
13 March 2024

POLITECNICO DI TORINO
Repository ISTITUZIONALE

Mixed Proper Orthogonal Decomposition with Harmonic Approximation for Parameterized Order Reduction of
Electromagnetic Models / Torchio, Riccardo; Zanco, Alessandro; Lucchini, Francesco; Alotto, Piergiorgio; Grivet-Talocia,
Stefano. - ELETTRONICO. - (2022), pp. 349-354. (Intervento presentato al  convegno 2022 International Symposium on
Electromagnetic Compatibility – EMC Europe tenutosi a Gothenburg, Sweden nel 05-08 September 2022)
[10.1109/EMCEurope51680.2022.9901091].

Original

Mixed Proper Orthogonal Decomposition with Harmonic Approximation for Parameterized Order
Reduction of Electromagnetic Models

IEEE postprint/Author's Accepted Manuscript

Publisher:

Published
DOI:10.1109/EMCEurope51680.2022.9901091

Terms of use:

Publisher copyright

©2022 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any
current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating
new collecting works, for resale or lists, or reuse of any copyrighted component of this work in other works.

(Article begins on next page)

This article is made available under terms and conditions as specified in the  corresponding bibliographic description in
the repository

Availability:
This version is available at: 11583/2974432 since: 2023-01-09T13:53:55Z

IEEE



Mixed Proper Orthogonal Decomposition with
Harmonic Approximation for Parameterized Order

Reduction of Electromagnetic Models
Riccardo Torchio

Dept. of Industrial Engineering
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Abstract—This paper presents some preliminary investigations
on a hybrid Model Order Reduction approach for parameter-
dependent electromagnetic systems. Starting from an integral
equation formulation of the field problem, we introduce a first level
of compression based on the well-established Proper Orthogonal
Decomposition (POD). The result is a small-scale approximation
of the full-order discrete field formulation, which retains an
explicit dependence on the set of free parameters defining the
geometry. The evaluation of the reduced model for arbitrary
parameter configurations remains very expensive, as it requires the
construction of the full system equations before its projection onto
a lower-dimensional space. This problem is solved by constructing
a surrogate macromodel of the parameterized reduced-order
system through a multivariate Fourier approximation. Numerical
results applied to a moving coil over a finite ground plane show
model compression above 99% while preserving accuracy on
currents and fields within 1%.

Index Terms—Proper Orthogonal Decomposition (POD), param-
eterized model-order reduction (PMOR), parametric geometry,
integral equations.

I. INTRODUCTION

The design and the optimization of new generation electric
and electronic devices often requires testing several geometrical
configurations and mutual positions of different parts of the
components, in order to select the best configuration that
ensures overall good performances and Electromagnetic Com-
patibility (EMC) compliance. Such verification is performed
by solving Maxwell’s equations using appropriate numerical
tools. Unfortunately, the computational cost of electromagnetic
(EM) simulations for sophisticated and complex devices may
be prohibitive when several configurations need to be tested.

Numerical methods that can reduce the computational cost
of geometrical parametric analyses can be of great benefit. In
the literature, several approaches have been proposed, e.g. the
multiparameter moment matching model-reduction algorithm

described in [1]. Other approaches that have been applied
include [2], where Reduced-Order Modeling and discrete empir-
ical interpolation are used, and [3], where a unifying projection-
based framework for structure-preserving interpolatory model
reduction is proposed. Several other methods based on Reduced
Order Modeling and/or interpolation have been proposed in
the literature for EM and non-EM problems, such as [4]–[10].

In this paper, with the aim of developing a tool for the auto-
matic construction of computationally cheap and accurate para-
metric models of devices, we perform preliminary investigations
on a hybrid Model Order Reduction approach for parameter-
dependent electromagnetic systems. Starting from an integral
equation formulation of the field problem which is derived
from the well-known Partial Element Equivalent Circuit (PEEC)
scheme [11], we introduce a first level of compression based on
the well-established Proper Orthogonal Decomposition (POD).
The result is a compact approximation of the full-order discrete
field formulation, which retains an explicit dependence on
the set of free parameters defining geometry. The evaluation
of the reduced model for arbitrary parameter configurations
remains very expensive, as it requires the construction of the full
system equations before its projection onto a lower-dimensional
space. This problem is solved by constructing a surrogate
macromodel of the parameterized reduced-order system through
a multivariate Fourier approximation. The result is an accurate
compact yet fully parameterized model, which can be used
for fast parameter sweep, optimization, and what-if analyses.
The problem chosen for numerical experiments considers a
coil moving over a finite ground plane. Despite its simplicity,
the large geometrical variations have a strong influence on the
local fields and current distributions. Therefore, this case study
is a good candidate to test the performance of the proposed
approach in terms of retained accuracy and model compression.



II. INTEGRAL FORMULATION WITH GEOMETRIC
PARAMETERIZATION

A. Overview of PEEC method

The selected integral equation formulation is based on the
well-known Electric Field Integral Equation:

E(r) = −iωA(r)−∇ϕ(r) + Eext(r) (1)

where E is the electric field, A is the magnetic vector potential,
and ϕ is the scalar electric potential. Eext is the incident
external field produced by the unperturbed source, r is the
position, i is the imaginary unit, and ω is the angular frequency.
For simplicity, we will assume that µr = 1 and εr = 1
everywhere. The computational domain includes conductive
regions with finite conductivity, collectively denoted as Ω.

Vector and scalar potentials in (1) are given by their integral
expressions in terms of the current density vector J [12].
Equation above is then complemented by

E(r) = ρ(r)J(r), with r ∈ Ω (2)

where ρ is the electric resistivity. Moreover, the continuity
equation ∇ · J(r) = −iω%(r) holds, where % is the charge
density. Then, all conductive regions are meshed, and the
current density J and the scalar potential ϕ are expanded
as in [12]. Applying a Galerkin projection scheme, the EM
problem is approximated by the following linear system of
equations R + iωL G

PGT −iω1

 j

Φ

 =

eext

0

 (3)

where R, L, and P are the (sparse) resistance, (dense) induc-
tance, and (dense) potential matrices, respectively. Coefficients
of such matrices are given in, e.g., [12]. In (3), G is the
volumes–faces incidence matrix, whereas eext is the array
corresponding to the incident external electric field. The
problem described by (3) is usually interpreted as a fully
coupled electric circuit with a very large number of components,
where elements are the circuit nodes and the internal faces of
the mesh (which connect two elements) are the circuit branches.
Thus, G is the incidence matrix of this equivalent circuit.

B. Parametrization

When the discretized geometry of the problem is described
by some parameters (shapes, mutual position and orientation
of conductors), R, L, and P in (3) exhibit, in principle, a
dependence on such parameters, denoted as d = [d1, . . . , dNd

]
in the following.

C. Problem statement

Without loss of generality, we assume that eext does not
depend on the geometry (as in the case of lumped voltage
source excitation), thusR(d) + iωL(d) G

P(d)GT −iω1


︸ ︷︷ ︸

S(d)

 j(d)

Φ(d)


︸ ︷︷ ︸

x(d)

=

eext

0


︸ ︷︷ ︸

u

. (4)

Moreover, we also assume normalized parameters d ∈ D ⊂
RNd , where D is a unit hypercube of dimension Nd. The size
of system (4) will be denoted as N .

III. REDUCED-ORDER MODELING VIA PROPER
ORTHOGONAL DECOMPOSITION

The full-scale parameterized PEEC system (4) may require
excessive computational resources for carrying out parameter
sweeps or design optimization. Therefore, we apply a POD
algorithm [13] in order to reduce its complexity, with the
main objective of deriving a Reduced-Order Model (pROM)
that includes in a closed form an explicit, approximate yet
error-controlled dependence on the parameters.

A. Proper Orthogonal Decomposition

The main idea of POD schemes is to approximate the true
solution through a suitable projection onto a small-dimensional
subspace. This approximated solution is computed as the
true (exact) solution of a reduced-size system (the pROM)
obtained by projecting the full system (4) onto this subspace.
The main steps of a standard POD algorithm are summarized
in the following, where the projection basis V is iteratively
constructed, until some stopping condition is attained. This
condition is here specified in terms of a tolerance η on the
pROM accuracy with respect to the full system.

a) Initialization
Matrix V is initially empty. The process is initialized by

choosing a candidate parameter value d to setup the iterations,
here selected as the centroid of the parameter domain.

b) Augmenting the POD basis
For the candidate configuration d, the solution x(d) of (4)

is computed and used to augment the projection matrix V. The
latter is updated through a Gram-Schmidt Orthogonalization
(GSO) process

V← GSO {[V, x(d)]} . (5)

In particular, the new vector x(d) is orthogonalized with
respect to all preexisting basis vectors, normalized to have unit
Euclidean norm, and appended as the last column. Matrix V is
thus guaranteed to preserve orthonormality through iterations.

c) Testing the POD basis
Once the projection basis is available, its accuracy in

representing the solution space of (4) for arbitrary parameter
configurations is tested. To this end, a set of testing vectors
T = {dh ∈ D, h = 1, . . . , NT } are selected, and the
provisional basis V is used to project the full order problem
onto the basis for each of these testing vectors (the operator ∗

denotes the conjugate transpose)

T(d) = V∗ S(d) V, d ∈ T . (6)
z = V∗ u. (7)

Matrix T(d) and right-hand side z provide the pMOR instan-
tiated at d ∈ T . Then, the pMOR solution is

y(d) = T(d)−1z, d ∈ T (8)



that is mapped to the corresponding full-size approximate
solution x̂(d) of the full order model, which is obtained as an
element of the subspace spanned by the current basis

x̂(d) = V y(d), d ∈ T . (9)

Since this set of solutions are only approximations of the
full system solutions, their accuracy is evaluated through the
equation error (residual)

∆(d) = S(d)x̂(d)− u, d ∈ T . (10)

The worst-case residual

∆? = max
d∈T
‖∆(d)‖ (11)

is finally identified with the corresponding parameter configu-
ration d?.

d) Stopping or Restarting
If ∆? is larger than the prescribed tolerance η, then a new

iteration of the algorithm is performed by selecting d = d?.
Otherwise ∆? < η, i.e. the pROM is uniformly accurate in the
parameter space (at least over the testing set). The algorithm
stops and the final pROM is returned. Note that at this stage the
pROM is defined by the finalized projection basis V ∈ CN×q
together with the full system matrices S(d) and right-hand side
u. Evaluation of the pROM and its solution at any arbitrary
d ∈ D still requires the construction of the full system and its
successive projection (6)-(7). It is expected that the finalized
basis V is “tall and thin”, with a number of columns q (the
basis elements) much smaller than the number of rows N (the
unknowns of the original full-scale PEEC system).

B. Remarks

At each iteration, until convergence, the POD algorithm
requires the expensive solution of the full order model (4), with
an additional overhead for the construction of NT pROMs over
the testing set for evaluating the residual (10) at each iteration.
For the target application investigated in this work, a limited
number of iterations is generally required (in the order of a few
tens) in order to reach an accuracy η = 10−4, using a testing
set with NT = 20. Once available, the pMOR can be used to
solve the parametric domain problem for a generic value of
d ∈ D. Unfortunately, due to the non-affine dependence of
matrices R and L on the geometric parameters, the evaluation
of the pMOR for an arbitrary parameter configuration d is very
expensive, since it requires the construction of the full-order
system, its projection onto the POD basis V, and finally the
actual solution in the reduced space (the latter requiring a
negligible cost). It would be highly desirable to derive the
reduced-order model for a given d without having to evaluate
and project the corresponding full-order model.

In the following section, we show that a direct interpola-
tion/approximation of the pROM or even of its solution in
the reduced space dramatically reduces the computational cost
of the entire process, without significantly impacting overall
accuracy. The proposed approach follows the spirit of [14], with
however different choices in the representation and interpolation

of the parametric dependence of the pROM, as required by the
present application.

IV. APPROXIMATE PARAMETERIZATION THROUGH
SURROGATE MACROMODELS

The POD procedure of Sec. III produces a global parameter-
independent projection basis V which can be used to derive
the pMOR

T(d)y(d) = z (12)

via (6)-(7). The parameterization of (12) is however only formal,
since the closed-form dependence on the pMOR matrix T(d)
or its solution y(d) on d is unknown. A discrete set H ⊂ D
of ρ = |H| instances

(T̂h, ŷh), T̂h = T(dh), ŷh = y(dh), dh ∈ H (13)

can be produced by sampling the parameter space D. The
production of the samples (13) is however expensive, since it
requires construction and projection of the full-order system.

For this preliminary investigation and throughout the fol-
lowing, we consider a set of training samples (13) to cover
uniformly the parameter space D, either as a uniform Cartesian
grid (for small Nd) or according to a space-filling Sobol
sequence (for large Nd). In addition, we introduce a set V
of NV validation data samples, defined such that V ∩ H = ∅.

The objective of this Section is to construct a surrogate
macromodel

T̃(d)ỹ(d) = z (14)

providing a closed-form representation of the true yet unknown
pROM (12) through a suitable approximation of its parameter
dependence. This is achieved by exploiting the training sam-
ples (13) and enforcing some interpolation, approximation or
fitting condition on the pROM matrix

T̃(dh) ≈ T̂h, dh ∈ H (15)

or directly on its solution

ỹ(dh) ≈ ŷh, dh ∈ H. (16)

These two interpolation strategies are complementary:
• direct: using (16) requires the inversion of the pROM (12)

only in the training phase to precompute the samples
ŷh required to construct the macromodel; evaluation of
the approximate full system solution x̃(d) for a given d
requires only pre-multiplication by the projection matrix

x̃(d) = Vỹ(d) (17)

• two-step: using (15) requires instead the approximation
of q × q complex matrix entries during macromodel
training, whereas instantiation of the pROM to evaluate
the approximate full system solution x̃(d) for a given
d requires the solution of the surrogate equations (14)
(inversion of a q × q system) followed by (17).

Both strategies amount to constructing some closed-form
approximate parametrization of a complex vector or a complex
matrix, which can be performed elementwise. In the following,



we denote through the scalar ϑ(d) ∈ C any generic entry of
matrix T(d) or vector y(d), with the corresponding training
samples denoted as

ϑ̂h = ϑ(dh), dh ∈ H (18)

and the surrogate model as ϑ̃(d), to be constructed such that

ϑ̃(dh) ≈ ϑ̂h, dh ∈ H. (19)

A. Multidimensional Fourier approximation

In this work we assume the surrogate approximation ϑ̃(d)
to be defined as a multi-linear combination of parameter basis
functions B`(d), as

ϑ̃(d) =
∑
`

ϑ̃`B`(d) (20)

=

¯̀
1∑

`1=0

· · ·
¯̀
Nd∑

`Nd
=0

ϑ̃`1,...,`Nd
B`1(d1)× · · · ×B`Nd

(dNd
)

where `ν provides indexing for univariate basis functions along
dimension ν up to order ¯̀

ν , and multi-index ` collects all
individual indices `ν . For simplicity, without loss of generality,
we assume the expansion orders to be equal ¯̀

1 = · · · = ¯̀
Nd

=
¯̀. The multivariate basis set is obtained as a Cartesian product
of univariate bases.

In order to guarantee an accurate parameterized approxima-
tion (19), particular care should be taken to the selection of the
multivariate basis B`(d). Given the observed smoothness of
both pROM matrix and its solution, we adopt a trigonometric
(Fourier) polynomial basis, which has been verified to provide
accurate results. Hence, we define the basis functions as

B0(d) = 1,

B`(d) = cos(2πd`/2ed), ` = 1, 3, 5, . . .

B`(d) = sin(2πd`/2ed), ` = 2, 4, 6, . . .

(21)

The tensor collecting all multi-linear expansion coefficients
ϑ̃` is computed by enforcing the fitting condition (19) in
least squares sense. Once the q (or q2) estimates (20) are
available for all elements of either pROM matrix T̃(d) or
its solution ỹ(d), we can assemble the macromodel (14),
whose elementwise evaluation through (20) amounts to a simple
(small-size) multivariate vector or matrix function evaluation.

B. Error analysis
Both the POD process and the parameterized surrogate model

introduce approximation errors that must be kept under control.
Assuming Q to be a placeholder for any scalar, vector and
matrix variable, we define the following absolute EaQ(d) and
relative ErQ(d) error metrics

EaQ(d) =
∥∥∥Q̃(d)−Q(d)

∥∥∥ , ErQ(d) =
EaQ(d)

‖Q(d)‖
(22)

For later use, we introduce an additional overall (validation)
relative error metric ĒrQ, defined as

ĒrQ = max
d∈V

ErQ(d) (23)

IV-B1 Surrogate macromodeling error — We first
analyze the error Eay(d) introduced by the parameterized
surrogate approximation. Depending on the strategy used
to build the surrogate model two scenarios arise:
• in case we directly approximate the reduced solutions,

as in (16), we have a direct control over Eay(d) since it
coincides with the least squares residual.

• in case, we approximate the reduced system matrix,
as in (15) we can only provide an upper bound on
Eay(d). Recalling that the condition number κ(d) of T(d)
provides the following inequality

Ery(d) ≤ κ(d)ErT(d) (24)

we can write

Eay(d) ≤ κ(d) ‖y(d)‖ErT(d). (25)

An accurate approximation of the reduced matrix is not
sufficient; we should also ensure the condition number
κ(d) to be small.

IV-B2 From reduced to full space — Next we consider
the propagation of an approximation error from the reduced
space to the full-size space. Defining the error on the full
system solution induced by the surrogate approximation as
Eax̂(d) and recalling that the mapping from the reduced to
the full space is provided by the POD projection matrix V
through (17) and (9), we have

Eax̂(d) = ‖Vỹ(d)−Vy(d)‖ = Eay(d) (26)

since VTV = I.

IV-B3 Combined approximation error — Finally we
estimate the overall reconstruction error Eax(d) by combining
the effects of surrogate macromodeling and POD approximation.
Using (26) and applying the triangle inequality leads to

Eax(d) ≤ ‖x̂(d)− x(d)‖+ Eay(d) (27)

Further manipulations lead to

Eax(d) ≤
∥∥S−1(d)S(d)

(
x̂(d)− x(d)

)∥∥+ Eay(d)

≤
∥∥S−1(d)

∥∥∥∥S(d)
(
x̂(d)− x(d)

)∥∥+ Eay(d) (28)

The term
∥∥S(d)

(
x̂(d)− x(d)

)∥∥ is the pMOR error residual
∆(d) defined in (10) that, assuming the POD process reached
uniform convergence, is bounded by η. To conclude, the
following bound holds for the overall reconstruction error

Eax(d) ≤
∥∥S(d)−1

∥∥ η + Eay(d) (29)

V. EXPERIMENTS

In this Section, we apply both direct and two-step surrogate
macromodeling approaches to a benchmark problem, with
the aim of assessing and comparing their performance. Our
test bench is a simple academic problem, i.e., a square spiral
copper coil placed above a square aluminium plate in the xy-
plane, see Fig. 1. The coil is excited with a current source
of 1 A at 1 MHz and the displacements along the x and y



Fig. 1: Models of the square coil and aluminium plate (xy view). Dimensions
are in µm.

axes between the plate and the coil are the two geometric
parameters chosen in this analysis. The copper traces and the
aluminium plate have both a 4 µm thickness and the distance
along the z axis between the square coil and the aluminium
plate is 48 µm. The full PEEC system size is N = 20289,
with 13264 currents and 7025 potentials. With reference to
Fig. 1, the maximum displacement of the square coil along
the x and y axes is ±150 µm. The POD algorithm has been
applied with a stopping threshold η = 10−4. At convergence,
q = 43 reduced bases have been selected to achieve the
desired accuracy. The resulting pMOR has been processed
by the proposed multidimensional Fourier approximation for
the construction of the parameterized surrogate, using both
direct and two-step approaches.

Figure 2 shows the relative RMS validation error of the
two surrogates for an increasingly large number of harmonics.
In both cases, as expected, the error decreases monotonically
as the number of harmonics increases, reaching a smaller
error when approximating the pROM matrix with respect to
its solution. The dependence of the reduced matrix T(d) on
geometrical parameters is expected to be smooth and of the
same type as in the full PEEC system (4). Conversely, the
solution y(d) is obtained after matrix inversion, hence its
parameter dependence is affected by the induced variations on
T−1(d). These considerations are confirmed by Fig. 3, where
representative elements of the parameterized POD matrix (top
panel) and its solution (bottom panel) are depicted in the top
and bottom panel, respectively. Total variations of the solution
exhibit more structure and require consequently a larger number
of harmonics for their accurate approximation.

Based on the results of Figure 2, we select order 6 and 10
in the Fourier approximation for the two-step and the direct
method, respectively, and we perform a detailed investigation on
the achieved accuracy. Table I reports the RMS and maximum
errors for each approximation step and for both surrogate
modeling methods. The worst-case error on the full-size
solution Ērx is at most 3.2%, which is remarkable considering

Fig. 2: Testing the convergence properties of the multidimensional Fourier
approximation. Top panel: two-step method (approximation of T(d)). Bottom
panel: direct method (approximation of y(d)).

Fig. 3: Parameter dependence of a representative element of the pROM matrix
T(d) (top) and pROM solution y(d) (bottom). Raw data are represented
with colored surfaces, while red and blue dots represent the surrogate model
evaluated on training and validation samples, respectively.



TABLE I: APPROXIMATION ERRORS ACHIEVED BY PROPOSED HYBRID
POD/SURROGATE MACROMODELING APPROACH

Error Method Max (%) RMS (%)

Ēr
T Two-step 9.2 · 10−3 2.5 · 10−3

Ēr
x̂ = Ēr

y
Two-step 6.1 0.81

Direct 3.4 0.3

Ēr
x

Two-step 3.2 1.4

Direct 0.12 0.26

Fig. 4: Eddy currents (magnitude) on the aluminium plate. Top panels:
True solution. Bottom panels: Solution derived from the direct surrogate
macromodeling method. Left panels: d = [0, 0]. Right panels: d = [−1,−1].
Results are in A/m2.

the various approximation steps and the aggressive compression
ratio q/N ≈ 0.21% of the pROM. Furthermore, the RMS errors
are consistently below 1%. The largest error arises in the two-
step method when computing the reduced POD solution vector
through (14), with a worst-case error Ēry = 6.1%.

Finally, Figure 4 shows the magnitude of the eddy currents
in the aluminium plate obtained from the direct solution of the
full order system (4) (top panels) and from the direct method
(bottom panels) for two different positions of the square coil.
As can be noted, surrogate results are in very good agreement
with reference solutions.

VI. CONCLUSIONS

In this paper, some preliminary investigations of a hybrid
Model Order Reduction approach for parameter-dependent
electromagnetic systems have been presented. Starting from an
integral equation formulation based on the Partial Element
Equivalent Circuit method, we introduced a first level of
compression based on the well-established Proper Orthogonal
Decomposition. The result is a compact approximation of the
full-order discrete field formulation, which retains an explicit
dependence on the set of free parameters defining the geometry.

Then, in order to obtain computationally cheap parametric
model, a surrogate macromodel of the parameterized reduced-
order system was constructed through a multivariate Fourier
approximation. Numerical results applied to a moving coil
over a finite ground plane show model compression above 99%
while preserving accuracy on currents and fields within 1%.
Although preliminary, the results presented in this paper may be
of interest for software developers who want to implement tools
for the automatic construction of computationally cheap and
accurate parametric models of electromagnetic devices. Indeed,
if such as procedure is embedded into an electromagnetic
simulation software, designers would be able to generate
computationally cheap and accurate parametric models without
caring about the underlying theory and numerical procedures.
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