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Permutation flowshop problems minimizing Core

Waiting Time and Core Idle Time

Abstract

Waiting time and idle time are among the main cost sources in production

systems. They can also affect the feasibility of operations from a technological

perspective; hence, both such times have to be kept as small as possible.

This paper studies four single-objective variants of the permutation flowshop

scheduling problem, where two objectives are considered: the weighted sum

of the makespan and the core waiting time, and the weighted sum of the

makespan and the core idle time. For each objective, both the problem with

the assumption of semi-active solution and the one without it are considered.

A general solution framework for tackling the above-mentioned problems

is provided. First, two Mixed Integer Linear Programming (MILP) formu-

lations (based on positional and precedence variables, respectively) and one

Constraint Programming (CP) formulation are presented. Second, a MILP-

based local search approach based on the positional MILP formulation and

the concept of sliding windows are defined. An extensive set of computa-

tional experiments on benchmark instances show that the positional MILP

formulation strongly outperforms the other two formulations in all the con-

sidered cases. The experiments also show that the sliding window local search

heuristic achieves much better performances than other state-of-the-art local

search heuristics. Indeed, it is able to improve the state-of-the-art in 2384
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instances out of 2400.

Keywords: Core Waiting Time, Core Idle Time, Permutation Flow Shop,

Matheuristics, Scheduling, MILP

1. Introduction

Waiting time and idle time are among the main cost sources in production

systems. The waiting time is related to the work in process (WIP); in fact,

as Little’s law tells (Little, 1961), the longer the waiting time, the higher

the WIP level, given a fixed required/desired throughput rate. In turn, high

WIP levels imply high inventory costs related both to the material and labor

content already included in the WIP and to the cost of the space to keep the

waiting units. Also, the longer the waiting time, the lower the service level

to customers, and hence the lower the competitiveness of the company. A

long waiting time is usually related to high utilization levels: as the resource

utilization increases, the waiting time (and hence the WIP) increases more

than linearly.

The idle time is instead related to a low utilization rate, usually due

to resource over-sizing: too fast machines have been acquired or too many

workers have been hired with respect to the demand to be satisfied. In this

case, the waiting time, and then the WIP, is so small to be immaterial.

However, also this situation generates cost: the over-sized resources have

been (or have to be) paid, and their cost will be shared among less units

with respect to the ones the system would be able to do, thus increasing the

unit cost and then decreasing competitiveness.

Beside cost reasons, waiting and idle times should be kept as small as
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possible for technological reasons. For example, in many process industries

(e.g., chemical or food industries), a too long waiting time after an operation

might spoil the WIP and make it unusable for next operations. Also, in those

manufacturing systems where operations have to be made on pre-warmed ma-

terials, no waiting time can be allowed between warming and manufacturing

phases. About idle time, instead, there are cases where resources cannot

stay idle between an operation and the next one. This happens, for instance,

when machines use consumable, such as paints or powders, that become un-

usable if the machine stays idle for too long (e.g. paint becomes dried or

powder oxidizes).

The impact of waiting and idle times is not the same for any system,

as it is also related to the layout of the production system: in single-stage

systems, they only depend on the system capacity with respect to the expect

demand to be satisfied; in multi-stage systems, the relationship among the

capacity of the several stages is also important. In such a case, the impact

of waiting and idle times is addressed, at an aggregate level, in the design

phase, trying to reach a balanced system.

Once a system has been designed (by considering capacity and demand at

an aggregate level), attention should be paid to the short term planning. As

processing activities on different jobs can have different times, their schedule

on each resource influences the waiting time of the other jobs and the idle

time of the resources. For this reason, addressing the scheduling problem by

considering also waiting and idle times can help reducing or, at least, keeping

under control these two elements.

In multi-stage systems, waiting and idle times are composed of three main
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components: front, core and back (waiting and idle) times. The front waiting

time is the time a job waits before its first operations, while the back wait-

ing time is the time a jobs waits, after being completed, that all the other

jobs are finished. The core waiting time, instead, is the waiting jobs may

experiment between one operation and the other. Idle times have the same

meaning considering machines: front idle time is the time a machine waits

before starting the first operation (while other machines are still working),

back idle time is the time between the moment a machine completes its last

operation and the moment the last machine finishes working, and core idle

time is the time a machine is idle waiting for the next job to be processed.

From a cost perspective, all these components are equally relevant; however,

from a technological point of view, i.e., when machines have to keep working

and/or jobs cannot wait between one operation and the other for technolog-

ical constraints, core waiting/idle times are the one to reduce, avoid or keep

under control.

This paper addresses four variants of the permutation flow shop prob-

lem. Given a certain set of jobs J , a permutation flow shop scheduling

problem strives for processing the jobs on each machine of a certain set M

in the same order, such that a certain objective is minimized. We con-

sider two variants of this problem where the objective functions are: the

weighted sum of makespan and total core waiting time, henceforth denoted

with CWTw, and the weighted sum of makespan and total core idle time,

henceforth denoted with CITw. For both objective functions, two alternative

cases are studied: the case where only semi-active schedules are allowed, and

the case where such constraint is not considered. A schedule is semi-active
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whenever there is no job that can be anticipated without changing the pro-

cessing order in any of the machines (see Section 3 for more details). The

resulting scheduling problems can be indicated by means of the three field

notation as Fm|prmu|CWTw, Fm|prmu, semi-act|CWTw, Fm|prmu|CITw
and Fm|prmu, semi-act|CITw, where the semi-act attribute means that only

semi-active schedules are allowed.

The remainder of the paper is the following. The literature is reviewed

in Section 2, and some formal definitions are given in Section 3. Section 4

shows the mathematical formulations of the addressed problems, while the

proposed solution procedures are described in Section 5, Numerical results

are analysed in Section 6 and Section 7 concludes the paper.

2. Literature review

This work addresses the permutation flow shop scheduling problem, a

well-studied scheduling problem whose first study, due to Nawaz et al. (1983),

dates back to 1983. The most studied objective is the makespan (De Fátima Morais

et al., 2022), but a variety of other performance measures, such as the total

flow time (Mao et al., 2022), the total tardiness (Framinan and Leisten, 2008;

Saber and Ranjbar, 2022), the weighted quadratic tardiness (Silva et al.,

2022), the energy consumption (Öztop et al., 2020), etc., have been consid-

ered as well. In this paper, the core idle and waiting times are considered as

performance measures to be optimized. In the following, the literature about

these two performance measures is reviewed separately.
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2.1. Waiting time minimization

The waiting time minimization has been studied in various system lay-

outs. The so called no-wait constraint, imposing that the no waiting time is

allowed among operations, has been included in the formulation of different

scheduling problems (Allahverdi et al., 2020; Sharma et al., 2020). The reader

can refer to Allahverdi (2016) for a survey about this topic. In the special case

of single-machine systems, total and front waiting times are equal, and sched-

ules are semi-active in all the cases. Bagchi (1989) addressed the problem

of minimizing the mean front waiting time and the total absolute difference

of front waiting times. Some authors addressed the problem of minimizing

the total waiting time in single-machine systems with specific characteristics,

such as setup times (sequence-dependent in Soroush (2012), and sequence-

independent in de Matta (2019)). For the single-machine environment, the

minimization of the variance of waiting times has been largely studied in the

literature, and it was proved to be a NP-hard problem (Kubiak, 1993). Eilon

and Chowdhury (1977) proved that the optimal schedule for this problem

has a V-shaped distribution of processing times. Some authors discussed the

relationships between the variance of waiting times and of completion times

(Merten and Muller, 1972; Zhou and Cai, 1996), and found some analytical

properties and other influencing factors (Li et al., 2007). Heuristic algorithms

to solve this problem were proposed in Ye et al. (2007), while Xu (2011) solved

the weighted version of the problem to optimality. Similarly, the weighted

sum of squared waiting times was addressed by Szwarc and Mukhopadhyay

(1995); Sun et al. (2011), the former by developing a decomposition scheme

to solve the problem, and the latter by focusing on the case of deteriorating
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jobs. In a single-stage system, also the case of parallel machines and waiting

time variance minimization has been addressed (Xu and Ye, 2007).

The waiting time minimization has also been studied in more complex lay-

outs, such as job shops (Chu and Portmann, 1993) and flow shops (Maassen

et al., 2019). The total waiting time was minimized in Chu and Portmann

(1993) through a heuristic algorithm to find efficient semi-active schedules for

the job shop scheduling problem. In permutation flow shops, Maassen et al.

(2019, 2020) addressed instead only the minimization of core waiting time

in a permutation flow shop with semi-active schedules. Specifically, Maassen

et al. (2019) proposed a NEH-based heuristic to solve the problem, while

Maassen et al. (2020) focused on the relationship between core waiting time

ad total completion time. Also, Birgin et al. (2020) addressed the permuta-

tion flow shop with semi-active schedules, and they proposed a beam search

meta-heuristic to first minimize the earliness and tardiness and, then, among

the optimal solutions, to find the schedule that minimizes the core waiting

time. Finally, core waiting time was minimized in a permutation flow shop

with general schedules by De Abreu and Fuchigami (2022), which proposed

a comparison of four Mixed Integer Liner Programming (MILP) models to

minimize the sum of core waiting time and front and core idle times.

The problem of minimizing the waiting time has also been addressed in

contexts related to service systems, such as the minimization of passenger

waiting times in transportation by exploiting Markov chains (Lees-Miller,

2016), or the minimization of patient waiting time in hospitals through the

use of simulations (van Essen et al., 2012).
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2.2. Idle time minimization

As discussed in Section 1, minimizing the machine idle time is very rele-

vant in production processes, because of its tight relationship with the ma-

chine utilization. The constraint of having zero idle time (no-idle) is common

in production scheduling problems (Bektaş et al., 2020; Goncharov and Sev-

astyanov, 2009; Maassen et al., 2020). The possibility of limiting the number

of machine interruptions, which is strictly related to limiting the idle time

(Höhn et al., 2012), has also been addressed.

Instead of imposing constraints on the idle time, some authors consid-

ered the problem of minimizing it, or some of its components, in various sys-

tem layouts. Some meta-heuristics were proposed by Liao et al. (2007) and

Yagmahan and Yenisey (2008) to minimize the total idle time in flow shops.

Specifically, Liao et al. (2007) developed a particle swarm optimization algo-

rithm, while Yagmahan and Yenisey (2008) an ant colony meta-heuristic to

minimize together makespan, flow time, and total machine idle time. Other

meta-heuristics were proposed by Hosseini and Tavakkoli-Moghaddam (2013)

for a flow shop system with two stages, to minimize together the total idle

time and the mean deviation from a common due data. Also, as already

mentioned, De Abreu and Fuchigami (2022) considered the minimization of

the sum of front and core idle time (and of the core waiting time) in the

permutation flow shop scheduling problem with general schedules.

The minimization of the core idle time has only been addressed by Liu

et al. (2016), which considered a permutation flow shop system. A NEH-

based heuristic is proposed to minimize the weighted sum of makespan and

core idle time, with the assumption of semi-active schedules.
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This paper addresses the minimization of core waiting and idle times in

a permutation flow shop with both general and semi-active schedules. Sim-

ilar problems were addressed in De Abreu and Fuchigami (2022); Liu et al.

(2016); Maassen et al. (2019). While De Abreu and Fuchigami (2022) con-

sidered general schedules, Liu et al. (2016); Maassen et al. (2019) assumed

semi-active schedules. Also, De Abreu and Fuchigami (2022) addressed the

minimization of the sum of waiting and idle times, Liu et al. (2016) solved

the problem of minimizing the weighted sum of makespan and core idle time,

while Maassen et al. (2019) focused on the minimization of the core waiting

time. Lastly, De Abreu and Fuchigami (2022) proposed four MILP formu-

lations and several multi-warm procedures to solve them, while Liu et al.

(2016); Maassen et al. (2019) both proposed NEH-based heuristics as solu-

tion procedures. This paper differs from the state-of-the-art as it proposes

a unique and general solution framework to consider alternatively the min-

imization of the weighted sum of core waiting time and makespan, and the

minimization of the weighted sum of core idle time and makespan. The

framework considers both assumptions on semi-active and general schedules.

Two MILPs and one Constraint Programming (CP) model are proposed,

and the solution procedure involves the use of local searches that exploit the

MILP models. Such framework allows to reach better solutions with respect

to the state-of-the-art approaches.

3. Formal definitions

In the following, first the concepts of idle and waiting times are formally

introduced, together with the formal definition of the problems addressed in
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the paper; second, the difference with regard to optimal solutions between

semi-active and general schedules is given.

3.1. Waiting and idle times

As mentioned in Section 1, idle and waiting times are composed of three

main components: front, core and back. These components are here defined,

for a flow shop, according to the formal definition proposed in Maassen et al.

(2020). Figure 1 shows an illustrative example: the two graphics represent

the machine-oriented (Figure 1a) and the job-oriented (Figure 1b) Gantt

charts, respectively, for a permutation flow shop composed of three machines

(namely,m1,m2,m3) in which four jobs flow (in the Gannt chart, [k] indicates

the job in the k−th position of the schedule).

(a) Job-oriented Gantt chart (b) Machine-oriented Gantt chart

Figure 1: Illustrative example of waiting and idle time components in Gantt charts
(Maassen et al., 2020)

The job-oriented Gantt chart in Figure (1a) graphically shows the three

components of the waiting time. The front waiting time (Front[k] in the

figure) is the time that the job [k] of a schedule waits before starting its

first operation. Instead, the back waiting time (Back[k] in the figure) is the

time job [k] with k < |P | waits after its completion and the completion of

the last completed job (i.e., job [|P |]). The core waiting time CWTk,m is
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the time job [k] waits on machine m ∈ M − {1} after having completed its

operation on machine m− 1 (red-dotted areas in Figure (1a)); the total core

waiting time is then the sum over all jobs and machines of CWTk,m, i.e.,

CWT =
∑

m∈M−{1}
∑

k∈P CWTk,m.

Conversely, the machine-oriented Gantt chart in Figure (1b) graphically

shows the three components of the idle time. The front idle time (Frontm

in the figure) is the time machine m ∈ M − {1} is idle waiting for job [1],

starting from the time machine m = 1 starts processing it. The back idle

time (Backm in the figure) is the time machine m < |M | is idle from when it

completes the last job till when the last machine (i.e., machine |M |) finished

its processing. The core idle time CITm,k is the time machine m is idle

waiting for job in position k ∈ P −{1} after having processed job in position

[k − 1] (i.e., the green-dotted areas in Figure (1b)); the total core idle time

is then CIT =
∑

m∈M
∑

k∈P−{1}CITm,k.

3.2. General and semi-active schedules

According to the definition of Pinedo (2012), a semi-active schedule is

defined as a sequence of jobs in which jobs start as early as possible on each

machine, which means that the corresponding Gantt-chart is left-shifted.

With the assumption of semi-active schedules, the first machine has no front

and core idle time, and the first job has no front and core waiting times. A

general schedule, instead, is a schedule in which the semi-active assumption

is relaxed. Thus, the first machine can be idle, and the first job can wait

before being processed on some machines.

In the case of regular objective functions, such as minimizing the makespan

or the total completion time, the optimal solution does not change if the semi-
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active assumption is included in the problem definition. However, if other

objective functions such as core waiting and core idle times are involved, the

same no longer holds. The following proposition proves it.

Proposition 3.1. In a permutation flow shop scheduling problem with a set

of jobs J and set of machines M , and core waiting time or core idle time

as objective function, the optimal solution under the semi-active schedule

assumption might be non-optimal with respect to the general assumption.

Proof. The proof is made by two counter-examples, one for the core waiting

time and the other for the core idle time. Both examples consider a permuta-

tion flow shop with two jobs {j1, j2} and three machines {m1,m2,m3}. The

possible job sequences on each machine are: S1 = (j1, j2) and S2 = (j2, j1).

Both sequences are evaluated, for each example, with the semi-active as-

sumption (SA) and without it (Gen). Table 1 shows, for each schedule, the

makespan (Cmax), the total completion time (Ctot), the total core waiting

time (CWT ), and the total core idle time (CIT ). The Gantt charts of the

four schedules are displayed in Figures 2 and 3 for the examples on waiting

time and idle time, respectively.

The first example is related to the waiting time. The processing times

of jobs on each machine are as follows: job j1 has processing times equal to

{19, 54, 5}, while job j2 has processing times equal to {19, 22, 77} on machines

{m1,m2,m3}, respectively. From Table 1 and from the Gantt charts in Figure

2, it is possible to see that, if the semi-active assumption is made and CWT is

taken as objective function, then the optimal schedule is S2, with an optimal

CWT value equal to 26. However, if general schedules are allowed, then the

optimum is CWT = 0, obtained by both sequences. The waiting time is
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Table 1: Numerical examples: summary of performance measures.

ID Example Sequence Schedule type Cmax Ctot CWT CIT

1 (j1, j2) SA 172 250 35
1 (j1, j2) Gen 172 250 0
1 (j2, j1) SA 123 241 26
1 (j2, j1) Gen 123 241 0

2 (j1, j2) SA 74 142 3
2 (j1, j2) Gen 74 146 0
2 (j2, j1) SA 97 137 52
2 (j2, j1) Gen 97 137 0

shown in Figure 2 with the red-dotted areas.

In the second example (bottom part of Table 1, Figure 3), the idle time

is considered. In this case, the processing times of jobs on machines are

{9, 54, 5} for job j1 and {29, 9, 2} for j2 on machines {m1,m2,m3}, respec-

tively. In this case, if core idle time is considered, under the semi-active

assumption the optimum is CIT = 3, provided by S1, while, if general sched-

ules are allowed, then the optimum is CIT = 0, reached by both sequences.

The idle time is shown in Figure 3 with the green-dotted areas.

4. Mathematical formulations

This section presents three different formulations for each of the problems

defined in Section 3. The first two formulations are MILP, which rely on posi-

tional variables and precedence variables, respectively. The last formulation

is based on Constraint Programming and makes use of global constraints

and structures included in the library of IBM ILOG CP Optimizer (Laborie
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(a) Example 1, sequence S1 semi-active (b) Example 1, sequence S1 general

(c) Example 1, sequence S2 semi-active (d) Example 1, sequence S2 general

Figure 2: Proof of Proposition 3.1. Example 1, Gantt chart of the four schedules.

et al., 2018).

In the models, M is the set of machine indexes {1, . . . , |M |}, while J is

the set of job indexes {1, . . . , |J |}. As in Section 3, P is used to refer to the

set of all the possible positions {1, . . . , |J |} where a job can be scheduled.

The considered parameters are:

• pj,m ∈ R+ is the processing time of job j ∈ J on machine m ∈M ;

• α ∈ [0, 1] is the weight of Cmax in the objective function;

• K ∈ R+ is a large enough constant.

For all models, the objective functions o.f. can be:

CITw = wCmax + (1− w)CIT CWTw = wCmax + (1− w)CWT (1)

where the calculations of Cmax, CIT, CWT will be computed differently for

each model.
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(a) Example 2, sequence S1 semi-active (b) Example 2, sequence S1 general

(c) Example 2, sequence S2 semi-active (d) Example 2, sequence S2 general

Figure 3: Proof of Proposition 3.1. Example 2, Gantt chart of the four schedules.

4.1. MILP with positional variables

The MILP formulation based on positional variables, and denoted by

MILP-POS, is presented in this section.

The considered decision variables are:

• xj,k ∈ {0, 1}: binary variable equal to 1 if job j ∈ J is scheduled at

position k ∈ P , 0 otherwise;

• ck,m ∈ R+: completion time of the job at position k ∈ P on machine

m ∈M ;

In the case where the schedules may not be semi-active, the following

formulation holds:
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min o.f. (2)

s.t.
∑
j∈J

xj,k = 1 ∀k ∈ P (3)

∑
k∈P

xj,k = 1 ∀j ∈ J (4)

c1,1 =
∑
j∈J

xj,1pj,1 (5)

ck,m ≥ ck,m−1 +
∑
j∈J

xj,kpj,m ∀k ∈ P,m ∈M − {1} (6)

ck,m ≥ ck−1,m +
∑
j∈J

xj,kpj,m ∀k ∈ P − {1},m ∈M (7)

xj,k ∈ {0, 1} ∀j ∈ J, k ∈ P (8)

ck,m ∈ R+ ∀m ∈M,k ∈ P (9)

The components of o.f. are:

Cmax = c|J |,|M |

CIT =
∑
m∈M

c|J |,m − c1,m − ∑
k∈P−{1}

∑
j∈J

pj,mxj,k


CWT =

∑
k∈P

ck,|M | − ck,1 −
∑

m∈M−{1}

∑
j∈J

pj,mxj,k


(10)

Constraints (3) state that each position is assigned to a single job, while con-

straints (4) impose that each job is assigned to a single position. Constraints
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(5) force the starting time of the first job on the first machine to be equal to

zero. Constraints (6) are the flow shop constraints establishing that a job can

start to be processed on machine m ∈ M − {1} once completed by the pre-

vious machine. Constraints (7) impose that the job at position k ∈ P − {1}

starts being processed by a machine m ∈M after the completion time of the

job at position k− 1 ∈ P . Finally, (8) - (9) define the domain of the decision

variables.

In order to impose that the schedules are semi-active, the following con-

straints must be added to the model:

ck,1 = ck−1,1 +
∑
j∈J

xj,kpj,1 ∀k ∈ P − {1} (11)

c1,m = c1,m−1 +
∑
j∈J

xj,1pj,m ∀m ∈M − {1} (12)

Constraints (11) impose that there is no idle time on the first machine. Con-

straints (12) force the waiting time related to the first job to be zero.

4.2. A MILP Formulation Based on Precedence Variables

This formulation is referred to as MILP-PREC in the rest of the paper.

The considered decision variables are:

• zi,j ∈ {0, 1}: binary variable equal to 1 if job i ∈ J is scheduled before

another job j ∈ J , 0 otherwise;

• cj,m ∈ R+: completion time of job j ∈ J on machine m ∈M ;

• bm,min ∈ R+ is the minimum starting time of a job on machine m ∈M ;
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• cm,max ∈ R+ is the maximum completion time of a job on machine

m ∈M ;

• cm,min ∈ R+: the minimum completion time of a job on machine m ∈

M ;

The formulation, which allows general schedules, is as follows:

min o.f. (13)

s.t. zi,j + zj,i = 1 ∀i, j ∈ J : i ̸= j (14)

zi,j + zj,k + zk,i ≤ 2 i, j, k ∈ J : i ̸= j ̸= k (15)

cj,m ≥ cj,m−1 + pj,m ∀j ∈ J,m ∈M − {1} (16)

cj,m − pj,m ≥ ci,m −Kzj,i ∀i, j ∈ J : i ̸= j,m ∈M (17)

cj,m ≤ cm,max ∀j ∈ J,m ∈M (18)

cj,m − pj,m ≥ bm,min ∀j ∈ J,m ∈M (19)

zi,j ∈ {0, 1} ∀i, j ∈ J : i ̸= j (20)

cj,m ∈ R+ ∀j ∈ J,∀m ∈M (21)

cm,max ∈ R+ ∀m ∈M (22)

bm,min ∈ R+ ∀m ∈M (23)

The components of o.f. are:

Cmax = c|M |,max

18



CIT =
∑
m∈M

(cm,max − bm,min −
∑
j∈J

pj,m)

CWT =
∑
j∈J

(cj,|M | − cj,1 −
∑

m∈M−{1}

pj,m)

It can be noticed that variables cm,max and bm,min are not necessary in

case CWT is used as objective function.

Constraints (14) ensure that i ∈ J precedes j ∈ J or vice-versa. Constraints

(15) guarantee that there is no precedence loop. Constraints (16) and (17)

impose the flow-shop constraints and the precedence constraints over each

machine. Constraints (18) - (19) ensure that bm,min and cm,max are correctly

related with the other variables when minimizing the objective function.

Finally, (20)-(23) state the domain of the decision variables.

In the case semi-active schedules are assumed, the following variables and

constraints need to be included in the model:

c|M |,min ∈ R+ (24)

c1,max =
∑
j∈J

pj,1 (25)

cj,|M | ≤ c|M |,min +
∑
i∈J

Kxi,j ∀j ∈ J (26)

c|M |,min ≤ (1 +
∑
i∈J

Kxi,j)
∑
m∈M

pj,m ∀j ∈ J (27)

A new variable c|M |,min ∈ R+ is introduced in (24). Constraint (25) enforces

that there is no idle time on the first machine. Constraint (26) and (27)
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impose that:

• c|M |,min is equal to the minimum completion time of a job in the last

machine, when minimizing the objective function;

• there is no waiting time associated with the first job of the sequence

[1], hence c[1],|M | =
∑

m∈M p[1],m.

4.3. A Constraint Programming Formulation

The CP formulation presented in this section, based on interval variables,

is indicated with CP-IV from this point forward.

The considered decision variables are:

• Tj,m: interval variable related to the j-th job scheduled at the m-th

machine;

• Sm: sequence variable including all the jobs processed at machine m ∈

M ;

• Cmax: integer variable used to indicate the makespan.

The following CP formulation holds:
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min o.f. (28)

s.t. Sm = SequenceV ar({Tj,m}j∈J) ∀m ∈M (29)

sameSequence(S1, Sm) ∀m ∈M − {1} (30)

noOverlap(Sm) ∀m ∈M (31)

endBeforeStart(Tj,m, Tj,m+1) ∀J ∈ J,m ∈M − {|M |} (32)

Cmax ≥ endOf(Tj,|M |) ∀j ∈ J (33)

The components of o.f., which has to be minimized (28), can be expressed

as follows:

CIT =
∑
m∈M

(max
j∈J
{endOf(Tj,m)} −min

j∈J
{startOf(Tj,m)} −

∑
j∈J

pj,m)

CWT =
∑
j∈J

(endOf(Tj,|M |)− startOf(Tj,1)−
∑
m∈M

pj,m)

Constraints (29) and (30) ensure that the jobs are performed in the same

order in all the machines. Constraints (31) enforce that the jobs assigned

to each machine do not overlap in time. Constraints (32) are flowshop con-

straints, while Constraints (33) state that Cmax is greater than the completion

times of the jobs on the last machine.

In the case semi-active schedules are assumed, the following constraints must

be included in the model:
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max
j∈J

(endOf(Tj,1)) =
∑
j∈J

pj,1 (34)

If min
j∈J

(endOf(Tj,1)) = endOf(T[1],1)) then endOf(T[1],|M |) =
∑
m∈M

p[1],m ∀j ∈ J

(35)

Constraint (34) imposes that there is no idle time on the first machine,

while (35) forces the first job of the sequence to have zero core waiting time.

5. Solution algorithms

Three local search based matheuristics are developed to find solutions of

the considered problems. The structure of the algorithms is the same for

both the considered objective functions of (1) (CITw, CWTw) and for both

semi-active and general schedule assumptions. For all the versions of the

problem, the local search algorithms exploit the positional MILP formula-

tion MILP-POS. Matheuristics are hybrid solution approaches that couple

heuristic frameworks with exact methods. In this case, for example, neigh-

bourhoods are defined as integer programs and their exploration is performed

by a MILP solver. The sliding window local search starts from an initial so-

lution and, iteratively, fixes a subset of the solution and the non-fixed part is

re-optimized through MILP-POS. Instead, the one-opt and swap local searches

start from an initial solution, iteratively change part of it with different rules,

and use MILP-POS to find the optimal timing related to the new solution;

in this case MILP-POS is reduced to a LP model, as all the binary variables

related to the schedule are fixed, while all the continuous variables related
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to the timing of the sequence must be optimized.

5.1. Sliding window local search

Let Nπ,ψ,wP
be the neighbourhood structure of a given solution π, with

an initial position ψ of the solution π and a size parameter wP . The job-

window π(wP , ψ) is the index set of jobs located in the consecutive positions

[ψ], [ψ+1], . . . , [ψ+wP −1] of the schedule π. The neighbourhood Nπ,ψ,wP
is

composed of all the solutions that can be obtained by fixing all the positions

of π not included in π(wP , ψ). The positions in π(wP , ψ) are optimized by

means of the MILP-POS.

The pseudo-code of the local search is devised in Algorithm 1. The al-

gorithm takes an initial solution π, a window size wP and a time limit θ

as input, and gives as output the heuristic solution π∗. At each iteration

(lines 3-13 of Algorithm 1), the best solution in Nπ,ψ,wP
is found by means

of MILP-POS and stored if is better than the best solution found so far.

The wP parameter needs to be carefully chosen, since the solution of each

sub-problem (line 4 of Algorithm 1) has an exponential time complexity with

respect to this parameter. At each iteration, the first job position ψ increases

by one unit, thus the job-window slides. The algorithm stops when the time

limit θ is reached.

5.2. One-opt and swap local searches

The structure of the local searches based on the one-opt and swap neigh-

bourhoods is similar to that using the sliding windows. The one-opt local

search works as follows: until the time limit θ is not reached, for each posi-

tion [k] from |J | - 1 to 1, jobs at positions [k] and [k − 1] are swapped and
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Algorithm 1 Sliding window local search
Input: π, wP , θ
Output: π∗

1: ψ ← 0;
2: OF ∗ ←MAXV ALUE;
3: while θ is not reached do
4: π ← best solution in Nπ,ψ,wP

computed by means of MILP-POS;
5: Evaluate o.f. OFπ of π;
6: if OFπ < OF ∗ then
7: OF ∗ ← OFπ;
8: π∗ ← π;
9: end if
10: ψ ← ψ + 1;
11: if ψ > |P | − wP ; then
12: ψ ← 0
13: end if
14: end while

the new solution is evaluated by means of MILP-POS. When the stopping

criterion is reached, the best solution found is the final solution π∗ given as

output of the algorithm. For the swap local search, the same mechanism

is applied; however, instead of swapping positions [k] and [k − 1], all the

possible swaps between [k] and [l] (with l > k) are evaluated. For both al-

gorithms, MILP-POS is used only to evaluate the objective function; indeed,

the sequence is fixed at each iteration (all the binary scheduling variables are

fixed), thus MILP-POS reduces to a LP problem to be solved.

5.3. Initial solution

The initial solution π can be generated in many ways (e.g., randomized,

constructive heuristics, etc.). In this paper, the NEH-based heuristics of

Maassen et al. (2019) and Liu et al. (2016) are used to find the initial solutions

of the problems with, respectively, CWTw and CITw objective functions.
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Both algorithms are based on the standard NEH constructive algorithm, but

develop ad-hoc methods to initially sort jobs. The reader is referred to these

papers for further details on the technical aspects of the NEH heuristics.

However, the general NEH procedure follows:

1. All jobs are sorted according to a specific rule: for CWTw problems,

jobs are sorted according to the descending order of the index IFNEHM

defined by Maassen et al. (2019); for CITw problems, jobs are sorted

according to the descending order of the index PRLJP defined by Liu

et al. (2016).

2. The first two jobs are scheduled and the sub-sequence with the smallest

o.f. (either CITw or CITw, evaluated by exploiting the MILP formu-

lation) is chosen.

3. The next unscheduled job is assigned to the sub-sequence and scheduled

in each possible position to find the schedule with the minimum o.f.

value. This step is iterated for all the remaining jobs.

4. For the CITw problem, if ties exist, the tie-braking rule proposed in

Liu et al. (2016) is used.

Maassen et al. (2019) and Liu et al. (2016) actually solves the problems

with semi-active schedules. However, in the proposed local searches, the

found schedule is used as initial solution both in the case of semi-active and

general schedules. Moreover, while Liu et al. (2016) uses the CITw objective

function, Maassen et al. (2019) minimizes only the core waiting time. In our
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approach, the NEH by Maassen et al. (2019) is slightly modified such that

all the partial and complete sequences are evaluated in terms of CWTw.

6. Computational experiments

The developed algorithms have been tested on the well-known Taillard

(Taillard, 1993) and Vallada–Ruiz–Framinan (VRF) (Vallada et al., 2015)

benchmarks.

The Taillard benchmark is composed of 12 different problems in terms of

number of jobs and machines. The number of jobs varies between 20 and

500, while the number of machines between 5 and 20. For each problem, 10

instances are available, for a total number of 120 instance.

The VRF benchmark is composed of 480 instances, and it includes both

small and large problems (for each problem, 10 instances are available). The

small problems range between 10 and 60 jobs, and 5 and 20 machines. Large

problems, instead, include from 100 to 800 jobs, and from 20 to 60 machines.

Summing up, 600 instances are available in total.

Two types of computational experiments have been carried on. The first

experiment deals with the comparison among the mathematical formulations

presented in Section 4 on a subset of instances. The aim is to assess the

performances of such formulations, both in terms of the quality of the feasible

solutions and lower bounds provided within a given time limit.

The second experiment compares the three heuristic algorithms presented

in Section 5 to evaluate the efficiency of the proposed approaches. For the

problems with semi-active schedules, the proposed local searches are also

compared with the state-of-the-art NEH algorithms of Maassen et al. (2019)
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and Liu et al. (2016), to assess the improvement with respect to the literature.

CPLEX 12.10 and CP Optimizer 12.10 by IBM ILOG are used as MILP

and CP solvers, respectively. All the algorithms are implemented in Java

through the IBM ILOG Concert Technology. Tests are run on a Intel(R)

Core(TM) i7-8700K CPU processor at 3.70 GHz, with 32 GB of RAM;

For reason of conciseness, in all the experiments the weights of the objec-

tive functions CWTw and CITw are set to 0.5. However, preliminary results

shown that the same results and considerations can be found for the other

weights. Detailed results of all the experiments are available upon requests

to the authors.

6.1. Computational assessment of the MILP and CP Models

This section compares the performances of the MILP and CP models on

a subset of 180 instances corresponding to the instance in Taillard and VRF

benchmarks with up to 100 jobs. For each combination of values of n and m,

5 of the 10 available instances are randomly selected and solved by all the

three models with a time limit of 5 minutes. For each instance, the models are

tested on the four problems previously defined (o.f.: CWTw, CITw; schedule:

general, semi-active). For each instance-problem-model, upper-bound (ub),

lower-bound (lb), and computation time (t) have been collected.

The quality of the results provided by the models is evaluated by (i) the

Average Percentage Gap (APG) and (ii) the Average Relative Percentage

Deviation (ARPD). (i) The percentage gap of the model k on the instance i

is computed as PGk,i =
ubk,i−lbk,i

ubk,i
. The average percentage gap of a model k

over a set of instances I is the average over all instances i ∈ I of PGk,i. This

value represents both the quality of the upper and lower bounds provided by
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the given model, and it is equal to zero when all instances in I are solved

to optimality. (ii) The relative percentage deviation of k on i is computed

as RPDk,i = 100 × ubk,i−ubmin

ubmin
, where ubmin = mink∈K ubk,i (i.e., ubmin is

the best ub found for the instance i among the available models in K =

{MILP-POS, MILP-PREC, CP-IV}). The average relative percentage deviation

of k over a set of instances I is the average over all instances i ∈ I of RDk,i.

This value measures the quality of the solutions computed by the model k

compared to other available models.

Tables 4 and 5 show the summary of the experimental campaign in terms

of APG and ARPD values for all the considered instances, grouped by the

number of jobs n. In each table, the last row shows the average APG and

ARPD values for each model over all the instances.

The results clearly indicate that the best performing model in terms of

APG is the positional MILP model (MILP-POS). This finding holds for all the

four considered problem variants. The other two models (MILP-PREC and

CP-IV) achieve poor values of APG, since they are not relying on a strong

lower bound. More specifically, these models are not capable of computing

any lower bound different from 0, for most of the instances of Fm|prmu|CITw
and Fm|prmu, semi-act|CITw. This is due to the fact that MILP-PREC yields

a weak continuous relaxation and CP-IV relies on a trivial combinatorial

bound.

When the ARPD is considered, the trend is slightly different. MILP-POS

still outperforms the other models for the problems with general schedules,

while CP-IV yields better performance when semi-active schedules are con-

sidered. This indicates that the automatic search strategy used by IBM
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General Semi-active
MILP-POS MILP-PREC CP-IV MILP-POS MILP-PREC CP-IV

n APG ARPD APG ARPD APG ARPD APG ARPD APG ARPD APG ARPD
10 0.0 0.0 0.0 0.0 50.9 15.9 0.0 0.0 0.0 0.0 25.4 0.0
20 22.0 0.2 49.9 2.5 61.1 28.8 43.3 1.3 73.0 8.1 75.2 3.1
30 33.3 0.0 72.2 9.5 73.6 33.5 62.8 8.1 88.3 39.4 80.4 0.1
40 38.2 0.0 80.5 12.3 75.8 29.3 70.8 15.2 93.5 68.6 83.9 0.0
50 38.6 0.0 85.9 22.0 77.7 28.9 72.4 14.4 96.4 104.9 86.9 0.0
60 43.8 0.0 89.2 29.8 79.7 26.2 77.6 27.3 97.7 160.2 88.2 0.0
100 60.4 0.8 94.9 84.7 82.7 12.3 87.3 54.4 98.9 137.7 93.6 0.0

Overall 33.9 0.1 72.7 22.9 80.0 25.1 60.9 16.7 80.0 73.0 77.5 0.6

Table 2: APG and ARD results for VRF and Taillard instances for the problem related
to CWTw (%).

General Semi-active
MILP-POS MILP-PREC CP-IV MILP-POS MILP-PREC CP-IV

n APG ARPD APG ARPD APG ARPD APG ARPD APG ARPD APG ARPD
10 0.0 0.0 35.4 0.3 100.0 8.0 0.0 0.0 25.1 0.0 100.0 0.5
20 2.9 0.0 100.0 4.9 100.0 14.4 14.8 0.4 100.0 11.6 100.0 4.5
30 6.4 0.0 100.0 11.2 100.0 17.6 23.2 0.5 100.0 33.4 100.0 4.5
40 7.5 0.0 100.0 17.0 100.0 16.4 26.0 1.5 100.0 51.2 100.0 4.0
50 5.8 0.0 100.0 20.5 100.0 16.9 21.6 0.2 100.0 61.1 100.0 4.5
60 7.4 0.0 100.0 24.6 100.0 17.5 28.1 3.0 100.0 71.9 100.0 3.0
100 29.4 0.5 100.0 30.1 100.0 5.3 46.0 29.0 100.0 48.8 100.0 0.7

Overall 8.4 0.1 100.0 15.4 91.4 13.8 24.8 4.8 91.4 39.4 100.0 3.3

Table 3: APG and ARD results for VRF and Taillard instances for the problem related
to CITw (%).

ILOG CP Optimizer 12.10 achieves impressive performance, even without

any aid from an effective bounding algorithm. This allows to compute high

quality upper bounds by means of CP-IV. A likely reason for this is that the

inclusion of the semi-active constraints allows CP-IV to achieve a much more

effective propagation.

6.2. Computational assessment of the local search procedures

The VRF and Taillard benchmarks have been used to compare the three

local searches proposed in Section 5 in terms of solution quality. Each of the

600 available instances has been used to solve the four problems addressed

in the paper with the three algorithms. For the problems with semi-active

schedules, the proposed algorithms have been compared to the state-of-the-

29



art NEH heuristics: the CWTw problems are solved with the NEH of Maassen

et al. (2019), while the CITw with that of Liu et al. (2016).

Parameters. Each instance-problem-algorithm has been run with a time limit

proportional to the size of the problem (number of jobs n and of machines

m); it is computed as θ = 60nm
1000

(Balogh et al., 2022; Riahi et al., 2020),

and measured in seconds (note that the NEH algorithms are constructive

heuristics, thus no time limit is set in these cases). The effect of the time

limit value has been analysed in Appendix A, which show detailed results of

the performance of the proposed algorithms with various time limit values.

For the sliding window algorithm, after preliminary tests, the window size

wP has been set to assure the neighbourhood exploration to be run in, on

average, less than 10 seconds. The resulting wP values are: 8 jobs if m ≤ 20,

6 if 20 < m ≤ 40, 4 if m > 40; the window size is reduced for larger values of

m as the problem complexity increases; also, a time limit of 10 seconds has

been set for all the MILP-based neighborhood explorations.

Results. Tables 4 and 5 show the results of the experiment in terms of ARPD

values for the algorithms: sliding window (SW), one-opt and swap local

searches. ARPD values are shown also for the state-of-the-art NEHs (by

Maassen et al. (2019) and Liu et al. (2016)) for the problems with semi-

active schedules. Each row displays the ARPD values of each algorithm for

each problem version: the first part of each table displays the results for the

VRF instances, and the last part for the Taillard benchmark. Each value is

the average RPD among the 10 instances available for the combination n,m

for each benchmark. The second-last row of each table shows the ARPD for

each algorithm over all the VRF and Taillard instances, divided by small
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General Semi-active
Problem SW One-opt Swap SW One-opt Swap NEH

S L S L S L S L S L S L S L S L
VRF instances
10, 5 100, 20 0.0 0.0 33.7 18.2 22.4 16.5 0.0 0.0 86.4 73.3 56.0 52.1 106.1 77.3
10, 10 100, 40 0.0 0.0 31.1 33.8 25.4 32.2 0.0 0.0 99.3 47.0 60.2 37.5 113.4 49.4
10, 15 100, 60 0.0 0.0 33.1 25.0 24.4 23.1 0.0 0.0 92.1 28.6 59.1 22.6 99.1 30.0
10, 20 200, 20 0.0 0.0 30.0 7.6 22.8 7.0 0.0 0.0 60.0 37.8 43.2 34.4 68.8 40.1
20, 5 200, 40 0.0 0.0 42.7 18.3 34.8 17.1 0.0 0.0 146.6 30.9 107.6 28.2 171.4 33.0
20, 10 200, 60 0.0 0.0 38.9 13.9 35.3 13.1 0.0 0.0 128.3 20.0 100.2 18.2 142.8 21.2
20, 15 300, 20 0.0 0.0 41.7 4.7 32.5 4.2 0.0 0.0 99.8 22.2 74.5 20.0 112.4 24.4
20, 20 300, 40 0.0 0.0 39.5 9.6 33.8 9.0 0.0 0.0 92.5 25.9 68.8 24.0 100.8 27.6
30, 5 300, 60 0.0 0.0 38.6 7.0 33.7 6.6 0.0 0.0 157.5 13.4 121.9 12.6 177.6 14.7
30, 10 400, 20 0.0 0.0 39.3 3.5 34.6 3.0 0.0 0.0 146.5 12.3 101.2 10.5 159.3 14.1
30, 15 400, 40 0.0 0.0 42.6 6.2 37.8 5.7 0.0 0.0 117.1 14.1 90.8 13.1 124.0 15.4
30, 20 400, 60 0.0 0.0 41.5 4.6 36.5 4.1 0.0 0.0 97.4 7.4 75.6 6.6 106.1 8.4
40, 5 500, 20 0.0 0.0 36.8 3.4 32.3 3.2 0.0 0.0 197.8 11.6 133.1 9.8 217.6 12.3
40, 10 500, 40 0.0 0.0 39.7 5.0 35.4 4.8 0.0 0.0 146.5 8.9 114.8 7.6 159.9 9.4
40, 15 500, 60 0.0 0.0 37.5 2.4 32.3 2.0 0.0 0.0 138.3 6.9 97.3 5.8 150.9 7.4
40, 20 600, 20 0.0 0.0 41.8 2.8 36.6 2.6 0.0 0.0 110.3 9.0 89.5 7.5 118.6 9.9
50, 5 600, 40 0.0 0.0 34.3 5.2 30.8 5.0 0.0 0.0 214.5 5.7 154.5 4.8 237.7 6.7
50, 10 600, 60 0.0 0.0 37.2 2.5 32.0 2.1 0.0 0.0 153.2 6.2 109.7 5.2 160.7 6.7
50, 15 700, 20 0.0 0.0 39.2 2.6 35.7 2.4 0.0 0.0 129.1 9.2 104.5 7.8 140.9 10.1
50, 20 700, 40 0.0 0.0 39.6 2.3 34.4 2.1 0.0 0.0 92.4 5.5 76.4 4.4 98.9 6.0
60, 5 700, 60 0.0 0.0 33.9 1.8 31.5 1.6 0.0 0.0 202.8 5.3 170.8 4.3 221.0 5.6
60, 10 800, 20 0.0 0.0 38.2 3.4 35.1 3.2 0.0 0.0 173.6 7.3 140.8 5.6 188.8 7.8
60, 15 800, 40 0.0 0.0 32.6 1.5 30.6 1.2 0.0 0.0 125.8 5.2 96.2 4.2 135.2 5.8
60, 20 800, 60 0.0 0.0 36.8 1.7 34.7 1.4 0.0 0.0 91.7 4.8 74.8 3.7 97.6 5.0
Taillard instances
20, 5 100, 5 0.0 0.0 36.2 34.5 30.1 32.2 0.0 0.0 127.4 277.3 90.7 214.4 152.2 296.7
20, 10 100, 10 0.0 0.0 39.6 32.2 30.2 30.4 0.0 0.0 121.5 184.0 94.3 153.8 131.8 191.3
20, 20 100, 20 0.0 0.0 38.8 20.5 31.4 18.9 0.0 0.0 86.8 76.7 64.0 60.2 98.7 80.0
50, 5 200, 10 0.0 0.0 35.5 13.1 31.9 12.4 0.0 0.0 192.3 101.7 135.2 90.9 206.3 104.2
50, 10 200, 20 0.0 0.0 41.7 8.2 35.7 7.6 0.0 0.0 165.5 46.8 122.6 41.7 173.6 49.3
50, 20 500, 20 0.0 0.0 37.8 3.2 33.9 2.9 0.0 0.0 108.8 10.2 83.8 8.5 117.1 11.3

Overall 0.0 0.0 41.3 9.9 35.8 9.3 0.0 0.0 142.5 37.1 108.4 30.6 143.0 39.3
α 100 % 90% 100% 100% 96% 100%

Table 4: Average RPD of each algorithm for the problems related to CWTw (%). The
algorithm NEH refers to Maassen et al. (2019).

(i.e., with less than 100 jobs - problem ’S’ in the tables) and large (i.e., with

at least 100 jobs - problem ’L’ in the tables) instances. The last row of each

table shows the value of the percentage of instances in which each local search

is able to improve the initial solution given by the NEH (i.e., the α value).

For each version of the problem, among the three local searches, the

sliding window algorithm achieves the best performance (i.e., it always has
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General Semi-active
Problem SW One-opt Swap SW One-opt Swap NEH

S L S L S L S L S L S L S L S L
VRF instances
10, 5 100, 20 0.0 0.0 10.3 9.9 5.8 8.3 0.0 0.0 1.9 10.1 1.9 10.4 1.9 10.4
10, 10 100, 40 0.0 0.0 11.9 11.9 6.1 10.6 0.0 0.0 4.5 5.6 4.7 5.6 4.7 5.6
10, 15 100, 60 0.0 0.0 12.1 6.9 8.4 5.5 0.0 0.0 8.0 1.9 8.0 2.0 8.0 2.0
10, 20 200, 20 0.0 0.0 10.2 3.9 7.2 2.8 0.0 0.0 8.8 4.2 9.1 4.3 9.1 4.3
20, 5 200, 40 0.0 0.0 7.5 4.2 5.4 3.3 0.0 0.0 6.4 4.1 6.7 4.1 6.7 4.1
20, 10 200, 60 0.0 0.0 13.8 3.1 9.9 2.2 0.0 0.0 12.2 2.0 13.8 2.1 13.8 2.1
20, 15 300, 20 0.0 0.0 13.9 2.3 10.4 1.4 0.0 0.0 10.2 2.2 10.3 2.3 10.3 2.3
20, 20 300, 40 0.0 0.0 15.2 1.8 14.0 1.3 0.0 0.0 12.3 1.9 12.6 1.9 10.1 1.9
30, 5 300, 60 0.0 0.0 5.5 1.7 3.3 1.0 0.0 0.0 3.9 1.2 3.9 1.2 3.9 1.2
30, 10 400, 20 0.0 0.0 13.8 1.5 10.0 1.0 0.0 0.0 12.5 1.1 12.6 1.1 12.6 1.1
30, 15 400, 40 0.0 0.0 15.9 1.6 13.8 1.1 0.0 0.0 13.6 1.1 13.5 1.2 13.9 1.2
30, 20 400, 60 0.0 0.0 16.7 1.1 14.1 0.6 0.0 0.0 12.7 0.7 12.7 0.8 12.7 0.8
40, 5 500, 20 0.0 0.0 4.8 1.3 2.3 1.0 0.0 0.0 2.7 0.8 2.6 0.8 2.8 0.8
40, 10 500, 40 0.0 0.0 10.2 1.3 7.5 0.7 0.0 0.0 8.6 0.6 8.6 0.7 8.6 0.7
40, 15 500, 60 0.0 0.0 16.0 0.8 13.2 0.4 0.0 0.0 13.7 0.4 13.8 0.5 13.9 0.5
40, 20 600, 20 0.0 0.0 18.5 1.1 16.7 0.6 0.0 0.0 11.4 0.6 12.3 0.7 12.3 0.7
50, 5 600, 40 0.2 0.0 4.9 0.9 2.4 0.4 0.0 0.0 1.3 0.3 1.2 0.3 1.3 0.3
50, 10 600, 60 0.0 0.0 9.6 0.6 6.7 0.2 0.0 0.0 8.8 0.4 8.8 0.4 8.8 0.4
50, 15 700, 20 0.0 0.0 14.6 0.9 12.4 0.5 0.0 0.0 14.2 0.4 14.3 0.4 14.3 0.4
50, 20 700, 40 0.0 0.0 17.4 0.7 14.8 0.3 0.0 0.0 13.5 0.4 13.6 0.4 13.6 0.4
60, 5 700, 60 0.0 0.0 4.5 0.5 2.8 0.0 0.0 0.0 2.9 0.3 2.2 0.4 3.0 0.4
60, 10 800, 20 0.0 0.0 7.9 1.0 5.7 0.6 0.0 0.0 6.7 0.3 6.8 0.3 6.8 0.3
60, 15 800, 40 0.0 0.0 12.8 0.5 10.9 0.1 0.0 0.0 14.6 0.3 14.7 0.3 14.7 0.3
60, 20 800, 60 0.0 0.0 16.1 0.4 13.2 0.0 0.0 0.0 12.8 0.3 13.1 0.3 13.1 0.4
Taillard instances
20, 5 100, 5 0.0 0.0 8.8 1.8 5.8 0.5 0.0 0.0 5.5 0.5 5.2 0.5 5.8 0.5
20, 10 100, 10 0.0 0.0 12.7 4.9 9.3 3.0 0.0 0.0 13.5 2.2 13.5 2.2 9.3 3.0
20, 20 100, 20 0.0 0.0 16.1 9.6 12.6 7.7 0.0 0.0 13.0 8.3 13.2 8.4 12.6 7.7
50, 5 200, 10 0.0 0.0 3.4 2.1 1.2 1.1 0.0 0.0 1.3 1.2 0.8 1.2 1.3 1.1
50, 10 200, 20 0.0 0.0 8.8 3.8 6.1 2.8 0.0 0.0 6.9 4.1 6.9 4.2 6.9 2.8
50, 20 500, 20 0.0 0.0 16.3 1.2 14.0 0.7 0.0 0.0 10.7 0.7 10.9 0.7 14.0 0.7

Overall 0.0 0.0 15.0 2.8 12.1 2.0 0.0 0.0 15.0 1.9 15.1 2.0 12.2 1.9
α 100 % 73% 100% 97% 20% 3%

Table 5: Average RPD of each algorithm for the problems related to CITw (%). The
algorithm NEH refers to Liu et al. (2016).

a zero ARPD), while there is no significant difference between the one-opt

and swap algorithms (an Anova test has been used to detect it). Also non

parametric tests such as the Kruskal-Wallis (Corder and Foreman, 2014)

confirmed the statistical difference between the performance of the sliding

window with respect to the other algorithms, for all the problem versions. For

small problems, the sliding windows largely outperforms the other algorithms
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for each problem version, while for large problems the average RPDs for the

one-opt and swap algorithms notably decrease. Also, by comparing the two

tables, the difference between SW and the other two local searches is larger

for the CWTw problem than for the CITw; this can be motivated by the

fact that the sliding window local search is able to explore a larger portion

of solution space to find good solutions for the CWTw problem, while for

the CITw all the local searches perform similarly (however with a positive

statistical difference for the SW). While there is no appreciable difference

in the behavior of each algorithm in the cases of general and semi-active

schedules for the CITw problem (see the Overall results of Table 5), a largely

different performance is achieved by each of the three searches for the CWTw

problem when moving from general to semi-active schedules (see the Overall

results of Table 4).

To compare the proposed algorithms with the state-of-the-art NEH heuris-

tics, the ARPD and α values are available in the two tables. For all the

problem versions, the SW local search is able to improve the NEH algorithm

in 2384 instances out of 2400 (i.e., 600 available instances times 4 problem

versions). More specifically, no improvement from the NEH is achieved in

16 instances for the CITw semi-active problem. Indeed, this problem version

results the most difficult to solve from Table 5. For the CITw problem, the

one-opt and swap searches could improve the NEH initial solution only in

122 and 20 instances out of 600, respectively (i.e., α equal to 20% and 3%).

All in all, the NEH state-of-the-art heuristics are largely outperformed by

the proposed SW local search for all the problem versions. The one-opt and

swap algorithms outperform the state-of-the-art in all the problem versions
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but the CITw semi-active.

7. Conclusions and future works

This paper addressed four variants of the permutation flow shop schedul-

ing problem. Two objective functions were studied: the weighted sum of

core waiting time and makespan, and the weighted sum of core idle time

and makespan. For each of them, both the cases of semi-active and general

schedules were considered. A unique and general framework was proposed

to consider alternatively these four problem variants. Within the framework,

three formalization models were proposed and tested (i.e., a MILP with po-

sitional variables, a MILP with precedence variables, and a Constraint Pro-

gramming model). Also, three local searches were developed, each based on

a different neighborhood. The framework was tested over two benchmark

data-sets available in the literature (600 instances at all for each problem

variant), and compared with the state-of-the-art solving algorithms.

The results showed that the MILP with positional variables is the more

efficient formalization model for all the problem variants. Also, the proposed

local searches are competitive with respect to the state-of-the-art algorithms

available in the literature. More specifically, the proposed sliding window

algorithm largely outperforms the state-of-the-art in almost all the cases.

Future research will involve the design of ad-hoc exact and metaheuristic

approaches for each of the problems studied in this paper, which may take

advantage of problem-specific properties. Regarding exact approaches, the

study of combinatorial bounds and/or dominance rules may be worthwhile

to explore in order to strengthen the MILP/CP formulations and/or design

34



efficient branching algorithm based on memorization. Regarding metaheuris-

tics, the definition of speed up techniques for the computation of the objective

function seems to be a key point for achieving high quality results. Moreover,

as the approach proposed in this paper is able to address both semi-active

and general schedules, and different objective functions, it can be further

improved to handle multi-objective problems.

Appendix A. Time limit analysis

The developed algorithms (sliding window, one-opt and swap local searches)

are tested to assess the performance with various time limits. For this ex-

periment, the Taillard and VRF instances are used (as in Section 6) and, for

each combination of number of jobs and machines, five out of the available 10

instances are tested for all the algorithms and for the four problem variants.

In total, 300 instances are considered.

To check how the results obtained by the three algorithms change with

various time limits, three time limit values are tested. As in Section 6.2, the

time limits depend on the numbers of jobs n and of machines m, and the

following values are considered: θ = 60nm
1000

(as in 6.2), θ
2
, θ
4
. For each instance-

problem-algorithm (defined by index i), the solutions obtained in the three

time limits are compared in terms of Percentage Difference (PD) as:

PDi, θ
2
=
ubi, θ

2
− ubi,θ
ubi,θ

, PDi, θ
4
=
ubi, θ

4
− ubi,θ
ubi,θ

.

Tables A.6 and A.7 show the results in terms of Average PD (APD), i.e., the

average of PD values over the five instances for the CWTw and the CITw
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problems, respectively.

The results of Tables A.6 and A.7 show that the one-opt and swap local

searches are poorly affected by different time limits. In fact, especially for the

semi-active problem variants with a small number of jobs and machines, they

rarely reach the time limit. Instead, for larger instances, they have positive

percentage gap that increases with the decrease of the time limit value (from

θ
2
to θ

4
). The sliding window search, instead, is more affected by the time

limit, and the APD values are positive also for small instances.

General Semi active

SW One-opt Swap SW One-opt Swap

instance APD θ
2

APD θ
4

APD θ
2

APD θ
4

APD θ
2

APD θ
4

APD θ
2

APD θ
4

APD θ
2

APD θ
4

APD θ
2

APD θ
4

VRF instances

10, 5 0.0 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

10, 10 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.2 0.0 0.0 0.0 0.0

10, 15 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

10, 20 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

20, 5 0.9 6.7 0.0 0.0 0.0 0.0 3.1 11.2 0.0 0.0 0.0 0.0

20, 10 1.0 6.2 0.0 0.0 0.0 0.0 2.0 7.8 0.0 0.0 0.0 0.0

20, 15 4.6 8.0 0.0 0.0 0.0 0.0 0.3 9.3 0.0 0.0 0.0 0.0

20, 20 2.1 7.8 0.0 0.0 0.0 0.0 3.2 17.4 0.0 0.0 0.0 0.0

30, 5 2.9 7.5 0.0 0.0 0.0 0.0 7.6 16.8 0.0 0.0 0.0 0.0

30, 10 3.7 11.5 0.0 0.0 0.0 0.0 8.1 21.2 0.0 0.0 0.0 0.0

30, 15 5.7 16.0 0.0 0.0 0.0 0.0 7.7 24.7 0.0 0.0 0.0 0.0

30, 20 7.1 16.8 0.0 0.0 0.0 0.0 10.0 41.1 0.0 0.0 0.0 0.0

40, 5 2.4 11.9 0.0 0.0 0.0 0.0 5.1 27.2 0.0 0.0 0.0 0.0

40, 10 4.5 17.3 0.0 0.0 0.0 0.0 6.6 31.8 0.0 0.0 0.0 0.0

40, 15 4.1 14.1 0.0 0.0 0.0 0.0 11.9 57.0 0.0 0.0 0.0 0.0

40, 20 6.0 16.8 0.0 0.0 0.0 0.0 11.1 45.9 0.0 0.0 0.0 0.0

50, 5 5.2 14.9 0.0 0.0 0.0 0.0 8.2 27.9 0.0 0.0 0.0 0.0

50, 10 5.5 18.1 0.0 0.0 0.0 0.0 10.1 40.2 0.0 0.0 0.0 0.0

50, 15 7.9 17.4 0.0 0.0 0.0 0.0 16.6 59.4 0.0 0.0 0.0 0.0

50, 20 11.1 22.2 0.0 0.0 0.0 0.0 14.2 43.3 0.0 0.0 0.0 0.0

60, 5 7.1 16.5 0.0 0.0 0.0 0.0 10.0 77.8 0.0 0.0 0.0 0.0

60, 10 10.4 21.9 0.0 0.0 0.0 0.0 24.6 63.7 0.0 0.0 0.0 0.0

60, 15 12.4 19.1 0.0 0.0 0.0 0.0 19.1 62.8 0.0 0.0 0.0 0.0

60, 20 13.7 21.1 0.0 0.0 0.0 0.0 25.1 47.3 0.0 0.0 0.0 0.0

100, 20 8.3 11.4 0.0 0.0 0.0 0.0 31.2 49.7 0.0 0.0 0.0 0.0

100, 40 12.2 21.3 0.0 0.0 0.0 0.0 8.4 20.4 0.0 0.0 0.0 0.0

100, 60 7.9 17.5 0.0 0.0 0.0 0.0 4.9 11.3 0.0 0.0 0.0 0.0

200, 20 2.9 4.5 0.0 0.0 0.0 0.0 18.5 24.9 0.0 0.0 0.0 0.0

200, 40 8.7 12.2 0.0 0.0 0.0 0.0 12.6 20.9 0.0 0.0 0.0 0.0

200, 60 8.5 11.5 0.0 0.0 0.0 0.0 6.7 11.4 0.0 0.0 0.0 0.0

300, 20 1.8 2.7 0.0 0.0 0.0 0.0 12.4 16.4 0.0 0.0 0.0 0.0
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300, 40 5.4 7.1 0.0 0.0 0.0 0.0 11.5 16.2 0.0 0.5 0.2 0.4

300, 60 3.8 5.2 0.0 0.0 0.0 0.0 5.4 8.4 0.0 0.6 0.0 0.2

400, 20 1.8 2.1 0.0 0.0 0.0 0.0 6.8 9.3 0.0 0.4 0.3 0.4

400, 40 2.8 3.8 0.0 0.0 0.0 0.0 6.4 9.3 0.1 0.7 0.1 0.3

400, 60 2.6 3.6 0.0 0.0 0.0 0.0 2.8 5.5 0.4 0.6 0.1 0.2

500, 20 2.0 2.4 0.0 0.0 0.0 0.0 5.5 7.0 0.1 0.2 0.2 0.3

500, 40 2.7 3.7 0.0 0.0 0.0 0.0 5.2 7.2 0.2 0.3 0.2 0.3

500, 60 0.1 1.2 0.0 0.0 0.0 0.0 3.2 5.1 0.1 0.3 0.0 0.0

600, 20 1.6 2.0 0.0 0.0 0.0 0.1 4.5 6.8 0.1 0.3 0.1 0.2

600, 40 2.8 3.9 0.0 0.0 0.0 0.1 2.0 5.0 0.2 0.5 0.3 0.4

600, 60 0.4 1.2 0.0 0.0 0.0 0.0 3.7 5.2 0.2 0.3 0.3 0.4

700, 20 1.5 1.8 0.0 0.0 0.0 0.0 5.6 6.4 0.3 0.6 0.2 0.5

700, 40 0.2 0.9 0.0 0.0 0.0 0.0 2.4 3.6 0.2 0.2 0.2 0.4

700, 60 0.4 1.0 0.0 0.0 0.0 0.0 3.7 4.3 0.1 0.2 0.2 0.3

800, 20 2.2 2.5 0.0 0.0 0.0 0.0 4.3 5.2 0.3 0.4 0.2 0.3

800, 40 0.1 0.5 0.0 0.0 0.0 0.0 3.2 4.0 0.2 0.4 0.3 0.4

800, 60 0.9 1.2 0.0 0.0 0.0 0.0 3.4 3.9 0.1 0.2 0.1 0.2

Taillard instances

20, 5 0.5 3.1 0.0 0.0 0.0 0.0 1.9 5.4 0.0 0.0 0.0 0.0

20, 10 2.2 4.8 0.0 0.0 0.0 0.0 2.0 6.2 0.0 0.0 0.0 0.0

20, 20 0.9 4.8 0.0 0.0 0.0 0.0 1.9 8.9 0.0 0.0 0.0 0.0

50, 5 5.1 15.6 0.0 0.0 -0.4 0.7 7.3 53.3 0.0 0.0 1.4 4.2

50, 10 9.6 18.7 0.0 0.0 0.1 0.2 16.3 73.7 0.0 0.0 0.0 1.7

50, 20 13.1 22.6 0.0 0.0 0.3 0.6 22.5 48.8 0.0 0.0 0.0 -0.1

100, 5 11.0 21.8 0.0 0.0 0.4 0.5 33.4 129.5 0.0 0.0 2.5 6.0

100, 10 15.3 21.2 0.0 0.0 0.6 0.8 33.6 107.0 0.0 0.0 3.2 10.6

100, 20 8.4 11.5 0.0 0.0 0.3 0.5 27.2 44.1 0.0 0.0 1.5 3.1

200, 10 7.0 9.7 0.0 0.0 0.0 0.0 49.6 76.1 0.0 0.0 0.8 1.0

200, 20 3.3 4.9 0.0 0.0 0.0 0.1 22.6 30.4 0.0 0.0 0.8 1.1

500, 20 1.8 2.2 0.0 0.0 0.1 0.1 5.0 6.8 0.0 1.0 0.1 0.0

Table A.6: APD values of each algorithm for different time limits for the problems related
to CWTw (%)

General Semi active

SW One-opt Swap SW One-opt Swap

instance APD θ
2

APD θ
4

APD θ
2

APD θ
4

APD θ
2

APD θ
4

APD θ
2

APD θ
4

APD θ
2

APD θ
4

APD θ
2

APD θ
4

VRF instances

10, 5 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

10, 10 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.5 0.0 0.0 0.0 0.0

10, 15 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

10, 20 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

20, 5 0.0 0.6 0.0 0.0 0.0 0.0 0.0 1.1 0.0 0.0 0.0 0.0

20, 10 0.0 0.7 0.0 0.0 0.0 0.0 0.4 1.1 0.0 0.0 0.0 0.0

20, 15 0.0 1.0 0.0 0.0 0.0 0.0 0.9 2.3 0.0 0.0 0.0 0.0

20, 20 0.4 2.3 0.0 0.0 0.0 0.0 1.4 2.7 0.0 0.0 0.0 0.0

30, 5 0.5 0.8 0.0 0.0 0.0 0.0 0.0 0.1 0.0 0.0 0.0 0.0

30, 10 0.0 2.1 0.0 0.0 0.0 0.0 1.5 6.4 0.0 0.0 0.0 0.0

30, 15 0.9 3.3 0.0 0.0 0.0 0.0 0.6 2.8 0.0 0.0 0.0 0.0

30, 20 0.2 2.6 0.0 0.0 0.0 0.0 1.7 3.5 0.0 0.0 0.0 0.0
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40, 5 0.0 0.2 0.0 0.0 0.0 0.0 0.1 0.3 0.0 0.0 0.0 0.0

40, 10 1.4 3.4 0.0 0.0 0.0 0.0 0.5 2.6 0.0 0.0 0.0 0.0

40, 15 1.0 3.6 0.0 0.0 0.0 0.0 1.5 4.4 0.0 0.0 0.0 0.0

40, 20 2.0 5.9 0.0 0.0 0.0 0.0 1.9 6.1 0.0 0.0 0.0 0.0

50, 5 0.0 0.2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

50, 10 0.9 2.1 0.0 0.0 0.0 0.0 1.9 4.4 0.0 0.0 0.0 0.0

50, 15 2.0 5.7 0.0 0.0 0.0 0.0 2.1 5.4 0.0 0.0 0.0 0.0

50, 20 2.9 5.4 0.0 0.0 0.0 0.0 3.0 7.8 0.0 0.0 0.0 0.0

60, 5 0.4 1.2 0.0 0.0 0.0 0.0 0.4 1.1 0.0 0.0 0.0 0.0

60, 10 0.6 1.1 0.0 0.0 0.0 0.0 1.1 2.1 0.0 0.0 0.0 0.0

60, 15 2.5 5.8 0.0 0.0 0.0 0.0 3.3 8.0 0.0 0.0 0.0 0.0

60, 20 4.1 7.4 0.0 0.0 0.0 0.0 5.1 10.0 0.0 0.0 0.0 0.0

100. 20 3.3 4.6 0.0 0.0 0.0 0.0 3.0 6.9 0.0 0.0 0.0 0.0

100. 40 5.6 7.7 0.0 0.0 0.0 0.0 1.5 3.6 0.0 0.0 0.0 0.0

100. 60 2.6 4.3 0.0 0.0 0.0 0.0 0.5 1.4 0.0 0.0 0.0 0.0

200. 20 0.9 1.3 0.0 0.1 0.0 0.0 2.7 3.0 0.0 0.0 0.0 0.0

200. 40 1.5 2.3 0.0 0.0 0.0 0.0 2.5 3.3 0.0 0.0 0.0 0.0

200. 60 1.3 1.9 0.0 0.1 0.0 0.0 1.1 1.5 0.0 0.0 0.0 0.0

300. 20 0.3 0.7 0.0 0.1 0.0 0.0 1.7 1.9 0.0 0.0 0.0 0.0

300. 40 0.4 0.7 0.0 0.1 0.0 0.0 1.1 1.4 0.0 0.0 0.0 0.0

300. 60 0.5 0.9 0.0 0.0 0.0 0.0 0.7 0.9 0.0 0.0 0.0 0.0

400. 20 0.4 0.5 0.2 0.2 0.0 0.0 0.4 0.6 0.0 0.0 0.0 0.0

400. 40 0.4 0.7 0.0 0.1 0.0 0.0 0.3 0.8 0.0 0.0 0.0 0.0

400. 60 0.5 0.8 0.2 0.2 0.0 0.0 0.5 0.6 0.1 0.1 0.0 0.0

500. 20 0.2 0.4 0.1 0.1 0.0 0.0 0.4 0.5 0.0 0.0 0.0 0.0

500. 40 0.5 0.6 0.1 0.1 0.0 0.0 0.2 0.3 0.0 0.1 0.0 0.0

500. 60 0.3 0.5 0.0 0.1 0.0 0.0 0.2 0.3 0.0 0.0 0.0 0.0

600. 20 0.1 0.2 0.0 0.0 0.0 0.2 0.2 0.3 0.0 0.0 0.0 0.0

600. 40 0.2 0.4 0.0 0.1 0.0 0.0 -0.1 0.0 0.0 0.0 0.0 0.0

600. 60 0.0 0.3 0.1 0.1 0.0 0.0 0.2 0.3 0.0 0.0 0.0 0.0

700. 20 0.1 0.1 0.0 0.0 0.0 0.0 0.0 0.1 0.0 0.0 0.0 0.0

700. 40 0.0 0.3 0.0 0.0 0.0 0.0 0.1 0.2 0.0 0.0 0.0 0.0

700. 60 -0.1 0.1 0.0 0.0 0.0 0.0 0.2 0.2 0.0 0.0 0.0 0.0

800. 20 0.0 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

800. 40 -0.2 0.0 0.0 0.0 0.0 0.0 -0.1 0.1 0.0 0.0 0.0 0.0

800. 60 -0.3 -0.1 0.0 0.0 0.0 0.0 0.2 0.2 0.0 0.0 0.0 0.0

Taillard instances

20, 5 0.8 1.0 0.0 0.0 0.0 0.0 0.0 0.3 0.0 0.0 0.0 0.0

20, 10 0.0 1.2 0.0 0.0 0.0 0.0 0.0 1.4 0.0 0.0 0.0 0.0

20, 20 0.7 1.8 0.0 0.0 0.0 0.0 1.4 3.8 0.0 0.0 0.0 0.0

50, 5 0.0 0.2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

50, 10 0.9 2.4 0.0 0.0 0.0 0.0 1.8 4.3 0.0 0.0 0.0 0.0

50, 20 3.1 5.3 0.0 0.0 0.0 0.4 2.6 5.7 0.0 0.0 0.0 0.0

100, 5 0.0 0.1 0.0 0.0 0.0 0.0 0.2 0.2 0.0 0.0 0.0 0.0

100, 10 0.6 1.3 0.0 0.0 0.0 0.1 0.4 1.0 0.0 0.0 0.0 0.0

100, 20 2.8 4.4 0.0 0.0 0.2 0.6 2.5 5.0 0.0 0.0 0.0 0.0

200, 10 1.0 1.1 0.0 0.0 0.1 0.2 0.4 0.6 0.0 0.0 0.0 0.0

200, 20 0.9 1.5 0.0 0.1 0.3 0.3 2.1 2.7 0.0 0.0 0.0 0.0

500, 20 0.1 0.3 0.1 0.2 0.2 0.3 0.2 0.3 0.0 0.0 0.0 0.0

Table A.7: APD values of each algorithm for different time limits for the problems related
to CITw (%)
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