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Abstract — In this contribution we demonstrate how
reduced-order behavioral models allow for extremely accurate
and computationally efficient electromagnetic-based variability
analysis of microwave passive structures. In particular, we report
the MonteCarlo analysis of a wideband matching network at
Ka-band, designed with a commercial foundry GaN-HEMT
process PDK. As sources of variation we considered the thickness
of the two dielectric layers available in the PDK to implement
MIM capacitors of different order of magnitude, both exploited
in the network. Based on a limited set of electromagnetic
simulations, a parameterized behavioral model is extracted and
then translated into a parameterized circuit equivalent (SPICE
netlist) straightforward to be imported into RF CAD tools. The
adopted model, implementing a rational approximation of the
simulated S-parameters with rational dependence on the two
parameters, provides excellent agreement with electromagnetic
simulations, robustness against port impedance change and good
extrapolation capabilities.

Keywords — behavioral modeling, parameterized modeling,
microwave circuits, variability analysis

I. INTRODUCTION

With the advent of the 5G standard, the design of
monolithic microwave integrated circuits (MMICs) at Ka-band
and above is becoming a hot research topic [1]–[3]. The
technological and design challenges posed by adopting high
center frequencies are manifold. Among them, process induced
variability is rising the attention of microwave designers,
since all their efforts in performance optimization can
eventually be jeopardized by the MMIC yield. At high
frequency, electromagnetic coupling between elements must
be accounted for through electromagnetic (EM) simulation and
optimization [4], [5]. For the same reason, variability analysis
to address performance and yield has to be carried out at
EM level adopting the process statistical distributions typically
included in the foundries’ process design kits (PDKs).

Since EM simulations, even in their most computationally
efficient form, are extremely time-consuming, they are
typically adopted only for fine tuning, while hardly used for
fully-EM-based optimization from scratch and-/or variability
analysis capable to accurately account for lumped and
distributed element cross-coupling.

Parameterized behavioral models extracted from EM
simulations, are the most promising candidates to enable
fast and efficient EM-based variability analysis, provided that
high accuracy and easy implementation within CAD tools is

guaranteed [6]. For one or few parameters, a look-up-table
(LUT) model can be adopted [7], but as the number of
parameters increases, the efficiency of such an approach
rapidly decreases. Moreover, LUT-based models strongly rely
on the interpolation/extrapolation algorithms embedded within
the adopted CAD tool, hence limiting the designer’s grip and
control on their accuracy.

In this work, we demonstrate the application of the
parameterized behavioral model presented in [8] for EM-based
variability analysis. This model provides a closed-form
approximation of the EM-simulated S-parameters as rational
functions of frequency and Chebyshev polynomials of the
parameters. The mathematical model is then translated into
an equivalent circuit, in the form of a SPICE netlist [9], which
can be easily imported into practically any CAD tool. This
approach to variability analysis, successfully adopted in the
framework of polynomial chaos [10], [11], is here is applied
for the first time (as far as the author’s’ knowledge goes) to
EM-simulated microstrip networks.

The accuracy of the proposed approach is demonstrated on
a wideband matching network around 28 GHz, transforming
a highly reflective complex impedance, i.e., a typical
optimum output impedance for power of GaN transistors at
this frequency, to 50Ω, including DC-blocks and in-band
short-circuited biasing stubs. The network has been designed
and EM optimized resorting to the PDK of a commercial
GaN-HEMT foundry, which includes also the EM substrate
stack-up for 3D-planar EM simulation.

The passive components that are most affected by process
variations are the MIM capacitors, implemented through
thin layers of dielectric materials. In particular, the selected
process provides two different types of MIM capacitor, for
implementing smaller (tens of pF/mm2) or bigger (hundreds
of pF/mm2) capacitance values. The thickness of the two
dielectrics adopted for these elements is therefore considered
for the statistical analysis, considering variation ranges taken
from the statistical data available in the PDK. A relatively
small set of EM simulations was sufficient to extract the
model and perform, in few minutes, a MonteCarlo analysis
with hundreds of trials. The results obtained are in excellent
agreement with EM simulations on all the selected test
points, considering also some extrapolation margin, proving
the validity of the approach for EM-based variability analysis.



II. TEST-CASE MATCHING NETWORK

The selected test-case network is the output matching of a
single, large-periphery GaN transistor at 28 GHz. The optimum
impedance for power at the center frequency is (ZLopt =
5.8 + j10.9)Ω, i.e., a highly reflective load (0.8 magnitude
of the reflection coefficient), as shown in Fig. 1a. This value
is matched to 50Ω through a multi-step semi-lumped pi-type
matching network, including a short-circuited stub adopted
also for device biasing, a large series DC-block capacitor
and two shunt capacitors acting as open-circuited stubs. All
elements have been split into parallel pairs to achieve a
symmetric layout as shown in Fig. 1a. Adopting the complex
conjugate of the optimum load, Z∗

Lopt as reference impedance
at the input port, a matching better than -20 dB is achieved in
the 25 GHz - 33 GHz range, as shown in Fig. 1b. The matching
network adopts both large (as RF-short and DC-block) and
small (as open-circuited stubs) MIM capacitors. The former
are implemented through a thin silicon nitride layer (around
150 nm) while the latter exploit also an additional oxide layer
(around 800 nm). Compatibly with available statistical data,
the relative standard deviation (assuming gaussian distribution)
for the two layer thicknesses has been set to 5% and 3%,
respectively. Only a ±σ variation around the nominal value has
been considered to fix the parameter space boundaries adopted
for model extraction, so as to assess also its extrapolation
capabilities during the MonteCarlo analysis.

III. BEHAVIORAL PARAMETERIZED MODEL

The adopted (frequency-dependent) parameterized model
structure H(s,ϑ) is based on the well-established [12] rational
barycentric form

H(s,ϑ) =

∑n̄
n=0 Rn(ϑ)φn(s)∑n̄
n=0 rn(ϑ)φn(s)

, (1)

where s = j2πf is the complex angular frequency, and ϑ is
the parameter vector, in this case containing 2 parameters, i.e.
ϑ = [ϑ1, ϑ2], corresponding to thickness of the nitride and
oxide layers. The parameterized numerator and denominator
coefficients are further expanded as linear combination of
suitable parameter basis functions ξℓ(ϑ), as

Rn(ϑ) =
∑
ℓ

Rn,ℓξℓ(ϑ), rn(ϑ) =
∑
ℓ

rn,ℓξℓ(ϑ) (2)

The frequency dependence is embedded in the model
through the basis functions φn(s) = 1/(s − qn), that are
defined on a set of predefined basis poles qn if n > 0 and
φn(s) = 1 if n = 0. Conversely, the choice of the basis
functions ξℓ(ϑ) is quite free; depending on the problem at
hand, several possibilities have been explored [13], [14]. In
this work, we will use multivariate Chebyshev polynomials.

Based on the variability estimates of Section II, we assume
that the thickness of each layer attains values ϑi that are
uniformly bounded in the range [ϑi, ϑ̄i], i = 1, 2. More
formally, we define the parameter space Θ as the Cartesian
product

Θ = [ϑ1, ϑ̄1]× [ϑ2, ϑ̄2] (3)

(a) Layout.

(b) Matching performance.
Fig. 1. Layout (a) and performance (b) of the designed matching network in
the 21 GHz - 35 GHz range. Legend: S11 =red, S21 =green and S22 =blue.

containing all the possible combinations of layer thicknesses.
Based on the parameterized model form (1), we want to

optimize the numerator and denominator coefficients Rn,ℓ,
rn,ℓ so that the model accurately reproduces the broadband
behavior of the network, for all the combination of layer
thicknesses.

To this end, the first step is to gather a limited
(yet, relevant) set of electromagnetic scattering responses
S̆(jωk,ϑm), k = 1, . . . ,K, m = 1, . . . ,M , of the network
at selected combinations of parameter values. The EM
simulations have been performed with Keysight Momentum,
considering a 20 GHz bandwidth around 28 GHz (sampled
linearly with 100 MHz step) and a 40 cells/wavelength mesh
at 100 GHz mesh frequency, yielding to roughly 3000 mesh
nodes. It is worth to note that EM simulations, hence model
extraction, are referred to a normalization impedance of 50Ω
at both ports. To better control the model-data error over the
whole parameter space, we assume these raw data-samples to
be uniformly distributed in Θ.

Then, the model coefficients are estimated by solving the
non-linear optimization problem

H(sk,ϑm)− S̆(jωk,ϑm) ≈ 0 ∀k,m (4)

through the so-called Parameterized Sanathanan-Koerner



(a) (b)

(c) (d)
Fig. 2. Example of model (circles) vs. EM-simulation (lighter solid lines)
results at 2 extraction points: (a)-(b) both nominal-σ (c)-(d) both nominal+σ.
Legend: S11 =red, S21 =green and S22 =blue.

algorithm [8]. We remark that the model accuracy is
controlled only at the reference impedance of 50Ω; indeed,
the possibility of arbitrarily changing the port reference
without affecting the model accuracy is a non-trivial matter
in behavioral modeling, as it can introduce uncontrolled
error magnifications. Some techniques have been proposed
in the context of non-parameterized modeling [15], but no
parameterized counterparts are available up to date.

Once the parameterized model H(s,ϑ) is available, it
has been shown in [9] that the conversion to an equivalent
parameterized SPICE netlist is possible, enabling the use of
surrogate parameterized models in most CAD tools.

IV. MODEL VALIDATION AND VARIABILITY ANALYSIS

The generated circuit equivalent model has been imported
into the RF CAD (Keysight ADS in this case, but the
procedure can be extended to any other) as a SPICE
netlist. For model extraction, the worst-case RMS error,
evaluated over all the available frequency range and parameter
data-samples, in reproducing the EM S-parameters was as
low as 8.4 · 10−4. However, it has already been remarked
that the same model accuracy is not automatically guaranteed
when adopting different ports terminations (Z∗

Lopt at the
input in this case). Thus, the very first model validation
step consisted in simulating it adopting these modified port
reference impedances, but on the same set of parameter values
used for extraction. Despite being the selected Z∗

Lopt value
very far from 50Ω, the agreement between the model and the
EM-S-parameter results is nearly perfect, as shown in Fig. 2
and Fig. 3 (blue crosses). The root-mean-square (rms) error
remains below 1·10−3 for all extraction points.

A MonteCarlo analysis with 500 trial has been then
performed considering uncorrelated variations of the two
parameters, adopting a gaussian distribution for both with
relative variance of 5% (nitride thickness) and 3% (oxide
thickness), respectively. Such an analysis, if carried out

(a) (b)
Fig. 3. RMS error of (a) |S11| and (b) |S22| at all extraction (blue crosses)
and test (red circles) points.

(a) Matching at input port. (b) Matching at output port.

(c) Transmission losses.
Fig. 4. Results of the MonteCarlo analysis. Black lines are nominal responses.

with repeated EM-simulations on a standard, but yet
high-performance personal computer, would have required
days of simulations while it took less than a minute by
resorting to the proposed approach. The results are shown in
Fig. 4, showing a significant spread in the lower portion of the
band, both in terms of matching and losses.

From the MonteCarlo analysis, 10 combinations of
parameter values have been selected as test-points for final
model validation, selecting also values outside the boundaries
of the extraction parameter space. The agreement between the
model results and the EM simulations at the test points is again
excellent, as shown in Fig. 5 and Fig. 3 (red circles). The rms
error remains within 4·10−3 at all test points, demonstrating
the high accuracy of the model and its suitability for variability
analysis of microwave passive circuits.

Extrapolation capability of the model has been further
tested by comparing it to the EM simulations adopting a larger
variation of both parameters, namely ±3σ. The results of this
simulations are reported in Fig. 6. As can be noticed, here
some discrepancies between the model and the EM results
start arising, resulting in a rms error up to 9 ·10−3. Even if
well outside a reasonable extrapolation range, the ±5σ case has
been also tested: the general shape of the response in frequency
is still correct, but in this case, the accuracy in predicting the
frequency at which negative peaks occur is lost, with up to
700 MHz discrepancy in the worst case, shown in Fig. 7, where



(a) (b)

(c) (d)
Fig. 5. Example of model (circles) vs. EM-simulation (lighter solid
lines) results at 2 test points: (a)-(b) both parameters within the extraction
range (c)-(d) both parameter outside the extraction range (+8% and +5%,
respectively.). Legend: S11 =red, S21 =green and S22 =blue.

(a) (b)

(c) (d)
Fig. 6. Model (circles) vs. EM-simulation (lighter solid lines) results at (a)-(b)
+3σ (c)-(d) −3σ. Legend: S11 =red, S21 =green and S22 =blue.

(a) (b)
Fig. 7. Model (circles) vs. EM-simulation (lighter solid lines) results at +5σ.
Only S11 = is reported as it show the worst agreement.

the rms error grows to 3.5·10−2.

V. CONCLUSION

We presented a computationally efficient approach
for EM-based variability analysis based on behavioral

parameterized surrogate models. The latter are constructed
starting from a reduced set of scattering responses at distinct
instances of the parameters of interest. The model is then
converted into an equivalent parameterized SPICE netlist,
which enables its use in CAD tools. The procedure has
been validated through a MonteCarlo analysis of a wideband
matching network at Ka-band. The results demonstrate the
accuracy of the equivalent parameterized model, that can
be efficiently used in place of extremely time-demanding
EM-solver runs. The model proved to be accurate despite port
impedance change, also in unexplored regions of the parameter
space, hence showing remarkable extrapolation capabilities.
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