
27 April 2024

POLITECNICO DI TORINO
Repository ISTITUZIONALE

Practical anonymization for data streams: z-anonymity and relation with k-anonymity / Jha, Nikhil; Vassio, Luca;
Trevisan, Martino; Leonardi, Emilio; Mellia, Marco. - In: PERFORMANCE EVALUATION. - ISSN 0166-5316. - STAMPA.
- 159:(2023), p. 102329. [10.1016/j.peva.2022.102329]

Original

Practical anonymization for data streams: z-anonymity and relation with k-anonymity

Elsevier postprint/Author's Accepted Manuscript

Publisher:

Published
DOI:10.1016/j.peva.2022.102329

Terms of use:

Publisher copyright

© 2023. This manuscript version is made available under the CC-BY-NC-ND 4.0 license
http://creativecommons.org/licenses/by-nc-nd/4.0/.The final authenticated version is available online at:
http://dx.doi.org/10.1016/j.peva.2022.102329

(Article begins on next page)

This article is made available under terms and conditions as specified in the corresponding bibliographic description in
the repository

Availability:
This version is available at: 11583/2974412 since: 2023-01-12T18:33:40Z

Elsevier

Practical Anonymization for Data Streams:
z-anonymity and relation with k-anonymity

Nikhil Jha∗, Luca Vassio, Emilio Leonardi, Marco Mellia

Politecnico di Torino, Corso Duca degli Abruzzi, 24, Torino 10129, Italy

Martino Trevisan

University of Trieste, Piazzale Europa, 1, 34127 Trieste TS, Italy

Abstract

With the advent of big data and the emergence of data markets, preserving
individuals’ privacy has become of utmost importance. The classical response
to this need is anonymization, i.e., sanitizing the information that, directly or
indirectly, can allow users’ re-identification. Among the various approaches,
k-anonymity provides a simple and easy-to-understand protection. However,
k-anonymity is challenging to achieve in a continuous stream of data and scales
poorly when the number of attributes becomes high.

In this paper, we study a novel anonymization property called z-anonymity
that we explicitly design to deal with data streams, i.e., where the decision to
publish a given attribute (atomic information) is made in real time. The idea
at the base of z-anonymity is to release such attribute about a user only if at
least z − 1 other users have exposed the same attribute in a past time window.
Depending on the value of z, the output stream results k-anonymized with a
certain probability. To this end, we present a probabilistic model to map the
z-anonymity into the k-anonymity property. The model is not only helpful in
studying the z-anonymity property, but also general enough to evaluate the
probability of achieving k-anonymity in data streams, resulting in a generic
contribution.

Keywords: Anonymization, data streams, scalability, zero delay, k-anonymity.

1. Introduction

Big data have opened new opportunities to collect, store, process and, most
of all, monetize data. This has created tension with privacy, especially regarding

∗Corresponding author
Email addresses: nikhil.jha@polito.it (Nikhil Jha), luca.vassio@polito.it (Luca

Vassio), emilio.leonardi@polito.it (Emilio Leonardi), marco.mellia@polito.it (Marco
Mellia), martino.trevisan@dia.units.it (Martino Trevisan)

information about individuals. For this, legislators have introduced privacy laws
to regulate the data collection and market, with notable examples of the General
Data Protection Regulation (GDPR) [1] in EU, or the California Consumer
Privacy Act (CCPA) [2] in the US.

Anonymization, i.e., generalizing or removing identifying data of individu-
als, is the classical approach to publish personal information. Thanks to this,
Privacy-Preserving Data Publishing (PPDP) has gained attention in the last
decade [3]. The birth of data markets, where buyers can access extensive data
about individuals, has brought even more attention to the area. In this context,
the PIMCity project1 aims at exploring practical solutions to create transpar-
ent online data marketplaces, and this paper is part of our effort to develop
practical strategies for anonymization.

Removing the users’ identifiers (name, social security number, phone num-
ber, etc.) is insufficient to make a dataset anonymous. Indeed, an attacker
can link users’ apparently harmless attributes (such as gender, zip code, date
of birth, etc.) called quasi-identifiers (QIs) to some external knowledge. With
that, the attacker can re-identify the person and thus gain access to other sen-
sible information available in the dataset (disease, income, etc.) – called sensi-
tive attributes (SAs) [4]. Famous is the de-anonymization of the Netflix public
dataset [5] based on the exploitation of QIs.

Researchers have defined several properties that data should satisfy to avoid
re-identification, among which the k-anonymity [6], or k-anon for short, has
become popular. It imposes that every user’s released piece of information (a
record) should correspond to at least k − 1 other users, i.e., there are at least
k−1 other users with the same record. k-anon is conceived for tabular and static
data; in other words, the dataset must be completely available at anonymiza-
tion time. Researchers have proposed extensions to a streaming scenario, where
continuously incoming records are accumulated, processed in batches, and re-
leased after an unavoidable delay [7]. However, for specific applications, it is
fundamental to avoid any processing delay. For example, when it is unfeasible to
store data for a long time (e.g., for network packets [8]); or for location history,
if a real-time (but anonymous) stream shall be used for mobility optimization,
e.g., suggesting a free parking spot or the least congested route.

This paper studies the novel anonymization property called z-anonymity, or
z-anon for short, that we previously introduced in [8] in the context of Internet
traffic analysis. z-anon specifically targets the data stream scenario, aiming to
guarantee zero-delay release of data (hence the z instead of k). We suppose
to receive a raw stream of data in which users’ attributes arrive as they are
generated. For instance, a new transaction on their credit card, a new position
of their car, or a new website they visit. These attributes are QIs, and may
allow users’ re-identification. To prevent this, a new attribute is released only if
it was exposed by at least z−1 other individuals in the past window ∆t. z-anon
is weaker than k-anonymity since it cannot guarantee that at least k − 1 users

1https://www.pimcity-h2020.eu/

2

https://www.pimcity-h2020.eu/

present the same combinations of QIs. In this paper, we present a probabilistic
model to map z- into k-anon properties. We find out that z can be tuned
to provide k-anon with the desired probability. We first study the impact of
scenario (number of users, number of attributes) and system parameters (z, ∆t)
considering a homogeneous and uniform case. Then we relax some assumptions
of the model, considering the case of classes of users with different interests or
activity levels.

There are various examples of application of z-anon. For instance, we have
originally proposed it for internet traffic analysis, where high-speed passive mon-
itors process packets that contain QIs (e.g., hostnames of visited websites) in
real time [8]. Similarly, the users’ browsing history, credit card history, and
location history offer rich information that companies may want to access as
quickly as possible.

This paper is an extended version of our previous work [9]. In this new
version, we improve the model and propose an approximation technique to scale
computation. We also extend it to handle classes of users, which now results
generic and can be used to evaluate the probability of achieving k-anonymity
property in data streams. Finally, we quantify the information loss resulting
from anonymization, which we measure with the entropy concept as derived
from the Information Theory [10].

In the remainder of the paper, after presenting the related work (Section 2),
we formalize the z-anon property and present an algorithm to enforce it effi-
ciently and in real-time (Section 3). We then propose a probabilistic model to
derive k-anon properties from z-anonymized streams (Section 4). In Section 5,
we study the impact of the z-anon parameters and system characteristics. We
then extend our model to handle different classes of users (Section 6). Finally,
we discuss the limitations of our approach, future research direction and draw
the conclusions (Section 7). In Appendix A, we detail the implementation and
the complexity of the algorithm, in Appendix B we describe an approximation
to efficiently use the model in practice, in Appendix C we compare the results
obtained by the model to the simulation ones.

2. Related work

The problem of providing anonymization guarantees to streaming datasets
has arisen with increasing attention to PPDP. Most current solutions work with
the concept of data batches, i.e., the incoming data are first accumulated, then
processed, and finally released with a sizeable delay. Researchers have proposed
several approaches during the years that we summarize in the following.

When working with batches or microbatches, popular approaches aim at
guaranteeing k-anon independently in each batch. Here, popular solutions are
based on trees [11–13] or clustering [7, 14–17]. The rationale behind them
is roughly the same: firstly load the incoming records into a structure and
secondly release tuples for which k-anon is achieved. For instance, authors of [18]
design a solution in four steps: cluster arriving tuples, evaluate a noisy centroid
for each cluster, control the cluster size to manage concept drifts, and finally

3

release the tuples for those clusters where k-anon is verified. Delay is inevitable
with clusters needing to accumulate more data before the release. Authors
of [19] modify the attributes to steer a microaggregation process. Tuples are not
published as is, but they are first aggregated into clusters, whose only centroid is
published. The proposal in [20] uses instead a sliding window approach, where
tuples are processed to achieve anonymization using a noisy function. Again,
data is released only after a window of time.

Other works design approaches based on perturbation. Authors of [21] pro-
pose to perturb the output stream as follows. When a user exposes a sensitive
attribute, the system publishes l − 1 different sensitive attributes so that the
attacker can find the actual one with a probability 1/l. Authors of [22] also pro-
pose to replace incoming tuples with sensitive-value sets. To build appropriate
sets, they introduce the concepts of semantic and sensitivity diversity. These two
techniques allow zero-delay anonymization, but the output streams are largely
modified by the perturbation, creating scalability issues too. Furthermore, no
guarantees are provided that the resulting release is k-anonymized.

Considering suppression and generalization, authors of [23] propose two algo-
rithms to avoid a correlation analysis from transaction items. They use a sliding
window approach and aim to provide the data in the current window as output,
after guaranteeing it meets privacy constraints. Again, data is published as a
continuous stream, but only after one delay window. At last, researchers have
spent some efforts to reduce and factor the cost of the delay: Authors of [12]
include the delay in the concept of output quality, with a trade-off between data
quality and batch size.

To the best of our knowledge, however, only [21] and [22] target the zero-
delay goal. In [21], input streams are anonymized immediately with counterfeit
values. In [22], m−1 random sensitive attributes are published with the original
one. Our goal is instead to publish only actual attributes, suppressing those that
could allow users re-identification. Here, we present a model that allows one to
link the properties of z-anon to k-anon. None of the previous works provides any
means to reach this. This work extends our previous one [9] by refining the z-
anon model, introducing the case in which different classes of users coexist, and
quantifying the information loss. We present a thorough analysis of the impact
of scenario and system parameters. Our model is now general and allows one to
evaluate the k-anonymity probability in data streams, as well as the information
loss due to the anonymization process.

3. z-anonymity: anonymization for data streams

3.1. The z-anonymity property

We suppose to operate with data streams, where we continuously receive
observations that associate users with attributes. We define an observation as
a tuple (t, u, a), indicating that, at time t, the user u exposes the attribute a
from a catalog of attributes A. Attributes can be related to whatever field: a
visit to a web page, a purchase, a GPS location, etc.

4

Here, we assume every attribute a ∈ A is a quasi-identifier. That is, in the
stream there are no sensitive attributes – i.e., attributes that contain private
information, but cannot bring to re-identification of the user. The users are
completely described by the set of quasi identifiers A.

We want to keep private those values of attributes associated with small
groups of users, which could ease the re-identification. As presented in [8], we
define the property of z-private attribute as follows:

Definition 1. An attribute a is z-private at time t if it is exposed by less than
z users in the past ∆t time interval.

Notice that the same attribute a can be both z-private and not z-private for
different t. If the anonymized dataset hides all z-private attributes, it achieves
z-anon.

Definition 2. A stream of observations is z-anonymized if it does not contain
z-private attributes at any t, given z and ∆t.

In other words, the attributes that are associated with less than z users in the
past ∆t shall be removed or replaced with an empty identifier. The goal is to
prevent rare attributes from being published, thus reducing the possibility of
an attacker to re-identify a user. In the following, we show how it is possible to
achieve z-anon in real time efficiently.

We exemplify a mechanism to enforce z-anon in Figure 1, while the details
of the algorithm and the best-suited data structures to deploy it are discussed
in Appendix A. Assume z = 3. At time t0 user u0 is the first to expose
the attribute a0. The attribute a0 is z-private at time t0, hence it shall be
obfuscated. Still, the information that u0 exposed the attribute a0 shows its
effects for a time equal to ∆t. At time t1, user u1 also exposes a0. Since
the number of observations in ∆t is still smaller than 3, this observation is
not released. At time t2 user u0 re-exposes a0, extending the lifetime of the
observation, but not changing the number of unique users having exposed a0.
At time t3, user u2 exposes a0, making the total users in the past ∆t equal
to 3. Thus the attribute a0 is not z-private at time t3 and the observation
(t3, u2, a0) can be be released. At time t1 + ∆t the attribute a0 related to user
u1 expires, hence the total user count decreases back to 2. The same happens
when u0 observation expires (at t2 + ∆t), so that when u3 exposes a0 at t4 the
observation can no more be released.

z and ∆t are parameters that can be tuned to achieve the desired trade-
off between data utility and privacy. Therefore, z-anon can be adapted to the
needs of the desired use case. A large z and a small ∆t result in the majority of
attributes to be anonymized, while a small z and a large ∆t allow rare values
to be possibly released.

The ∆t parameter can be set based on how often the system administrator
randomizes the identifiers of users – such that a user u is no more related to
the same identifier after a time period ∆t: its choice may depend on several
aspects, such as the nature of the application, the input stream rate, the system

5

Input Output

Time

[
[

[
[

[

[
[

[

Figure 1: A graphical example of z-anon concept with z = 3: a tuple is released only if at
least other z − 1 = 2 different users have exposed the same attribute in the previous ∆t.

memory (the larger ∆t, the larger the memory requirement to store the users’
information), and so on.

Notice that z-anon considers individual attributes, not on their combina-
tions, as for the k-anon property. Hence, it is interesting to study which guar-
antees the z-anon algorithm offers in a global perspective, i.e., which guarantees
it is possible to give on the privacy properties in terms of k-anon of the output.
We study this relationship between z-anon and k-anon in Section 4.

3.2. Modeling z-anonymity

To fully understand the effect of applying z-anon, we model the input data
stream as a stochastic process and we show how anonymization modifies it. The
code implementing the model is available at [24], while we describe the algorithm
to achieve z-anon in Appendix A. Table 1 summarizes the terminology we use
throughout the following sections.

3.2.1. Modeling the data stream

We consider a system in which a set of U users can access the catalog A of
attributes. Let U = |U| and A = |A|. Users generate a stream of information,
exposing in real-time the attribute they have just accessed. The system collects
tuples in the form (t, u, a), i.e., at time t, the user u ∈ U exposes the attribute
a ∈ A.

For now, we assume that users are homogeneous and generate independent
tuples, so that the probability of exposing a specific tuple depends only on a.
We will relax this assumption by considering classes of users in Section 6. We
assume any user u exposes the attribute a according to a homogeneous Poisson
process with rate λa. Hence, the number of times a user exposes the attribute
a in a time period ∆t is modeled as a Poisson distributed random variable Ra
with parameter λa ·∆t, i.e., Ra ∼ Poisson(λa ·∆t).

6

Table 1: Terminology used to model z-anon and k-anon.

U , U Set and number of users
A, A Set and number of attributes
∆t The time interval length used for evaluating z-anon
λa Exposing rate for attribute a

Ra
Random variable counting number of times a user
exposes attribute a in ∆t. Ra ∼ Poisson(λa ·∆t)

Xa
Random variable representing whether a user exposes
attribute a in ∆t. Xa ∼ Bernoulli(pXa)

Oa
Random variable representing whether a tuple (t, u, a)
is published when exposed. Oa ∼ Bernoulli(pOa)

Ya
Random variable representing whether a user published
at least once attribute a in ∆t. Ya ∼ Bernoulli(pYa)

Y Set of random variables {Ya}a∈A. Y ∼ Bernoulli(py)

Qy
Random variable representing the number of users u ∈ U
with the same realization y in ∆T . Qy ∼ Binomial(U − 1, py)

pk−anon Probability that a realization of Y satisfies k-anon property

Table 2: The default values used for the model.

Variable Default Value
U 1 000
A 20
λar 0.2 / r
z 150
k 2

∆t 12

In our analyses, we assume a small set of popular attributes and a large
tail of infrequent ones. This allows us to represent systems where users are
more likely to expose top-ranked attributes, but there exist a large catalog,
a condition which is often observed in real-world systems that are governed
by power-law distributions [25]. The usability of the model does not depend
on these assumption, which are just considered to match several real-world
scenarios. As such, we choose that the λa for all attributes follows a power law
in function of their rank. Let us suppose attributes are sorted by rank, where the
most popular attribute is a1 and the least popular aA. In the implementations
we will show, we impose λa1 = 0.2 and set the remaining λa as the power-law
function λar = 0.2/r, where r is the rank of attribute ar. The default parameters
used in this article are collected in Table 2.2

We denote as Xa the random variable describing whether a user exposed at
least once the attribute a in a time interval ∆t. Xa assumes value 1 if the user ex-
poses a in ∆t, 0 otherwise. We note that, by construction, Xa ∼ Bernoulli(pXa),
where pXa denotes the probability that a user has exposed attribute a, at least
once, in the past ∆t. It is straightforward to compute pXa given λa and ∆t as:

2We change the default parameter values from [9] to limit the computational complexity
induced by the new model. See Appendix B for a discussion of model scalability.

7

pXa = P [Ra ≥ 1] = 1− P [Ra = 0] = 1− exp(−λa ·∆t) (1)

Notice that the different attributes are independent and pXa is not a distribu-
tion probability mass function, hence the sum of pXa over a ∈ A can be different
from 1.

3.2.2. Applying z-anon

We show how a stream of data modeled as above appears after being z-
anonymized. Under z-anon, z-private attributes at time t are not released.
Here, we define the indicator random variable Oa associated to the event that
the exposed tuple (t, u, a) is published, whose probability of occurring is denoted
with pOa . (t, u, a) is published if a is not z-private at time t.

pOa = P [Oa = 1] = P

 ∑
v∈U\u

Xa ≥ z − 1

 (2)

Given our assumption of independence and homogeneity across the users, we
are summing up U−1 independent and identically distributed random variables,
which are distributed as Xa. Note that we exclude user u, since we are checking
the z-anon conditionally over the tuple (t, u, a). Hence the current user is already
involved by construction.

Since Xa is a Bernoulli with success probability pXa , its sum, which is Bi-
nomially distributed, counts the number of occurrences in a sequence of U − 1
independent experiments,

∑
v∈U\uXa ∼ Binomial(U − 1, pXa).

Starting from Equation 2 and using the probability mass function of the
Binomial distribution we can derive pOa as:

pOa = 1−
z−2∑
i=0

(
U − 1

i

)(
pXa
)i (

1− pXa
)U−1−i

(3)

Similarly to Equation 1, we denote as Ya the random variable describing
whether a user published at least once the attribute a in a time interval ∆t.
Again, Ya ∼ Bernoulli(pYa), where pYa is simply:

pYa = P [Xa = 1] · P [Oa = 1] = pXa · pOa
The set of random variables describing the presence or absence for all the

possible attributes a ∈ A for a user is denoted as Y = {Ya}a∈A. The attacker
will not know the random variable Y , and will observe only realizations of it.
Let us denote as ya a realization of the random variable Ya and as y = {ya}a∈A
a realization of the random variable Y .

8

100 101 102 103

Attribute rank

10−10

10−8

10−6

10−4

10−2

100

pY a

z = 1 (original)
z = 50
z = 100
z = 200

Figure 2: The probability pYa for a user to publish attribute a in ∆t.

3.2.3. Impact on released data

We now qualitatively show the effect of applying z-anon on the released data
stream. In this experiment, we set A = 1 000 and U = 1 000. We suppose the
popularity of attributes follows a power law, with λar = 0.2/r, where r is the
attribute rank.

We study the probability of observing the attribute a in a ∆t, for a given
user, in both the original and released data. Figure 2 shows pYa in function of
the attribute rank. The blue solid line represents the probability of observing an
attribute in case z = 1, i.e., no anonymization (pYa = pXa). The curve appears as
a straight line, representing a power law on the log-log plot. When enabling z-
anon (z > 1), we notice that the probability of observing uncommon attributes
abruptly decreases with an evident knee. For example, if we observe the curve
for z = 100 (green dashed line in the figure), already the 13th-ranked attribute is
released with a probability below 10−6, while it appears on the original stream
with probability 10−1. A higher z moves the knee of the curve closer to the
top-ranked attributes.

Conversely, increasing the number of users U increases the lowest-ranked
attributes probability to be published (with more users in the system, it is
easier to satisfy the z threshold). This would move to the right the curves’
knee. We discuss the impact of U later in Section 5.4.

In summary, the figure shows how z-anon prevents uncommon attributes
from being released. Indeed, those attributes are released only when enough
users are exposing them, hence only for popular attributes. In the following,
we propose a probabilistic model to study how a z-anonymized data stream can
result in a k-anonymized dataset with controllable probability.

9

4. Modeling k-anonymity

We now study the relationship between the z-anon and k-anon properties.
Intuitively, z-anon ensures that each published value of an attribute a has been
exposed at least by z users in the past time interval, while, with k-anon, any
given record (i.e., the combinations of all user’s attributes) must appear in the
published data at least k times. With high-dimensional data, the set of attribute
combinations becomes extremely large, thus making k-anon tricky to guarantee.
Here we show that, with a proper choice of z, it is possible to release data in
which user results k -anonymized.

4.1. Getting to k-anon

Given a specific realization y of a user, our goal is to derive the probability
to observe at least other k − 1 users in U having the same realization y. If this
happens, the user is k-anonymized.

Recall that we assume attributes to be independent. Thus each realization
y = {ya}a∈A happens with a probability py, which results to be:

py =
∏
a∈A

[
ya · pYa + (1− ya) · (1− pYa)

]
. (4)

For any realization y, the random variable representing the number of users
with the same realization in the users’ set (which we can model as Qy) is
described by a Binomial distribution with parameters U − 1 and py: Qy ∼
Binomial(U − 1, py).

From the point of view of an external observer which only accesses the pri-
vatized stream, a user has thus a probability of being k-anonymized which can
be retrieved from the law of the total probabilities:

pk−anon =
∑
y

1−
k−2∑
j=0

P [Qy = j]

 · py. (5)

In Equation 5, the probability for a user of finding at least k− 1 other users
with the same y is evaluated as the opposite of finding up to k− 2 users. Then,
we average this quantity over all the possible realizations of the random variable
Y , summing over all the y and multiplying by the respective py to obtain the
final pk−anon.

It is worth noticing that the cardinality of the possible realization set expo-
nentially depends on the number of attributes A. In Appendix B, we discuss
how to manage the model computational issue deriving from this, introducing
a model approximation technique.

In summary, our model describes the probability that a data stream under-
going z-anon results in a dataset which respects the k-anon property. Although
we can only provide probabilistic guarantees on the k-anonymization of the re-
leased data, our model allows one to study and control this probability as a
function of the parameters.

10

Moreover, note that, even with no z-anon in place (i.e., z = 1), the model
provides a general way to evaluate the probability of a data stream being k-
anonymized in a transaction dataset with U users and a catalog of A attributes.

An analysis on the model results as compared to simulation ones is provided
in Section 5.1 and Appendix C.

4.2. Modeling Information loss

Applying z-anon to an input stream decreases the amount of information
the output stream carries with respect to the original non-anonymized stream.
There is a trade-off between data privacy and data usability: if no anonymization
is in place, the information provided by the final dataset will be maximum. On
the other hand, if the data are anonymized, privacy is protected but information
is lost in the process.

Here we consider the entropy as a measure of the amount of information
a dataset contains. This metric derives from Information Theory [10], which
defines the information brought by the occurrence of a symbol among a set of
possible symbols by knowing the probability of such symbol to appear.

In our case, each symbol is a possible realization of Y . We can hence use
Equation 4 to compute the amount of information of the release, by evaluating
its entropy as:

I = −
∑
y

py log(py). (6)

By using Equation 6, it is also possible to evaluate the information loss
caused by anonymizing a data stream, which can be computed as the difference
between the information of the non-anonymized stream and the information of
the anonymized one.

5. Comparing z-anonymity and k-anonymity

In the following, we use our model to show the impact of the system pa-
rameters on the z-anon and k-anon properties. Our model provides pk−anon as
a function of the scenario (U,A, λ) and system parameters (z, k,∆t, which are
under our control). As such, this function provides the probability a generic
user is k-anonymized in the released data. In the following analyses, where not
otherwise noted, we use the parameters listed in Table 2.

5.1. The impact of z

We first focus on the impact of z. In Figure 3, we report how different
values of z result in different probabilities for a given user to be k-anonymized
– and compare the results to the simulation ones. Different lines correspond to
different values of k. The larger is z, the higher is pk−anon. Focusing on k = 2
(blue solid line), pk−anon increases starting from z = 100. With z = 250, the
probability of finding at least a user with an identical set of released attributes is
already 0.8. When z > 350, pk−anon approaches 1, giving the almost certainty

11

0 100 200 300 400
z

0.0

0.2

0.4

0.6

0.8

1.0

p k
−

an
on

Model, k = 2
Model, k = 3
Model, k = 4
Simulation, k = 2
Simulation, k = 3
Simulation, k = 4

Figure 3: pk−anon changing z, for different k values. Exact model results and 10 iterations
simulation averages are reported.

that the whole release is k-anonymized (with k = 2). For k = 3, 4 (orange
and blue line, respectively), pk−anon exhibits a similar behaviour, with pk−anon
decreasing when increasing k, as it becomes harder to find k identical users by
chance. In summary, one can tune z to enforce a desired k and pk−anon on the
released data.

Figure 3 also shows a comparison between the model and the result of simula-
tions with the same parameters. To obtain the dashed lines (i.e., the simulation
results), ten simulation are performed, with different seeds. For each of them,
we evaluate pk−anon for k = 2, 3, 4 and average the outcomes over all the simula-
tions. The dashed lines and the corresponding solid ones follow the same trend
and match almost perfectly - the differences being caused by the small number
of simulation performed. This result also validates the essential correctness of
the model: Appendix C provides more details on the simulation process and
on its adherence to the model results.

5.2. The impact of ∆t

The second design parameter one must set is ∆t, the time window on which
z-anon runs. In Figure 4, we show how pk−anon varies while increasing ∆t,
with different values of k. Intuitively, the larger the time period, the lower
the probability of a user being k-anonymized. A large time window allows
also unpopular attributes to satisfy the z-anon property and be published, thus
decreasing the pk−anon. Conversely, with a narrow time window, only the most
popular attributes result non z-private, with a positive effect on pk−anon. In
summary, ∆t is another way for tuning the fraction of z-private attributes, with
a direct impact on the k-anon of the released data. Since the effects of tuning z
and ∆t are interchangeable, from now on we will focus on z, knowing that acting
on ∆t would have an analogous effect. Note also that the choice of ∆t impacts

12

0 5 10 15 20 25
∆t

0.0

0.2

0.4

0.6

0.8

1.0

p k
−

an
on

k = 2
k = 3
k = 4

Figure 4: pk−anon changing ∆t, for different k values.

also the system memory and data structure size. As such, one would choose ∆t
on the specific use case, and regulate z for reaching the desired privacy level.

5.3. The impact of A

Then, we study the impact of the size of the catalog of attributes A = |A|.
In Figure 5a we show how the probability pk−anon of a user being k-anonymized
varies with A through the impact of z-anon. We consider a system where only
the top A ranked attributes exist. As such, by increasing A, we add more and
more infrequent attributes. Intuitively, a large number of attributes makes it
hard to find users with the same output realization y. However, with z-anon,
the catalog size results limited and thus it plays a marginal role (see Figure 2),
and, as such, infrequent attributes are rarely published.

In Figure 5a, pk−anon starts at 1, when few attributes are present, and the
number of their possible combinations is low. When A increases, less frequent
attributes start to appear. The possible combinations of attributes explode
exponentially. With z = 1, i.e., no z-anon in place, the probability of finding
identical users rapidly goes to 0. Enabling z-anon, we prevent rare attributes
from being released, thus limiting the number of combinations – see dashed
lines.

Figure 5b shows the effect of the number of attributes on the entropy of the
resulting dataset as defined in Equation 6, for different values of z. The entropy
increases with the number of attributes A. If the attributes were equally prob-
able (uniform distribution), the entropy will scale linearly with A. However,
given the power law of attributes, the increase is sub-linear. Applying z-anon
to the input data stream limits the growth of the entropy, preventing the ap-
pearance of infrequent combinations. Since least-likely attributes are protected
by z-anon, they will not be published and will not add information to the final
dataset. Therefore, the entropy tends to converge with higher A. The higher

13

5 10 15 20
A

0.0

0.2

0.4

0.6

0.8

1.0

p k
−

an
on

z = 1
z = 150
z = 200
z = 300

(a) pk−anon changing A, considering different z values.

5 10 15 20
A

0.0

2.5

5.0

7.5

10.0

12.5

I

z = 1
z = 150
z = 200
z = 300

(b) The entropy I of the output z-anon dataset changing A, for different z values.

Figure 5: The impact of A.

z, the fewer the released information. In other words, by tuning z (or ∆t), it is
possible to regulate the amount of information in the released data.

5.4. The impact of U

We now study how the number of users U impacts their probability to appear
k-anonymized in the released data. In Figure 6a, we show how pk−anon varies
when increasing U , for different values of z. We notice the concurrence of two
effects: first, with low values of U , even a small z ensures that users are k-
anonymized, as rare realization have few chances to appear. Increasing the
number of users leads to a decrease of pk−anon. This happens because the large
number of users causes even less-popular attributes to overcome the z threshold,
hence increasing the number of possible combinations and, thus, decreasing
pk−anon. At a certain point (depending on z) all the attributes are likely to be

14

101 102 103 104

U

0.0

0.2

0.4

0.6

0.8

1.0

p k
−

an
on

z = 1
z = 10
z = 50
z = 100

(a) pk−anon changing U , for different z values.

100 101 102 103 104 105
z

102 103 104 105 106 107

U

0.0

0.2

0.4

0.6

0.8

1.0

p k
−

an
on

k = 2
k = 3
k = 4

(b) pk−anon increasing proportionally U and z (z = U/25), for different k values.

Figure 6: The impact of U on pk−anon.

15

published, and a second effect steps in: adding new users, each combination has
a higher probability of appearing more than once, thus improving pk−anon.

To prevent pk−anon from decreasing with a large U , we now suppose we set
z proportional with U . In Figure 6b, we show pk−anon with increasing number
of users (bottom x-axis) and, consequently, increasing z (top x-axis), as we set
z = U/25. Focusing on the solid blue line (k = 2), we notice how pk−anon grows
with U , reaching values close to 1 with very large U (notice the log x-scale).
With a higher k (dashed lines), the pk−anon is only shifted to larger values of U .
The figure shows that a large U leads to better guarantees of k-anon as far as z
is set proportionally. As such, it is fundamental to consider the number of users
in the system to properly set the z-anon parameters and, in turn, successfully
achieve k-anon. Conversely, if z does not grow with U , performance guarantees
worsen (see Figure 6a).

6. Extension to user classes

The model we presented in Section 3.2 relies on the assumptions that the
user activity rate is constant over time (i.e., it follows a homogeneous Poisson
Process), their behaviour is independent (i.e., users’ interactions do not depend
one on the other), and homogeneous (i.e., every user acts in the same way). In
this section, we relax the last assumption, introducing the concept of classes of
users. We assume that C classes exist and that each user belongs to one and
one only class c ∈ {1, ..., C}. Users in the same class behave homogeneously and
potentially differently from those of other classes.

We consequently extend our model to consider the dependence on the class
c of the user we are considering. In the notation, we will add the subscript of
the class c to variables and probabilities. Hence, in each class c, there are Uc
users.

The attribute exposing rate now depends on the user’s class, thus λa,c. Con-
sequently, pXa,c is the probability a user in c exposes a in ∆t. Let pOa,c be the
probability that this attribute a satisfies the z-anon constraint. This probability
requires a different computation since it depends on the class c of the user and
on users in other classes. The z-anon constraint is satisfied if there are at least
z − 1 other users, among all classes, that have exposed a in the past ∆t. This
can be written as in Equation 3 as the complementary event where the users
exposing a do not add up to z − 1.

To this end, we have to find all the possible combinations of users in the
different classes exposing a. By denoting as ni ∈ {0, . . . , Ui} the number of
users of class i that have exposed a given attribute a in the previous ∆t, we can
define the set C(z) of C-uples, whose sum does not exceed z − 2:

C(z) =

{
(n1, . . . , nC) :

C∑
i=1

ni ≤ z − 2

}

Then:

16

pOa,c = 1−
∑

(n1,...,nC)∈C(z)

(
C∏
i=1

P [Bi,c,a = ni]

)
,

where Bi,c,a ∼ Binomial(Ui − δi,c, pXa,c) is the random variable representing
the number of users in class i that have exposed a in the previous ∆t. We
remove one user when considering the same class c through the Kronecker delta
δi,c, as we already imposed that such user is exposing a.

Consequently, pYa,c is the probability a user in c publishes at least once a in
∆t, and py,c is the probability a user in c has the realization y = {ya}a∈A.

Finally, extending pk−anon to pk−anon,c requires a few steps. Similar to
what happens in pOa,c the probability for a user of being k-anonymized depends
on whether it is possible to find in the release at least k − 1 other users with
the same realization – regardless of the class they belong to. We can reuse the
definition of C, now with parameter k, i.e., C(k). Then, the probability for a
user in class c of being k-anonymized follows:

pk−anon,c =∑
y


1−

∑
(n1,...,nC)∈C(k)

(
C∏
i=1

P [Qi,c,y = ni]

) · py,c
,

where Qi,c,y ∼ Binomial(Ui − δi,c, py,i) is the random variable representing
the number of users in class i with the same realization of attributes y in the
previous ∆t as our target user.

In the following, we explore two use cases considering two classes:

• Classes of activity: users belonging to one class are more active than users
belonging to the other one;

• Classes of interest: users in different classes have different interests.

6.1. Classes of activity

In this scenario, users of the first class are more active than users of the
second class. We define as λa,2/λa,1 the level of imbalance between classes. To
provide a fair comparison, we want the overall average exposition rate λa to
remain constant. This is verified if the following condition is satisfied:

U1 · λa,1 + U2 · λa,2 = (U1 + U2) · λa,
where λa is the overall exposing rate of the users in U for a. Recall that

U1 and U2 define respectively the number of users belonging to class 1 and the
number of users belonging to class 2.

From the z-anon point of view, when λa,2 << λa,1, this results in users of
class 2 exposing few attributes, while the majority comes from users of class 1.
Overall, this implies that the “active” population is reduced, thus less tuples

17

10−2 10−1 100 101 102

λa,2/λa,1

0.0

0.2

0.4

0.6

0.8

1.0

p k
−

an
on

Class 1
Class 2
Overall

Figure 7: pk−anon with classes of activity (z = 50, U1 = 500, U2 = 500).

(t, u, a) can be published. This in turn will increase the probability of a user
being k-anonymous. Figure 7 shows this effect showing pk−anon,1, pk−anon,2 and
the resulting overall pk−anon. The x-axis is log scale, and, as such, the Figure
appears symmetric with respect to λa,2/λa,1 = 1. Users are likely not to expose
any attribute for the least active class, with thus a high probability of being
k-anonymized. Conversely, pk−anon decreases for the most active class, as its
users are more active to compensate for the inactive users. Overall, the figure
shows that pk−anon benefits when the classes are strongly unbalanced (green
dashed line). Conversely, the more similar the class rates become, the more the
situation gets close to the single-class scenario. Indeed, when λa,2/λa,1 = 1, the
pk−anon value reaches the same value shown in Figure 3.

6.2. Classes of interest

We consider a second use-case, where users belonging to one class are in-
terested in a set of attributes, while the other users are interested in another
set.

One possibility is to divide the attributes into two groups, for which the two
classes of users have different interest, which we model with a different proba-
bility of publishing such attribute. We create two groups of attributes: recalling
that λar is the exposing rate of attribute a in position r in the popularity rank,
we assign attributes in even positions of the rank to one group, and attributes in
odd positions to the other group. Then, we assign the first group of attributes a
rate η ·λar , η ∈ [0, 1] to the first class of users; and (1−η)·λar to the second class
of users. Conversely, we assign the second group of attributes a rate (1−η) ·λar
to the first class of users, and a rate η · λar to the second class of users. Ta-
ble 3 formalizes the scenario of the example. If η = 0.5, the two classes become

18

λar,1 λar,2
Even attributes {ar : r = 2k, k ∈ N} η · λar (1− η) · λar
Odd attributes {ar : r = 2k + 1, k ∈ N} (1− η) · λar η · λar

Table 3: Attributes rates for different classes of interest used in the example.

−1.0 −0.5 0.0 0.5 1.0
Class separation

0.0

0.2

0.4

0.6

0.8

1.0
p k
−

an
on

Class 1
Class 2
Overall

Figure 8: pk−anon with classes of interest (z = 50, U1 = 500, U2 = 500).

the same and, consequently, we obtain the same pk−anon as for the single-class
scenario. We define class separation as the difference η − (1− η) = 2η − 1.

In Figure 8, we show how pk−anon varies with different class separation val-
ues. Similarly to the previous use case, splitting the users into classes increases
the k-anon probability. In this case, though, both classes benefit from class
separation. Increasing the class separation has the twofold effect of i) reducing
the number of attributes that a user is likely to expose and ii) generating two
dissimilar groups of users. As such, we conclude that a scenario where multiple
groups of users that expose different attributes eases the achievement of k-anon.

As shown if Figure 5, the greater the pk−anon, the lower the entropy of the
released information. Although we do not present the figures for the sake of
brevity, the case with classes of users follow the same principle. Where the
classes are highly imbalanced in terms of either interest or activity (and the
pk−anon is larger) the quantity of information of the output decreases.

7. Discussion and Conclusions

In this paper, we studied z-anon, a novel anonymization property for data
streams. It operates with high dimensional data, organized in transactions
(atomic information about users) and with the constraint of zero-delay process-
ing. The idea at the base of z-anon is to hide z-private attributes, i.e., those
associated with less than z − 1 other users in the past ∆t, which an attacker

19

could use for re-identification. A data stream undergoing z-anon is immediately
available with zero delay to the consumer.

z-anon only prevents users’ re-identification for an attacker that leverages
an uncommon attribute. It is designed uniquely to avoid such kind of re-
identification. Therefore it does not consider other types of privacy attacks,
e.g., targeting the timing or order at which users’ attributes appear in the data
stream. Moreover, z-anon does not consider combinations of z-anonymized at-
tributes, treating them independently. Here, we provide a probabilistic model
that shows that users can also be k-anonymized with a controllable probability
even if an attacker knows the entire set of released attributes. With this, we
offer guidelines to tune the system parameters and guarantee k-anon. As a side
achievement, the model can also provide the probability of a user in a set be-
ing k-anonymized, according to the distribution probabilities of the attributes
– whether z-anon is in place or not. We are aware that k-anon is a limited
privacy property, and more sophisticated alternatives exist (notably l-diversity,
t-closeness, and differential privacy); nonetheless, it is the most popular and
easy-to-understand one, thus comparing z-anon to it is the most obvious choice.

In this context, our model allows the data curator to understand the prop-
erties of the released data and manage the trade-off between privacy and data
utility. Notice that the model needs to know the statistical properties of the
data stream, namely U , A, λa. Those can be directly estimated from the data
in case they are unknown. Once U , A, λa have been estimated, the data curator
can select the appropriate values of ∆t and z parameters to obtain a target k.
In case the stream is not stationary, this process shall be repeated over time.

Our results pave the way towards manifold research directions. First, our
probabilistic model can be employed not only to assess how z-anon results into k-
anon, but also to dynamically adjust z to achieve a desired k-anon. Moreover, we
only considered blurring z-private attributes. Alternatively, we could generalize
the attributes to pass the z-threshold. Furthermore, we argue that we can
achieve better data utility while avoiding users’ re-identification even if some
z-private items are released. This can be obtained by introducing perturbations
in the released data, e.g., by inserting noise in the data stream or modifying
some of the associations between users and attributes, as done in [22, 23].

z-anon is weaker than k-anon, as it independently operates on users’ at-
tributes without considering their combination. Here, we provided a model to
evaluate the probability of users being k-anonymized, with the z-anon filter in
place. Within this, the data curator can tune the trade-off between privacy
and data utility. We used our model to study the impact of the scenario, such
as the number and frequency of attributes or the size of the user base. The
model supports heterogeneous users, divided into classes, and we show that
an inherent differentiation among the users positively impacts obtaining the k-
anon. Although we are well aware of the k-anon flaws in terms of privacy, we
chose to compare z-anon to it to provide a wide-known, simple-to-understand
benchmark.

20

Acknowledgements

The research leading to these results has been funded by the European
Union’s Horizon 2020 research and innovation program under grant agreement
No. 871370 (PIMCity project) and the SmartData@PoliTO center for Data
Science technologies.

References

[1] European Parliament and Council of European Union, Directive 95/46/EC.
General Data Protection Regulation,
http://data.consilium.europa.eu/doc/document/

ST-5419-2016-INIT/en/pdf (Last accessed May 25, 2021) (2016).

[2] California State Legislature, California Consumer Privacy Act of
2018, https://leginfo.legislature.ca.gov/faces/billTextClient.

xhtml?bill_id=201720180AB375 (Last accessed May 25, 2021) (2018).

[3] B. C. M. Fung, K. Wang, R. Chen, P. S. Yu, Privacy-Preserving Data
Publishing: A Survey of Recent Developments, ACM Comput. Surv. 42 (4)
(Jun. 2010). doi:10.1145/1749603.1749605.
URL https://doi.org/10.1145/1749603.1749605

[4] L. Sweeney, Guaranteeing anonymity when sharing medical data, the
Datafly System, in: Proceedings of the AMIA Annual Fall Symposium,
American Medical Informatics Association, 1997, p. 51.

[5] A. Narayanan, V. Shmatikov, in: 2008 IEEE Symposium on Security and
Privacy (sp 2008).

[6] P. Samarati, Protecting respondents identities in microdata release, IEEE
Transactions on Knowledge and Data Engineering 13 (6) (2001) 1010–1027.

[7] J. Cao, B. Carminati, E. Ferrari, K. Tan, CASTLE: Continuously
Anonymizing Data Streams, IEEE Transactions on Dependable and Se-
cure Computing 8 (3) (2011) 337–352.

[8] T. Favale, M. Trevisan, I. Drago, M. Mellia, α-mon: Traffic anonymizer for
passive monitoring, IEEE Transactions on Network and Service Manage-
ment (2021) 1–1doi:10.1109/TNSM.2021.3057927.

[9] N. Jha, T. Favale, L. Vassio, M. Trevisan, M. Mellia, z-anonymity: Zero-
Delay Anonymization for Data Streams, in: 2020 IEEE International Con-
ference on Big Data (Big Data), 2020, pp. 3996–4005. doi:10.1109/

BigData50022.2020.9378422.

[10] L. Brillouin, Science and information theory, Courier Corporation, 2013.

21

http://data.consilium.europa.eu/doc/document/ST-5419-2016-INIT/en/pdf
http://data.consilium.europa.eu/doc/document/ST-5419-2016-INIT/en/pdf
https://leginfo.legislature.ca.gov/faces/billTextClient.xhtml?bill_id=201720180AB375
https://leginfo.legislature.ca.gov/faces/billTextClient.xhtml?bill_id=201720180AB375
https://doi.org/10.1145/1749603.1749605
https://doi.org/10.1145/1749603.1749605
https://doi.org/10.1145/1749603.1749605
https://doi.org/10.1145/1749603.1749605
https://doi.org/10.1109/TNSM.2021.3057927
https://doi.org/10.1109/BigData50022.2020.9378422
https://doi.org/10.1109/BigData50022.2020.9378422

[11] J. Li, B. C. Ooi, W. Wang, Anonymizing Streaming Data for Privacy Pro-
tection, in: 2008 IEEE 24th International Conference on Data Engineering,
2008, pp. 1367–1369.

[12] B. Zhou, Y. Han, J. Pei, B. Jiang, Y. Tao, Y. Jia, Continuous Privacy
Preserving Publishing of Data Streams, in: Proceedings of the 12th In-
ternational Conference on Extending Database Technology: Advances in
Database Technology, EDBT ’09, ACM, New York, NY, USA, 2009, p.
648–659. doi:10.1145/1516360.1516435.
URL https://doi.org/10.1145/1516360.1516435

[13] J. Zhang, J. Yang, J. Zhang, Y. Yuan, KIDS:K-anonymization data stream
base on sliding window, in: 2010 2nd International Conference on Future
Computer and Communication, Vol. 2, 2010, pp. 311–316.

[14] J. Tekli, B. Al Bouna, Y. B. Issa, M. Kamradt, R. Haraty, (k, l)-Clustering
for Transactional Data Streams Anonymization, in: International Confer-
ence on Information Security Practice and Experience, Springer, 2018, pp.
544–556.

[15] A. B. Sakpere, A. V. D. M. Kayem, Adaptive buffer resizing for efficient
anonymization of streaming data with minimal information loss, in: 2015
International Conference on Information Systems Security and Privacy
(ICISSP), 2015, pp. 1–11.

[16] A. Otgonbayar, Z. Pervez, K. Dahal, S. Eager, K-VARP: K-anonymity
for varied data streams via partitioning, Information Sciences 467 (2018)
238–255. doi:10.1016/j.ins.2018.07.057.
URL https://linkinghub.elsevier.com/retrieve/pii/

S0020025518305772

[17] A. Otgonbayar, Z. Pervez, K. Dahal, Toward Anonymizing IoT Data
Streams via Partitioning, in: 2016 IEEE 13th International Conference
on Mobile Ad Hoc and Sensor Systems (MASS), 2016, pp. 331–336.

[18] M. Khavkin, M. Last, Preserving Differential Privacy and Utility of Non-
stationary Data Streams, in: 2018 IEEE International Conference on Data
Mining Workshops (ICDMW), 2018, pp. 29–34.

[19] J. Domingo-Ferrer, J. Soria-Comas, R. Mulero-Vellido, Steered Microaggre-
gation as a Unified Primitive to Anonymize Data Sets and Data Streams,
IEEE Transactions on Information Forensics and Security 14 (12) (2019)
3298–3311.

[20] M. Chamikara, P. Bertok, D. Liu, S. Camtepe, I. Khalil, An ef-
ficient and scalable privacy preserving algorithm for big data
and data streams, Computers & Security 87 (2019) 101570.
doi:https://doi.org/10.1016/j.cose.2019.101570.
URL http://www.sciencedirect.com/science/article/pii/

S0167404818313683

22

https://doi.org/10.1145/1516360.1516435
https://doi.org/10.1145/1516360.1516435
https://doi.org/10.1145/1516360.1516435
https://doi.org/10.1145/1516360.1516435
https://linkinghub.elsevier.com/retrieve/pii/S0020025518305772
https://linkinghub.elsevier.com/retrieve/pii/S0020025518305772
https://doi.org/10.1016/j.ins.2018.07.057
https://linkinghub.elsevier.com/retrieve/pii/S0020025518305772
https://linkinghub.elsevier.com/retrieve/pii/S0020025518305772
http://www.sciencedirect.com/science/article/pii/S0167404818313683
http://www.sciencedirect.com/science/article/pii/S0167404818313683
http://www.sciencedirect.com/science/article/pii/S0167404818313683
https://doi.org/https://doi.org/10.1016/j.cose.2019.101570
http://www.sciencedirect.com/science/article/pii/S0167404818313683
http://www.sciencedirect.com/science/article/pii/S0167404818313683

[21] S. Kim, M. K. Sung, Y. D. Chung, A framework to preserve the privacy
of electronic health data streams, Journal of Biomedical Informatics 50
(2014) 95 – 106, special Issue on Informatics Methods in Medical Privacy.
doi:https://doi.org/10.1016/j.jbi.2014.03.015.
URL http://www.sciencedirect.com/science/article/pii/

S1532046414000823

[22] S. A. Abdelhameed, S. M. Moussa, M. E. Khalifa, Restricted Sensitive
Attributes-based Sequential Anonymization (RSA-SA) approach for
privacy-preserving data stream publishing, Knowledge-Based Systems 164
(2019) 1 – 20. doi:https://doi.org/10.1016/j.knosys.2018.08.017.
URL http://www.sciencedirect.com/science/article/pii/

S0950705118304131

[23] J. Wang, C. Deng, X. Li, Two Privacy-Preserving Approaches for Publish-
ing Transactional Data Streams, IEEE Access 6 (2018) 23648–23658.

[24] Nikhil Jha, z-anonymity model.
URL https://github.com/nikhiljha95/zanonymity

[25] L. A. Adamic, B. A. Huberman, A. Barabási, R. Albert, H. Jeong, G. Bian-
coni, Power-law distribution of the world wide web, science 287 (5461)
(2000) 2115–2115.

[26] A. Meyerson, R. Williams, On the Complexity of Optimal K-Anonymity,
in: Proceedings of the Twenty-Third ACM SIGMOD-SIGACT-SIGART
Symposium on Principles of Database Systems, PODS ’04, Association
for Computing Machinery, New York, NY, USA, 2004, p. 223–228. doi:

10.1145/1055558.1055591.
URL https://doi.org/10.1145/1055558.1055591

[27] Tommaso Bacconi, Nikhil Jha, Martino Trevisan, z-anonymity implemen-
tation.
URL https://pypi.org/project/zanon/

Appendix A. Implementation and complexity

Our goal is to design an algorithm to achieve z-anon which satisfies the
following requirements:

• Zero delay: the anonymization property should be achieved without in-
troducing a delay in publishing the anonymized stream. In other words,
we want to make an atomic decision. All approaches based on the pro-
cessing of batches of observations are not applicable, as they need to store
and process the entire batch before the release.

• Efficient algorithm for high dimensional data: the anonymization
property shall be achieved with an efficient algorithm, allowing the deploy-
ment at high speed and large volume of data with off-the-shelf computing

23

http://www.sciencedirect.com/science/article/pii/S1532046414000823
http://www.sciencedirect.com/science/article/pii/S1532046414000823
https://doi.org/https://doi.org/10.1016/j.jbi.2014.03.015
http://www.sciencedirect.com/science/article/pii/S1532046414000823
http://www.sciencedirect.com/science/article/pii/S1532046414000823
http://www.sciencedirect.com/science/article/pii/S0950705118304131
http://www.sciencedirect.com/science/article/pii/S0950705118304131
http://www.sciencedirect.com/science/article/pii/S0950705118304131
https://doi.org/https://doi.org/10.1016/j.knosys.2018.08.017
http://www.sciencedirect.com/science/article/pii/S0950705118304131
http://www.sciencedirect.com/science/article/pii/S0950705118304131
https://github.com/nikhiljha95/zanonymity
https://github.com/nikhiljha95/zanonymity
https://doi.org/10.1145/1055558.1055591
https://doi.org/10.1145/1055558.1055591
https://doi.org/10.1145/1055558.1055591
https://doi.org/10.1145/1055558.1055591
https://pypi.org/project/zanon/
https://pypi.org/project/zanon/
https://pypi.org/project/zanon/

capabilities. It is important to carefully build an algorithm working with
efficient data structures to obtain the necessary information as quickly as
possible. Moreover, users might expose a large set of attributes, whose
number is not known a priori.

The algorithm we propose generalizes the approach presented in our previous
work [8]: the attributes a are stored as a hash table H, with linked lists to
manage collisions. Each value H(a) in the hash table contains three elements:

• metadata about a;

• a Least Recently Used list LRUa of tuples (t, u);

• a hash table Va to track the users that exposed a.

The idea is to minimize the time spent searching into the data structures,
therefore reducing the memory accesses. By assuming that the number of at-
tributes a is one order of magnitude smaller than the hash structure dimension,
collisions are infrequent, and consequently, the total computational cost is O(1)
for each incoming observation.

The H(a)’s metadata include the counter ca and the reference for the LRUa

first and last attribute. Referring to Algorithm 1, once an observation (t, u, a)
arrives, the value a should be inserted in the hash table, if not already present
(lines 2-6), otherwise an update should be performed (lines 7-16). The hash
value is calculated and the access to the table is done in O(1).

If the user u exposes an attribute a for the first time in the previous ∆t, the
user u is inserted into Va in O(1), ca is increased by one and the tuple (t, u) is
inserted on top of the LRUa in O(1) thanks to the aforementioned references
(lines 8-11). If u was already present in Va and in LRUa with value (t′, u), we
replace t′ with t and the tuple (t, u) is moved on the top of the LRUa. Again
all is done in O(1) (lines 12-14).

Last, to evict old entries and consequently decrease ca, we traverse the LRU
in reverse order: we remove each tuple (t′, u′) where t′ < t−∆t, and we decrease
ca accordingly (lines 18-22). At last, if ca ≥ z the observation (t, f(t, u), a)
is released (lines 23-24). The f(t, u) needs an explanation: every ∆t, users’
identifiers are rotated, such that the ID related to a user u at a time t0 will
no more be related to u at t0 + ∆t. The user identifiers thus depend on the
time at which the tuple is published; the attacker will not be able to track the
behaviour of the same user after a ∆t.

Notice that k-anon has been proved [26] to be an NP-Hard problem. Dif-
ferently, z-anon property can be achieved for each observation with O(1) com-
plexity with properly sized hash-tables. Implementation proposed in [8] allows
to manage in real time a 40 Gbit/s stream with common hardware. As part of
the PIMCity project, we provide also a Python library to let interested users to
adopt z-anon [27].

24

Algorithm 1 Pseudo code of the algorithm to achieve z-anon.

1: Input: (t, u, a)
2: if a /∈ H then
3: H ← H∪ a //new attribute: insert it for the first time
4: Va ← {u} //insert new user u
5: LRUa ← (t, u)
6: ca = 1
7: else
8: if u /∈ Va then
9: Va ← Va ∪ {u} //insert new user u

10: ca ← ca + 1 //add new user
11: LRUa ← (t, u)
12: else
13: (t′, u)← (t, u) //update timestamp of user u
14: move (t, u) on top of LRUa

15: end if
16: end if
17: //Always evict old users
18: for ((t′, u′) = last(LRUa); t′ < t−∆t; (t′, u′)=next) do
19: remove (t′, u′) from LRUa

20: remove (u′) from Va
21: ca ← ca − 1
22: end for
23: if (ca ≥ z) then
24: OUTPUT (t, f(u, t), a)
25: end if

Appendix B. Model approximation

As it emerges from Equation 5, the evaluation of pk−anon depends on the
number of possible realizations y of Y . In a configuration with A binary at-
tributes, there are 2A of such possible realizations, and their enumeration repre-
sents a computational bottleneck. In the following, we propose an approxima-
tion strategy to make the computation of Equation 5 practical. We introduce
two parameters, θ1 and θ2. The first operates to limit the number of attributes
to consider. The second limits the number of realizations to evaluate. The ra-
tionale is that many realizations have usually a negligible probability to happen,
allowing us to neglect them while keeping unchanged the model accuracy.

Effective attributes

Focus first on θ1. Here we leverage the typically heavy-tailed nature of
attribute popularity. Intuitively, the least-popular ones will be so rare that
no realization y would contain them. z-anon will exacerbate this, since it will
further decrease the publications of such unpopular attributes.

Let the effective attributes be those we expect to be exposed at least by θ1

user in ∆T . Let Aeff ≤ A be their number. Considering the expected value,
we have that an attribute a is effective if E[U · pYa] ≥ θ1, from which pYa ≥ θ1/U.

25

We can filter those attributes for which pYa < θ1/U. In a nutshell, we discard
all realizations where non-effective attributes appear and, thus, reduce their
number from 2A to 2Aeff .

Effective realizations

Even the realizations derived from the 2Aeff attributes may not all be worth
an evaluation in Equation 5. We thus design an algorithm to reduce the number
of realizations to consider, by enumerating the most likely ones and discarding
the rarest ones. To this end, we organize all the possible realizations in a tree.
Let the root realization be y0. We show a toy example in Figure B.9, for three
effective attributes (Aeff = 3), and use it as a running example. The root node
(y0) holds the most probable realization. Hence, y0 = {ya}a∈A, where:

ya =

{
1, if pYa ≥ 0.5

0, otherwise.
(B.1)

In our example, pYa < 0.5,∀a, and the most probable realization is [0, 0, 0]. y0

has three child nodes, each obtained by changing a single attribute. We arrange
the children from the most probable to the least probable. The probability of
these realizations depends on the distance of pYa′ to the 0.5 threshold, where
a′ is the attribute to change. For instance, take attributes a1, a2 and a3. Let
pYa1 = 0.49, pYa2 = 0.1 and pYa3 = 0.001. a1 will have a much larger probability
of having value 1 than a2 and a3: the probability of the child node with the
parent’s a1 being 1 will be larger than the one of the child with a2 or a3 set to 1.
In a nutshell, we sort the attributes by their probability of changing from their
most likely state, i.e., by |pYa − 0.5|. Here, |pY0 − 0.5| ≤ |pY1 − 0.5| ≤ |pY2 − 0.5|.

We repeat the procedure recursively on all child nodes, building the three
with the depth-first search strategy. When we examine a node, we exclude those
realizations already present on parents or siblings. In the example, consider the
y1 node. In this case, the first attribute cannot be modified again, and y1 has
only two children, y11 and y12. Similarly, when we land on y2, we cannot obtain
a child by changing the first attribute, as this realization will have been already
covered in the sibling y1.

We formalize the properties of the realization tree as follows:

• The probability of a parent realization is always greater than the proba-
bility of its children.

• The probabilities of siblings’ realizations decrease from the most-probable-
to-change to the least-probable-to-change.

These two properties allow us to adopt an efficient strategy to neglect un-
likely realizations: given a node, its children and siblings on the right side have a
lower or equal occurrence probability. Thus, we can efficiently prune the tree: if
a node in the tree has a probability to be observed below a threshold, we prune
all its children and rightmost siblings, returning to the parent and speeding up
the computation.

26

0 0 0

1 0 0 0 1 0 0 0 1

1 1 0 1 0 1 0 1 1

1 1 1

Available for flipping

Not available for flipping

Newly flipped

Already flipped

Figure B.9: An example of the realization tree. We assume that the changing probability
decreases from the leftmost attribute to the rightmost one.

To set this threshold, we start from the probability of a realization in a sce-
nario where all the pYa are equally probable – hence, all the realizations appear
with the same probability: 1/2Aeff . We thus set the threshold to θ2 · 1/2Aeff ,
where θ2 allows one to tune the trade-off between execution speed and model
accuracy. Indeed, if the threshold is too high, not enough realizations will be
considered, and the model will significantly differ from the true value. Con-
versely, with a low threshold, a multitude of potentially negligible realizations
must be evaluated.

Notice that it is easy to recognize a poor choice of θ2, by summing the prob-
ability of considered realizations (those belonging to the three after pruning),
and imposing it to be at least – for instance – 0.98. In other words, we impose
that: ∑

y:py≥ θ2

2
Aeff

py ≥ 0.98 (B.2)

In our experiments, we use a greedy algorithm to find θ2 such that Equation
B.2 holds.

Appendix C. Model validation

To assess the validity of the model, we compare its results with those ob-
tained by simulating the z-anon mechanism. To perform the simulation, we
randomly generated an input trace that emulates a stream of tuples (t, u, a),
with U = 1 000, A = 20, λar = 0.2/r. We then process the input trace via the z-
anon mechanism, as described in Algorithm 1. At last, we collect the published
tuples and evaluate the fraction of the 1000 users that result 2-anonymized as
an estimate of pk−anon.

In Figure C.10, we compare the results of the simulation with those of the
model, considering both the exact and the approximated version. The complete
list of scenario parameters is available in Table 2.

In Figure C.10, each point represents the pk−anon as obtained by each sim-
ulation, each with a different seed. The solid blue line indicates the average
of the simulations while the solid orange and green lines report the estimation
obtained by the exact and the approximated model, respectively. The last two

27

0 200 400 600 800 1000
Iteration

0.6

0.7

0.8

0.9

1.0

p k
−

an
on

Simulation average
Exact model result
Approximate model result
Standard deviation

Figure C.10: The pk−anon as evaluated by differently-seeded simulations, compared with the
model results.

return the same result. The average pk−anon of the simulation results is within
0.005 from the exact model one, with a standard deviation of 0.04, indicated in
Figure C.10 as a vertical red bar.

It is worth noting that for simulation we take care of discarding the initial
transient of duration ∆t, during which the system starts accumulating observa-
tions, with no eviction happening.

28

