration
that maximizes the final size of the cascade. In contrast to such stream of work, here
we assume the initial node configuration to be randomly selected according to a given
node statistics.

1.1. Overview of main results and paper outline. Our analysis relies on a
rigorous proof of a local mean-field approximation result, as we show that the aggre-
gate behavior of ASDs on a large class of locally tree-like random graph ensembles is
close to the solution of a finite-dimensional (nonlinear) ODE. Specifically, our results
show that the approximation error vanishes in the large-scale limit.

While our results apply over time horizons that remain constant or grow at most
logarithmically with the network size, they do have implications to the behavior of
the system in the stationary regime. In particular, when combined with, e.g., [7], our

2



results imply that the weak limit of every converging sequence of stationary proba-
bility distributions is an invariant distribution of the ODE. By Poincaré’s Recurrence
Theorem, the support of all such invariant measures is included in the closure of
the recurrent set of the ODE. In particular, when the local mean-field ODE admits a
globally attractive equilibrium point x∗, this implies that every sequence of stationary
probability distributions for the ODE concentrates on x∗ in the large-scale limit.

In Section 2 we formally introduce asynchronous semi-anonymous dynamical pro-
cesses (ASD) over directed random graphs, presenting some concrete example of ASD.
In Section 3 we provide the complete analysis of ASD over a labeled branching pro-
cess, i.e., an infinite ensemble of labeled graphs with a rooted tree structure. In this
case it can be shown that the evolution of the fraction of nodes in a given state indeed
corresponds to the solution of some ordinary differential equations (Proposition 2).

In Section 4 we turn our attention to general graph ensembles. The core message
is the following: if the graph exhibits a local tree structure, then the analysis on a
suitably chosen labeled branching process provides a good approximation of the ex-
pected fraction of nodes in a given state (see Proposition 3). A property of Local Weak
Convergence is the key feature that provides this link and formalizes the idea that, for
large n, the local structure of the graph near a vertex chosen uniformly at random is
approximately a branching process. Finally, the analysis of the concentration around
the expectation allows us to derive the accuracy of the above approximation.

We will then focus in Section 5 on the labeled configuration-model, a general
mix of heterogeneous nodes with class-specific node statistics. This family of graphs
is generalization of the traditional configuration model (CM) and allows different
classes of nodes to be mixed together in the network, permitting us, for example,
to incorporate a community structure in the system. We will explore conditions
for Local Weak Convergence (see Theorem 4) and the concentration of the ASD
evolution around the expectation (see Theorem 5). In Section 5.3 we will show that
the sequence of node degrees is allowed to follow a power-law distribution scaling with
the network size. This is particularly important for applications to social network
graphs. As a second example, in Section 5.4 we will consider a labeled configuration
model with a community structure, which is another fundamental feature found in
many real systems. Indeed, by considering as label of a node its membership to
a given community, we can represent graphs with a general distribution of in/out
degrees among nodes belonging to the same or different communities. This allows us
to describe, for example, “assortative” graphs, in which intra-community edges are
denser than inter-community edges.

In Section 6 we analytically derive some interesting properties of the ODEs de-
scribing the temporal evolution of the system for each of the examples of ASD in-
troduced in Section 2. In particular, we present a detailed analysis on stability of
the equilibrium points and discuss the link between the mean-field ODE and the
stationary regime. Section 6 presents also numerical results of ASD previously intro-
duced in large but finite networks, considering both synthetically generated graphs
and real-world social networks. More precisely, we compare the solutions of the dif-
ferential equations derived through mean field approximation with results obtained
by running Monte-Carlo simulations.

Section 7 summarizes our contribution and collects some concluding remarks.
Some of the more technical proofs can be found in Appendix.

1.2. General notation. Throughout this paper, we use the following notational
conventions. Let N, Z+, R be the set of natural, non-negative integers and real
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numbers, respectively. Given n ∈ N we use the notation [n] = {1, . . . , n}.The symbol
| · | denotes the absolute value if applied to a scalar value and the cardinality if applied
to a set. We denote the indicator function of set A with the notation 1A. Given a
finite set V, RV denotes the space of real vectors with components labelled by elements
of V. If x ∈ Rn, we denote the ℓ-th entry by xℓ and x[ℓ] is the projection of x on the

sub-space generated by the first ℓ elements, i.e. x[ℓ] = (x1, x2, . . . , xℓ) ∈ Rℓ.
This paper makes frequent use of Landau symbols. The notation “f(N) =

O(g(N)) when N → ∞” means that positive constants c and N0 exist, so that
f(N) ≤ cg(N) for all N > N0. The expression “f(N) = o(g(N)) when N → ∞”

means that limN→∞
f(N)
g(N) = 0.

A labeled directed multigraph is a 6-ple (V, E ,A, λ, σ, τ), where V, E , and A are
the sets of nodes, links, and labels, respectively, all finite; λ : V → A is the map
giving the label λ(v) of a node v ∈ V; and σ, τ : E → V are the maps giving the
tail node σ(e) and head node τ(e) of a link e ∈ E so that e is directed from σ(e)
to τ(e). The set of in-neighbors and out-neighbors of a node v ∈ V are defined as
N−

v = {w ∈ V \ {v} : (w, v) ∈ E} and N+
v = {w ∈ V \ {v} : (v, w) ∈ E}, respectively,

and the corresponding in-degree and out-degree as dv = |N−
v | and kv = |N+

v |. We
define its out-degree vector kv ∈ ZA

+ as the vector whose component a ∈ A represents
the number of out-neighbors of v belonging to class a. Similarly, we define for node v
the in-degree vector dv ∈ ZA

+.
A path from a vertex u ∈ V to a vertex v ∈ V (i.e. a path u → v) is a finite

sequence of edges (ui, vi)1≤i≤L with u1 = u, vL = v, vi = ui+1. If there is at least
a path from u to v, we say that u is connected to v, and the graph distance from u
to v is then defined as the minimum length of a path from u to v. If all (ordered)
vertex pairs are connected, the graph G is said strongly connected. If, instead, for
any pair (u, v) either a path u → v or v → u exists, we say that the graph is weakly
connected. We define a simple path as a path along which all vertices are distinct.
A directed tree is a weakly connected graph in which no more than one path exists
between every pair of vertices (u, v).

2. Asynchronous semi-anonymous dynamics.

2.1. Mathematical model. Let us consider a finite population of n agents
interacting in a connected network, which we map onto the nodes of a labeled directed
multigraph G = (V, E ,A, σ, τ, λ), whereby a link e ∈ E represents a direct influence
of its head node τ(e) on its tail node σ(e) and each class of nodes Va = {v ∈ V :
λ(v) = a}, for a ∈ A may have a different behavior, thus allowing to account for
heterogeneity.

Let each agent v ∈ V be endowed with a time-varying state Zv(t) taking values
from a finite set X for every t ≥ 0. We shall denote the vector of all agents’ states
by Z(t) = (Zv(t))v∈V and refer to it as the network configuration at time t. We
shall consider general asynchronous and semi-anonymous dynamics (ASD) according
to which every agent updates periodically its state in response to the current state
of its out-neighbors. The map according to which the new state is selected can be
either deterministic or stochastic. In all cases it must be invariant with respect to
permutations of such out-neighbors (semi-anonymous). Update times for each user
form a Poisson process at rate γ.

Formally, let Z(t) be a continuous-time Markov chain with finite state space equal
to the set of configurations Z = XV and the structure illustrated below.

Definition 1 (Asynchronous semi-anonymous dynamics). Let P = {θ ∈ RX
+ :
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1′θ = 1} be the simplex of probability vectors over X . For every label a ∈ A, let

(1) Θ(a) : ZA×X
+ → P

be a stochastic kernel. It represents the probability distribution of the updated state,
for a class-a node, given the state and class profile of its out-neighbors. Also, for
every node v ∈ V, let ΥG

v : Z → ZA×X
+ be formally defined by(

ΥG
v (z)

)
ax

=
∣∣{e ∈ E : σ(e) = v, λ(τ(e)) = a, zτ(e) = x

}∣∣ , a ∈ A, x ∈ X .

In words,
(
ΥG

v (z)
)
ax

is equal to the number of class-a out-neighbors of v that are in
state x. Then, Z(t) evolves as a continuous-time Markov chain on Z with transition
rates:

Λz,z+ =

{
γΘ

(λ(v))

z+
v

(ΥG
v (z)) if z and z+ differ in the v-th entry only

0 otherwise

where γ denotes the Poisson rate at which node v updates its state.

The formulation above in Definition 1 is very general. Some remarks are in order.
Classes can describe heterogeneous nodes in a variety of ways. In our examples, we
will consider the following three cases: i) classes describing different update rules of
the nodes; ii) classes describing nodes with different degree distributions; iii) classes
describing node membership to different ‘communities’. In the most general scenario,
a class might represent nodes belonging to a specific community, with a given update
rule and a particular degree distribution.

We emphasize that the new state of an agent, when it gets updated, does not
need to be a deterministic function of its neighborhood. Indeed, we explicitly allow
for a stochastic rule of adopting a certain state. This allows us to model noisy or
mixed-strategy best-response dynamics in networked games.

Our main interest in this paper is to track the evolution of some macroscopic
features, e.g., the evolution of the fraction of nodes belonging to a specific class that
are in a given state at time t. We will demonstrate that a mean-field approximation
can yield insight into this analysis for a large class of random networks.

2.2. Examples of ASD dynamics. To clarify the general formulation intro-
duced above, we provide two examples of ASD dynamics that will later be studied in
more details Section 6. Since in our examples the node update rule depends only on
the total number of neighbors in a given state, and not on their label, we simplify the
general notation introduced before and define:

(2) ξx(z) =
∑
a∈A

(
ΥG

v (z)
)
ax
, x ∈ X .

The explicit dependence on the Markov-chain state z will be omitted in the following,
whenever possible.

2.2.1. Ternary Linear Threshold Model (TLTM). Let X = {−1, 0, 1} be
the set of admissible states and let G = (V, E ,A, λ, σ, τ) be a labeled multigraph. The
label av = (a+v , a

−
v ) of node v determines two given (in general, asymmetric) thresholds

a+v , a
−
v , which trigger the transition to state 1 and −1, respectively. Specifically, when

activated, the update of node v is given by

Zv(t) =


1 if

∑
j∈N+

v
Zj(t

−) ≥ a+v
0 if

∑
j∈N+

v
Zj(t

−) ∈ (−a−v , a+v )
−1 if

∑
j∈N+

v
Zj(t

−) ≤ −a−v
5



where Zv(t
−) = limx↑t Zv(x). The above rule can be encoded in our general formula-

tion by considering the functions:

Θ
(a)
1 (ξ1, ξ−1, ξ0) = 1{ξ1−ξ−1≥a+}, Θ

(a)
0 (ξ1, ξ−1, ξ0) = 1{ξ1−ξ−1∈(−a−,a+)}

Θ
(a)
−1(ξ1, ξ−1, ξ0) = 1{ξ1−ξ−1≤−a−}

which depend only on the numbers ξ1, ξ−1 and ξ0 of out-neighbors in state 1, −1 and
0, respectively.

Remark 1 (Applications of the threshold model). Threshold Models have been
widely employed to describing complex dynamics in a variety of systems pertaining to
sociology (e.g., spread of ideas in online social networks [25]), economy (e.g., adoption
of innovations [47], contagion in financial markets [4]), engineering (e.g., cascading
failures in physical infrastructure networks [41]) and biology (e.g., neuronal firing
[42]). For the sake of concreteness, in this paper we will primarily focus on applica-
tions of the threshold model to opinion dynamics in large social networks. Indeed, the
relative popularity of an idea [6, 50] can drive a shift of individual opinions and this
model is able to describe situations where individuals have two alternatives and the
costs and/or benefits of each depend on how many other actors choose which alterna-
tive. The model is of particular interest since individual and small-scale interactions
cumulate into larger-scale societal patterns. Here we propose a ternary extension of
LTM, which may represents the competition between two opposite ideas.

2.2.2. Binary Response with Coordinating and Anti-coordinating agents
(BRCA). Inspired by the model in [36], we consider a network game where each
agent can choose between two actions in X = {−1, 1}. The network consists of two
classes of nodes, i.e. A = {+,−} and V = V+ ∪ V−. We assume that V+ and
V− represent agents following the majority (i.e., coordinating) or the minority (i.e.,
anti-coordinating) of their out-neighbors, respectively.

Specifically, an agent is updated according to the following rule: if v ∈ V+ then

Zv(t) =


1 if

∑
j∈N+

v
Zj(t

−) > 0

−1 if
∑

j∈N+
v
Zj(t

−) < 0

±1 if
∑

j∈N+
v
Zj(t

−) = 0

,

and ∀v ∈ V−

Zv(t) =


1 if

∑
j∈N+

v
Zj(t

−) < 0

−1 if
∑

j∈N+
v
Zj(t

−) > 0

±1 if
∑

j∈N+
v
Zj(t

−) = 0.

In essence, when a node is updated, it counts the number of neighbors in state −1
and 1, and adopts the state of the majority of its neighbors if v ∈ V+, or it adopts
the state of the minority of its neighbors if v ∈ V−. In the case of a tie, it chooses
uniformly at random between states 1 and −1.

The above rule corresponds in our general framework to the functions

Θ
(+)
1 (ξ1, ξ−1) = 1{ξ1>ξ−1} +

1

2
1{ξ1=ξ−1}, Θ

(+)
−1 (ξ1, ξ−1) = 1−Θ

(+)
1 (ξ1, ξ−1)

Θ
(−)
1 (ξ1, ξ−1) = 1{ξ1<ξ−1} +

1

2
1{ξ1=ξ−1}, Θ

(−)
−1 (ξ1, ξ−1) = 1−Θ

(−)
1 (ξ1, ξ−1)
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which depend only on the number ξ1 and ξ−1 of neighboors in state 1 and −1, respec-
tively. Note that the model in [36] was proposed to represent and analyze real-life
situations where a decision between two antithetic actions must be taken by interact-
ing individuals.

2.2.3. Other related examples. Other examples of successful applications of
ASD are represented by the analysis of the behaviors of agents in a coordination
game [39], fluctuations in stock or other financial data [44], spike patterns in neural
networks [16], voter model and many others [12].

At last we wish to mention that ASDs include Glauber dynamics [22] as a special
case. In Statistical Physics, Glauber dynamics on undirected graphs is generally used
to simulate the Ising model and study ferromagnetism [28]. The model consists of
discrete variables (±1) representing the spin orientation, and the interactions are
modeled by a graph. Neighboring spins with the same orientation have lower energy
than those that disagree. Generalizations of the model to q ≥ 2 different states are
studied in the Potts model [35]. Recently Glauber dynamics on directed graphs have
been proposed to model social phenomena [8].

3. ASD on the labeled branching process. In this section we consider a la-
beled branching process, i.e. a particular ensemble of infinite labeled directed graphs
with rooted tree structure, and then analyze ASD on it. As already said, the rea-
son why we introduce this special graph is that the analysis of ASD on it provides
fundamental hints for the analysis of ASD on a general locally tree-like ensemble of
graphs.

More precisely, we will consider a labeled branching process completely described
by probabilities distributions pk,a = pk|apa and qbk|a. The first is the joint probability
distribution that characterizes the root, i.e. the probability that the root has label
a ∈ A and out-degree vector k ∈ ZA

+. We recall that the component kb represents
the number of out-neighbors belonging to class b ∈ A. The latter is the vectorial
out-degree distribution for a non-root node with label a, whose parent has label b.
In next sections we will show that probability distributions pk,a and qbk|a specifying
the “approximating” labeled branching process, will be chosen so to exactly match
statistics’ of the network under investigation. For this reason, we inform the reader
that the same notation will be adopted to denote statistics on both the network and
the associated labelled branching process.

3.1. Labeled branching process. Recall that in our notation kv ∈ ZA
+ denotes

the out-degree vector of vertex v, whose component a ∈ A represents the number of
out-neighbors of v belonging to class a ∈ A.

We will call labeled branching process T with node set V = {v0, v1, ...} and label
set A the rooted tree built through the following procedure:

• Step 0: Start with a root node v0 and assign to it a random label A0 ∈ A and
a random out-degree vector K(0) ∈ ZA

+ with joint probability distribution

P(A0 = a,K(0) = k) = pk,a .

For every a ∈ A, add K(0)
a out-edges with label (A0, a) to the root v0 and

declare all these edges active. Note that an edge label is defined as the ordered
pair of the labels associated to adjacent nodes.

Then, for h = 1, 2, . . .
• Step h: If there are no active edges, stop. Otherwise, take any active edge
e, let (a, b) be its label and declare the edge inactive. Assign to edge e a

7



head node τ(e) = vh with label λ(vh) = b and generate a random vector

K(h) = k in ZA
+ with conditional probability distribution qak|b, then for every

label c ∈ A add K(h)
c new active outgoing edges to vh with label (b, c).

Note that that labeled branching process is fairly flexible and general. Indeed, sev-
eral classes of nodes with possibly different network characteristics (such us out-degree
distribution etc.) may coexist. Moreover children statistics of a node may depend on
the class of node, this permits to represent structures with assortative/dissortative
structure, which are commonly met in real-life applications.

3.2. Ordinary differential equations of ASD. Let us now consider the ASD
process over the graph T built above. In the following matrix notation, vectors are
meant to be column vectors, unless otherwise specified.

Proposition 2. Let Z(t), for t ≥ 0, be the state vector of the ASD on T . Then,
for every fixed time t ≥ 0, the following facts hold

1. For every i ∈ V, the states {Zτ(e)(t)| e ∈ E : σ(e) = i} of the offsprings j
of i in T are independent and identically distributed random variables with
ζω|a,b(t) = P(Zj(t) = ω | Aj = a,Ai = b), ω ∈ X , a, b ∈ A satisfying

(3)
dζω|a,b(t)

dt
= γ

(
ϕω|a,b(ζ(t))− ζω|a,b(t)

)
, ϕω|a,b(ζ) =

∑
k∈ZA

+

φ(k,a)
ω (ζ)qbk|a

and

φ(k,a)
ω (ζ) =

∑
ξ∈ZA×X

+ :

ξ1=k

Θ(a)
ω (ξ)

(
k

ξ

)∏
c∈A

∏
g∈X

[ζg|c,a]
ξcg ,

(
k

ξ

)
=
∏
c

(
kc
ξc

)
,

where ξc is the c-th row of matrix ξ and ξcg denotes the (c, g)-th element of
matrix ξ.

2. The state Zv0(t) of the root node v0 is a random variable with yω|a(t) =
P(Zv0 = ω | A0 = a) satisfying

(4)
dyω|a(t)

dt
= γ

(
ψω|a(ζ(t))− yω|a(t)

)
, ψω|a(ζ) =

∑
k∈ZA

+

φ(k,a)
ω (ζ)pk|a

Proof. 1. Let v0 be the root of T . Then, For every i ∈ V, the states
Zj(t) : (i, j) ∈ E of the offsprings of vi in T are independent and identi-
cally distributed Bernoulli random variables. Define ζω|a,b(t) = P[Zj(t) = ω |
Aj = a,Ai = b], j ∈ V \ {v0}, where vi is the father of vj , we have

ζω|a,b(t+∆t)

= (γ∆t+ o(∆t))
∑
k∈ZA

+

φ(k,a)
ω (ζ(t))qbk|a + (1− γ∆t+ o(∆t)) ζω|a,b(t) + o(∆t)

= (γ∆t+ o(∆t))ϕω|a,b(ζ(t)) + (1− γ∆t+ o(∆t)) ζω|a,b(t),

from which we conclude

dζω|a,b(t)

dt
= lim

∆t→0

ζω|a,b(t+∆t)− ζω|a,b(t)

∆t
= γ(ϕω|a,b(ζ(t))− ζω|a,b(t)).
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2. Define y(t) = P[Zv0(t) = ω | A0 = a], then with the same arguments we have

dyω|a

dt
= γ(ψω|a(ζ(t))− yω|a(t)), ψω|a(ζ(t)) =

∑
k∈ZA

+

φ(k,a)
ω (ζ(t))pk|a.

Remark 2. Whenever labels of neighbor nodes are independent, pk|a and qbk|a
depend on a, b only through k =

∑
i ki, and things become simpler. Indeed, if we

define ζω(t) = P[Zj(t) = ω] =
∑

a,b∈A ζω|a,b(t)papb, then, it can be easily shown that,
similarly to (3), we can derive an ODE for ζω(t) in the form

(5)
dζω(t)

dt
= γ (ϕω(ζ(t))− ζω(t)) ,

where

ϕω(ζ(t)) =
∑

a,b∈A

∑
k∈Z+

φ(k,a)
ω (ζ(t))qk|a,bpapb, qk|a,b =

∑
k∈ZA

+ :

kT 1=k

qbk|a,

and

φ(k,a)
ω (ζ(t)) =

∑
ξ∈ZX

+ :

ξT 1=k

Θ(a)
ω (ξ)

(
k

ξ

) ∏
g∈X

[ζg(t)]
ξg .

Analogously, defining yω(t) = P[Z0(t) = ω] =
∑

a∈A yω|a(t)pa, the ODE replacing
(4) can be written as

(6)
dyω(t)

dt
= γ (ψω(ζ(t))− yω(t)) ,

where

ψω(ζ(t)) =
∑
a∈A

∑
k∈Z+

φ(k,a)
ω (ζ(t))pk|apa, pk|a =

∑
k∈ZA

+ :

kT 1=k

pk|a.

Remark 3. The above analysis of ASD over the ensemble T can be easily ex-
tended to the case in which the rate of activation of a vertex depends on its label
a ∈ A. Without loss of generality we will assume γ = 1 in the following.

Remark 4. Comparing the ODEs obtained in this paper with the finite difference
equations derived in [40] for synchronous dynamics (analysis in [40] is restricted to
the LTM dynamics), it can be rather immediately checked that the two dynamical
systems exhibit the same set of equilibrium points. However synchronous dynamics
may exhibit limiting cycles, which are not observed in the asynchronous case.

4. ASD on labeled random networks. In this section we consider the evo-
lution of ASD process over a multigraph G taken from a general ensemble of labeled
directed graphs E(n) of size n. In particular, we show that, under certain condi-
tions on the ensemble and on the initial node configuration, the ASD process over G
can be well approximated by the same process over a labeled branching process T .
The ensemble E(n) is described by the ‘node statistics’ pd,k,a,s, which provides the
probability that a node picked at random has in-degree vector d, out-degree vector

9



k, label a ∈ A and initial state s ∈ X . We shall assume that pd,k,a,s factorizes as
pd,k,a,s = pd,k,aps|a. The above node statistics clearly provides all information needed
to compute any marginal or conditional distribution we might be interested in. For ex-
ample, pd,k,a =

∑
s∈X pd,k,a,s is the distribution of in-degree vector, out-degree vector

and label of a generic node. As another example, pk,a =
∑

d pd,k,a provides the dis-
tribution of out-degree vector and label of a generic node. We denote pa =

∑
k pk,a

the probability for a node to be associated with label a. With intuitive notation,
pk|a = pk,a/pa denotes the distribution of out-degree vector of a node with label a,

and so on. Note that the ensemble of directed graphs E(n) is very general, since it
includes (multi)-graphs in which properties of nodes may be arbitrarily correlated.
In the following we will restrict our analysis to the sub-class of labeled configuration
graphs.

As it always happens in graphs with heterogeneous degrees, we will need to distin-
guish the probability law of kv for a generic node v picked uniformly at random, and
the probability law of kv for a node v reached by traversing an edge. This because, in
general, we could have correlation between in-degree and out-degree. Moreover, when
we reach a node by following a certain edge, it is also important to distinguish the la-
bel of the node originating the traversed edge picked uniformly at random. To account
for the above generality, we need to introduce some additional notation. Specifically,
we define qad,k|b := dapd,k,b/

∑
d,k dapd,k,b, which is the distribution of in-degree vec-

tor d and out-degree vector k of a node with label b, reached by traversing an edge
from a node with label a. Similarly, qak|b =

∑
d q

a
d,k|b is the marginal distribution of

out-degree vector of a node with label b, reached by traversing an edge from a node
with label a.

4.1. Relevant neighborhood at time t. We first observe that, since the pro-
cess evolves through local interactions, the state of a generic node v on a multigraph
G = (V, E ,A, λ, σ, τ) at time t is determined only by the structure and state of a
relatively small neighborhood around v. Given a generic node v ∈ V, we define the
relevant neighborhood Nt of v as the subgraph induced by the set of all nodes in V
having an impact on Zv(t), i.e., on the state of v at time t. Similarly, we define the
relevant neighborhood Tt as the subtree induced by the set of all nodes in T having
an impact on Zv0(t), where v0 is the root node of T .

The relevant neighborhood can be built by looking backward in time, identifying
dependencies between neighboring nodes. First, observe that the state of v at time t
depends on its out-neighbors v′ (one-hop away nodes) if and only if v has updated its
state in [0, t] at least once, i.e., we can find an update time of v, ϑv(t) ≤ t . The state
of node v depends on a two-hop away node v′′, if and only if we can find a common
neighbor v′ of v and v′′, such that ϑv′(t) < ϑv(t) ≤ t. Similarly the state of v depends
on a three-hops away node v′′′ only if we can find two nodes v′ and v′′ along a directed
path from v to v′′′ such that ϑv′′(t) < ϑv′(t) < ϑv(t) ≤ t, and so on.

Due to the fact that update times of each node form independent Poisson processes
with rate γ = 1, we can exploit well-known properties of the Poisson process (time-
reversibility, memoryless property) to obtain Nt (or Tt) as the result of a process
evolving forward in time, and exploring progressively the neighborhood of v by adding
an exponentially distributed delay (of mean 1) on each explored node, up to time t.

More precisely, the relevant neighborhood of v is obtained by the following process.
Vertices can be active, neutral or inactive. Initially, the relevant neighborhood is
empty.

1. The process starts by activating node v at time t = 0. All of the other nodes
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are set neutral.
2. Upon the activation of a node, a random timer is associated to it, taken from

an exponential distribution of mean γ = 1. Moreover, the node is added to
the relevant neighborhood, together with the outgoing edges.

3. Upon expiration of its associated timer: i) an active node is set inactive;
ii) all of its neutral out-neighbors are set active and added to the relevant
neighborhood, together with outgoing edges.

For t ≥ 0, we can stop the above exploration process at time t (i.e., we no longer
add nodes to the relevant neighborhood after time t), obtaining a truncated version
Nt of G, composed of all the nodes that have been activated. Similarly, we obtain a
truncated version Tt of T .

4.2. Approximation result. Let G = (V, E ,A, λ, σ, τ) be a multigraph sampled
from a given labeled network ensemble E(n) of size n. For t ≥ 0, let Nt be the relevant
neighborhood at time t of a node v chosen uniformly at random from V, and let µNt

be its distribution on the multigraph space. Let Tt be a labeled branching process as
defined in Sec. 3.1, truncated at time t, and let µTt

be its distribution.
Proposition 3 identifies some sufficient conditions to guarantee that the ASD

process over a network is well approximated by the solution of the differential equation
in (4).

Proposition 3. For t ≥ 0, let Z(t) be the state vector of the ASD at time t on
G. Let zω(t) =

1
n |{v ∈ V : Zv(t) = ω}| be the fraction of state-ω adopters at time t,

and zω(t) = E[zω(t)] be its expectation over the ensemble. For any ϵ > 0,

P(|zω(t)− yω(t)| ≥ ϵ) ≤ P(|zω(t)− zω(t)| ≥ ϵ− ∥µNt
− µTt

∥TV)

where yω(t) is the solution of (4).

Proof. Notice that

P(|zω(t)− yω(t)| ≥ ϵ) ≤ P(|zω(t)− zω(t)|+ |zω(t)− yω(t)| ≥ ϵ)(7)

We prove now that |zω(t)− yω(t)| ≤ ∥µNt
− µTt

∥TV from which we get the result.
Observe that, by definition, the state Zv(t) of node v depends exclusively on the

initial states Zj(0) = σj of the agents belonging to the relevant neighborhood Nt of
node v at time t, i.e., P(Zv(t) = ω) = χω(Nt) where χω is a function in the range
[0,1]. We thus have

zω(t) = E[zω(t)] =
1

n

∑
v∈V

P(Zv(t) = ω) =

∫
χω(g)dµNt(g).

On the other hand, considering the state of the root in the labeled branching process
T , the output of the ODE (4) satisfies

yω(t) =

∫
χω(g)dµTt(g).

It then follows

|zω(t)− yω(t)| ≤
∣∣∣∣∫ χω(g)dµNt

(g)−
∫
χω(g)dµTt

(g)

∣∣∣∣
≤
∣∣∣∣∫ (χω(g)−

1

2

)
dµNt

(g)−
∫ (

χω(g)−
1

2

)
dµTt

(g)

∣∣∣∣
≤ ∥µNt

− µTt
∥TV.
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From Proposition 3 we deduce that the evolution of the ASD process is well
approximated by the solution of the differential equation in (4) for graph ensembles
enjoying the following two fundamental properties:

(a) Topological Property: Local Weak Convergence is required, in the sense that
∥µNt − µTt∥TV can be made arbitrarily small by increasing the graph size.

(b) Concentration Property: for large graph size, the fraction of state-ω adopters
in the ASD process must concentrate around its expectation with probability
close to one.

5. ASD over labeled configuration model. Considering the ensable E(n)

of all labeled networks with given size n and statistics pd,k,a,s, we define the cor-
responding labeled configuration model ensamble Cn,p, on which we will restrict our
investigation in the rest of the paper. In particular, we provide general bounds for
ASD evolution over Cn,p.

Next we consider two specific examples of labeled configuration model, which
we believe are particularly interesting, and apply to them the general bounds above,
showing asymptotic convergence to the ODE solution as the network size grows large.

5.1. Labeled configuration model. We first explicitly describe the construnc-
tion of the labeled configuration model Cn,p. For each v ∈ V, denote with κv =
(κav)a∈A and δv = (δav )a∈A the out-degree and in-degree vectors, respectively, such
that there is exactly a fraction pd,k,a of nodes v ∈ V with (δv,κv, av) = (d,k, a). De-
note with La,a′ a set of stubs, and define arbitrary maps νa,a′ , γa,a′ : La,a′ → V, satis-
fying the property: |ν−1

a,a′(v)| = δav for nodes v with label λ(v) = a′ and |γ−1
a,a′(v)| = κa

′

v

with λ(v) = a. For all a, a′ ∈ A, let πa,a′ be chosen uniformly at random among all
permutations of La,a′ and define multigraph G = (V, E ,A, λ, σ, τ) with set of nodes
V and E =

⋃
(a,a′)∈A×A Ea,a′ , where Ea,a′ = (γa,a′(h), νa,a′(πa,a′(h)) : h ∈ La,a′ , and

σ(γa,a′(h), νa,a′(πa,a′(h))) = γa,a′(h) and τ(γa,a′(h), νa,a′(πa,a′(h))) = νa,a′(πa,a′(h)).
Denote with la,a′ = |La,a′ | the total number of edges incoming to nodes with label

a′, originating from nodes with label a, so that:

la,a′ = n
∑
d,k

dapd,k,a′ = n
∑
d,k

ka′pd,k,a

The total number of edges in the graph is l =
∑

a,a′ la,a′ . The average in-degree of a

node, which is equal to the average out-degree, will be denoted by d̄ = l/n.
We repeat for readers’ ease the expression of the fraction of nodes with label a′,

reached from a node with label a, having in-degree vector d and out-degree vector k:

(8) qad,k|a′ =
dapd,k,a′∑
d,k dapd,k,a′

We emphasize that the graph ensemble defined above extends the classical con-
figuration model, which can be recovered as a particular case by setting |A| = 1. It
is fairly general, because, as it will be shown in the following, it permits us to rep-
resent graphs with arbitrary degree distributions, and in particular power law/scale
free graphs, which are commonly met in most of the applications, as well as social
graphs with a community structure.

5.2. Bounds to ASD dynamics. In order to apply the general approximation
result stated in Proposition 3 to the labeled configuration model defined above, we
need to prove both Local Weak Convergence and Concentration Property of ASD.
The following theorems actually provide the main results of our paper:
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• Theorem 4 is a topological result and is related exclusively to the properties
of the labeled configuration model. More precisely, it provides a useful bound
on the total variation distance between the relevant neighborhood of a graph
drawn uniformly at random from the labeled configuration model ensemble
and the labeled branching process described in Section 3. The proof is rather
technical and the interested reader can find the details in Appendix A.1.

• Theorem 5 is related to the ASD evolution and to the specific properties of
the labeled configuration model. It provides a bound on the distance between
the fraction of state-ω adopters and its expectation. The proof can be found
in Appendix A.2.

Let G = (V, E ,A, λ, σ, τ) be a multigraph sampled from the ensemble Cn,p. For
t ≥ 0, let Nt be the relevant neighborhood at time t of a node v chosen uniformly
at random from V, and let µNt

be its distribution. Let Tt be the labeled branching

process truncated at time t and let µTt be its distribution. Moreover, let W b,a
t be the

number of edges in Tt from nodes with label b ∈ A to nodes with label a ∈ A and let
FW b,a

t
(xb,a) = P(W b,a

t > xb,a).

Theorem 4 (Topological Property). We have

∥µTt
− µNt

∥TV ≤ P(Tt ̸= Nt) ≤ inf
X∈(R+)A×A

∑
a,b∈A

[
FW b,a

t
(xb,a)(9)

+
xb,a(xb,a + 1)

2

∑
d,k dbq

b
d,k|a

lb,a
+
∑
b′ ̸=b

xb,axb′,a

∑
d,k dbq

b′

d,k|a

lb,a


Example 1 (Topological Property for the classical configuration model). If

|A| = 1 then the model ensemble Cn,p boils down to the classical configuration model
and the bound derived in (9) reduces to

∥µTt − µNt∥TV ≤ P(Tt ̸= Nt) ≤ inf
x>0

[
F
W̃t

(x) +

∑
d,k dqd,kx(x+ 1)

2nd

]
(10)

where W̃t is the number of nodes in Tt and F
W̃t

(x) = P(W̃t > x).

We next introduce the concentration result that allows us to estimate to what
extent the fraction of state-ω adopters in the ASD process concentrates around its
expectation.

Theorem 5 (Concentration Property). Let G be a multigraph sampled from the
ensemble Cn,p. We denote with N v

t the relevant neighborhood at time t of a node
v, sampled with a probability proportional to its in-degree, and with V v

t the number
of nodes in it. For t ≥ 0, let Z(t) be the state vector of the ASD dynamics on G,
b(t) = |{v ∈ V : Zv(t) = ω}| be the number of state-ω adopters at time t conditioned
to G. For any ϵ > 0, η > 0, x > 0, s ≥ 1 we have

P(|b(t)− E[b(t)]| > ηn)

≤ 4e
− η2n

1152(1+ϵ)tx2 +

(
1 +

12

η

)
(1 + ϵ)tn

2sEv [|V v
t |s]

xs
+ 2e−

ntϵ2

2(1+ϵ) + 2e−
η2n

288(t+η/12)

+

(
1 +

4

η

)
2s

xs

∑
w∈V

|δw|[E[|V w
t |s] + 2e−

η2n

128dx2
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Remark 5. We emphasize that the bounds presented in Theorem 4 and Theorem
5 represent an important step forward with respect to results already known in liter-
ature. In particular, Lemma 5 and Proposition 2 in [40] states a similar result for a
different, simplified version of our system dynamics.In contrast to [40], we introduce
a much more general result along three different directions:

1. We consider asynchronous dynamics (each node is updated by an independent
Poisson clock). Hence the neighborhood exploration process in the proof has
to take into account this new source of randomness. Specifically, the esti-
mation of the total variation (9) is split into two terms, which are obtained
by conditioning on the number of nodes in Tt. The necessity of this refined
analysis will be clear in the next section.

2. We consider arbitrary semi-anonymous dynamics, with possible random (noisy)
response to the state of neighbors. Moreover, we define our dynamics on a
much more general ensemble of labelled random graphs, which allows us to dif-
ferentiate the distribution of incoming/outgoing edges for each pair of classes.

3. We allow the maximum in- and out-degree of nodes to possibly scale with n
(under some technical constraints). This is crucial for applications to social
networks and many other complex systems in which the degree distribution
has often been observed to follow a power law. But notice that even in the
case of the classic Erdös-Rényi random graph G(n, p), dmax or kmax of course
are not independent of n. Note that, in the case of finite dmax, kmax, by taking
x = ktmax our bound in (10) leads to

∥µNt
− µTt

∥TV ≤ dmaxkmax(k
t
max + 1)

2nd
.

recovering the result in [40] (Lemma 5).

In the next section, we show how the bounds derived above for Local Weak
Convergence and concentration property can be used to study asymptotic behavior
of ASD on a labeled configuration model with power-law degree distribution. More
precisely, we will consider a sequence of labeled graphs with size n and described by

distributions p
(n)
k|a, q

(n)
k|a such that p

(n)
k|a

n→∞−→ pk|a, q
(n)
k|a

n→∞−→ qk|a. Then we will consider

the labeled branching process obtained by the construction above with asymptotic
distributions. The following proposition quantifies the distance between the solution

corresponding to the differential equation with distribution p
(n)
k|a, q

(n)
k|a and the solution

corresponding to the differential equation with asymptotic distribution pk|a, qk|a.

Proposition 6. Let
• ζ(n)(t) be the solution of (3) with q

(n)
k|a and initial condition ζ

(n)
0 ;

• ζ(t) be the solution of (3) with qk|a and initial condition ζ0.

• y(n)(t) be the solution of (3) with p
(n)
k|a and initial condition y

(n)
0 ;

• y(t) be the solution of (3) with pk|a and initial condition y0.

In addition let ϕ(z) − z and ψ(z) be Lipschitz continuous in [0, 1]|A|, and let L and
M > 0 be the Lipschitz constants corresponding to infinity norm. Then for any
∆ < 1/L we have

sup
t∈[0,m∆]

∥ζ(n)(t)− ζ(t)∥∞ ≤ ∥ζ(n)0 − ζ0∥∞
(1−∆L)m

+
1

L

(
1

(1−∆L)m
− 1

)
∥q(n)k|a − qk|a∥TV

14



sup
t∈[0,m∆]

∥y(n)(t)− y(t)∥∞ ≤ ∥y(n)
0 − y0∥∞
(1−∆)m

+

+

(
1

(1−∆)m
− 1

)[
M sup

t∈[0,m∆]

∥ζ(n)(t)− ζ(t)∥∞ + ∥p(n)k|a − pk|a∥TV

]
.

The proof is straightforward and is omitted for brevity. In particular, if p
(n)
k|a is a

truncated version of pk|a, we can apply to the previous bound the following statement
of immediate verification:

Proposition 7. Consider a generic distribution pk|a and its truncated version

p
(n)
k|a , i.e. p

(n)
k|a =

pk|a1k∈Bn∑
k∈Bn

pk|a
for a generic compact set Bn ∈ N|A|, then we have:

∥p(n)k|a − pk|a∥TV = 1−
∑

k∈Bn
pk|a.

5.3. Asymptotic behavior on labeled configuration model with power-
law degree distribution. In this section we consider the classical configuration
model with a truncated power-law degree distribution, which is a particular case of

labeled configuration model with |A| = 1. We simplify the notation: let p
(n)
d,k be the

fraction of nodes with in-degree d and out-degree k, where we have highlighted the

number of nodes n, and let d =
∑

d,k dp
(n)
d,k be the average degree.

Assumption 1. Let us assume that
∑

d,k dq
(n)
d,k = Θ(nδ) with 0 ≤ δ < 1/2. This

means that we allow the average in-degree of a node, reached by an edge selected

uniformly at random, to possibly scale with n. Moreover, we will assume that q
(n)
k =

O(k−β) follows a power-law of exponent β > 2 and maximum value kmax = Θ(nζ)
with ζ < min {(1− δ)/2, 1/(β − 1)} .

Let µs be the s-th moment of q = {q(n)k }k≥0. From Assumption 1 we have

(11) µs =

{
Θ(1) if β > s+ 1

Θ(nζ(s+1−β)) if 2 < β < s+ 1.

Notice that, being β > 2, µ1 is always finite and, therefore, does not scale with n.

In order to guarantee that the ASD over a network drawn uniformly at random
from the configuration model ensemble is well approximated by the solution of ODE,
it is sufficient that the terms in the upper bounds derived in (10) (see Example 1),
in Theorem 5, and in Proposition 6 go to zero when n → ∞. In the following, let
N (n) = (V(n), E(n)) be a sequence of networks, each one sampled from the corre-
sponding model ensemble Cn,p(n) , where {p(n)}n is a sequence of truncated versions

of a power law distribution of p satisfying Assumption 1. For t ≥ 0, let N (n)
t be the

relevant neighborhood of a node v chosen uniformly at random from the node set V(n).

Moreover, let T (n)
t be the sequence of truncated Galton-Watson (GW) processes (see

[18]) for which the root offspring follows distribution p(n), while the degree of non-root

nodes follow law q(n). Finally, let p(n)
n→∞→ p and q(n)

n→∞→ q.
Before presenting the topological result for the configuration model with power-

law degree distribution, we present two technical results, whose proofs are given in
Appendix B.

Lemma 8 (Bound on the number of nodes/edges in Tt). Consider the GW
process T in which the offspring distribution of the root follows law p, while the
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degree of remaining nodes follows law q. Let Tt be the corresponding random tree
obtained by truncating T at time t, and W̃t be the number of nodes in Tt. Let
hn = c log n for some c > 0 and t = o(hn) as n → ∞, then for any s > 0 we
have F

W̃t
(xn) ≤ E[Ns

hn
]/xsn + o(1/n) for n → ∞ where {Nh}h∈N is the number of

nodes in a truncated version of T with maximal width h.

Lemma 9. Let {Nh}h≥0 be a supercritical GW process, in which the offspring
distribution of the root follows law p, while the degree of remaining nodes follows law

q. We have: E[Ns
h] = O(µs · µs(h−1)

1 ), ∀β > 1, where µj is the j-th moment of q.

Theorem 10 (Topological result for configuration model with power-law degree
distribution). With the above definitions, let µN (n)

t
and µT (n)

t
be the distributions of

N (n)
t and T (n)

t , respectively. Under Assumption 1, for t = o(log n), we have ∥µT (n)
t

−
µN (n)

t
∥TV ≤ P(Tt ̸= Nt) = o(1) when n→ ∞.

Proof. From inequality (10), we have

∥µTt
− µNt

∥TV ≤ P(Tt ̸= Nt) ≤ inf
x>0

[
F
W̃t

(x) +

∑
d,k dqd,kx(x+ 1)

2nd

]
(12)

where W̃t is the number of nodes in Tt. Let xn = n(1−δ)/2−γ for some γ > 0 and
hn = c log n for some c > 0 then

∥µTt
− µNt

∥TV ≤
∑

d dqd,kxn(xn + 1)

2nd
+ F

W̃t
(xn)

≤
∑

d dqd,kxn(xn + 1)

2nd
+

E[Ns
hn

]

xsn
+ o(1/n)

where the last inequality holds for any s > 1 and {Nh}h∈N is (the number of nodes
of) a truncated GW process of maximal width h, in which the offspring distribution
of the root follows law p, while the degree of remaining nodes follow law q (see Lemma

8). Under Assumption 1 we prove that there exists s such that
E[Ns

hn
]

xs
n

= o(1/n) as

n→ ∞ and we conclude that for some γ > 0

∥µTt
− µNt

∥TV ≤ 1

2dn2γ
+ o(1/n) = o(1) n→ ∞.

To find a suitable value of s, we distinguish two cases.
(i) If β > ⌊ 2

1−δ ⌋+2 we can simply choose s = ⌊ 2
1−δ ⌋+1. By so doing, we stay in

the case β > s+1, and from (11) and Lemma 9 we get: E[Ns
hn

] = Θ(ncs log µ1)
and

E[Ns
hn

]

xsn
= Θ(n−s( 1−δ

2 −γ−c log µ1)) = o(1/n) n→ ∞

(ii) If β ≤ ⌊ 2
1−δ ⌋ + 2, we choose instead a sufficiently large value of s, falling in

the case s > β − 1 in which µs scales with n as in (11). In particular, from
Lemma 9 we have E[Ns

hn
] = Θ(nζ(s+1−β)+cs log µ1). Thus

E[Ns
hn

]/xsn = Θ
(
nζ(s+1−β)+cs log µ1−s( 1−δ

2 −γ)
)
.

We now observe that if there exists s ∈ N such that

(13) s

(
1− δ

2
− ζ − c logµ1 − γ

)
> 1− ζ(β − 1)
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then E[Ns
hn

]/xsn = o(1/n) for n → ∞. Since ζ < 1/(β − 1), the right hand

side in (13) is positive, and since ζ < min{ 1−δ
2 }, we can always find two

sufficiently small constants γ and c such that
(
1−δ
2 − ζ − c logµ1 − γ

)
is also

positive. Therefore, there exists an integer s large enough such that both
s > β − 1 and (13) are satisfied.

Corollary 11. For t ≥ 0, let Z(t) be the state vector of the ASD dynamics on

N (n) and z
(n)
ω (t) = 1

n |{v ∈ V : Zv(t) = ω}| be the fraction of state-ω adopters at

time t. Under Assumptions 1 for t = o(log n), for any η > 0 P(|z(n)ω (t) − yω(t)| >
η) = o(1)for n → ∞, where yω(t) is the solution of (4) over a GW tree Tt with the
asymptotic degree statistics p and q.

Proof. Let T (n)
t be the continuous-time branching process truncated up to time

t, µT (n)
t

be its distribution. Denote by y(n)(t) the solution of (4) with p
(n)
k|a and initial

condition y
(n)
0 . We have

P(|z(n)ω (t)− yω(t)| ≥ η) ≤ P(|z(n)ω (t)− y(n)ω (t)| ≥ η/2) + P(|y(n)ω (t)− yω(t)| ≥ η/2)

From Theorem 10 we obtain that if t = o(log n) as n → ∞ we have ∥µT (n)
t

−
µN (n)

t
∥TV = o(1) when n → ∞. We conclude that for any η > 0 there exists a

sufficiently large n0 such that, if n ≥ n0, then ∥µN (n)
t

− µT (n)
t

∥TV ≤ P(Tt ̸= Nt) ≤ η.

Using Proposition 3, it follows that for any η > 0 and large enough n:

P(|z(n)ω (t)− yω(t)| ≥ η) ≤ P(|z(n)ω (t)− z(n)ω (t)| ≥ η/4) + P(|y(n)ω (t)− yω(t)| ≥ η/2)

From Theorem 5, by choosing x = n4/9, s = 3, and ϵ > 0, we get

P(|z(n)ω (t)− yω(t)| ≥ η) ≤ P(|y(n)ω (t)− yω(t)| ≥ η/2) + o(1)

where, we have applying jointly Corollary 25 and Corollary 27 in Appendix B to

bound the third moment of V v
t . Finally Propositions 6 and 7 guarantee that |y(n)ω (t)−

yω(t)| → 0 and P(|y(n)ω (t)− yω(t)| ≥ η/2) = 0 for large enough n.

5.4. Asymptotic behavior on Configuration Block Model. In this section,
we apply the bounds derived for Local Weak Convergence and Concentration Property
in Section 4 to study the asymptotic ASD on a labeled configuration model with
community structure, which is a key feature of many real systems. In particular, we
consider a Configuration Block Model (CBM) with K communities of sizes {ni}Ki=1,
which are mapped into corresponding classes with labels {ai}Ki=1.

When the maximum in/out degree of nodes is finite both Local Weak Convergence
and Concentration property can be easily proven by taking the simple worst-case in
which all nodes have in/out degree equal to the maximum in/out degree, so we will
consider here a more challenging case, where in/out degree of nodes is allowed to scale
with n.

However, to simplify the analysis, we assume no correlation between in-degree
and out-degree of a node. As a consequence, the law of p is the same as the law of q,
and ζω|a,a′(t) = yω|a(t) (see Proposition 2).

Moreover, we assume that the number of edges established from a node of com-
munity i towards nodes of community j is independent for any pair (i, j), including
the special case i = j, i.e., intra-community edges. Therefore, pd,k|a factorizes into:

pd,k|a =
∏
i∈A

pini,a[di]
∏
j∈A

pouta,j [kj ]
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We will require that in/out degree sequences of the nodes, although possibly depen-
dent on the network size n, generate empirical distributions pini,a[d] and p

out
a,j [k] with a

light tail, for any pair (i, a) or (a, j), thus having finite moments of any order.
In order to guarantee that the ASD over a network drawn uniformly at random

from the CBM ensemble is well approximated by the solution of the ODE, it is suffi-
cient that the terms in the upper bound derived in (9) and in Theorem 5 go to zero
when n → ∞. In the following, let N (n) = (V(n), E(n)) be a sequence of networks,
each one sampled from the corresponding CBM ensemble

G(n) = G({ni}Ki=1, p
(n)
d,k,a), and, for t ≥ 0, let N (n)

t be the relevant neighborhood of

a node v chosen uniformly at random from the node set V(n). Moreover, let T (n)
t be

the sequence of GW processes with offspring distribution following law p(n). Finally,
let p(n)

n→∞→ p.

Theorem 12. Under above definitions and assumptions on the CBM ensemble,

let µN (n)
t

and µT (n)
t

be the distributions of N (n)
t and T (n)

t , respectively. For t =

o(log n), we have ∥µT (n)
t

− µN (n)
t

∥TV = o(1) when n→ ∞.

Proof. First observe that the number of edges W b,a
t in Tt between any pair of

classes (a, b) con be upper bounded by the total number of edges in Tt, which itself
can be bounded by the total number of nodes in Tt.

Recall that the number of edges between a node of community a and nodes of
community j conforms to the empirical distribution pouta,j [k].

Let P out
a,j be the cumulant of pouta,j , and define P out

∗ [k] = mina,j P
out
a,j [k]. Then, let

pout∗ [k] be the distribution whose cumulant is P out
∗ [k].

The outgoing degree of a generic node is then stochastically dominated by a r.v.
distributed as pout∗ which has, by construction, all finite moments. Indeed note that,
since all pouta,j have, by assumption, an exponential tail, pout∗ has an exponential tail as
well. Therefore, we can bound the number of edges in Tt with those in a truncated
GW tree T t in which the outgoing degree distribution of nodes is pout∗ .

Then, setting xb,a = xn = n
1
2−γ , for any (a, b) ∈ A × A, from (9) and Lemma 8

we have, for any s > 1:

∥µTt
− µNt

∥TV ≤ S
xn(xn + 1)

2nd̄
+ |A|2

E[Ns

hn
]

xsn
+ o(1/n) n→ ∞(14)

where N
s

hn
is the number of nodes in a truncated GW process of maximum depth hn,

in which the offspring distribution of every node is pout∗ . Moreover, we have introduced
S =

∑
a,b∈A

∑
d d p

in
a,b[d] which is by assumption a finite constant since the number

of classes is finite and the average number of edges going into a node of class b from
nodes of class a is finite.

Now we can apply Corollary 28 to bound E[Ns

hn
], since all moments of pout∗ are

finite.
In particular, from Corollary 28 we have E[Ns

hn
] = Θ(ncs log µ1), therefore:

E[Ns

hn
]

xsn
= Θ(n−s( 1

2−γ−c log µ1)) = o(1/n) n→ ∞

and we can conclude

∥µTt − µNt∥TV ≤ |A|2S
2dn2γ

+ o(1/n) = o(1) n→ ∞.
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Corollary 13. Under above definitions and assumptions on the CBM ensemble,

for t ≥ 0, let Z(t) be the state vector of the ASD dynamics on N (n) and z
(n)
ω (t) =

1
n |{v ∈ V : Zv(t) = ω}| be the fraction of state-ω adopters at time t. For t = o(log n)

and any η > 0: P(|z(n)ω (t)− yω(t)| > η) = o(1) for n→ ∞, where yω(t) is the solution
of (4) over a GW tree Tt with the asymptotic degree statistics p and q.

The proof follows exactly the same lines of Corollary 11.

6. The missing link between the mean-field ODE and the stationary
regime. Our main result implies that the weak limit of every converging sequence
of stationary probability distributions of ASDs on a large class of locally tree-like
random graph converges, when the size of networks tends to infinity, to a deterministic
limit which is the solution of a nonlinear ODE. This convergence is guaranteed over
finite time horizons or for time windows that scale logarithmically with the size of
the network. However, some form of convergence of the stationary regimes can be
guaranteed, by combining the approximation derived in 4.2 with results in [7]. In
particular, if the deterministic process has a unique limit point y⋆ and the sequence
of invariant probabilities is tight, then the sequence of invariant probabilities will
converge to the Dirac mass at y⋆.

In this section we consider regular random graphs, where all nodes have the
same out-degree, and we analytically derive some interesting properties of the ODEs
describing the temporal evolution of the system (see Proposition 2), for each of the
three examples of ASD introduced in Section 2.2. In particular, we can characterize
the equilibrium points of the system and their stability.

6.1. Ternary Linear Threshold Model (TLTM).

6.1.1. Mean field analysis. We assume that all agents have the same out-
degree k and symmetric thresholds, i.e., kv = k and a±v = r for all v ∈ V. In this case,
there is a single class a = r for which pk|r = qk|r = 1, and

Θ
(r)
1 (ξ1, ξ−1, k − ξ1 − ξ−1) = 1{ξ1−ξ−1≥r}

Θ
(r)
0 (ξ1, ξ−1, k − ξ1 − ξ−1) = 1{ξ1−ξ−1∈(−r,r)}

Θ
(r)
−1(ξ1, ξ−1, k − ξ1 − ξ−1) = 1{ξ1−ξ−1≤−r}

From Proposition 2 we have that, given an initial distribution (y1(0), y−1(0)), the
dynamics over the continuous-time branching process is described by

(15)

{
dy1

dt = ϕ
(k,r)
+ (y1(t), y−1(t))− y1(t),

dy−1

dt = ϕ
(k,r)
− (y1(t), y−1(t))− y−1(t),

and y0 = 1− y1 − y−1, where

ϕ
(k,r)
+ (x, z) =

⌊ k−r
2 ⌋∑

v=0

k−v∑
u=v+r

(
k

u

)(
k − u

v

)
xuzv(1− x− z)k−u−v(16)

and ϕ
(k,r)
− (x, z) = ϕ

(k,r)
+ (z, x).

Some analytical properties of the dynamical system can be deduced from the

analysis of ϕ
(k,r)
+ (x, z) and ϕ

(k,r)
− (x, z). In particular, we are interested in finding

stationary points, and analysing their stability properties. Before presenting the main
result we give some preliminary lemmas.
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Lemma 14. Let ϕ
(k,r)
+ (x, z) be as defined in (16). Then

1. ϕ
(k,r)
+ (x, z) is non decreasing in x and strictly increasing if 0 < r ≤ k;

2. ϕ
(k,r)
+ (x, z) is non increasing in z and strictly decreasing if 0 ≤ r < k;

3. ϕ
(k,r)
+ (0, z) = 0 for 0 < r ≤ k, ϕ

(k,0)
+ (x, 0) = 1, ϕ

(k,r)
+ (1, 0) = 1, for 0 ≤ r ≤ k;

4. ∇xϕ
(k,r)
+ =

∑⌊ k−r
2 ⌋

v=0 χ(v + r − 1, v)xv+r−1zv(1 − x − z)k−2v−r with χ(u, v) =(
k
u

)(
k−u
v

)
(k − u− v)

5. ∇zϕ
(k,r)
+ = −

∑k
u=r χ(u, v

′)xuzv
′
(1−x−z)k−u−v′−1 with v′ = (k−u)∧(u−r).

The proof is trivial and we omit it for brevity.

Proposition 15. If 2 ≤ r < k, then

1. the equation ϕ
(k,r)
+ (x, 0) = x has three solutions {0, x⋆, 1} with x⋆ ∈ (0, 1);

2. for every x ∈ (x⋆, x̄) with 0 < x⋆ < x̄ ≤ 1 there exists a unique value z(x)

such that ϕ
(k,r)
+ (x, z(x)) = x.

3. the equation ϕ
(k,r)
− (0, z) = z has exactly three solutions {0, z⋆, 1} with z⋆ ∈

(0, 1);
4. for every z ∈ (z⋆, z̄) with 0 < z⋆ < z̄ ≤ 1, there exists a unique value x(z)

such that ϕ
(k,r)
− (x(z), z) = z.

Proof. If 2 ≤ r < k, the function ϕ
(k,r)
+ (x, 0) has a lazy-S-shaped graph, i.e., it

is increasing, with a unique inflection point at x̃ = (r − 1)/(k − 1), it is convex on
the left-hand side of x̃ and concave on the right-hand side of x̃ (see Lemma 4 in [40]).

From this fact and the observation that ϕ
(k,r)
+ (0, 0) = 0 and ϕ

(k,r)
+ (1, 0) = 1 we get

the assertion at Point 1. It can also be proved that x⋆ ∈ [(r − 1)/k, r/k]. Denoting

F (x, z) = ϕ
(k,r)
+ (x, z) − x and observing that F (x⋆, 0) = ϕ

(k,r)
+ (x⋆, 0) − x⋆ = 0 and

∇zF (x
⋆, 0) ̸= 0 (see expression in Point 14 of Lemma 14), the statement in Point 2.

is obtained by the implicit function theorem [5]. Point 3. and 4. are straightforward

from the relation ϕ
(k,r)
− (x, z) = ϕ

(k,r)
+ (z, x).

In Figure 1 the functions z(x) such that ϕ
(k,r)
+ (x, z(x)) = x and x(z) such that

ϕ
(k,r)
− (x(z), z) = z are depicted for threshold values r = 2 (left) and r = 3 (right) and

degree k = 10. In addition to stationary points {(0, 0), (x⋆, 0), (1, 0), (0, z⋆), (0, 1))},
as derived in Lemma 14, extra stationary points are placed at intersections between
curves z(x) and x(z). In the specific case with k = 10 it can be noticed that if r = 2
then there are two additional stationary points.

The following proposition gives sufficient conditions guaranteeing that the set of
stationary points only contains the trivial points {(0, 0), (x⋆, 0), (1, 0), (0, z⋆), (0, 1))}.

Proposition 16. If r ≥ (k + 1)/2, {(0, 0), (x⋆, 0), (1, 0), (0, z⋆), (0, 1))} are the
only fixed points of the system.

Proof. Notice that ϕ
(k,r)
+ (x, x) = ϕ

(k,r)
− (x, x) ≤

∑k
u=r

(
k
u

)
xu(1 − x)k−u = φ(k,r)(x). If

r ≥ (k+1)/2, we have φ(k,r)(x) < x for all x < 1/2 and, consequently, ϕ
(k,r)
+ (x, x) < x

from which we conclude the assertion.

The following corollary can be proved by linearization.

Corollary 17. The following properties hold
1. (0, 0) is a locally stable stationary point for 2 ≤ r ≤ k, unstable if r = 1.
2. (0, 1) and (1, 0) are locally stable stationary points for 1 ≤ r < k, unstable

otherwise.
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3. (x⋆, 0) and (0, z⋆) are unstable stationary points.
4. The set of points {(x, z) ∈ R2 : x = z} is invariant.

Proposition 18. Let us consider the dynamical system in (15). Then there are
no periodic orbits.

Proof. The set of points M1 = {(x, z) : x = 0}, M2 = {(x, z) : z = 0}, and
M3 = {(x, z) : x = z} are positively invariant. From Proposition 16 and by applying
the Poincaré-Bendixson theorem we conclude that there are no periodic orbits.

The basins of attraction for the ODE in (15) are shown in Figure 1 for degree
k = 10 and threshold r ∈ {2, 3}. Basins are evaluated numerically, by solving the ODE
system for a wide set of initial conditions. More specifically, for each initial condition
x0, z0 the color in the picture represents the asymptotically stable equilibrium point
(yellow for (0,1), green for (0,0) and blue for state (1, 0)) to which the trajectory
tends. As to be expected by Corollary 17, we have that points (0, 0), (0, 1) and (1, 0)
are locally stable stationary points.
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Figure 1. Basins of attraction for the ODE in (15): (a) k = 10 and r = 2 (b) r = 3

6.1.2. TLTM on the Epinions graph. The online social network Epinions
was a consumer website operating from 1999 to 2014, where the users can review
different kind of items and rank the reviews of others to be trusted. The available
dataset [27] contains the who-trust-whom relationships of all members. The network
consists of |V| = 75879 nodes and |E| = 508837 directed edges, it is highly connected
and contains cycles. The average clustering coefficient is 0.1378. The maximum in-
degree is 3035, maximum out-degree is 1801, the average in/out-degree is 6.7. In and
out degrees follow an approximate power law distribution with exponent 1.7.

We assume that all nodes have symmetric threshold a±v = 2. In Figure 2, we show
on the left the loci of the stationary solution of (3) in the plane (ζ−1, ζ1), and on the
right an arrow plot representing the gradient of the system of the two ODEs in each
possible point for which ζ−1 + ζ1 ≤ 1. As it can be seen from the combinations of the
two plots, there are three stable stationary points, which are located at (ζ−1, ζ1) =
(0, 0), (ζ−1, ζ1) = (ζ̄, 0) and (ζ−1, ζ1) = (0, ζ̄), with ζ̄ ≃ 0.91 while there are four

unstable stationary points at values (ζ−1, ζ1) = (ζ̃, 0), (ζ−1, ζ1) = (0, ζ̃), (ζ−1, ζ1) =

(ζ̃1, ζ̃1) and (ζ−1, ζ1) = (ζ̃2, ζ̃2), where ζ̃ ≃ 1.02 × 10−4, ζ̃1 ≃ 1.066 × 10−4 and

ζ̃2 ≃ 0.341. The arrow plot allows also to verify that the boundary of the two basins of
attraction for the stationary points coincides with the line ζ−1 = ζ1 for ζ̃1 ≤ ζ1 ≤ 1/2.

In Figure 2, we show the evolution over time of the variables ζω(t) and yω(t),
ω ∈ {−1, 0, 1}, obtained through the numerical solution of ODEs in equations (3)-(4).
In particular, yω(t) represents the fraction of nodes in state ω at time t, while ζω(t)
represents the fraction of edges connected to a node in state ω at time t. At time
t = 0, the fraction of nodes of any degree in states −1, 0, 1 is 0.3, 0.5, 0.2, respectively.
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Figure 2. TLTM in the Epinions social network with symmetric thresholds r± = 2.: (a)
Stationary solution of ODEs in (3). (b) Gradient of ODE system in (3) (c) Transient solution of
ODEs in (3)-(4).

As it can be seen, the fraction of nodes in state 1 decreases exponentially with time
(the curve of ζ1(t) is superimposed on that of y1(t)). Instead, the curve for ζ−1(t)
reaches the fixed point ζ = 0.91, as predicted by Figure 2. The fixed point for y−1(t)
is lower, at about 0.39, implying that the fraction of nodes with higher degree that
asymptotically reach state −1 is larger than for nodes with lower degree.

6.1.3. TLTM on the Configuration Block Model. In this subsection, we
show results for a network with n = 107 nodes divided into two equal-size communities
(classes), with size n/2 = 5 · 106. We consider the TLTM with symmetric thresholds
a±v = 2. We put 105 seeds in state 1 in community 1, and 105 seeds in state -1 in
community 2. The out-degree distribution of the first class is given by p(k1,k2)|1 =
p11(k1)p12(k2) where

p11(k1) =
(
n/2−1

k1

)
pk1

A (1− pA)
1−k1 , p12(k2) =

(
n/2
k2

)
pk2

B (1− pB)
1−k2

pA and pB being chosen so that the average degree toward community 1 is 20, while
the average degree toward community 2 is 6. Analogously, the out-degree distribution
of the second class is given by p(k1,k2)|2 = p21(k1)p22(k2) where

p21(k1) =
(
n/2
k1

)
pk1

C (1− pC)
1−k1 , p22(k2) =

(
n/2−1

k2

)
pk2

A (1− pA)
1−k2

pC being chosen so that the average degree toward community 1 is 5. The network
shows a slight asymmetry, since nodes in community 1 have slightly more edges di-
rected towards nodes of community 2 than viceversa.

Figure 3 compares the fraction of nodes in state 1 and -1 in either community,
averaged across 100 simulation runs, against analytic results. We observe very good
agreement between analysis (thin curves) and simulation (thick curves). Interestingly,
in the beginning we have two weakly interfering percolation processes in the two com-
munities, producing a significant increase of nodes in state -1 in community 2, and
a significant increase of nodes in state 1 in community 1. However, the percolation
process in community 2 grows faster, because nodes in community 2 receive less in-
fluence from nodes in community 1 than viceversa. As a consequence, the percolation
process of nodes in state -1 eventually invades also community 1, while nodes in state
1 vanish to zero throughout the network.

6.2. Binary Response with Coordinating and Anti-coordinating agents.

6.2.1. Mean field analysis. We consider the homogenous case in which all
nodes have out-degree k. For simplicity, in the following, we will suppose that k is odd,
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in order to avoid ties, although the extension to the case of even k is straightforward.
Let α be the fraction of coordinating nodes. From Proposition 2, the evolution of the
node states is governed by the following ODE:

(17)
dy1(t)

dt
= αϕ1 (y1(t)) + (1− α) (1− ϕ1 (y1(t)))− y1(t),

where ϕ1 (y1(t)) is the probability with which a coordinating node enters state 1, given
by

(18) ϕ1 (y1) =

k∑
k1=⌈k/2⌉

(
k

k1

)
yk1
1 (1− y1)

k−k1 .

The above ODE derives from the fact that the probability of stepping to state +1
for an anti-coordinating node is equal to the probability of stepping to state −1 for a
coordinating node.

Proposition 19. Let us consider the dynamical system in (17). There exists
αth ∈ (0, 1) such that

• if α ≤ αth, then the only stationary point is y1 = 1/2, which is stable and has
a basin of attraction equal to [0, 1];

• if α > αth, then there are three stationary points: z1 = 1/2 is unstable and
the other two are symmetric with respect to z1 = 1/2 and stable, with basins
of attraction [0, 1/2) and (1/2, 1].

Proof. Let us define ℓ1 (y1(t)) the RHS of (17). It is to verify that ϕ1 (1/2) = 1/2,
ℓ1 (1/2) = 0, so that y1 = 1/2 is a stationary point for every α.

The derivative of ℓ1 with respect to y1 is given by:
dℓ1
dy1

= (2α− 1)dϕ1

dy1
− 1 = (2α− 1)k

(
k−1
⌊ k

2 ⌋
)
(y1(1− y1))

⌊ k
2 ⌋ − 1

From the above equation, it turns out that we have two distinct regimes, according

to whether α ≤ αth or α > αth, with αth = 1
2

(
1 + 2k−1

k(k−1

⌊ k
2
⌋)

)
• If α ≤ αth, then

dℓ1
dy1

≤ 0 for 0 < y1 < 1. It then turns out that the only

stationary point is y1 = 1/2, which is stable and has a basin of attraction
equal to [0, 1].
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• If α > αth, then
dℓ1
dy1

has two zeros, symmetric with respect to z1 = 1/2, in

the solutions of the quadratic equation y1(1 − y1) = ((2α− 1)k
(
k−1
⌊ k

2 ⌋
)
)−⌊ k

2 ⌋

Because of that, there are three stationary points, out of which the one in
z1 = 1/2 becomes unstable. The other two are symmetric with respect to
z1 = 1/2, i.e., y± = 1/2± ϵ, and stable, with basins of attraction [0, 1/2) and
(1/2, 1].

6.2.2. BRCA on the regular graph. Here we consider a simple regular graph
where all nodes have fixed out-degree k = 21 and fixed in-degree d = 21. Note that,
since the out-degree is odd, the best response is always deterministic (i.e., there are no
ties). We run a single simulation with n = 105, with the following initial configuration:
30,000 coordinating nodes in state 1, 10,000 coordinating nodes in state -1, 40,000
anti-coordinating nodes in state 1, 20,000 anti-coordinating nodes in state -1.
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Figure 4. Evolution over time
of the fraction of nodes in the ABRD
game, according to a single simulation
run.
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Figure 5. Evolution over time
of the fraction of nodes in the ABRD
game, according to analysis.
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Figure 6. Evolution over time of the fraction of nodes in state -1 in the ABRD game, across
400 simulation runs.

In Figures ?? and ?? we show the fraction of nodes in each of the possible states
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as function of time, according to simulation and analysis, respectively. We notice a
perfect agreement between analytical prediction and simulation. Small fluctuations
around the equlibrium configuration appear on the (single) simulation sample path.

To assess the degree of concentration of the process around its average, we car-
ried out the following experiment: we performed 400 runs of the system, where the
variability across runs is due to multiple reasons: i) the network topology generated
by the configuration model; ii) the initial selection of nodes in the various states; iii)
the temporal dynamics of the process (Poisson clocks). We then sampled the system
with time granularity ∆t = 0.01, and at each time instant we evaluated the average,
the minimum, and the maximum fraction of nodes in each state, across the 400 runs.
In Figure 6 we show the results of the above experiment for the fraction of nodes in
state -1 (either coordinating or anti-coordinating), with n = 103 (top-left), n = 104

(top-right), n = 105 (bottom-left), n = 106 (bottom-right). Thin curves above and
below the thicker line (denoting the average), correspond to maximum and minimum
values. Results for the fraction of nodes in state 1 are not shown, and they exhibit a
similar variability. We observe that results become more concentrated passing from
n = 103 to n = 106 nodes.

6.2.3. BRCA on the Epinions graph. We now investigate BRCA dynamics
on the Epinions graph with a fraction of coordinating nodes equal to α = 0.7, evenly
distributed among nodes of any degree. Our main goal in this section will be to
understand better the origin of possible discrepancies between analysis and simulation.

A numerical analysis of (3)-(4) shows that, similarly to the regular case, the
stationary points for the Epinions degree distribution are three, out of which the one
in ζ1 = 1/2 is unstable. The other two are positioned at ζ1 ≃ 0.33 and ζ1 ≃ 0.67 and
are stable. Such stationary points correspond to fractions of nodes in state 1 given
by y1 ≃ 0.426 and y1 ≃ 0.574, respectively.

Let us now move to the time evolution of fractions of nodes in a given state. We
consider the following initial condition: 42% of coordinating nodes in state 1, 28%
of coordinating nodes in state -1, 10% of anti-coordinating nodes in state 1, 20% of
anti-coordinating nodes in state -1. The left plot in Figure 7 shows the fraction of
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Figure 7. BRCA dynamics: evolution over time of the fraction of nodes in each possible state,
according to simulation (thick curves) and analysis (thin curves). From top curve to bottom curve:
coordinating nodes in state 1, coordinating nodes in state -1, anti-coordinating nodes in state 1, anti-
coordinating nodes in state -1. From left to right plot: original Epinions graph (left); configuration
model matched to the Epinions graph (middle); configuration model matched to the Epinions graph,
with 10n nodes (right).
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Figure 8. F1 metric vs fraction of coordinating node in state 1 (sampled at time t = 10):
original Epinions graph (left); configuration model matched to the Epinions graph (middle); config-
uration model matched to the Epinions graph, with 10n nodes (right).

nodes in each possible state as function of time, comparing simulation (thick curves)
and analysis (thin curves). For simulations, we have plotted the average of 400 runs,
where in each run we randomly select a different seed set. We observe that, after a
very similar initial behavior, simulations results tend to a different equilibrium point
with respect to analysis, as one can see by looking at the fraction of nodes at time
t = 10. We have identified two main reasons for the observed discrepancies: i) the
first one due to the fact that the structure of the Epinions graph is not captured by
the configuration model; ii) the second one due to the fact that the network size is
not large enough to converge to a unique equilibrium point across different runs, due
to random effects.

To separate out the impact of the above two reasons, we have performed the
following experiments. First, we have run simulations in which, in each run, we
randomly reshuffle the edges while maintaining the same node statistics. Note that,
by so doing, we generate graph according to the configuration model matched to
the Epinions graph. The results of this experiment are shown in the middle plot of
Fig. 7. As expected, now we observe a much better agreement between analysis and
simulation. Still, there are non negligible discrepancies in the final fraction of nodes
in each possible state.

An in-depth inspection of simulation results revealed that about 5% of simulation
runs tend to a completely different equilibrium than the remaining 95% of the runs.
This fact is illustrated by the middle plot in Figure 8, where we have put a mark
for each of the 400 runs, showing on the x axes the fraction of coordinating nodes
in state 1, sampled at time t = 10. For each run, we also computed the fraction of
coordinating nodes that would transit to state 1 if their clock would fire at time t = 0.
This fraction, denoted as F1, is plotted on the y axes, and it is meant to capture a
possible initial bias towards entering state 1, due to the initial network condition,
which is especially dependent on the random seed allocation.

We can observe that simulations converge to two main equilibria, and that simu-
lations runs where the final fraction of coordinating nodes in state 1 is smaller (around
0.2) have smaller values of the F1 metric specified above, suggesting that the initial
seed allocation is the main responsible for driving the system into a different config-
uration. We emphasize that a similar behavior can be observed also on the original
Epinions graph, for which an analogous investigation of single simulation runs pro-
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duced the left plot in Fig. 8.
To remove the bi-stable outcome of simulations, we performed the following ad-

ditional experiment: we considered again the node statistics of the original Epinions
graph, but this time we generated graphs of size ten times larger than the original
one (i.e., with n = 758790 nodes), using the configuration model.

The right plot in Fig. 8 shows that simulation results are now much more concen-
trated around a unique equilibrium. Moreover, in the right plot of Fig. 7 we observe
an almost perfect agreement between analysis and simulation for the evolution over
time of the fraction of nodes in each possible state (in this plot thick and thin curves
are essentially overlapped and thus indistinguishable).

We conclude that, when our analytic approach is used to predict the behavior
of ASD dynamics on realistic (finite) graph, one must be aware of two main sources
of errors: one due to the fact that real graphs are not completely described by the
configuration model; the other due to the fact that, in finite graphs, randomness can
possibly drive the system to different equilibria, especially when initial conditions are
close to the border of the attraction basin of the expected equilibrium. However,
our experiments with the Epinions graph suggest that our approach has remarkable
accuracy even in realistic graphs. Moreover, when the number of nodes exceeds, say,
one million, results are sufficiently concentrated around their average to justify our
mean-field approach, at least for the types of ASD dynamics that we have examined
so far.

7. Conclusions. In this paper we have proposed a mathematical framework
showing that general semi-anonynoums dynamics in large scale random graphs con-
verge to the solution of ordinary differential equations, allowing fast numerical predic-
tion of the transient behavior of many cascading processes in complex systems and, in
some cases, analytical estimation of their points of equilibrium. With respect to ex-
isting literature, we have extended the above mean-field approximation along several
directions: i) asynchronous node activation; ii) arbitrary semi-anonymous dynamics,
including noisy best-response and class-dependent behavior; iii) general random graph
exhibiting a local tree-structure, possibly mixing heterogeneous nodes and unbounded
in/out degrees. Our main contribution is a rigorous mathematical proof of conver-
gence, which requires a careful combination of many independent results related to the
different framework components. Despite the generality of our approach, we have not
considered important variations of semi-anonynoums dynamics such as non-reversible
transitions. Moreover, it remains still largely open how to analytically characterize in
a tractable way the behavior of ASD in undirected network.

Appendix A. Proofs of Section 5.2.

A.1. Topological result: Proof of Theorem 4. Let Nt be the relevant neigh-
borhood of a node chosen uniformly at random from V, respectively. Moreover, Let Tt
be the truncated branching process at time t. In order to compare the distributions
µNt and µTt of these two random variables, we define a coupling between them.

Definition of coupling. As a starting point, we define two different sequences

of random variables. For a, a′ ∈ A, let (La,a′

h )h∈N be a sequence of i.i.d. random
variables distributed according to a uniform distribution on the finite set La,a′ . Let

(Ma,a′

h )h∈La,a′ be a finite sequence of random variables such that

P(Ma,a′

h = La,a′

h |La,a′

h /∈ {Ma,a′

1 , . . . ,Ma,a′

h−1}) = 1
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while Ma,a′

h is uniformly distributed on the set La,a′ \ {Ma,a′

1 , ...,Ma,a′

h−1}, if L
a,a′

h ∈
{Ma,a′

1 , . . . ,Ma,a′

h−1}. Notice that the marginal distribution of the sequences (La,a′

h )h∈N

and (Ma,a′

h )h∈La,a′ are equivalent to sampling with replacement and sampling without
replacement, respectively, from the set La,a′ . We thus have

(19) P(La,a′

h+1 ̸=Ma,a′

h+1|(L
a,a′

1 , . . . , La,a′

h ) = (Ma,a′

1 , . . . ,Ma,a′

h )) =
h

la,a′
.

We build the neighborhood Nt with a dynamic exploration procedure driven by

variables (Ma,a′

h )h∈N. Our procedure starts adding to Nt the root v0 alone (chosen
uniformly at random over V), then Nt grows through the addition of new edges/nodes,
according to the following mechanism. Upon insertion, a newly added node is declared
unexplored and its out-degree is initialized to 0. Then some of the unexplored nodes in
Nt are sequentially explored at random times (smaller than t). Upon its exploration,
a node acquires a non-null out-degree and its out-neighbors are introduced in the
network (if not already in the network).

Before describing in detail the algorithm, we introduce the following variables:
• i denotes the iteration, which is determined by the number of explored nodes
in the network;

• ha,a
′

i denotes the number of (a, a′) edges at iteration i;
• hi denotes the total number of edges in Nt at iteration i,
• Si denotes the set of nodes (except for the root v0) in Nt at iteration i;
• S ′

i denotes the set of unexplored nodes in Nt at iteration i;
• Ti denotes the time at which the i-th node activates (i.e., it is explored).
• Γi denotes the time lag between the (i− 1)-th and the i-th exploration.
• Vi denotes the identity of the i-th explored node.
• Ai denotes the class of the i-th explored node.

Then Nt is generated according to the following procedure:
1. Set i = 0. Start from the root v0 (chosen uniformly at random from V).

Assign it label A0 = λ(v0) and out-degree vector J0 = 0, and declare it

unexplored. Set ha,a
′

0 = 0, for all a, a′ ∈ A, h0 = 0, S0 = S ′
0 = ∅ and extract

T0 ∼ Exp(1).
2. If T0 > t, stop the process. If T0 ≤ t: declare v0 explored, change its out-

degree vector to J0 = Kv0 , and add J0 =
∑

a′∈A J
a′

0 new edges to Nt. In

particular, for all a′ ∈ A, add exactly Ja′

0 out-going edges MA0,a
′

h′ , h′ ∈
{1, . . . Ja′

0 }, from v0, pointing to nodes νA0,a′(MA0,a
′

h′ ). Note that such nodes
are not necessarily different from each other. Newly introduced nodes are
declared unexplored and their out-degree is set to 0.

Then, counters are updated as: i = 1, hA0,a
′

1 = Ja′

0 for all a′ ∈ A and ha,a
′

1 = 0

for a ̸= A0, h1 =
∑

a,a′ h
a,a′

1 , S1 = ∪a′,h′{νA0,a′(MA0,a
′

h′ }} and S ′
1 = S1.

3. Let us define Ti = Ti−1 + Γi and let Γi ∼ Exp (|S ′
i|) where |S ′

i| represents
the number of unexplored nodes in Nt at iteration i; and let Vi be chosen
uniformly at random from S ′

i.
4. If Ti > t, stop the process. If Ti ≤ t: declare the node Vi explored, assign it

a degree Ji = KVi
and add Ji =

∑
a′∈A J

a′

i new edges to Nt. In particular,

add for all a′ ∈ A exactly Ja′

i out-going edges MAi,a
′

h′ from Vi pointing to

nodes νAi,a′(MAi,a
′

h′ ) with h′ ∈ {hAi,a
′

i + 1, . . . , hAi,a
′

i + Ja′

i }. Note that such
nodes are not necessarily all distinct, nor they are distinct from other nodes
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already inserted in Nt. Among them, those that are not already in Nt are
added and declared unexplored and their out-degree is set to 0.

Then, hAi,a
′

i+1 = hAi,a
′

i + Ja′

i , and, for all a ̸= Ai, h
a,a′

i+1 = ha,a
′

i . Then hi+1 =

hi +
∑

a′ Ja′

i , Si+1 = Si

⋃
{∪a′,h′{νAi,a′(MAi,a

′

h′ )} and

S ′
i+1 = S ′

i\{Vi}
⋃
(∪a′,h′{νAi,a′(MAi,a

′

h′ )}. Finally, increment i and go back
to Point 3.

Note that by construction, Point 4 is repeated for all i ≤ iM where iM = max{i ≥
0|Ti ≤ t}. Observe that the random network Nt generated in this way has, by con-
struction, the same structure and desired distribution µNt , of the relevant neighbor-

hood of a random node in G. Let Ea,a′

t be the total number of edges in Nt from nodes

with label a to nodes with label a′. Notice that Ea,a′

t = ha,a
′

iM
.

Now we build the tree Tt with a similar dynamic exploration procedure driven

by variables (La,a′

h )h∈N, which starts from a root ṽ0 alone and sequentially adds new
edges/nodes ṽh, h = 1, 2, . . . , to the tree. Nodes {ṽh}h≥0 are assumed to be pairwise
different. However a correspondence between node {ṽh}h in the tree and nodes in
the graph G is dynamically established. We emphasize that this correspondence is,
in general, non bijective: the same node in the network may correspond to several
distinct nodes of Tt, which are replicas of it.

More in detail, first we define the following variables:
• i denotes the iteration, i.e., the number of activated nodes in the tree;

• h̃a,a
′

i denotes the number of (a, a′) edges at iteration i;

• h̃i denotes the total number of edges in the tree at iteration i, which, by
construction, equals the total number of non-root nodes Si in the tree;

• S̃i denotes the set of nodes (except for the root ṽ0) in Tt at iteration i;
• S̃ ′

i denotes the set of unexplored nodes in Tt at iteration i;
• T̃i denotes the time at which the i-th node activates.
• Γ̃i denotes the time lag between the (i− 1)-th and the i-th exploration.

• Ṽi denotes the identity of the i-th explored node.
• W (·) represents the function that maps the nodes of the tree into V.
• Ãi is the class of the i-th activated node.

Then Tt is generated according to the following procedure:
1. Set i = 0. Start from the root ṽ0. Establish a correspondence between ṽ0

and v0 (i.e., W (ṽ0) = v0). Assign it label Ã0 = λ(v0) and out-degree vector

J̃0 = 0. Set h̃a,a
′

0 = h̃0 = 0, for all a, a′ ∈ A, S̃0 = ∅ and T̃0 = T0.

2. If T̃0 > t, stop the process. If T̃0 ≤ t: change the out-degree vector of ṽ0 to
J̃0 = Kv0 , and add J̃0 =

∑
a′∈A J̃

a′

0 new nodes to Tt (as children of ṽ0). In

particular, for all a′ ∈ A, add exactly J̃a′

0 out-going edges from ṽ0, pointing to

different nodes ṽh, h ∈ {1, . . . ,
∑

a′ J̃a′

0 }. Establish a correspondence between

newly inserted tree nodes and graph nodes as W (ṽh) = νA0,a′(LA0,a
′

h′ ), for

h = h′ +
∑

a′<a J̃
a′

0 . Set their out-degree to 0.Then, counters are updated as:

i = 1, h̃A0,a
′

1 = J̃a′

0 for all a′ ∈ A and h̃a,a
′

1 = 0 for a ̸= A0, h̃1 =
∑

a,a′ h̃
a,a′

1 ,

S̃i = ∪h{ṽh} and S̃ ′
i = S̃i.

3. Let us define T̃i = T̃i−1 + Γ̃i with Γ̃i = Γi if |S̃ ′
i| = |S ′

i|, otherwise Γ′
i ∼

Exp
(
|S̃ ′

i|
)
; moreover, let Ṽi = Vi if S̃ ′

i = S̃i, otherwise let Ṽi be chosen

uniformly at random from S̃ ′
i.
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4. If T̃i > t, stop the process. If T̃i ≤ t: declare the node Ṽi explored, assign it
a degree J̃i = KW (Ṽi)

and add J̃i =
∑

a′∈A J̃
a′

i new nodes to Tt (as children
of Ṽi). In particular, for all a′ ∈ A, add exactly J̃a′

i out-going edges from

Ṽi, pointing to different nodes vh̃i+h, h ∈ {1, . . . ,
∑

a′ J̃a′

i }. Establish a corre-
spondence between newly inserted tree nodes and graph nodes asW (ṽh̃i+h) =

νAi,a′(LAi,a
′

h̃
Ai,a

′
i +h′

), for h = h′ +
∑

a′<a J̃
a′

i . Set their out-degree to 0.Then,

h̃Ai,a
′

i+1 = h̃Ai,a
′

i + J̃a′

i , and for all a ̸= Ai, h̃
a,a′

i+1 := h
a,a′

i , h̃i = h̃i−1 +
∑

a′ J̃a′

i ,

S̃i+1 = S̃i

⋃
(∪h{ṽh̃i+h} and S̃ ′

i+1 = S̃ ′
i\Ṽ ′

i

⋃
(∪h{ṽh̃i+h}). Finally, increment

i and go back to Point 3.
Note that by construction, Point 4 is repeated for all i ≤ ı̃M where ı̃M = max{i ≥

0|T̃i ≤ t}. Observe that the random tree Tt generated in this way has, by construction,
the same structure and desired distribution µTt , of the relevant neighborhood over a

labeled branching process. Let Ẽa,a′

t be the total number of edges in Tt from nodes

with label a to nodes with label a′. Notice that Ẽa,a′

t = h̃a,a
′

ı̃M
.

A.1.1. Proof of Theorem 4. Using the coupling inequality (see Proposition
4.7 in [29]) we have

(20) ∥µTt
− µNt

∥TV ≤ P(Nt ̸= Tt).

Define the two events

B1 =
⋂

a,a′∈A

{
(La,a′

1 , La,a′

2 , . . . , La,a′

Ẽa,a′
t

) = (Ma,a′

1 ,Ma,a′

2 , . . . ,Ma,a′

Ẽa,a′
t

)

}

B2 =
⋂
a∈A


⋂

(b,h)̸=(b′,h′):b,b′∈A,h∈{1,...,Ẽb,a
t },h′∈{1,...,Ẽb′,a

t }

{νb,a(Lb′,a
h )) ̸= νb′,a(L

b,a
h ))}


⋂

⋂
b∈A

⋂
h∈{1,...,Ẽb,a0

t }

{νb,A0
(W (ṽh)) ̸= v0}

 ,

which are, in words, the event that there are no repeated edges in Tt and that the
map W (·) is bijective (i.e., just a single node in Tt corresponds to every node in Nt).

We are going to show that {B1 ∩ B2} ⊆ {Nt = Tt}. The assertion, indeed,
can be easily checked by induction over the iteration i. First observe that at the
end of iteration 0, by construction, under B1 and B2 the structure of Tt and Nt

are necessarily equal. Indeed by construction they can be different only if either

some LA0,a
′

h′ ̸=,MA0,a
′

h′ for h′ ≤ JA0,a
′

0 = J̃A0,a
′

0 or there are h′ and h′′ such that

νA0,a(L
A0,a

′

h′ ) = νA0,a′(MA0,a
′

h′ ) = νA0,a′(MA0,a
′

h′′ ) = νA0,a′(LA0,a
′

h′′ ). Now suppose that
the structure of Nt is equal to the structure of Tt at the end of iteration i − 1 (for

i ≥ 1). Then, by construction Si = S̃i and S ′
i = S̃ ′

i h
a,a′

i = h̃a,a
′

i ; therefore Vi =

Ṽi and Γi = Γ̃i and Ai = Ãi J
Ai,a

′

i = J̃Ai,a
′

i . During iteration i we add to Nt

nodes νAi,a′(MAi,a
′

h
Ai,a

′
i +h′

) = νAi,a′(LAi,a
′

h
Ai,a

′
i +h′

) for h′ ∈ {1, . . . , Ja′

i } (where the equality

descends from B1), which, from B2, are all different and different from nodes already in

Nt. In Tt we add brand-new replicas of nodes νAi,a′(LAi,a
′

h
Ai,a

′
i +h′

) = νAi,a′(MAi,a
′

h
Ai,a

′
i +h′

).

Therefore the structures of Nt and Tt are still equal at the end of iteration i.
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Thus:

P (Nt ̸= Tt) ≤ P

BC
1 ∪ BC

2

∣∣∣∣⋂
b,a

{
Ẽb,a

t ≤ xb,a

}+ P

⋃
b,a

{
Ẽb,a

t > xb,a

}
≤ P

BC
1

∣∣∣∣⋂
b,a

{
Ẽb,a

t ≤ xb,a

}+P

B̃C
2

∣∣∣∣B̃1,
⋂
b,a

{
Ẽb,a

t ≤ xb,a

}+
∑
b,a

P
(
Ẽb,a

t > xb,a

)
where in the first inequality we have let out the probability that the number of nodes
exceeds a fixed threshold.

Define the event Eb,a
h =

{
(Lb,a

1 , . . . , Lb,a
h ) = (M b,a

1 , . . . ,M b,a
h ))

}
. The first term of

(A.1.1) is upper bounded by

P

BC
1

∣∣∣∣⋂
b,a

{
Ẽb,a

t ≤ xb,a

} = P

 ⋃
b,a∈A

(
Eb,a

Ẽb,a
t

)c ∣∣∣∣⋂
b,a

{
Ẽb,a

t ≤ xb,a

}
≤
∑

b,a∈A

P
((

Eb,a

Ẽb,a
t

)c ∣∣∣∣Ẽb,a
t ≤ xb,a

)
≤
∑

b,a∈A

xb,a−1∑
hb,a=0

P(Lb,a
hb,a+1 ̸=M b,a

hb,a+1|E
b,a
hb,a

)

=
∑

b,a∈A

xb,a−1∑
hb,a=0

hb,a
lb,a

(21)

where the first inequality is the union bound, the second inequality is the chain rule,
while the last equality comes from (19). Using the same arguments, the second term
of (A.1.1) becomes

P

BC
2

∣∣∣∣B1,
⋂
b,a

{
Ẽb,a

t ≤ xb,a

}
≤
∑

a,b∈A

xb,a∑
hb,a=1

P(νb,a(M b,a
hb,a

) ∈ {w0, νb,a(M
b,a
1 ), ..., νb,a(M

b,a
hb,a−1)}|E

b,a
hb,a

)

+
∑

a,b∈A

∑
b′ ̸=b

xb,a∑
hb,a=1

xb′,a∑
hb′,a=1

P
(
νb,a(M

b,a
hb,a

) = νb′,a(M
b′,a
hb′,a

)

∣∣∣∣Eb,a
hb,a

, Eb′,a
hb′,a

)
(22)

where the first term above gives the probability that two edges from the same class
point to the same node or that a given edge points to the root, while the second term
computes the probability that two edges from two different classes point to the same
node. From the definition in (8), we have that the first term is upper bounded by∑

a,b∈A

xb,a∑
hb,a=1

P(νb,a(M b,a
hb,a

) ∈ {w0, νb,a(M
b,a
1 ), ..., νb,a(M

b,a
hb,a−1)}|E

b,a
hb,a

)

≤
∑

a,b∈A

xb,a∑
hb,a=1

(hb,a − 1)
∑

d,k(db − 1)qbd,k|a +
∑

d,k dbq
b
d,k|a

lb,a

≤
∑

a,b∈A

xb,a(xb,a + 1)

2

∑
d,k dbq

b
d,k|a

lb,a
−
∑

a,b∈A

xb,a−1∑
h=0

h

lb,a
.(23)
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Using similar arguments, we get

∑
a,b∈A

∑
b′ ̸=b

xb,a∑
hb,a=1

xb′,a∑
hb′,a=1

P
(
νb,a(M

b,a
hb,a

) = νb′,a(M
b′,a
hb′,a

)

∣∣∣∣Eb,a
hb,a

, Eb′,a
hb′,a

)

≤
∑

a,b∈A

∑
b′ ̸=b

xb,axb′,a

∑
d,k dbq

b′

d,k|a

lb,a
.(24)

Combining these bounds and inequalities in (20) and (21) we conclude the thesis.

A.2. Concentration property: Proof of Theorem 5. Before presenting the
proof of the main result we fix some notations and we state some preliminary lemmas.
First, we recall a simple variant of Azuma’s inequality which will be useful in our
arguments. Let {Yk : k = 0, 1, 2, 3, . . .} be a martingale. The classical Azuma’s
inequality [3, Theorem 7.2.1] states that if |Yk−Yk−1| ≤ ck with probability one, then

P(|YN − Y0| ≥ η) ≤ 2e
− η2

2
∑N

ℓ=0
c2
ℓ .

The following martingale concentration result generalizes the Azuma inequality to the
case in which |Yk − Yk−1| is not bounded.

Lemma 20 (Lemma 1 in [14]). Let {Yk : k = 0, 1, 2, 3, . . .} be a martingale. Then
for all sequences of positive numbers (cℓ) and η > 0, we have the following inequality

P(|YN − Y0| ≥ η) ≤ 2e
− η2

32
∑N

ℓ=1
c2
ℓ +

(
1 +

2∆⋆

η

) n∑
ℓ=1

P(|Yℓ − Yℓ−1| ≥ cℓ),

with ∆⋆ = supi |Yi − Yi−1|.
We recall that we consider three sources of randomness: the dynamics defined by

Θ in (1), the activation process and the labeled network. The concentration property
is proved in two steps. First, we study concentration by sequentially unveiling the
edges in the labeled network (Lemma 21) and then we consider the other sources of
randomness for a fixed graph (see Lemma 23).

We recall that for any ℓ ∈ N we use the notation [ℓ] = {1, . . . , ℓ}. Let Πa,a′ be
the set of all permutations of La,a′ = {1, . . . , la,a′} for any a, a′ ∈ A and denote by
Π = ×a,a′∈AΠa,a′ . Since each of permutation πa,a′ ∈ Πa,a′ defines a specific pairing of
out-links from nodes with label a and in-links of nodes with label a′, there are exactly∏

a,a′∈A la,a′ ! distinct elements in Π. We define the following cylinder sets:

Cℓ(π[ℓ]) = {υ ∈ Π : υ[ℓ] = π[ℓ]}, ∀π[ℓ](25)

We notice that Cℓ(·) are disjoint and exhaustive events, i.e., Cℓ(π[ℓ]) ∩ Cℓ(π′
[ℓ]) = ∅ if

π[ℓ] ̸= π′
[ℓ] and ∪π[ℓ]

Cℓ(π[ℓ]) = Π.

Lemma 21 (Unveiling network). Let N = ((V, E ,A, λ, σ, τ)) be a network sam-
pled from the model ensemble Cn,p of all labeled networks with given size n and statis-
tics p. We denote the induced graph obtained in the exploration process of the neigh-
borhood of a node v by N v

t , and with V v
t the number of nodes in it. For t ≥ 0, let Z(t)

be the state vector of the ASD dynamics on N , b(t) = |{v ∈ V : Zv(t) = ω}| be the
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number of state-ω adopters at time t. We denote the expectation over the ensemble
of labeled graphs by b̃(t). For any s ≥ 1 we have

P
(
|b(t)− b̃(t)| ≥ ηn

)
≤ inf

x>0

{
2e−

η2n

32dx2 +

(
1 +

2

η

)
2s

xs

∑
v∈V

|δv|[E[|V v
t |s]

}

Proof. Let π ∈ Π be the random element of Π (uniformly extracted by Π) which
describes the network N = ((V, E ,A, λ, σ, τ)). We denote with Fℓ the natural fil-
tration generated by π[ℓ], with F0 equal to the trivial σ-algebra. Let πℓ ∈ Π, for
any given ℓ ∈ {1 · · · |E|}, a random element in Π satisfying the following properties:
i) πℓ

[ℓ] = π[ℓ]; ii) π
ℓ
ℓ+1 and πℓ+1 are conditionally independent given π[ℓ]; iii) for any

i > 1, πℓ
ℓ+i = πℓ+i if πℓ+i ̸= πℓ

ℓ+1 and πℓ
ℓ+i = πℓ+1 if πℓ+i = πℓ

ℓ+1. Observe that by

construction πℓ is extracted uniformly from Π, as well. Furthermore the conditional
law of both π and πℓ, given π[ℓ] with π[ℓ] = πℓ

[ℓ] is uniform in Cℓ(π[ℓ]). Let Gℓ
ℓ′ be the

natural filtration induced by πℓ
[ℓ′]. Observe that by construction Gℓ

ℓ′ = Fℓ for ℓ′ ≤ ℓ.

At last let F̂ℓ+1 and Ĝℓ
ℓ+1 the natural filtration induced by πℓ+1 and πℓ

ℓ+1. Of course

Fℓ+1 = σ(Fℓ ∪ F̂ℓ+1) and Gℓ
ℓ+1 = σ(Gℓ

ℓ ∪ Ĝℓ
ℓ+1).

We have P(|bπ(t) − b̃(t)| ≥ ηn) = P
(∣∣E[bπ(t)|F|E|]− E[bπ(t)|F0]

∣∣ ≥ ηn
)
. Let us

emphasize the dependence of the number of ω-adopters b(t) on a specific graph π ∈
Π with notation bπ(t) and define Aℓ = E[bπ(t)|Fℓ]. Note, indeed, that {Aℓ}ℓ is a
martingale.

In order to estimate the above probability we apply Lemma 20. First, we compute

P (|Aℓ+1 −Aℓ| ≥ cℓ) = P (|Aℓ+1 −Aℓ|s ≥ csℓ) ≤ E [|Aℓ+1 −Aℓ|s]/csℓ
Notice that by construction Aℓ = E[bπ(t)|Fℓ] = E[bπℓ(t)|Fℓ] = E[bπℓ(t)|Fℓ+1] where
the first equation holds because π and πℓ are both uniform on Cℓ(π[ℓ]), and last

equation descends from the fact that Ĝℓ
ℓ+1 and F̂ ℓ

ℓ+1 are conditionally independent

given Fℓ = Gℓ
ℓ . Furthermore we have Aℓ+1 = E[bπ(t)|Fℓ+1]. Therefore

Aℓ+1 −Aℓ = E[bπ(t) | Fℓ+1]− E[bπ(t) | Fℓ] = E[bπ(t) | Fℓ+1]− E[bπℓ(t) | Fℓ+1]

= E[bπ(t)− bπℓ(t) | Fℓ+1](26)

Now observing that by construction π and πℓ differ in at most two positions, hence
we have:

E[bπ(t)− bπℓ(t) | Fℓ+1] ≤ 2E[|N v(πℓ+1)
t | | Fℓ+1]

and

E [|Aℓ+1 −Aℓ|s] ≤ 2sE
[(

E[| N v(πℓ+1)
t | |Fℓ+1]

)s]
≤ 2sE

[
|V v(πℓ+1)

t |s
]

where v(πℓ) is the in-node of edge πℓ. We conclude that P (|Aℓ+1 −Aℓ| ≥ cℓ) ≤
2s
[
E[|V v(πℓ+1)

t |s
]
/csℓ . For any x > 0 let cℓ = x for all ℓ. Then, by applying Lemma 20

and observing that ∆⋆ ≤ n, we obtain

P
(
|b(t)− b̃(t)| ≥ ηn

)
≤ 2e−

η2n

32dx2 +

(
1 +

2

η

)
2s

xs

dn∑
ℓ=1

[
E[|V v(πℓ)

t |s
]

= 2e−
η2n

32dx2 +

(
1 +

2

η

)
2s

xs

∑
v∈V

|δv|[E[|V v
t |s]

from which the thesis.
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Remark 6. The approach followed in Lemma 21 can be potentially extended to
more general classes of random graphs, with a variable number of edges, as long as:
i) the number of edges in the graph is sufficiently concentrated around its expectation;
ii) random variables associated to the presence of different edges in the graph are
sufficiently weakly correlated, so that we can effectively bound E[|Aℓ+1 −Aℓ|], through
a coupling argument similar to the one established between π and πℓ in Lemma 21.

Let N = ((V, E ,A, λ, σ, τ)) be a labeled graph. We denote the random times at
which the opinion update occurs, random node sequence activated, and the random
state, by {Tℓ}ℓ∈N, {wℓ}ℓ∈N, {zℓ}ℓ∈N, respectively. For t ≥ 0, let Z(t) be the state
vector of the ASD dynamics on N and b(t) = |{v ∈ V : Zv(t) = ω}| be the number of
state-ω adopters at time t.

Lemma 22. Let {Tℓ}ℓ∈N be the random times at which the opinion update occurs.
For t > 0 define the random variable ι(t) = sup{k ∈ N : Tk ≤ t}. Then for any ϵ > 0
and ∆n < tn the following bounds hold

P(ι(t) ≥ (1 + ϵ)tn) ≤ e−
ntϵ2

2(1+ϵ) , P(|ι(t)− tn| ≥ ∆n) ≤ 2e−
∆2

n
2(tn+∆n) .

Proof. This is a straightforward consequence of Chernoff bound [21].

Lemma 23 (Unveiling dynamics). Let N = ((V, E ,A, λ, σ, τ)) be a labeled graph.
Let {Tℓ}ℓ∈N, {wℓ}ℓ∈N, {zℓ}ℓ∈N be the random times at which the opinion update occurs,
random node sequence activated, and random state of activated sequence, respectively.
We denote the size of the induced graph obtained in the exploration process of the
neighborhood of a node v with V v

t at time t. For t ≥ 0, let Z(t) be the state vector
of the ASD dynamics on N , b(t) = |{v ∈ V : Zv(t) = ω}| be the number of state-ω
adopters at time t conditioned to N . We denote the expectation over the activation
process by b(t) = E[b(t)|N ]. For any ϵ > 0 we have

P(|b(t)− b(t)| > ηn) ≤ 2 inf
x>0

{
2e

− η2n

288(1+ϵ)tx2 +

(
1 +

6

η

)
(1 + ϵ)tn

2sEv [|V v
t |s]

xs

}
+ 2e−

ntϵ2

2(1+ϵ) + 2e−
η2n

72(t+η/6)

with v chosen uniformly at random in V.
Proof. For t ∈ R+ let ι(t) = sup{k ∈ N : Tk ≤ t}, w and z be the random

sequences of activated nodes and the corresponding random state. We recall that
for any ℓ > 0 the sequence w[ℓ] is uniformly distributed over V [ℓ]. We denote by
Fℓ,s the natural filtration generated by w[ℓ] and z[s]. Given ι(t), let w be a random

vector uniformly distributed in V [ι(t)] (let wℓ+1 = v) and ŵℓ be a random vector in
V [ι(t)] which is obtained by choosing some v′ uniformly at random from the set of
nodes V and putting ŵℓ

ℓ+1 = v′ and ŵℓ
i = wi for all i ∈ [ι(t)] \ {ℓ + 1}. It should be

noticed that wℓ+1 and ŵℓ
ℓ+1 are conditionally independent given w[ℓ]. Furthermore,

by construction ŵℓ is uniformly distributed over V [ι(t)].
In an analogous way, recall that zs = Zws

is a random variable distributed as
defined in Definition 1. Given ι(t), let z be a vector of length ι(t), whose components
are independent with the ℓ-component distributed as Θ(λ(wℓ)) in Definition 1 (let
zs+1 = ω) and, let z̃s be a random vector which is obtained by choosing some ω′
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according to Θ(λ(wℓ)) in Definition 1 and putting z̃ss+1 = ω′ and z̃si = zi for all
i ∈ [ι(t)] \ {s+ 1}.

Let us emphasize the dependence of the number of ω-adopters b(t) on a specific
sequence of activated nodes w and states z with notation bw,z(t). Given ι(t), we define

for any (ℓ, s) ∈ [ι(t)]× [ι(t)] the conditional expectetion B
ι(t),N
ℓ,s = E[b(t)|ι(t),Fℓ,s,N ],

then

P
(
|bw,z(t)− b(t)| ≥ ηn

)
≤ P

(
|Bι(t),N

ι(t),ι(t) −B
ι(t),N
ι(t),0 | > ηn

3

)
︸ ︷︷ ︸

(T1)

+

+ P
(
|Bι(t),N

ι(t),0 −B
ι(t),N
0,0 | > ηn

3

)
︸ ︷︷ ︸

(T2)

+P
(∣∣∣Bι(t),N

0,0 − E[bw,z(t)|F0,0,N ]
∣∣∣ ≥ ηn

3

)
︸ ︷︷ ︸

(T3)

We now evaluate (T1) and (T2) by applying Lemma 20 and (T3).
• In order to estimate (T1) we first consider

B
ι(t),N
ℓ+1,0 −B

ι(t),N
ℓ,0 = E[bw,z(t)|ι(t),Fℓ+1,0,N ]− E[bw,z(t)|ι(t),Fℓ,0,N ]

= E[bw,z(t)|ι(t),Fℓ+1,0,N ]− E[bŵℓ+1,z(t)|ι(t),Fℓ+1,0,N ]

= E[bw,z(t)− bŵℓ,z(t)|ι(t),Fℓ+1,0,N ].

By observing that, by construction, w and ŵℓ−1 differ in at most one position,
we get

E[bw,z(t)− bŵℓ,z(t)|ι(t),Fℓ+1,0,N ] ≤ 2E[|V v
t ||Fℓ,0]

where v is chosen uniformly at random in V. We thus have for any x > 0

P
(
|Bι(t),N

ℓ+1,0 −B
ι(t),N
ℓ,0 | > x

)
= P

(
|Bι(t),N

ℓ+1,0 −B
ι(t),N
ℓ,0 |m > xm

)
≤

E
[
|Bι(t),N

ℓ+1,0 −B
ι(t),N
ℓ,0 |m

]
xm

≤ 2mE [(E[|V v
t ||Fℓ+1,0])

m
]

xm
≤ 2mE [|V v

t |m]

xm

where v is chosen uniformly at random. We thus have for any ϵ > 0

P
(
|Bι(t),N

ι(t),0 −B
ι(t),N
0,0 | > ηn

3

)
≤ P

(
|Bι(t),N

ι(t),0 −B
ι(t),N
0,0 | > ηn

3

∣∣ι(t) < (1 + ϵ)tn
)
+ P (ι(t) ≥ (1 + ϵ)tn)

≤ inf
x>0

{
2e

− η2n

288(1+ϵ)tx2 +

(
1 +

6

η

)
(1 + ϵ)tn

2mE [|V v
t |m]

xm

}
+ e−

ntϵ2

2(1+ϵ)

(27)

with v chosen uniformly at random in V.
• (T2): Following the same arguments used in the previous point and observing
that z̃ss differs from z[ι(t)] only at position s+ 1, we get

P
(
|Bι(t),N

ι(t),ι(t) −B
ι(t),N
ι(t),0 | > ηn

3

)
≤

inf
x>0

{
2e

− η2n

288(1+ϵ)tx2 +

(
1 +

6

η

)
(1 + ϵ)tn

2mE [|V v
t |m]

xm

}
+ e−

ntϵ2

2(1+ϵ) .
(28)
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• (T3): Let now ι̂(t) a random variable taking values in Z+, distributed as ι(t),
and independent of it; let w[ι(t)] ∈ Vι(t) and ŵ[ι̂(t)] ∈ V ι̂(t) random uniform

sequences of activation of length ι(t) and ι̂(t) respectively and b(t) and b̂ℓ(t)
the corresponding the numbers of state-ω adopters at time t on the network
N :
For any ∆n we have

P
(
|E[b(t)|ι(t),F0,0,N ]− E[b(t)|F0,0,N ]| ≥ ηn

3

)
(29)

= P
(∣∣∣E[b(t)|ι(t),F0,0,N ]− E[b̂ℓ(t) | ι(t),F0,0,N ]

∣∣∣ ≥ ηn

3

)
≤ P

(
|ι(t)− ι̂(t)| ≥ ηn

3

∣∣∣|ι̂(t)− tn| ≤ ∆n, |ι(t)− tn| ≤ ∆n

)
+ 2P (|ι(t)− tn| > ∆n) ≤ 2e−

∆2
n

2(tn+∆n)(30)

where the second inequality descend from the fact that we can establish a
coupling between the sequences of activation w[ι(t)] and ŵ[ι̂(t)] by forcing them
to have common initial part of length min(ι(t), ι̂(t)) while the last inequality
follows from Lemma 22. Choosing ∆n = ηn

6 we get

P
(
|ι(t)− ι̂(t)| ≥ ηn

3

∣∣∣|ι̂(t)− tn| ≤ ∆n, |ι(t)− tn| ≤ ∆n

)
= 0

and we conclude the proof combining with (28).

Proof of Theorem 5 For any ϵ > 0 we have

P(|b(t)−E[b(t)]| > ηn) ≤ P(|b(t)−E[b(t)|N ]| > ηn/2)+P(|E[b(t)|N ]−E[b(t)]| > ηn/2)

Let v is sampled with a probability proportional with its in-degree. Combining Lemma
23 with Lemma 21 we get that for any ϵ > 0, η > 0 and x > 0 we have

P(|b(t)− E[b(t)]| > ηn) ≤ 4e
− η2n

1152(1+ϵ)tx2 +

(
1 +

12

η

)
(1 + ϵ)tn

2sEv [|V v
t |s]

xs

+ 2e−
ntϵ2

2(1+ϵ) + 2e−
η2n

288(t+η/12) +

(
1 +

4

η

)
2s

xs

∑
w∈V

|δw|[E[|V w
t |s] + 2e−

η2n

128dx2 .

Appendix B. Proofs of Sections 5.3 and 5.4.
Proof of Lemma 8 Let d(w1, w2) be the geodesic distance (i.e. the number of

edges in a shortest path) between nodes w1 and w2. We denote the maximum number
of hops traversed from the root v to a node w in Tt with Hv(t) = maxw∈Tt d(v, w).
Equivalently, Hv(t) is the depth of the tree Tt. Let us fix hn = c log n with c > 0 then

F
W̃t

(xn) ≤ P(W̃t > xn|Hv(t) < hn) + P(Hv(t) ≥ hn)

= P(W̃t > xn|Hv(t) < hn) + P (∃w ∈ Tt : d(v, w) = hn)

≤ P(Nhn
> xn) + nP(P̃ (t) ≥ hn)

where {Nh}h∈N is a truncated GW process of maximum depth h, in which the offspring
distribution of the root follows law p, while the degree of remaining nodes follow law
q, and P̃ (t) is a variable representing the number of points falling in [0, t) according to
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a homogeneous Poisson process with constant parameter γ = 1. Note that nP(P̃ (t) ≥
hn) represents an obvious upper-bound to the probability that the depth of Tt exceeds
hn, since by conduction P(P̃ (t) ≥ hn) is equal to the probability that a given branch
of Tt has depth larger than hn.

We have

P(P̃ (t) ≥ hn) ≤
∞∑

h=hn

e−tth

h!
=

e−tthn

hn!

∑
h≥hn

th−hn

h(h− 1) . . . (hn + 1)

≤ e−tthn

hn!

∑
s≥0

(
t

hn

)s

=
e−tthn

hn!

(
1− t

hn

)−1

for hn → ∞

where the last inequality follows from t/hn < 1 definitely, being t = o(hn) for hn → ∞.
Using Stirling’s approximation [21]

P(P̃ (t) ≥ hn) ≤ e−t+hn log t−hn(log hn)+hn− 1
2 log(2πhn)−log(1−t/hn).(31)

Using bound in (31), we obtain for any s > 0

F
W̃t

(xn) ≤ P(Nhn
> xn) + ne−hn log hn+o(hn log hn) ≤

E[Ns
hn

]

xsn
+ o(1/n) n→ ∞,

where the second last inequality follows from the Markov inequality [21]. At last,
we emphasize that the an analogous bound holds for the number Wt of edges, since
W̃t =Wt + 1.

Lemma 24. Let N = (V, E) be a network sampled from the configuration model
ensemble Cn,p of compatible size n and statistics p and q, Nw0

h be the induced graph
obtained by the exploration process of the h-depth neighborhood of a node w0 chosen
uniformly at random from the node set V. Let q̇ be the distribution defined as follows:∑k

h=0 q̇h = min(
∑k

h=0 ph,
∑k

h=0 qh), ∀k. Note that q̇ stochastically dominates both p
and q. Moreover, let q̂k be the distribution related to q̇k as follows: q̂k+k0

= q̇k, with

k0 = mink :
∑k

j=1 q̇j > ϵ. Let Nw0

h be the number of nodes in Nw0

h . We have that

for every xn ≤ ⌊ϵn⌋: P(Nw0

h > xn) ≤ P(Nw0

h > xn) where N
w0

h0
is the total number of

nodes over a tree of depth h0, in which the degree of all the nodes follow law q̂.

The proof is omitted for brevity and we refer the reader to [37] for details.

Corollary 25. For any h0 and s ≥ 1 we have: E[(Nw0

h0
)s] = O(E[(Nw0

h0
)s]).

Now we introduce a technical result that characterizes the moments of the total
number of nodes generated in a GW process in which the offspring distribution follows
a generic law q̂. Such result will later on be used to prove more specific results valid
when q̂ either follows a truncated power law distribution (Corollary 27) or it has all
finite moments (Corollary 28). The proof is obtained through a coupling argument
and using induction. We omit the details for brevity, but the interested reader can
find the mathematical details in [37].

Lemma 26. Let {Nh}h≥0 be a supercritical GW process with power-law degree
distribution q̂ = {q̂k}k≥0 (with

∑∞
k=0 kq̂k > 1). Let nh be the number of nodes at depth

h, and Nh be the total number of nodes generated up to generation h. These quantities
are defined recursively as follows: nh+1 =

∑nh

i=1Di; Nh+1 = Nh+nh+1 where Di are
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i.i.d. according to q̂, and we start with n0 = N0 = 1. Let µ̃j = E[(D + 1)j ], with D
distributed according to q̂. We have

E[Ns
h] = O

 ∑
(k1,...,ks)∈Ks

µ̃kµ̃
k1
1 µ̃

k2
2 . . . µ̃ks

s µ̃
s(h−2)
1

 .(32)

where k =
∑s

j=1 kj, and the summation is over Ks = {(k1, . . . , ks) :
∑s

j=1 jkj = s}.

Corollary 27 (Proof of Lemma 9). Let {Nh}h≥0 be a supercritical GW
process with power-law degree distribution q̂ = {q̂k}k≥0 of exponent β > 1, truncated

at k̂max = Θ(nζ), ζ > 0. We have: E[Ns
h] = O(µ̂s · µ̂s(h−1)

1 ), ∀β > 1, where µ̂j is the
j-th moment of q.

Proof. Let’s first consider the extreme case in which all moments µ̂j of q̂ are
infinite, including the first one, which happens for 1 < β < 2. From (11) we have
µ̃j = Θ(µ̂j) = Θ(nζ(j+1−β)), ∀j ≥ 1. Plugging the above expression of µ̃s into (32),
we obtain:

F s
h = O

 ∑
(k1,...,ks)∈Ks

µkn
ζ(k1(1+1−β)+k2(2+1−β)+...ks(s+1−β))µ

s(h−2)
1


= O

(
µ̂sµ̂

s(h−2)
1 nζs(2−β)

)
= O

(
µ̂sµ̂

s(h−2)
1 µ̂s

1

)
= O

(
µ̂sµ̂

s(h−1)
1

)
(33)

where we have used the fact that, since we are assuming β < 2, the dominant term in
the summation is the one associated to the largest possible value of k, obtained when
k1 = s, while all others ki = 0, i > 1.

Let us now assume that all moments of the degree distribution are finite up to
moment j− 1, whereas moments of order j or higher are infinite. This happens when
β > j. Repeating the same passages as before, adding and subtracting the ‘missing’
terms corresponding to finite moments, we get:

F s
h = O

µ̂sµ̂
s(h−2)
1

∑
(k1,...,ks)∈Ks

nζ((k−k1)(2−β)−k2(3−β)−...−kj−1(j−β))

 =

= O
(
µ̂sµ̂

s(h−2)
1

)
= O

(
µ̂sµ̂

s(h−1)
1

)
(34)

where we have used the fact that, since β > j, the dominant term is obtained again
by choosing k = k1 = s, while all others ki = 0, i > 1.

Remark 7. In our application to the single-class configuration-model with (trun-
cated) power law distribution (Section 5.3), we are only interested to the case β > 2
(so that the average degree is finite), for which we could obtain the stricter bound

F s
h = O

(
µ̂sµ̂

s(h−2)
1

)
. However, since we take h = c log n, we are not penalized by

using looser bound stated in Corollary 27.

Remark 8. To apply Corollary 27 to the single-class configuration-model with
(truncated) power law distribution (Section 5.3), one should also consider the fact that

the first generation of nodes in the GW process follows law p
(n)
k , while the following

generations follow law q
(n)
k . However, by Assumption 1, we have that p

(n)
k and q

(n)
k

38



are both O(k−β), hence p
(n)
k and q

(n)
k are both stochastically dominated by a power

law distribution q̂ of exponent β, which allows us to apply Corollary 27 and obtain
a valid bound for our configuration-model. In particular we can define q̂ as follows:∑k

h=0 q̂h = min(
∑k

h=0 ph,
∑k

h=0 qh).

Corollary 28. Let {Nh}h≥0 be a supercritical GW process with degree distribu-
tion q̂ = {q̂k}k≥0 (with

∑∞
k=0 kq̂k > 1) having all finite moments. Let Nh be the total

number of nodes generated up to generation h. We have E[Ns
h] = O(µ̂

s(h−2)
1 ), where

µ̂1 is the first moment of q̂.

Proof. By assumption we have µ̃j = Θ(µ̂j) = Θ(1) for any j ≥ 1. As direct

application of Lemma 26 we get E[Ns
h] = O

(
µ̂
s(h−2)
1

)
.
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