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Intelligent Fault Diagnosis of Industrial Bearings Using
Transfer Learning and CNNs Pre-Trained for
Audio Classification
Luigi Gianpio Di Maggio

Dipartimento di Ingegneria Meccanica e Aerospaziale (DIMEAS), Politecnico di Torino,
Corso Duca Degli Abruzzi 24, 10129 Torino, Italy; luigi.dimaggio@polito.it

Abstract: The training of Artificial Intelligence algorithms for machine diagnosis often requires a huge
amount of data, which is scarcely available in industry. This work shows that convolutional networks
pre-trained for audio classification already contain knowledge for classifying bearing vibrations,
since both tasks share the need to extract features from spectrograms. Knowledge transfer is realized
through transfer learning to identify localized defects in rolling element bearings. This technique
provides a tool to transfer the knowledge embedded in neural networks pre-trained for fulfilling
similar tasks to diagnostic scenarios, significantly limiting the amount of data needed for fine-tuning.
The VGGish model was fine-tuned for the specific diagnostic task by handling vibration samples.
Data were extracted from the test bench for medium-size bearings specially set up in the mechanical
engineering laboratories of the Politecnico di Torino. The experiment involved three damage classes.
Results show that the model pre-trained using sound spectrograms can be successfully employed
for classifying the bearing state through vibration spectrograms. The effectiveness of the model is
assessed through comparisons with the existing literature.

Keywords: intelligent fault diagnosis; deep learning; transfer learning; rolling bearings; bearing test
rig; condition monitoring

1. Introduction

The monitoring of rotating systems through bearing sensoring is part of the imple-
mentation of predictive maintenance strategies. The deployment of such approaches is
motivated by the resulting benefits for industrial rotors in terms of cost reduction and
increased production [1]. A primary concern of predictive maintenance and condition
monitoring is the fault diagnosis of bearings, this is for two main reasons. First, durabil-
ity assessments of rolling bearings are affected by significant uncertainties [2], given the
complex interaction between a variety of parts. Additionally, it is well established that
bearings are key nodes for retrieving information on the whole mechanical system [3]. In
this context, the analysis of vibration signals represents one of the most informative tools
for the assessment of machine conditions [4].

The past thirty years have seen increasingly rapid advances in this field thanks to the
development of numerous signal processing techniques for fault identification. For instance,
the literature on envelope analysis has been considerably developed [2,4–11], which has
shown its effectiveness in benchmark cases [12] and it is being implemented in industry
for condition monitoring purposes. The outcomes of this kind of signal processing tool
have the benefit of being highly interpretable, since the models’ assumptions are sharply
identifiable. On the other hand, the outcomes may be user dependent. The extraction
of diagnostic information from vibration signals is often affected by the assumptions of
the identification models and by the user’s experience. For instance, choosing an optimal
demodulation band [13–17] naturally implies an inherent arbitrariness.
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Conversely, data-driven models rely on Artificial Intelligence (AI) algorithms in order
to automatically learn fault detection abilities from training data [18–21]. Although these
structures can fulfil highly complex tasks, it is fairly challenging to figure out the rationale
behind models’ decisions [22,23]. The choice and the extraction of fault features can either
be manual, as in the case of the Support Vector Machine (SVM) algorithm [24–27], or
automated, as in the case of the application of deep learning to several disciplines [28–30].
Manual feature extraction is performed prior to the training by selecting features. Most of
the literature concerning deep learning involves Convolutional Neural Networks (CNNs).
For instance, Guo et al. trained a CNN using wavelet time-frequency images extracted from
vibration signals [31], Wen et al. [32] developed a signal-to-image conversion method for
training CNNs and Islam et al. [33] fed a CNN by employing acoustic emission (AE) data.

One of the major drawbacks of neural networks is the amount of data needed for
training, because the number of parameters to be trained is much higher than that of
machine learning algorithms. Some research areas benefit from million-sample datasets to
accomplish challenging tasks, as in the case of ImageNet [34,35] for image recognition and
Audio Set [36,37] for audio classification. At present, the datasets involving machine vibra-
tions [12,38–40] do not contain such a huge amount of samples, and industrial environments
rarely have a wide range of fault data. Additionally, vibration signals are tightly connected
to a specific machine and operating conditions. Therefore, the employment of large and
high potential networks could produce diagnosis models that overfit training data, losing
the ability to generalize diagnostic patterns to real test conditions. Additionally, the existing
literature emphasizes issues in some benchmark datasets, such as the CWRU [12,41], which
may be moreover not suitable for investigating industrial-size bearings.

Recent evidence suggests the applicability of transfer learning (TL) [20,42,43] to tackle
these issues in the field of machine fault diagnosis. TL aims to reduce data collection
by transferring the classification knowledge of pre-trained models to new domains or
new tasks. Zhang et al. [44] and Cao et al. [45] showed that knowledge transfer can be
realized within the same machine whenever the user wishes to apply a trained model to
new operating conditions. Compound faults were analyzed by Hasan et al. [46], whereas
Wang et al. investigated RUL estimations [47]. Instead, Guo et al. [48] transferred a con-
volutional diagnosis model across different machines, whereas Chao et al. performed
online domain adaptation [49]. Similarly, improved transfer learning with hybrid feature
extraction was proposed by Yang et al. [50]. Han et al. [51] employed joint distribution
adaptation. The Generative Adversarial Networks (GANs) approach was investigated by
Li et al. [52], Shao et al. [53] and Wang et al. [54]. Nonetheless, recent works have showed
that fault diagnosis tasks can be fulfilled on benchmark datasets by employing AI frame-
works originally designed for completely different tasks such as image recognition [55] and
audio classification [56]. However, to the best of the author’s knowledge, few studies have
investigated the performances of the latter algorithms on industrial cases characterized by
medium-sized bearings.

Firstly, the purpose of this investigation is to analyze a new dataset for bearing fault
detection, specifically conceived for medium-sized bearings of industrial interest. Indeed,
the well-known CWRU dataset presents several issues which were discussed by Smith and
Randall in 2015 [12] and by Hendriks et al. in 2022 [57]. The findings of [12,57] suggest
that CWRU data may be not representative of bearing faults in general and, even more
so, of the industrial case analyzed in this paper. Additionally, this study is motivated by
the fact that although CNNs and TL were deeply analyzed in the literature concerning
bearing fault diagnosis, the capabilities of CNNs pre-trained for audio classification have
been investigated very little. Indeed, the literature has mostly focused on transferring
knowledge from CNNs pre-trained for image recognition [55]. According to the author of
this work, CNNs for audio classification deserve to be explored further since, unlike image
recognition networks, these frameworks already contain a highly specific knowledge for
extracting spectrogram features.
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This paper discusses the application of a transfer learning methodology to the test rig
available at Politecnico di Torino [58], which was designed to accommodate medium-sized
bearings of industrial interest. To the best of the author’s knowledge, this is the first
work including experiments conducted on medium-size industrial bearings with localized
faults. Additionally, this paper aims to explore the fault diagnosis capabilities of CNNs
pre-trained for audio classification. Namely, the VGGish convolutional network [37,59,60]
is employed to perform bearing fault diagnosis. The VGGish network was originally
trained for large-scale audio classification by using millions of audio samples extracted
from YouTube®videos [37]. In this work, the pre-trained model is fine-tuned by a few
thousands vibration records retrieved under different working conditions of the machine.
Such a knowledge transfer is inspired by the idea that the search of fault distinctive
features in vibration spectrograms is conceptually similar to the identification of sound
spectrograms [56]. The results corroborate this hypothesis and show that the feature
extraction capabilities of the pre-trained VGGish network can be effectively transferred
to fault diagnosis scenarios. Thanks to the use of TL, a large-scale and high-potential
classification model can be reused for the purpose of machine diagnosis by fine-tuning
with a very small dataset. Furthermore, it is shown that the pre-trained VGGish model
outperforms the VGGish framework trained from scratch in the presence of a thousand-
sample set. Additionally, it is found that, for the case under analysis, the VGGish performs
better than models pre-trained for image recognition.

The overall structure of this paper takes the form of five sections. The introductory
paragraph presents the topic of intelligent fault diagnosis of industrial bearings and pro-
vides the motivations which motivated the author to perform this investigation with respect
to the existing literature. The second section gives an insight into the AI methodologies
involved in this study, and CNNs, transfer learning and the VGGish model are presented.
A description of the test rig for industrial bearings and the vibration dataset is provided in
the third section, whereas the fourth section includes results, discussion and implications.
Finally, the fifth section provides the concluding remarks.

2. Transfer Learning for Bearing Fault Diagnosis

This section provides a short summary of the main AI devices involved in this study.
CNNs, transfer learning and the VGGish audio feature extractor are introduced.

2.1. Convolutional Neural Networks (CNNs)

The typical structure of a CNN (Figure 1) includes a sequence of layers in which
several algebraic operations take place. This claim is valid for the vast majority of deep
learning approaches, but CNNs are differentiated by their ability to handle multidimen-
sional data. That is one of the reasons why the introduction of CNNs [34,61] completely
transformed image-based AI. A wide range of research areas thereafter took advantage
of these structures. Indeed, as previously described, sound spectrograms were employed
to train CNNs for audio classification [37]. The convolution operation mainly consists
of applying filter kernels to the input data, whereas pooling layers carry out data down-
sampling. Finally, fully connected layers flatten multidimensional data [18,20,55,56] in
one-dimensional vectors. For classification tasks, the last fully connected layer returns the
output class. Convolutional and fully connected layers also implement nonlinear effects
by means of activation functions. The Rectified Linear Unit (ReLU) is one of the possible
activation functions for introducing nonlinearities in the output of convolutional layers [56].

The training process aims to optimize a specific loss function, which can be interpreted
as a measure of the distance between the predictions of the model and the ground truth.
For instance, the cross-entropy of Equation (1) is the typical loss function employed for
classification tasks with mutually exclusive classes,

Loss = − 1
M

M

∑
m=1

N

∑
n=1

ymn ln ŷmn (1)
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where:

• M is the number of observations;
• N is the number of classes;
• ŷmn is the network output for the m-th observation and the n-th class;
• ymn is the ground truth for the m-th observation and the n-th class.
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At the end of training stage, the weights of the network filters are optimized for the
specific task and contain the knowledge related to the latter. In particular, the stacked
convolutional layers learn hierarchical representations of the input data. Convolutional
layers are mainly devoted to the feature extraction. For deep learning models, the extraction
process is automated and does not require manual feature selection. Moreover, deeper
layers correspond to more abstract features. In other words, the convolutional layers learn
to extract discriminating features of the input data during training. The extracted feature
maps are condensed in the fully connected layers which terminate in the network output
for the classification.

2.2. Transfer Learning

Transfer learning covers a wide range of techniques aimed at reusing the knowledge
already contained in AI models. A complete exploration of all the TL methodologies is
beyond the scope of this study; a comprehensive insight is given by the works of Pan and
Yang [42] and Lei et al. [20]. Parameter-based TL is considered for the purpose of this
investigation. Namely, it is assumed that the knowledge transfer can be carried out by
reusing the parameters of a pre-trained model. In the case of CNNs, the parameters are
represented by the network weights, which enclose the knowledge. Thanks to the data
from the source domain, the pre-trained network acquires the feature extraction capabilities
for accomplishing the specific source task. The knowledge is thus transferred to the target
domain of interest to fulfil a target task.

Figure 1 shows a typical transfer learning framework for CNNs. Some or all of the
feature extraction layers are frozen, whereas the last layers are replaced with new ones.
The weights of the latter are optimized by fine-tuning the model in the target domain. One
of the most fascinating aspects of this technique is related to the amount of training data.
Considering that the actual training involves few layers, the amount of training data is
extremely low with respect to training from scratch. However, the potential of extracting
complex features is preserved in the frozen layers.

This study investigates the case of knowledge transfer from an audio feature extractor
to the assessment of bearing health state. The methodology is outlined in Figure 2. The
model A is pre-trained for audio recognition. For instance, the label “Guitar” is assigned to
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guitar sounds. The ability of extracting spectrogram features is transferred to the domain
of vibration signals by reusing part of the model A. Then, the model B is fine-tuned by
employing a reduced amount of target data. As an example, the target task could be the
assignment of the label “Bearing fault” to the vibration signal.
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2.3. VGGish Network for Bearing Health Monitoring

An audio feature extractor is a CNN designed to unpack the most distinctive features
detectable in an audio spectrogram. These features are condensed in a low-dimensional
space, where a classifier can operate more conveniently to discern classes. This process
is also known as feature embedding. The classifier can also be constituted of a series
of fully connected layers attached to the end of the feature extractor. The author chose
to transfer knowledge from an audio CNN because those networks can already identify
spectrogram features, wherever the signal originates. However, the literature shows
examples of knowledge transfer from image classification networks [55] to benchmark
vibration datasets.

The VGGish architecture [37] summarized in Table 1 contains 62 million weights.
The model was originally trained by Hershey et al. [37] in 2017 by using 70 million
YouTube®clips, for a total amount of 5.24 million hours and 30,871 audio labels. The
network input is constituted of a 96× 64 mel spectrogram [62,63], which is a time-frequency
transformation typically applied to audio signals. The pre-trained framework can be used
in two ways. First, it can act as a feature extractor to embed audio in the 128 feature vector
that feeds a classification model. Alternatively, the architecture can be part of a larger model
that needs fine-tuning. Figures 3a and 3b show examples of low-level and medium-level
features, respectively, learned by the pre-trained VGGish. It is noted that more complex
spectrogram features correspond to deeper layers.

Some preprocessing is needed to feed the VGGish architecture:

• Signals are resampled at 16 kHz and normalized in the range [−1, 1];
• Each frame is converted in a log-mel spectrogram [62,63] of 64 frequency bins covering

the range 125–7500 Hz by applying 25 ms windows every 10 ms;
• Mel spectrograms are framed into samples of 0.96 s, which correspond to 96 frames

of 10 ms.
The preprocessing steps result in a 96 × 64 patch, in accordance with the input of the
network. The use of the mel spectrogram [62,63] is quite common in audio processing.
Indeed, the mel scale is perceptually relevant for human hearing, which is more
sensitive at lower frequencies. In this study, the same preprocessing steps are applied
to vibration signals in order to enhance the similarities between the source and the



Sensors 2023, 23, 211 6 of 16

target domain. According to the author of this work, it is reasonable to assume that
this circumstance fosters knowledge transferability.

Table 1. VGGish layers.

Layer Type Filter Size Number of
Channels

Activation
Function

Input Image Input 96 × 64 × 1 1 −
Conv 1 Convolution 3 × 3 × 1 64 ReLU
Pool 1 Max Pooling 2 × 2 − −
Conv 2 Convolution 3 × 3 × 64 128 ReLU
Pool 2 Max Pooling 2 × 2 − −

Conv 3_1 Convolution 3 × 3 × 128 256 ReLU
Conv 3_2 Convolution 3 × 3 × 256 256 ReLU

Pool 3 Max Pooling 2 × 2 − −
Conv 4_1 Convolution 3 × 3 × 256 512 ReLU
Conv 4_2 Convolution 3 × 3 × 512 512 ReLU

Pool 4 Max Pooling 2 × 2 − −
Fc 1_1 Fully Connected 4096 − ReLU
Fc 1_2 Fully Connected 4096 − ReLU

Fc 2 Fully Connected 128 − ReLU
Output Regression Output − − −
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TL was applied for identifying bearing health conditions. For this purpose, the last
layer of the VGGish was replaced with a new one. Namely, the regression layer was
replaced with a fully connected layer with three neurons for classifying three bearing
health states. Next, a classification layer was added. Since the feature extraction layers
remained unchanged, it can be stated that the original VGGish feature embedding fed the
classification layer. Moreover, a dropout layer was added before the last fully connected
layer. Dropout layers set weights to zero with a given probability in order to reduce the
number of trainable parameters and avoid overfitting. In this case, the dropout probability
was set to 50%. When the training was run, only the weights related to new layers were
updated. The replacement of the only last layer and the implementation of dropout
strategies showed to be the most effective approach for the analyzed case. Table 2 reports
the set of hyperparameters adopted in this work.
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Table 2. Hyperparameters for VGGish transfer learning.

Hyperparameter Value

Optimizer Adam [64]
L2 regularization 1 × 10−6

Mini batch size 32
Iterations per epoch 54
Initial learning rate 5 × 10−4

Learning rate drop period 2
Learning rate drop factor 0.5

Max epochs 4

3. Vibration Dataset for Industrial Bearings

The TL methodology was applied to the dataset generated by a test rig for industrial
bearings available at Politecnico di Torino [58]. To the best of the author’s knowledge, the
existing literature provides scant evidence of deep learning strategies applied to datasets
covering medium-size bearings (360 mm outer diameter). Three health states were analyzed:
normal condition, inner race damage and outer race damage. This section provides a
description of the test rig, of the experimental activity and of the dataset construction.

3.1. Description of the Test Rig

The test rig presented in reference [58] (Figure 4) can house up to four bearings with
outer diameters ranging from 280 mm to 420 mm. A full description of the test rig goes
beyond the scope of this work, since a comprehensive outline of the design activity and
equipment is already provided in [58]. A 30 kW three-phase induction motor is controlled
by an inverter. The motor is connected to the shaft by means of a rubber joint. The shaft
rotation is sustained by the two main bearings. The so-called “self-contained box” houses
the test bearings, which can be loaded with up to 200 kN thanks to oil actuators. The
two air-oil pumps control the radial and the axial actuators, respectively, by converting
pneumatic pressure into oil pressure (up to 500 bar). Then, the radial and the axial loads
are applied independently. The lubrication system consists of an external control unit that
monitors the oil jet system. The ISO VG 150 oil is injected with a flow rate of 2.5 L/min and
a pressure of 6 bar.
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The layout of the self-contained box (Figure 5) provides an advantage of balancing the
loads of the actuators through the elastic deformation of the box. Thus, the test loads are
internally accommodated and the load circuit is “self-contained”. Consequently, the main
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bearings do not have to fulfil stringent requirements in terms of strength and minimum
size. The test bearings can be replaced by resorting to proper adapters. The purpose
of the adapters is to comply with the size of the box regardless of the outer diameter of
the bearings.
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Four SKF CMS 2200T sensors are fitted to the four adapters in order to measure
acceleration and temperature. The main features of the vibration sensors are reported in
Table 3. The condition monitoring framework includes a LMS Scadas III data acquisition
system. The latter is interfaced with a laptop for signal acquisition and post-processing.

Table 3. SKF CMS 2200T sensor specifications.

Sensitivity 100 mV/g
Sensitivity precision ±5% at 25 ◦C
Acceleration range 60 g peak
Amplitude linearity 1%
Resonance frequency, mounted, minimum 22 kHz

Frequency range
±5%: 1.0 to 5000 Hz
±10%: 0.7 to 10,000Hz
±3 dB: 0.5 to 12,000Hz

3.2. Experimental Activity and Dataset Construction

This study takes into account three health states for the spherical roller bearing SKF
22,240 CCK/W33 (Figure 6a). The bearings have an inner diameter of 200 mm with a
1:12 tapered bore and an outer diameter of 360 mm. In addition to the normal state, inner
race (IR) damage (Figure 6b) and outer race (OR) damage (Figure 6c) are considered. The
faults have a diameter of 2 mm and a depth of 0.5 mm. The damages were mechanically
machined on the race that is most loaded in the case of application of an axial load. In
order to apply the damages, bearings were dismounted. Then, the faults were drilled on
the race of interest by employing a solid carbide drill with a diameter of 2 mm. Although
the produced faults are representative of localized defects in rolling bearings, the vibration
data extracted cannot obviously represent the complete scenario of defects detectable in
rolling bearings.

The experiment involved the analysis of four load cases at 10 different shaft speeds as
reported in Table 4. Then, 40 signals were extracted for each health state totaling 120 signals.
The vibration signals were acquired by means of the data acquisition system and sampled
at 20,480 Hz. Each of the acquisitions lasted 30 s. Therefore, 1 hour of signal acquisition
was taken into account.
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Table 4. Test conditions.

Load Case 1 Load Case 2 Load Case 3 Load Case 4

Radial load (kN) 0 64 124.8 124.8
Axial load (kN) 0 0 0 49

Nominal speeds (rpm) 127, 227, 353, 457, 523, 607, 727, 877, 937, 997

The dataset was constructed by extracting non-overlapping chunks from the vibration
signals (Table 5). The duration of the chunks was of 1.6 s. Therefore, 18 chunks were
extracted for each signal. The resulting dataset consisted of 2160 samples equally balanced
in the three classes: Normal, IR and OR. The data labelling for the supervised learning
scheme was achieved as a natural consequence of the experiment. The amount of data are
remarkably low for the use of large deep learning architectures. However, fault diagnosis
can be performed thanks to TL.

Table 5. Signal extraction.

Total acquisition duration (s) 30
Sampling frequency (Hz) 20,480
Chunk length (samples) 32,768
Chunk length (s) 1.6

Number of chunks per signal 18

The dataset was randomly split in order to test the applicability of the proposed
method. Table 6 reports the information regarding the data split. A typical deep learning
splitting strategy was applied: 80% of the data were used for fine-tuning the VGGish model,
10% of the data constituted the validation set, whereas the remaining 10% were used to test
the method with new data.

Table 6. Dataset split.

Classes Label Training
Samples (80%)

Validation
Samples (10%)

Test
Samples (10%)

3
Normal 576 72 72

IR 576 72 72
OR 576 72 72

Total 1728 216 216
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4. Results and Discussion

This paper investigates the capabilities of CNNs pre-trained for audio classification to
perform bearing fault diagnosis. It is argued that these networks are endowed with highly
specific knowledge for extracting spectrogram features. For this purpose, the vibration
dataset including damaged industrial medium-sized bearings was produced by means
of proper experimental activity conducted on a specifically conceived test rig. A detailed
description of the hardware is provided in reference [58]. As anticipated in Section 2.3, the
VGGish convolutional architecture can act as a spectrogram feature extractor, as long as a
proper preprocessing is carried out. Figures 7a, 7b and 7c show examples of normalized
vibration signals for the normal state, IR and OR damages, respectively. Figure 8a–c
shows the corresponding mel spectrograms obtained through the preprocessing. Finally,
Figure 9a–c shows the corresponding 128-dimensional feature embedding output from
the pre-trained VGGish feature extractor. Essentially, the information dissolved in the
multifaceted mel spectrograms is translated and synthetized in a low-dimensional feature
space via feature embedding. The classifier can discern classes by learning the differences
that establish between feature embeddings. In this particular case, the feature embedding
corresponds to a vector containing 128 elements.
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The model was fine-tuned using the hyperparameters reported in Table 2. The training
time was 936 s on a standard laptop without GPU acceleration (Intel® Core i7−10510U
CPU @ 1.80 GHz). The model was implemented in the Matlab® environment by means
of machine learning, deep learning and audio toolbox libraries. It is worth noting that
the original VGGish structure was trained on multiple GPUs for 184 hours [37]. Figure 10
shows the behavior of the loss functions during the training conducted according to the
parameters in Table 2. In particular, the validation set served to monitor potential overfitting
by analyzing the trend in the validation loss. The number of maximum epochs was set to
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four (216 iterations), since it was observed that the training process stabilized at this point
and overfitting did not occur, though it was detectable during the first two epochs. The
accuracies reported in Table 7 reveal the applicability of the diagnosis model to new test
data. The complete confusion matrix resulting from the test data is shown in Figure 11.
A single normal sample is predicted as OR damaged and a single OR sample is predicted
as normal. Therefore, the classifier showed high precision and recall as reported in Table 8.
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Table 7. Diagnosis accuracies.

Model Training
Accuracy

Validation
Accuracy

Test
Accuracy Hardware Training

Time (s)

VGGish Transfer
Learning 100.00% 100.00% 99.07% Intel®Core i7 − 10510U CPU @ 1.80 GHz 936

VGGish from scratch 50.00% 33.33% 33.33% Intel 10510U CPU @ 1.80 GHz 1038
YAMNet [56] 100.00% 99.07% 91.20% Intel 10510U CPU @ 1.80 GHz 264
VGG16 [55] 53.12% 66.20% 69.44% GPU NVIDIA® T4 693

Table 8. Precision and recall of the diagnosis models.

Model Label Precision Recall

Normal 98.61% 98.61%
VGGish Transfer Learning IR 100.00% 100.00%

OR 98.61% 98.61%

Normal 33.33% 100.00%
VGGish from scratch IR 0.00% 0.00%

OR 0.00% 0.00%
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Table 8. Cont.

Model Label Precision Recall

Normal 100.00% 73.60%
YAMNet [56] IR 100.00% 100.00%

OR 79.10% 100.00%

Normal 67.90% 79.20%
VGG16 [55] IR 69.40% 59.70%

OR 71.40% 69.40%
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Furthermore, the proposed model was compared with the VGGish model trained from
scratch, the YAMNet model [56] and the VGG16 model pre-trained on ImageNet [34,35]
proposed by Shao et al. [55]. Table 7 shows the accuracies obtained for the different models,
whereas Table 8 reports the precision and the recall for the different classes. The VGGish
trained from scratch reaches poor diagnosis accuracies and consistent overfitting phenom-
ena occur. This is due to the fact that the original VGGish architecture was trained on
millions of samples. Therefore, the structure is inherently unsuitable for correctly learning
hierarchical features over a few thousands of training samples. Given the availability of
a limited amount of training data, network weights of millions are extremely prone to
overfit the training set. For this reason, TL is the most effective strategy. The YAMNet
model [56] showed promising accuracies and reduced training times, but some overfitting
was detectable. Finally, the VGG16 model [55] was trained by employing wavelet time-
frequency images. The training of the model under the conditions reported in [55] required
GPUs and was computationally expensive. The resulting metrics show that the VGG16
framework pre-trained on ImageNet is not suitable for the analyzed case. According to
the author of this work, this is due to the fact that several convolutional layers should be
retrained in the model [55]. Consequently, more training data are required. On the other
hand, few layers of the pre-trained VGGish and YAMNet need fine-tuning, since audio
classification models are already capable of extracting distinctive spectrogram features. On
the contrary, the knowledge contained in networks pre-trained on the ImageNet dataset
cannot be considered highly specific for spectrogram recognition.

The encouraging results indicate that the TL methodology is a valuable approach
for the fault diagnosis of bearings. Remarkably, the knowledge contained in a network
pre-trained for sound recognition can be reused for condition monitoring tasks. Moreover,
the amount of training data is considerably low with respect to the network trained from
scratch. The original VGGish network was trained by using 70 million audio samples,
whereas less than 2000 samples were needed for performing fault diagnosis. Therefore,
deep learning frameworks endowed with high knowledge content could be exploited
without the need for millions of data samples. This remarkable implication is determined
by the fact that the features extracted from the pre-trained VGGish network are already
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capable of identifying typical spectrogram features. Then, only slight adjustments are
needed to adapt the model to the classification of vibration spectrograms. The feature
embedding in which the sound spectrograms are translated is therefore convenient for
vibration spectrograms as well.

However, this occurrence poses an issue in the interpretation of the diagnosis out-
comes. Indeed, the 128 features which flow through the classifier have no clear physical
interpretation. In this case, acoustically relevant features were able to classify vibrations. In
contrast to traditional signal processing tools, where some parameters (e.g., kurtosis, crest
factor and ball passing frequencies) have a physical meaning, the user does not know what
the features actually represent for data-driven fault diagnosis, although they may perfectly
work. Therefore, it is quite challenging to estimate the features variability with respect to
the changes in the input signals. Additionally, the development of proper interpretability
tools is of paramount importance for the correct visualization of domains alignment in
transfer learning.

5. Conclusions

This work proposes a transfer learning methodology for fault diagnosis of industrial
bearings. The VGGish architecture, originally pre-trained for sound classification on
70 million audio samples, is fine-tuned by using less than 2000 vibration samples. The
experimental data related to the test set-up at the Politecnico di Torino and designed for
the monitoring of industrial bearings are hereby presented. The experiment involved
three health states ranging over ten speeds and four load cases for medium-size bearings.
Vibration data were classified with 99.07% accuracy. The training time was 936 s. It is
concluded that:

• Deep learning CNNs are promising approaches for industrial condition monitoring;
• The existing potentials included in large deep learning architectures can be exploited

for bearing fault diagnosis using of small datasets, as long as transfer learning
is applied;

• Transfer learning drastically reduces the computational demand by applying deep
learning in fault diagnosis tasks;

• The acoustical features extracted from the VGGish network are also relevant for
classifying bearing vibrations;

• CNNs pre-trained for sound classification are more efficient and accurate than models
pre-trained for image recognition.

The main limitations include the challenge of interpreting the extracted features.
Although this study exhibits promising results, further investigations are also needed to
apply this concept in industry, where fault data are scarcely available and balanced classes
are not applicable. The knowledge transfer to unseen working conditions or different
machines should be investigated as well.
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