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Fast LDO Simulations via Parameter-Varying
Linearized Macromodels

Tommaso Bradde, Stefano Grivet-Talocia
Dept. Electronics and Telecommunications, Politecnico di Torino, Italy
tommaso.bradde@polito.it, stefano.grivet@polito.it

Abstract—An approach for generating time-varying linearized
macromodels of analog circuit blocks is presented. These models
can be used to perform fast small-signal analyses characterized
by nonstationary operating conditions, thanks to their certified
stability. We validate the proposed approach by performing post-
layout simulations of a Low DropOut (LDO) voltage regulator,
in view of power integrity assessment applications.

I. INTRODUCTION

Analog Circuit Blocks (CBs) are fundamental components
in virtually all electronic systems. When considered in ad-
vanced design stages, the behavior of these components is
properly described in terms of large equivalent netlists that
must take into account both the semiconductor models and the
electrical characterization of the parasitics due to the circuit
layout and packaging. As the number of CBs involved in
modern Systems-on-Chip (SoC) and Systems-in-Package (SiP)
is usually large, straight exploitation of such accurate yet
complex descriptions within system-level simulations is often
unfeasible due to an excessive computational cost. Thus, the
availability of behavioral models for this kind of components
is highly desirable [1], [2].

This contribution focuses on the generation of macromodels
for CBs operating under small-signal conditions, character-
ized by a nonstationary working point. The latter can be
determined, e.g., by changes of the system operation mode
performed for the sake of energy management. The approach
relies on the generation of a Linear-Parameter-Varying (LPV)
reduced order model that approximates the local dynamics of
the original system around its dynamic working point, as it
evolves within prescribed limits [3]. The model is generated
starting from samples of the circuit small-signal transfer func-
tion, retrieved in correspondence of a finite number of admissi-
ble bias configurations. Model parameterization is performed
at runtime, by extracting the low frequency components of
the electrical quantities at the circuit interface ports, which
determine the instantaneous bias condition. Suitable numerical
constraints are embedded in the model generation to guarantee
the stability of the resulting LPV system for arbitrary working
point trajectories.

The method is applied to perform a fast post-layout simula-
tion of a LDO circuit design, in view of possible applications
for advanced power integrity optimization and assessment.
Experimental evidence show that the proposed models are
accurate and guarantee up to 50× speedup in transient simu-
lations.

II. PROBLEM SETTING

We consider a mildly nonlinear analog circuit block ac-
cessible from P electrical interface ports, whose behavior is
described by the nonlinear differential equations

ξ̇(t) = F (ξ(t), u(t)),

η(t) = G(ξ(t), u(t)),
(1)

being u(t), η(t) ∈ RP the system input and output signals,
and ξ(t) ∈ RN is the system state vector, with N large. F,G
are nonlinear differentiable maps not known in closed form,
but encrypted in an available SPICE netlist.

We want to obtain a reduced order behavioral model of (1)
for small-signal analyses characterized by nonstationary work-
ing conditions, compatible with the input decomposition

u(t) = U0(t) + ũ(t), (2)

satisfying the following assumptions
1) ũ(t) is a small-signal component with ũ(0) = 0.
2) U0(t), henceforth denoted as bias component, attains

values within a (not necessarily small) hyper-rectangle

U0(t) ∈ U0 = [a1, b1]× · · · × [aP , bP ], ∀t ≥ 0. (3)

Additionally, at each t∗ ≥ 0, there exists a small constant
δξ ≥ 0 such that

||ξ(t∗)− Ξ0(t∗)||2 ≤ δξ, (4)

being Ξ0(t∗) the unique aymptotically stable equilibrium
point satisfying

0 = F (Ξ0(t∗), U0(t∗)),

Y0(t∗) = G(Ξ0(t∗), U0(t∗)).
(5)

Under the above assumptions, since (5) admits an unique
solution, at each time instant system (1) operates in the
neighborhood of the operating point determined solely by
the instantaneous value of U0(t). This condition is practically
verified when the bias component varies slowly with respect to
the dynamics of the circuit of interest. Also, when (4) and (5)
hold, the output of (1) can be decomposed as

η(t) = Y0(t) + η̃(t) (6)

where Y0(t) is the solution of (5) and η̃(t) is the deviation
from the corresponding equilibrium. Our macromodeling ap-
proach is based on the construction of a LPV model that
approximates the local dynamics of (1) around the trajectory
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(Ξ(t), U0(t), Y0(t)), induced by the instantaneous value of
the bias component U0(t). Exploiting the model linearity, we
proceed as follows

1) We build a LPV reduced order model for the map
ũ(t)→ η̃(t) (Sec. III-A).

2) We modify the above to guarantee that it also recovers
the mapping U0(t)→ Y0(t) (Sec. III-B).

3) We address a self-parameterizing approach to update the
model working point at runtime (Sec. III-C).

III. MODELING FRAMEWORK

A. Reduced Order LPV Small-Signal Model

The analytical expression for the linearization of (1) around
the trajectory (Ξ(t), U0(t), Y0(t)) reads

˙̃
ξ(t) ≈ Ã(U0(t)) · ξ̃(t) + B̃(U0(t)) · ũ(t), ξ̃(0) = 0

η̃(t) ≈ C̃(U0(t)) · ξ̃(t) + D̃(U0(t)) · ũ(t).
(7)

where we dropped the dependencies of the Jacobians lineariza-
tions on the state Ξ(t) since we assumed that (5) has a unique
solution. For the above, we desire the following reduced order
representation of order n� N

˙̃x = A(U0(t))x̃+B(U0(t))ũ, x̃(0) = 0 (8)
ỹ = C(U0(t))x̃+D(U0(t))ũ, ỹ(t) ≈ η̃(t).

Since the maps F,G are unknown in closed form, we
build (8) starting from data. To do this, we observe that for
frozen time instants, (7) is associated with a transfer function
parameterized by U0 ∈ U0, that reads

H̃(s, U0) = D̃(U0) + C̃(U0)(sIN − Ã(U0))−1B̃(U0). (9)

We can thus build an approximation H(s, U0) of order n for (9)
and then cast this approximation into a state space parameter-
ized by the instantaneous value of U0 to obtain (8). We start by
retrieving samples of (9) via AC sweeps, performed for a finite
number of frequency values and static bias configurations

H̃k,m = H̃(jωk, U0m), k = 1, . . . ,K m = 1, . . . ,M.
(10)

The reduced order transfer function is obtained by enforcing

H(jωk, U0m) ≈ H̃k,m, k = 1, . . . ,K m = 1, . . . ,M.
(11)

via PSK iteration [4], based on model structure

H(s, U0) =
N(s, U0)

D(s, U0)
=

∑n
i=0

∑
`∈I`

Ri,` · b``(U0)ϕi(s)∑n
i=0

∑
`∈I`

ri,` · b``(U0)ϕi(s)
.

(12)
In this model, Ri,` ∈ RP×P , ri,` ∈ R are unknowns, and
ϕi(s) = (s− qi)−1 are partial fractions with <{qi} < 0. The
functions b``(U0) are multivariate Bernstein polynomials with
multidegree ` = (¯̀

1, . . . , ¯̀
P ), while I` denotes a set of admis-

sible indices. Model structure (12) admits a representation in
terms of state space (8). Technical details about the employed
realization procedure are available in [3].

During model generation, we find the involved unknowns
by guaranteeing that the final realization (8) remains stable
for every possible trajectory of U0(t), a property known as

quadratic stability [5]. This is possible thanks to the following
Theorem, proved in [3].

Theorem 1 (Sufficient conditions for quadratic stability): let
A1 and B1 be known constant matrices and

C1,` =
[
r1,`, r2,`, . . . , rn,`

]
, d1,` = r0,`. (13)

Then LPV system (8) is quadratically stable if there exists
Q∗1 ∈ Rn×n such that Q∗1 = Q∗1

> � 0 and[
A>1 Q

∗
1 +Q∗1A1 Q∗1B1 − C>1,`

B>1 Q
∗
1 − C1,` −2d1,`

]
≺ 0 ∀` ∈ I` (14)

Condition (14) represents a Linear Matrix Inequality in the
model denominator coefficients. This constraint can be in-
corporated in the model training phase, so that the resulting
constrained fitting problem becomes equivalent to a standard
convex optimization problem, which is solved through stan-
dard optimization libraries.

B. Reconstructing the Bias Component

At each time instant, the circuit output component Y0(t)
is istantaneously determined by the corresponding value of
U0(t), via the equilibrium mapping (5). Input-output samples
of this mapping can be obtained by performing a DC sweep
of the circuit netlist for different constant values of U0. This
procedure returns samples

Y0j = Y0(U0,j), j = 1, . . . J, U0,j ∈ U0. (15)

When the small-signal system (8) is subject to static input
U0,j , the corresponding DC output reads

H(0, U0,j)U0,j 6= Y0j (16)

and is not expected to match the observations Y0j because the
bias component is not necessarily small. Therefore, we add a
parameterized output correction term YC(U0) to the output
equation of (8) in order to restore the desired equilibrium
output for all bias conditions. This correction is generated by
requiring that

YC(U0j) ≈ Y0j − H(0, U0,j)U0,j , j = 1, . . . J. (17)

The above is a standard multivariate function approximation
problem that can be tackled via any standard approach (e.g.
least-squares regression). Adding the correction in the model
output leads to the final model structure

ẋ = A(U0(t))x+B(U0(t))u (18)
y = C(U0(t))x+D(U0(t))u+ YC(U0(t)), (19)

which is fed with the total input u(t) and returns the total
output approximation y(t) ≈ η(t).

C. Real Time Parameterization

Model (18) is thought to be parameterized in real time with
the value of the bias component U0(t) determining the current
working point. However, during system operation, this input
term is not directly observable, as mixed together with the
small-signal at the circuit interface ports. Thus, the model
is practically usable only in view of an automated procedure
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Fig. 1. Block diagram of the proposed self-parameterized LPV macromodel
structure.

Load Current

Fig. 2. Fitting of the LDO voltage regulation transfer function for M = 50
load current configurations.

aimed at isolating the bias and the small signal components. As
assumptions (4), (5), require U0(t) to vary slowly with respect
to the circuit dynamics, we perform real time parameterization
as follows

1) During online operation we perform a low pass filtering
operation over the the total input u(t). This operation is
performed based on a second order Butterworth filter.

2) We use the output of the filter to istantaneously parame-
terize model (18), as in Fig. 1.

In order to guarantee sufficiently slow variations of U0(t), we
set the cut-off frequency of the filter to ωc = 0.1ωp, being ωp
the angular frequency of the slowest pole of model (12).

IV. FAST POST-LAYOUT LDO SIMULATION

To test the proposed modeling approach, we instantiated
in Cadence environment the Only-MOS low-power regulator
design proposed in [6]. The circuit was designed including the
layout, using a 40 nm CMOS process, resulting in a 30 MB
equivalent netlist.

We performed fast circuit simulation under nonstationary
loading conditions, characterized by admissible bias compo-
nents U1

0 ≡ VDD = 0.9 V, and U2
0 ≡ IL ∈ [0, 10] mA,

in agreement with the design specifications. To this aim we
built the small-signal model (12) with n = 9, in Hybrid
representation, considering as input the unregulated voltage
VDD at port 1 and the load current IL at port 2. The model was
generated in 8.6 s starting from AC data retrieved for M = 50
load current configurations and enforcing the required stability
constraints (14). The voltage regulation transfer function of the
model is compared with the reference data in Fig. 2. Once (12)
is generated, the required DC correction term YC(U0) is com-
puted by enforcing (17) via linear regression, using J = 50

Fig. 3. Time domain validation of the proposed modeling approach.

data samples of the reference function (15). Finally, a low-pass
filter with cut-off frequency ωc = 2π500 rad/s was designed
and an equivalent netlist for model structure of Fig. 1 was
instantiated in LTSpice environment. In this environment, we
performed a 0.2 seconds long transient analysis by considering
a load transition from IL = 5 mA to IL = 8 mA, taking place
in ∆t = 6 ms. A small-signal of amplitude 0.2 mA and flat
power spectrum in the band 1−10 kHz was added to the bias
component IL. The results of the simulation were compared
with those obtained by performing the same analysis using the
reference post-layout netlist. Fig. 3 shows the results of the
comparison before (t ∈ [0.41, 0.42] s), during (t ∈ [0.42, 0.48]
s), and after (t ∈ [0.48, 0.49] s) the load current transition.
In all these three situations, the model returns very accurate
predictions of the circuit behavior. Using common laptop, the
model is simulated in 16 s, while the original netlist in 13
minutes, with a speedup of about 50×.

V. CONCLUSIONS

We presented an approach for generating macromodels
of analog circuit blocks under small-signal operation with
a nonstationary operating point. The resulting macromodels
prove to be accurate at reproducing the circuit behavior, while
at the same time guaranteing significant runtime reduction.
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