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A Bayesian generative neural 
network framework for epidemic 
inference problems
Indaco Biazzo*, Alfredo Braunstein, Luca Dall’Asta & Fabio Mazza

The reconstruction of missing information in epidemic spreading on contact networks can be 
essential in the prevention and containment strategies. The identification and warning of infectious 
but asymptomatic individuals (i.e., contact tracing), the well-known patient-zero problem, or the 
inference of the infectivity values in structured populations are examples of significant epidemic 
inference problems. As the number of possible epidemic cascades grows exponentially with the 
number of individuals involved and only an almost negligible subset of them is compatible with 
the observations (e.g., medical tests), epidemic inference in contact networks poses incredible 
computational challenges. We present a new generative neural networks framework that learns to 
generate the most probable infection cascades compatible with observations. The proposed method 
achieves better (in some cases, significantly better) or comparable results with existing methods in all 
problems considered both in synthetic and real contact networks. Given its generality, clear Bayesian 
and variational nature, the presented framework paves the way to solve fundamental inference 
epidemic problems with high precision in small and medium-sized real case scenarios such as the 
spread of infections in workplaces and hospitals.

Discrete-state stochastic compartmental models have been traditionally used to model infectious  diseases1–3 and 
provide a simple and unified mathematical framework for a wide variety of spreading processes occurring in 
social and technological  systems4. The time-forward simulations of most epidemic models, even those incorpo-
rating detailed demographic and mobility data, can be efficiently performed using Monte-Carlo based sampling 
techniques or, at least at the meta-population level, exploiting approximation methods, such as stochastic dif-
ferential equations and moment closure  schemes5. These computational methods have been largely applied to 
large-scale epidemic  forecasting6–9 and  containment10–12. Their effectiveness crucially depends on the capacity 
to exploit the available information on the past behavior of the epidemic outbreak. At the meta-population level, 
such information, represented by temporal series of aggregate quantities (e.g. daily number of newly infected 
individuals inside a reference population) can be rather easily included within traditional Bayesian computational 
frameworks based on Monte Carlo sampling  techniques13–15.

The COVID-19 pandemic has motivated the interest for the large-scale adoption of epidemic surveillance 
techniques and digital contact tracing through smartphone  applications16,17, which could make it possible to 
access/use a large amount of (possibly inaccurate) individual-based observational data, traditionally available 
only for case studies in rather small and controlled  environments18–20. The availability of individual-based obser-
vational data unveils a crucial limitation of traditional Monte-Carlo based inferential techniques. While the 
number of possible epidemic realizations generated by a specific epidemic model on a given contact network 
scales exponentially with the systems size and the duration of the process, those compatible with individual-based 
observations are just an exponentially small fraction of  them21. It follows that inferential methods based on the 
direct sampling of epidemic realizations on individual-based contact networks rapidly become inefficient as the 
size of the outbreak  increases21. As an example, let us consider several simulated epidemic realizations (with the 
same initial condition, consisting of a single infected individual, and the same epidemic parameters) in a real 
graphs of temporal contacts between patients and staff members of a  hospital22 (see Fig. 1).

We define the daily configuration of the system as the daily epidemic state of the individuals (infected/not-
infected) during the epidemic process. The plots in Fig. 1 indicate a fast divergence of the configurations of the 
simulated epidemics, even though they start from the same individual with the same epidemic parameters. 
Choosing, for instance, the final configuration of one epidemic cascade as the individual-based observation of 
the system, it is very unlikely to obtain the same configuration from a direct sampling of the epidemic model.
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A step forward in this field is represented by the introduction of efficient algorithms for Bayesian inference 
based on Belief Propagation (BP)23,24. In the Bayesian inference framework, the objective is to approximately 
compute the posterior probability of the system, assuming the epidemic model as a prior and the individual-based 
observations as the evidence. BP-based algorithms make it possible to obtain estimates of the local marginals 
of the posterior distribution and, as shown  in23,25,26, this approach outperforms competing methods on sparse 
contact networks on a variety of inference problems. In particular, the integration of such algorithms in the 
framework of digital contact tracing for COVID-19 was recently shown to provide a better assessment of the 
individual risk and improve the mitigation impact of non-pharmaceutical interventions  strategies27.

BP-based algorithms may experience non-convergence issues, for instance in dense and very structured con-
tact networks, a phenomenon that calls for the search of alternative inference methods which could overcome 
such a limitation while maintaining comparable performances on sparse networks. Here we propose to use 
generative neural networks, specifically autoregressive neural networks (ANN), to learn the posterior probability 
of an epidemic process and efficiently sample from it. In practice, the autoregressive neural network can generate 
realizations of the epidemic process according to the stochastic dynamical rules of the prior model but compatible 
with the evidence. Deep autoregressive neural networks are used to generate samples according to a probability 
distribution learned from data, for instance for  images28,  audio29,  text30,31 and protein  sequences32 generation 
tasks and, more generally, as a probability density  estimator33–35. Autoregressive neural networks have recently 
been used to approximate the joint probability distributions of many (discrete) variables in statistical physics 
 models36, and applied in different physical  contexts37–40. In this work, we show how to use a deep autoregressive 
neural network architecture to efficiently sample from a posterior distribution composed of a prior, given by the 
epidemic propagation model (even though the parameters of such model can be contextually inferred), and from 
an evidence given by (time-scattered) observations of the state of a subset of individuals. Neural networks have 
already been applied to epidemic  forecasting41–43 but rarely to epidemic inference and reconstruction problems. 
Two recent preliminary works apply neural networks to epidemic inference problems:  in44 the patient zero prob-
lem is tackled using graph neural networks, while a similar technique is applied to epidemic risk assessment  in45. 

Figure 1.  Simulated epidemic cascades in a hospital contact network. One thousand epidemic cascades 
simulated (with the same epidemic parameters) on a real contact graph measured in a  hospital22 (detailed 
information about epidemic models and contact networks are listed in the "Results" section). The epidemics 
started from the same individual. Two samples (blue, and orange) of epidemic cascades are shown in the first 
and second rows of the figure. The third row represents the distance between them, where in this case the blue 
dots are the infected individuals present in the cascade 1 but not in cascade 2 and the orange ones are those 
present in cascade 2 but not in cascade 1. In the third row, the total number of blue and orange dots gives the 
Hamming distance between the two daily configurations. Left-bottom plot. Cumulative number of infected 
individuals for 1000 epidemic cascades started from the same individual. Right-bottom plot. Hamming distance 
( δ(1, i) ) between the cascade 1 and all the others i ∈ [2, 3 . . . 1000].
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The presented approach allows to address successfully a large class of epidemic inference problems, ranging from 
the patient-zero problem and individual risk assessment to the inference of the parameters of the propagation 
model under a unique neural network framework. We believe this to be a strong point in favour of this technique. 
In all such problems, the proposed autoregressive neural network architecture provides results that are at least as 
good as all other methods considered for comparison and outperforms them in most cases. The implementation 
of the algorithm and the instructions to reproduce the results are available  at46.

Methods
The posterior probability of the epidemic process. The dynamics of epidemic spreading in a contact 
network is commonly described by means of individual-based stochastic models in which individuals can be 
in a finite set of possible states, usually called epidemic compartments. For the sake of concreteness, consider 
the discrete-time SIR model, in which xti ∈ X = {S, I ,R} stands for the individual i being at time step t in the 
Susceptible (S), Infected (I) or Recovered (R) state. The infection of a susceptible individual due to a contact with 
an infected individual occurs with rate � , while infected individuals recover in time with rate µ (heterogene-
ous epidemic parameters can be considered as well if necessary). In the epidemic propagation model, both the 
epidemic parameters and the temporal structure of the underlying contact network are assumed to be given and 
known, so that the individual transition probability of the corresponding Markov chain reads as follows

and p
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tion that is equal to 1 when xit = X and zero otherwise, xt∂i represents the set of individuals that are in contact 
with node i at time t. Defining the individual epidemic-state trajectory as xi = {x0i , . . . , x

T
i } , the probability of 

an epidemic realization x = {x1, . . . , xN } between time 0 and time T is
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N ) is a prior distribution on the initial state, which is usually assumed to be factorized, i.e. 
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Suppose that some information about the individual states at different times is available (e.g because individu-
als exhibit symptoms or undergo medical tests). We will assume that this information comes in the form of a set 
of independent observed variables Or following known probabilistic laws pr(Or |x
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 . False negative and positive 
rates in tests can be easily represented generalizing the expression of pr.
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is the normalization constant of the posterior probability or model evidence. Several quantities of interest can 
be computed from the posterior distribution. For instance, the problem of identifying the initial source of an 
outbreak in a population (the so-called patient-zero problem) requires to estimate the marginal probability 
p(x0i = I|O ) =

∑

x
1(x0i = I)p(x|O ) for every individual i. On the other hand, if the present time is T, the 

marginal probability p(xTi = I|O ) provides a measure of the current epidemic risk for every individual i. The 
exact computation of probability marginals requires a sum over all admissible realizations of the process, which 
becomes unfeasible for more than a few dozens of individuals because their number typically grows exponentially 
with the number of individuals. In the next subsection, we describe a method to approximately compute the 
marginals of the posterior distribution in Eq. (6) using Autoregressive Neural Networks (ANNs).
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Learning the posterior probability using autoregressive neural networks. Given a realization x 
of the epidemic process and a permutation π = {π1,π2, . . . ,πN } of the individuals of the system, which imposes 
a specific ordering to the variables {xi} , the probability of the realization x can be written as the product of con-
ditional probabilities (chain rule) in the form

where xi = {x0i , . . . , x
T
i } and x<i = {xj|πj < πi} is the set of epidemic-state trajectories of individuals with label 

lower than i according to the given permutation π . The distribution p(x) can be approximated by a trial distribu-
tion qθ (x) with the same conditional structure

which can be interpreted as a (possibly deep) autoregressive neural network depending on a set of parameters 
θ = {θi} . From the analytical expression of the probabilistic model p(x) , and thus that of the posterior distri-
bution p

(

x|O
)

 defined in Eq. (6), the operation of parameters learning can be performed using a variational 
approach proposed in Ref.36, in which the (reversed) Kullback-Liebler (KL) divergence

is minimized with respect to the parameters θ of the trial distribution qθ (x) . The minimization of the KL diver-
gence can be performed using standard gradient descent algorithms (see Supplementary material for details).

The computational bottleneck of these calculation in the Eq. (9) and their derivatives is that the sum runs over 
all possible epidemic realizations, a set that grows exponentially with the size of the system. This issue is avoided 
by exploiting the generative power of autoregressive neural networks by training them using generated sample 
data through ancestral sampling. This means that the averages over the autoregressive probability distribution 
can be approximated as a sum over a large number of independent samples extracted from the autoregressive 
probability distribution qθ , in which the conditional structure of the autoregressive neural network allows to use 
the ancestral sampling  procedure47, see Fig. 2.

A common way to represent the conditional probabilities in Eq. (8) is by means of feed-forward deep neu-
ral networks with sharing schemes  architectures35,48 to reduce the number of parameters. Due to the possible 
high variability in the dependence of p(xi|x<i) on x<i

40, instead of adopting a sharing parameters scheme we 
reduce the number of parameters by limiting the dependency of the conditional probability to a subset of x<i . 
The subset considered is formed by all xj ∈ x<i such that xj is at most a second-order neighbor of i in the graph 
induced by the contact network, i.e., the one in which there is an edge between two individuals if they had at 
least one contact during the epidemic process. The permutation order of the variables generally influences the 
approximation. For acyclic graphs, it is possible to define an order by which the aforementioned second-order 
neighbors’ approximation is exact: the variables are ordered according to a spanning tree computed starting 
from a random node chosen as a root (see supplementary material for proof). We can imagine that the same 
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Figure 2.  Ancestral sampling of epidemic cascades. Left. Ancestral sampling of epidemic cascades using 
artificial neural networks. For each individual i there is a neural network ANNi that computes the probability 
q
(

xi|xi−1 . . . x1
)

 of its time trajectory xi given the time trajectory of previous individuals. The time trajectory 
xi is extracted from the conditional probability q

(

xi|xi−1 . . . x1
)

 and passed to the following neural networks. 
Right. Each neural network is composed of several fully connected layers (see supplementary material for 
details).
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procedure yields good approximations for sparse interacting networks, but for general interaction graphs, we 
are unaware of arguments for choosing an order with respect to another. In this case, random permutations of 
the nodes are employed. The Kullback-Leibler divergence in Eq. (9), could attain large (or even infinite) nega-
tive values, causing convergence issues in the parameter learning process. As illustrated in the supplementary 
material, this is avoided by introducing a regularization parameter, a fictitious temperature, and an annealing 
procedure to improve the convergence.

Inferring the parameters of the propagation model. In a real case scenario, the epidemic parameters 
governing the propagation model are usually unknown and they should be inferred from the available data. 
Calling � the set of these parameters (e.g. for uniform SIR models � = (�,µ) ), the goal is to estimate them by 
computing the values �∗ that maximize the likelihood function given the set of observations O , i.e.

The quantity Z is the same normalization constant introduced in Eq. (6), where the dependence on the param-
eters was dropped. Formally,

Recalling that P(x|O ) = Z−1
∏

i �i(xi ,�) and thanks to Gibbs’ inequality we have that

where we first replaced the probability function P(x|O ) with the variational probability distribution qθ (x) and 
defined the energetic and entropic terms

Since Sq does not depend from � , minimizing 〈H〉q with respect to parameters � corresponds to maximizing 
logZ(�) . The quantity 〈H〉q and its derivatives w.r.t. � can be computed efficiently, in an approximate way, by 
replacing the sum over all configurations with the average on the samples extracted by ancestral sampling from 
the autoregressive probability distribution qθ . Therefore, we use the following heuristic procedure, inspired 
by the Expectation-Maximization (EM) algorithm, to infer the parameters, while minimizing the KL diver-
gence between qθ and the posterior probability p(x|O ) . During the learning process, two sequential steps are 
performed: 

1. Update the parameters {θi} of the autoregressive neural network to minimize the KL divergence in Eq. (9).
2. Update the parameters � to maximize the quantity 〈H〉q.

These steps are repeated until the end of the learning process.

Results
As a preliminary illustration of the ability of the proposed Autoregressive Neural Network (ANN) to sample 
epidemic realizations from a given posterior distribution, we reconsider the example in Fig. 1, focusing on the 
blue epidemic cascade. We train the ANN to learn the posterior probability composed by the prior, i.e. the epi-
demic model that generates the blue cascade, and the evidence, i.e. its final configuration at day 12. The result 
is shown in Fig. 3. The epidemic cascades generated by the ANN have Hamming distances from the reference 
one that reduce to zero at day 12 (central-bottom plot) and a fraction of them have prior probabilities larger 
than the probability of the (blue) epidemic cascade taken as reference, right-bottom plot in Fig. 3. This example 
suggests that the ANN approach can generate epidemic cascades compatible with the observations and sampled 
according the prior epidemic model.
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In the following, we exploit the ability of the ANN to sample epidemic cascades from a posterior distribu-
tion to tackle three challenging epidemic inference problems: (i) the patient-zero problem, in which the unique 
source of a partially observed epidemic outbreak has to be identified, (ii) the risk assessment problem, in which 
the epidemic risk of each individual has to be estimated from partial information during the evolution of the 
epidemic process, and (iii) the inference of the epidemic parameters. Results are compared with those obtained 
using already existing methods in the field of epidemic inference. We also evaluate how the efficiency of the 
ANN algorithm depends on the size of the epidemic outbreak, measuring the number of generated epidemic 
samples necessary to obtain nearly optimal results. The comparison between different inference techniques, the 
Autoregressive Neural Network (ANN), a Belief Propagation based approach (SIB) (17, 33), together with the 
Soft Margin estimator (SM), is carried out on both random graphs and real-world contact networks. The Soft 
Margin (SM)  estimator21 is based on Monte Carlo methods in which samples are weighted according to the 
overlap between the observations and the generated epidemic cascade (see supplementary material for details). 
The Belief Propagation  approach23, implemented in the SIB  software27,49 provides exact inference on acyclic con-
tact networks and performs very effectively on sparse network structures. In the present work, we focus instead 
on real-world contact networks, which turns out to have relatively dense interaction patterns. The first contact 
network, taken from the dataset InVS1350, is related to a work environment (work), while the second one was 
collected in a hospital (hospital)22. In both cases, the dataset used is the temporal list of contacts, respectively 
between 95 and 330 individuals, for a period of two weeks. Since the real duration δti,j of each contact is known, 

the probability of infections between individuals i, j at time t is computed as �ti,j = 1− e
−γ δti,j , where γ is the 

rate of infection. For comparison, we also consider synthetic contact networks: a random regular graph (rrg) 
with N = 100 individuals and degree equal to 10, and a random geometric graph (proximity), in which N = 100 
individuals are randomly placed on a square of linear size 

√
N  . In the latter, the probability that individuals i and 

j are in contact is e−dij/l , where dij is the distance between i and j and l is a parameter (set to l = 10 ) that controls 
the density of contacts. For both synthetic and empirical contact networks, epidemic processes (SIR epidemic 

Figure 3.  Epidemics cascades generated by the ANN. Epidemic cascades generated by the ANN trained on a 
posterior probability composed by a prior, the epidemic model that generate the blue cascade, and the evidence, 
its final configuration at day 12. The contact network is a real contact graph measured in a  hospital22. An 
example of the epidemic cascade generated is shown in second row ( 1ANN , orange). The third row represent 
the hamming distance between them (see caption Fig. 1). Left-bottom plot. Cumulative number of infected 
individuals for epidemic cascade simulated (blue curve) and generated by the ANN ( iANN ∈ [1, 2 . . . 1000] . 
Central-bottom plot. Hamming distance ( δ(1, iANN ) between blue epidemic cascade and those generated by 
the ANN iANN ∈ [2, 3 . . . 1000] . Right-bottom plot. Distribution of the values of the prior probability of the 
generated epidemic cascades ( PANN ). The blue vertical line is the value of the prior probability of the blue 
cascade ( log(Pi).
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cascades, see "Material and Methods" for details) with a duration of 15 days are generated. In the interaction 
graphs under study, large fluctuations in the final number of infected individuals are observed. The parameters 
of the epidemic model were chosen in such a way to have, on average, half of the individuals infected at the end 
of the epidemic propagation, in order to reduce the cases where very few or a large fraction of individuals are 
infected. Indeed, in these cases, the inference problems analyzed become either too trivial or very hard to solve 
because of lack of information. In the supplementary material, an analysis of the robustness of the results with 
respect to the epidemic model parameters is shown.

The patient zero problem. Given the exact knowledge of the final state of the epidemics at time T, the 
patient-zero problem consists in identifying the (possibly unique) source of the epidemics. In a Bayesian frame-
work, this problem can be tackled by computing for each individual the marginal probability of being infected at 
time t = 0 given a set of observations O . This quantity can be estimated from the posterior distribution [Eq. (6)] 
in the "Material and Methods") with all three algorithms (ANN, SIB, and SM) considered in this work. For 
each contact network (rrg, proximity, work, hospital), we considered 100 different realizations of the epidemic 
model with only one patient zero. The three algorithms were used to rank infected and recovered individuals in 
decreasing order according to the estimated probability of being infected at time zero for each epidemic realiza-
tion. Figure 4 displays, for each algorithm, the fraction of times, in 100 different realizations, the patient-zero 
is correctly identified. The left plots show the fraction of times it is correctly identified at the first position of 
the infected or recovered individuals ranked according to the algorithms. The right plots show the fraction of 
times the patient zero is found versus the fraction of infected or recovered individuals ranked by the algorithms 
considered. The ANN algorithm outperforms all the other methods as indicated by the larger area under the 
curve (AUC) obtained in all cases considered. The improvement is also evident when analyzing the fraction of 
patient zero correctly identified by each algorithm (left bar plots in Fig. 4). For example, in the hospital case, 
ANN correctly identifies the patient zero in the 74% of the instances, SIB in the 54% and SM in the 35% of them. 
In all cases, the ANN algorithm’s performances are comparable to or better than those of the other approaches. 
The results on the patient zero problem reveal the ability of the ANN algorithm to efficiently generate epidemic 
cascades according to the posterior probability defined in Eq. (6).

Scaling properties with the size of the epidemic outbreak. From the results presented in the pre-
vious subsection, Autoregressive Neural Networks seems to be very effective in tackling classical epidemic 
inference problems, particularly on dense contact networks, where the performances of BP-based methods are 
expected to decrease. It is, however, critical to check how the convergence property of the learning processes 
scales with the size of the epidemic outbreak. For this analysis, we consider the patient zero problem on a tree 

Figure 4.  Results of the patient zero problem. The left bar plots, for each case, represent the fraction of times, in 
100 different epidemic cascades, the patient zero is correctly identified at the first position of the ranking given 
by the algorithms. The right plots show the fraction of times the patient-zero is found (in 100 different epidemic 
cascades) in a fraction of infected or recovered individuals ranked according to the probability to be patient zero 
given by the three algorithms ANN, SIB, and SM (the values of the area under the curve [AUC] are shown in 
the insets). For the rrg we consider the following epidemic parameters � = 0.04 and µ = 0.02 and for proximity 
� = 0.03, µ = 0.02 . The epidemic parameters for (work) and (hospital) are respectively γ = 10−3, µ = 0.02 
and γ = 2 · 10−4, µ = 0.02.
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contact network with a unique epidemic source and where the state of the system at the final time T is fully 
observed. With this choice, we ensure that the probability marginals computed by the SIB algorithm are exact; 
hence they can be taken as a reference to compare the performances of the other algorithms. The ANN algorithm 
with a second-order neighbors approximation is exact when the interaction graph is acyclic (see supplementary 
material for details), assuming that the architecture of the neural networks used is sufficiently expressive to 
capture the complexity of posterior probability. On the other hand, since the SM algorithm is based on a Monte 
Carlo technique, it can give estimates of marginal probabilities with arbitrary accuracy when a sufficiently large 
sample of epidemic cascades is generated.

In the case of complete observation of the final state, the larger the epidemic size (i.e., the total number 
of infected individuals at time T), the larger is the number of epidemic cascades that are compatible with 
the observation. For instance, in an epidemic realization of duration T time steps in which nI individuals are 
tested infected and N − nI tested susceptible at time T, the number of epidemic configurations compatible 
with the observations scales as TnI . Both ANN and SM rely on sampling procedures, so their performances 
could suffer from convergence issues when the epidemic size ( nI ) increases. We compute the total number of 
samples generated by the ANN during the learning process and the number of samples of epidemic cascades 
generated by SM in the Monte Carlo procedure. In both cases, we assume that convergence is reached when 
∑

i |Palgo(x
0
i = I|O )− Psib(x

0
i = I|O )| < 0.1 with algo ∈ {ANN , SM} , where Palgo(x0i = I|O ) is the estimated 

marginal probability that individual i is infected at the initial time according to each method. The results on the 
scaling properties of the ANN and SM as a function of the epidemic size on a tree contact network with degree 
and depth both equal to 6 (tree) are shown in Fig. 5. Here we set the duration of the epidemic cascades to T = 15 
days. The ANN algorithm has a quasi-linear dependence with the epidemic size; conversely, the SM algorithm 
exhibits a very sharp increase in the number of simulations necessary for good estimates of the marginals, and 
already for epidemic sizes of order ten individuals, good estimates are difficult to obtain.

Epidemic risk assessment. The risk assessment problem consists in finding the individuals who have the 
highest probability of being infected at a specific time given a partial observation O . In particular, we consider 
here a realization of the SIR model with µ = 0 (i.e. only the states S and I are available) where half of the infected 
individuals are observed with certainty at the final time T. The results of the risk-assessment analysis obtained 
by means of the ANN algorithm are compared with those provided by the SIB algorithm and two other methods 
recently proposed  in27. The Simple-Mean-Field (SMF) algorithm is based on a mean-field description of the epi-
demic process in which information about the observed individuals is heuristically included. The Contact Trac-
ing (CT) algorithm computes the individual risks according to the number of contacts with observed infected 
individuals in the last τ = 5 time steps (days).

A measure of the ability to correctly identify the unobserved infected individuals at the final time T is repre-
sented by the area under the Receiving Operating Characteristic (ROC) curve. This quantity, averaged over 100 
instances of the epidemic realizations, is reported, for the methods considered above, in Table 1, for different 

Figure 5.  Scaling properties with the size of epidemic cascades. Number of samples generated by the ANN and 
SM algorithms to reach convergence. We consider the estimation of the marginal probabilities to be infected at 
time zero with interactions graphs given by a tree of degree and depth both equal to 6 and spanning 15 days of 
duration. The epidemic cascade are generated with µ = 0 and different values of � ( � ∈ [0.1, 0.6] ). For the ANN 
algorithm, we consider the number of samples generated during the learning process, that is 103 samples for 
each annealing steps (see supplementary material for details). For each instance, we run the annealing process 
with 2n number of steps with n ∈ {5, 6, . . . , 18} . Each point is a single instance, if the algorithm converges 
between 2n−1 and 2n steps, the number of samples reported in the plot is the number of steps 2

n+2n−1

2 ± 2n−2n−1

2  
multiplied by 103 samples extracted at each step. For the SM algorithm, each point in the plot is the average 
number of simulated epidemics necessary to reach convergence to a good estimate of the marginals (worst 10% 
results were discarded). No point is reported when more than ten infected individuals are observed, because 
more than 10% of the instances did not converge within 2 · 108 simulated epidemics.
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contact networks (rrg, proximity and work). All algorithms perform similarly on random graphs, whereas ANN 
and SIB outperform the other two methods in the case of the work contact network.

Epidemic parameters inference. The parameters � governing the epidemic process can be simultane-
ously inferred during the learning process of the ANN algorithm using a heuristic method inspired by Expecta-
tion Maximization (see "Materials and Methods"). Other iterative algorithms, such as SIB, can incorporate such a 
parameter likelihood climbing step during their  convergence51. A comparison between the performances of the 
two algorithms in learning the infectiousness parameter governing the spreading process on different contact 
networks (tree, rrg, proximity and work) is displayed in Fig. 6 (left plot), in which we adopt the same setting of the 
patient-zero problem where the states of all individuals are known at the final time T. The ANN algorithm largely 
outperforms SIB in rrg and proximity graphs, obtaining comparable results for the tree and work instances. We 
also test the performance of parameters inference in a more challenging scenario where the population is split 
into two classes, with two different rates of infections γ1, γ2 (which could correspond, for instance, to a simplified 
scenario of vaccinated/not-vaccinated individuals). The states of all individuals at final time T = 14 are observed 
for ten epidemic cascades on the hospital contact network. Then we infer the parameters with two different epi-
demic models: in the first one, the population is correctly divided (we call this the true model); in the second, we 
split the population randomly (null model). The goal is to verify whether the true model has a larger likelihood 
than the null model, that is it can better explain the observations. In the central plot of Fig. 6, we observe how 
well the true model can infer the correct values of the infections rate of the two sub-populations. As expected, the 
two values of γ inferred with the null model are similar to each other but different from the correct ones. From 
the rightmost plot of Fig. 6, we observe that the log-likelihood of the true model is much larger of the one of the 
null model, indicating the former better explains the observations. This example shows how the ANN approach 

Table 1.  Epidemic risk assessment results. Area under the Receiving Operating Characteristic (ROC) curves 
for the risk assessment problem on random regular graphs (rrg) with 1 and 2 sources, on the proximity random 
graphs and work real-world contact network. The results are averaged over 100 different epidemic cascades 
generated with the same epidemic parameters. For each case, the ROC curve for the classification of the 
unobserved infected individuals at the final time is computed. In the rrg case, the epidemic parameters are 
�
(1)
rrg = 0.035 for the single source and �(2)rrg = 0.03 for the double source case. For the proximity random graphs, 
�prox = 0.03 . In the case of the work network, the model has rate of infection γwork = 10

−3.

rrg 1 src rrg 2 src Proximity 1 src Work 1 src

ANN 0.710± 0.010 0.670± 0.009 0.734± 0.010 0.889± 0.005

SIB 0.710± 0.010 0.671± 0.009 0.732± 0.010 0.886± 0.005

SMF 0.704± 0.010 0.671± 0.009 0.724± 0.009 0.796± 0.007

CT 0.685± 0.009 0.659± 0.008 0.711± 0.008 0.790± 0.006

Figure 6.  Inference of epidemic infectiousness parameters. Left plot. Average relative error in the 
inference of the infectiousness parameters over ten epidemic cascade per interaction graph. On tree, 
rrg and proximity networks, the discrete-time SIR model has infection probability respectively equal to 
�tree = 0.35, �rrg = 0.04, �proximity = 0.03 . The work case has rate of infection γwork = 10−3 . The initial 
conditions for the parameter learning process were set to �init = 0.5 for tree, �init = 0.1 for RRG  and proximity 
networks and to γinit = 10−2 for the work network. Central plot. Box plot for the case of two classes of 
individuals with different rate of infection γ1, γ2 inferred by the ANN. We consider two inference model where 
the population is divided according the propagation model (true model) and randomly (null model), see the 
text for details. The true model is able to correctly infer the parameters with only ten different epidemic cascade. 
Right plot. Box blot of the log-likelihood difference between the true and null model.
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can therefore be used to select the epidemic model that best explains the observations based on the estimate of 
their log-likelihood.

Discussion
This work shows how significant individual-based epidemiological inference problems defined on contact net-
works can be successfully addressed using autoregressive neural networks. In problems such as patient zero 
detection and epidemic risk assessment, the proposed method exploits the generative power of autoregressive 
neural networks to learn to generate epidemic realizations that are sampled according to the epidemic model and, 
simultaneously, are compatible with the observations. When the model parameters are unknown, it can also infer 
them during the learning process. The approach is flexible enough to be easily applied to other epidemic inference 
problems and with different propagation models. The proposed architectures for the autoregressive networks 
significantly reduce the number of necessary parameters with respect to vanilla implementation. Moreover, 
convergence properties are improved by means of a regularization method that exploits the introduction of a 
fictitious temperature and an associated annealing process.

According to the results obtained on three different problems (patient zero, risk assessment, and parameters 
inference) on both synthetic and real contact networks, the proposed method equals the currently best methods 
in the literature on epidemic inference, outperforming them in several cases. In particular, the ANN approach is 
computationally less demanding than standard Monte Carlo methods, as shown in Fig. 5, where the number of 
samples generated to reach convergence scale almost linearly with the epidemic size. More efficient algorithms 
based on message-passing methods, like SIB, might experience convergence issues on dense contact networks 
like those measured in a hospital and a work office, and in these cases ANN provides significantly better results, 
as Fig. 4 shows. The framework proposed combines the high expressiveness of the neural networks to represent 
complex discrete variable probability distributions and the robustness of the gradient descent methods to train 
them. Moreover, the technique is a variational approach based on sampling of the distribution, which allows 
to compute an approximation of the log-likelihood, enabling model selection as shown in Fig. 6. On the other 
hand, like most neural networks approaches, the proposed framework suffers from some degree of arbitrariness 
in the choice of the neural network architecture and, consequently, the number of parameters. Moreover, in our 
approach, we have to pick an ordering of the variables, which could influence the quality of the approximations. 
In the supplementary material, an optimal order is shown to exist for acyclic contact networks, but it is unclear 
how to generalize this result on different systems. These limitations are the subject of very active research in dif-
ferent domains where neural networks find application; within our method, the fact that an approximation of the 
log-likelihood is computed could help to find and test schemes and architectures suitable for each particular case.

Although showing suitable scaling properties with the system’s size, our framework reasonably needs 
improved architectural schemes and learning processes to be applied in epidemic inference problems regarding 
more than few thousand individuals. Work is in progress in this direction, possibly guided by symmetries and 
regularity of the prior epidemic models.

For all these reasons, the method seems very promising for epidemic inference problems defined in small 
communities such as hospitals, workplaces, schools, and cruises, where contact data could be available. In such 
contexts, it could detect the source of an outbreak, measure the risk of individuals being infected to improve 
contact tracing, or estimate the channels of contagion and the infectivity of classes of people, thanks to the pos-
sibility of inferring the propagation parameters.

Data availability
All data and code needed to evaluate the conclusions are released on GitHub:annfore-results. https:// doi. org/ 
10. 5281/ zenodo. 67941 83.
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