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A B S T R A C T

Waiting time and idle time are among the main cost sources in production systems. They can also affect the
feasibility of operations from a technological perspective; hence, both such times have to be kept as small as
possible. This paper studies four single-objective variants of the permutation flowshop scheduling problem,
where two objectives are considered: the weighted sum of the makespan and the core waiting time, and
the weighted sum of the makespan and the core idle time. For each objective, both the problem with the
assumption of semi-active solution and the one without it are considered.

A general solution framework for tackling the above-mentioned problems is provided. First, two Mixed
Integer Linear Programming (MILP) formulations (based on positional and precedence variables, respectively)
and one Constraint Programming (CP) formulation are presented. Second, a MILP-based local search approach
based on the positional MILP formulation and the concept of sliding windows are defined. An extensive set
of computational experiments on benchmark instances show that the positional MILP formulation strongly
outperforms the other two formulations in all the considered cases. The experiments also show that the
sliding window local search heuristic achieves much better performances than other state-of-the-art local search
heuristics. Indeed, it is able to improve the state-of-the-art in 2384 instances out of 2400.
1. Introduction

Waiting time and idle time are among the main cost sources in
production systems. The waiting time is related to the work in process
(WIP); in fact, as Little’s law tells (Little, 1961), the longer the waiting
time, the higher the WIP level, given a fixed required/desired through-
put rate. In turn, high WIP levels imply high inventory costs related
both to the material and labor content already included in the WIP
and to the cost of the space to keep the waiting units. Also, the longer
the waiting time, the lower the service level to customers, and hence
the lower the competitiveness of the company. A long waiting time
is usually related to high utilization levels: as the resource utilization
increases, the waiting time (and hence the WIP) increases more than
linearly.

The idle time is instead related to a low utilization rate, usually
due to resource over-sizing: too fast machines have been acquired or
too many workers have been hired with respect to the demand to
be satisfied. In this case, the waiting time, and then the WIP, is so
small to be immaterial. However, also this situation generates cost: the
over-sized resources have been (or have to be) paid, and their cost
will be shared among less units with respect to the ones the system
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would be able to do, thus increasing the unit cost and then decreasing
competitiveness.

Beside cost reasons, waiting and idle times should be kept as small
as possible for technological reasons. For example, in many process
industries (e.g., chemical or food industries), a too long waiting time
after an operation might spoil the WIP and make it unusable for next
operations. Also, in those manufacturing systems where operations
have to be made on pre-warmed materials, no waiting time can be
allowed between warming and manufacturing phases. About idle time,
instead, there are cases where resources cannot stay idle between an
operation and the next one. This happens, for instance, when machines
use consumable, such as paints or powders, that become unusable if
the machine stays idle for too long (e.g. paint becomes dried or powder
oxidizes).

The impact of waiting and idle times is not the same for any
system, as it is also related to the layout of the production system:
in single-stage systems, they only depend on the system capacity with
respect to the expect demand to be satisfied; in multi-stage systems, the
relationship among the capacity of the several stages is also important.
vailable online 5 January 2023
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In such a case, the impact of waiting and idle times is addressed, at an
aggregate level, in the design phase, trying to reach a balanced system.

Once a system has been designed (by considering capacity and
demand at an aggregate level), attention should be paid to the short
term planning. As processing activities on different jobs can have
different times, their schedule on each resource influences the waiting
time of the other jobs and the idle time of the resources. For this reason,
addressing the scheduling problem by considering also waiting and idle
times can help reducing or, at least, keeping under control these two
elements.

In multi-stage systems, waiting and idle times are composed of three
main components: front, core and back (waiting and idle) times. The
front waiting time is the time a job waits before its first operation, while
he back waiting time is the time a jobs waits, after being completed,
hat all the other jobs are finished. The core waiting time, instead, is
he waiting jobs may experiment between one operation and the other.
dle times have the same meaning considering machines: front idle time
s the time a machine waits before starting the first operation (while
ther machines are still working), back idle time is the time between the
oment a machine completes its last operation and the moment the last
achine finishes working, and core idle time is the time a machine is idle

waiting for the next job to be processed. From a cost perspective, all
these components are equally relevant; however, from a technological
point of view, i.e., when machines have to keep working and/or jobs
cannot wait between one operation and the other for technological
constraints, core waiting/idle times are the one to reduce, avoid or keep
under control.

This paper addresses four variants of the permutation flow shop
problem. Given a certain set of jobs 𝐽 , a permutation flow shop
scheduling problem strives for processing the jobs on each machine
of a certain set 𝑀 in the same order, such that a certain objective
is minimized. Two variants of this problem are considered, where the
objective functions are: the weighted sum of makespan and total core
waiting time, henceforth denoted with 𝐶𝑊 𝑇𝑤, and the weighted sum
of makespan and total core idle time, henceforth denoted with 𝐶𝐼𝑇𝑤.
or both objective functions, two alternative cases are studied: the case
here only semi-active schedules are allowed, and the case where such

onstraint is not considered. A schedule is semi-active whenever there
s no job that can be anticipated without changing the processing order
n any of the machines (see Section 3 for more details). The resulting
cheduling problems can be indicated by means of the three field no-
ation as 𝐹𝑚|𝑝𝑟𝑚𝑢|𝐶𝑊 𝑇𝑤, 𝐹𝑚|𝑝𝑟𝑚𝑢, 𝑠𝑒𝑚𝑖 − 𝑎𝑐𝑡|𝐶𝑊 𝑇𝑤, 𝐹𝑚|𝑝𝑟𝑚𝑢|𝐶𝐼𝑇𝑤
nd 𝐹𝑚|𝑝𝑟𝑚𝑢, 𝑠𝑒𝑚𝑖 − 𝑎𝑐𝑡|𝐶𝐼𝑇𝑤, where the semi-act attribute means that
nly semi-active schedules are allowed.

The remainder of the paper is the following. The literature is
eviewed in Section 2, and some formal definitions are given in Sec-
ion 3. Section 4 shows the mathematical formulations of the addressed
roblems, while the proposed solution procedures are described in
ection 5, Numerical results are analyzed in Section 6 and Section 7
oncludes the paper.

. Literature review

This work addresses the permutation flow shop scheduling problem,
well-studied scheduling problem whose first study, due to Nawaz

t al. (1983), dates back to 1983. The most studied objective is the
akespan (De Fátima Morais et al., 2022), but a variety of other
erformance measures, such as the total flow time (Mao et al., 2022),
he total tardiness (Framinan & Leisten, 2008; Saber & Ranjbar, 2022),
he weighted quadratic tardiness (Silva et al., 2022), the energy con-
umption (Öztop et al., 2020), etc., have been considered as well. In this
aper, the core idle and waiting times are considered as performance
easures to be optimized. In the following, the literature about these

wo performance measures is reviewed separately.
2

2.1. Waiting time minimization

The waiting time minimization has been studied in various system
layouts. The so called no-wait constraint, imposing that no waiting time
is allowed among operations, has been included in the formulation of
different scheduling problems (Allahverdi et al., 2020; Sharma et al.,
2020). The reader can refer to Allahverdi (2016) for a survey about
this topic. In the special case of single-machine systems, total and
front waiting times are equal, and schedules are semi-active in all
the cases. Bagchi (1989) addressed the problem of minimizing the
mean front waiting time and the total absolute difference of front
waiting times. Some authors addressed the problem of minimizing the
total waiting time in single-machine systems with specific character-
istics, such as setup times (sequence-dependent in Soroush (2012),
and sequence-independent in De Matta (2019)). For the single-machine
environment, the minimization of the variance of waiting times has
been largely studied in the literature, and it was proved to be a NP-
hard problem (Kubiak, 1993). Eilon and Chowdhury (1977) proved that
the optimal schedule for this problem has a V-shaped distribution of
processing times. Some authors discussed the relationship between the
variance of waiting times and of completion times (Merten & Muller,
1972; Zhou & Cai, 1996), and found some analytical properties and
other influencing factors (Li et al., 2007). Heuristic algorithms to solve
this problem were proposed in Ye et al. (2007), while Xu (2011)
solved the weighted version of the problem to optimality. Similarly,
the weighted sum of squared waiting times was addressed by Sun et al.
(2011), Szwarc and Mukhopadhyay (1995), the former by developing a
decomposition scheme to solve the problem, and the latter by focusing
on the case of deteriorating jobs. In a single-stage system, also the case
of parallel machines and waiting time variance minimization has been
addressed (Xu & Ye, 2007).

The waiting time minimization has also been studied in more com-
plex layouts, such as job shops (Chu & Portmann, 1993) and flow
shops (Maassen et al., 2019). The total waiting time was minimized
in Chu and Portmann (1993) through a heuristic algorithm to find
efficient semi-active schedules for the job shop scheduling problem. In
permutation flow shops, Maassen et al. (2019, 2020) addressed instead
only the minimization of core waiting time in a permutation flow shop
with semi-active schedules. Specifically, Maassen et al. (2019) proposed
a NEH-based heuristic to solve the problem, while Maassen et al.
(2020) focused on the relationship between core waiting time ad total
completion time. Also, Birgin et al. (2020) addressed the permutation
flow shop with semi-active schedules, and they proposed a beam search
meta-heuristic to first minimize the earliness and tardiness and, then,
among the optimal solutions, to find the schedule that minimizes the
core waiting time. Finally, core waiting time was minimized in a per-
mutation flow shop with general schedules by De Abreu and Fuchigami
(2022), which proposed a comparison of four Mixed Integer Linear
Programming (MILP) models to minimize the sum of core waiting time
and front and core idle times.

The problem of minimizing the waiting time has also been ad-
dressed in contexts related to service systems, such as the minimization
of passenger waiting times in transportation by exploiting Markov
chains (Lees-Miller, 2016), or the minimization of patient waiting time
in hospitals through the use of simulations (van Essen et al., 2012).

2.2. Idle time minimization

As discussed in Section 1, minimizing the machine idle time is very
relevant in production processes, because of its tight relationship with
the machine utilization. The constraint of having zero idle time (no-
idle) is common in production scheduling problems (Bektaş et al.,
2020; Goncharov & Sevastyanov, 2009; Maassen et al., 2020). The
possibility of limiting the number of machine interruptions, which is
strictly related to limiting the idle time (Höhn et al., 2012), has also
been addressed.
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Fig. 1. Illustrative example of waiting and idle time components in Gantt charts (Maassen et al., 2020)
Instead of imposing constraints on the idle time, some authors
considered the problem of minimizing it, or some of its components,
in various system layouts. Some meta-heuristics were proposed by Liao
et al. (2007) and Yagmahan and Yenisey (2008) to minimize the total
idle time in flow shops. Specifically, Liao et al. (2007) developed a
particle swarm optimization algorithm, while Yagmahan and Yenisey
(2008) an ant colony meta-heuristic to minimize together makespan,
flow time, and total machine idle time. Other meta-heuristics were
proposed by Hosseini and Tavakkoli-Moghaddam (2013) for a flow
shop system with two stages, to minimize together the total idle time
and the mean deviation from a common due data. Also, as already men-
tioned, De Abreu and Fuchigami (2022) considered the minimization of
the sum of front and core idle time (and of the core waiting time) in
the permutation flow shop scheduling problem with general schedules.

The minimization of the core idle time has only been addressed
by Liu et al. (2016), which considered a permutation flow shop system.
A NEH-based heuristic is proposed to minimize the weighted sum
of makespan and core idle time, with the assumption of semi-active
schedules.

This paper addresses the minimization of core waiting and idle
times in a permutation flow shop with both general and semi-active
schedules. Similar problems were addressed in De Abreu and Fuchigami
(2022), Liu et al. (2016), Maassen et al. (2019). While De Abreu
and Fuchigami (2022) considered general schedules, Liu et al. (2016)
and Maassen et al. (2019) assumed semi-active schedules. Also, De Abreu
and Fuchigami (2022) addressed the minimization of the sum of wait-
ing and idle times, Liu et al. (2016) solved the problem of minimizing
the weighted sum of makespan and core idle time, while Maassen
et al. (2019) focused on the minimization of the core waiting time.
Lastly, De Abreu and Fuchigami (2022) proposed four MILP formu-
lations and several multi-warm procedures to solve them, while Liu
et al. (2016), Maassen et al. (2019) both proposed NEH-based heuristics
as solution procedures. This paper differs from the state-of-the-art
as it proposes a unique and general solution framework to consider
alternatively the minimization of the weighted sum of core wait-
ing time and makespan, and the minimization of the weighted sum
of core idle time and makespan. The framework considers both as-
sumptions on semi-active and general schedules. Two MILPs and one
Constraint Programming (CP) model are proposed, and the solution
procedure involves the use of local searches that exploit the MILP
models. Such framework allows to reach better solutions with respect
to the state-of-the-art approaches.

3. Formal definitions

In the following, first the concepts of idle and waiting times are for-
mally introduced, together with the formal definition of the problems
addressed in the paper; second, the difference with regard to optimal
solutions between semi-active and general schedules is given.
3

3.1. Waiting and idle times

As mentioned in Section 1, idle and waiting times are composed
of three main components: front, core and back. These components
are here defined, for a flow shop, according to the formal definition
proposed in Maassen et al. (2020). Fig. 1 shows an illustrative example:
the two graphics represent the job-oriented (Fig. 1(a)) and the machine-
oriented (Fig. 1(b)) Gantt charts, respectively, for a permutation flow
shop composed of three machines (namely, 𝑚1, 𝑚2, 𝑚3) in which four
jobs flow (in the Gannt chart, [𝑘] indicates the job in the 𝑘−th position
of the schedule).

The job-oriented Gantt chart in Fig. 1(a) graphically shows the three
components of the waiting time. The front waiting time (𝐹𝑟𝑜𝑛𝑡[𝑘] in the
figure) is the time that the job [𝑘] of a schedule waits before starting
its first operation. Instead, the back waiting time (𝐵𝑎𝑐𝑘[𝑘] in the figure)
is the time job [𝑘] with 𝑘 < |𝑃 | waits after its completion and the
completion of the last completed job (i.e., job [|𝑃 |]). The core waiting
time 𝐶𝑊 𝑇𝑘,𝑚 is the time job [𝑘] waits on machine 𝑚 ∈ 𝑀 − {1} after
having completed its operation on machine 𝑚 − 1 (red-dotted areas in
Fig. 1(a)); the total core waiting time is then the sum over all jobs and
machines of 𝐶𝑊 𝑇𝑘,𝑚, i.e., 𝐶𝑊 𝑇 =

∑

𝑚∈𝑀−{1}
∑

𝑘∈𝑃 𝐶𝑊 𝑇𝑘,𝑚.
Conversely, the machine-oriented Gantt chart in Fig. 1(b) graph-

ically shows the three components of the idle time. The front idle
time (𝐹𝑟𝑜𝑛𝑡𝑚 in the figure) is the time machine 𝑚 ∈ 𝑀 − {1} is
idle waiting for job [1], starting from the time machine 𝑚 = 1 starts
processing it. The back idle time (𝐵𝑎𝑐𝑘𝑚 in the figure) is the time
machine 𝑚 < |𝑀| is idle from when it completes the last job till
when the last machine (i.e., machine |𝑀|) finished its processing. The
core idle time 𝐶𝐼𝑇𝑚,𝑘 is the time machine 𝑚 is idle waiting for job in
position [𝑘] ∈ 𝑃 − {1} after having processed job in position [𝑘 − 1]
(i.e., the green-dotted areas in Fig. 1(b)); the total core idle time is then
𝐶𝐼𝑇 =

∑

𝑚∈𝑀
∑

𝑘∈𝑃−{1} 𝐶𝐼𝑇𝑚,𝑘.

3.2. General and semi-active schedules

According to the definition of Pinedo (2012), a semi-active schedule
is defined as a sequence of jobs in which jobs start as early as possible
on each machine, which means that the corresponding Gantt-chart
is left-shifted. With the assumption of semi-active schedules, the first
machine has no front and core idle time, and the first job has no front
and core waiting times. A general schedule, instead, is a schedule in
which the semi-active assumption is relaxed. Thus, the first machine
can be idle, and the first job can wait before being processed on some
machines.

In the case of regular objective functions, such as minimizing the
makespan or the total completion time, the optimal solution does not
change if the semi-active assumption is included in the problem defi-
nition. However, if other objective functions such as core waiting and
core idle times are involved, the same no longer holds. The following
proposition proves it.
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Table 1
Numerical examples: summary of performance measures.

ID example Sequence Schedule type 𝐶𝑚𝑎𝑥 𝐶𝑡𝑜𝑡 𝐶𝑊 𝑇 𝐶𝐼𝑇

1 (𝑗1 , 𝑗2) SA 172 250 35
1 (𝑗1 , 𝑗2) Gen 172 250 0
1 (𝑗2 , 𝑗1) SA 123 241 26
1 (𝑗2 , 𝑗1) Gen 123 241 0

2 (𝑗1 , 𝑗2) SA 74 142 3
2 (𝑗1 , 𝑗2) Gen 74 146 0
2 (𝑗2 , 𝑗1) SA 97 137 52
2 (𝑗2 , 𝑗1) Gen 97 137 0
Fig. 2. Proof of Proposition 3.1. Example 1, Gantt chart of the four schedules.
Proposition 3.1. In a permutation flow shop scheduling problem with a
set of jobs 𝐽 and set of machines𝑀 , and core waiting time or core idle time
as objective function, the optimal solution under the semi-active schedule
assumption might be non-optimal with respect to the general assumption.

Proof. The proof is made by two counter-examples, one for the core
waiting time and the other for the core idle time. Both examples
consider a permutation flow shop with two jobs {𝑗1, 𝑗2} and three
machines {𝑚1, 𝑚2, 𝑚3}. The possible job sequences on each machine
are: 𝑆1 = (𝑗1, 𝑗2) and 𝑆2 = (𝑗2, 𝑗1). Both sequences are evaluated, for
each example, with the semi-active assumption (SA) and without it
(Gen). Table 1 shows, for each schedule, the makespan (𝐶𝑚𝑎𝑥), the total
completion time (𝐶𝑡𝑜𝑡), the total core waiting time (𝐶𝑊 𝑇 ), and the
total core idle time (𝐶𝐼𝑇 ). The Gantt charts of the four schedules are
displayed in Figs. 2 and 3 for the examples on waiting time and idle
time, respectively.

The first example is related to the waiting time. The processing
times of jobs on each machine are as follows: job 𝑗1 has processing
times equal to {19, 54, 5}, while job 𝑗2 has processing times equal to
{19, 22, 77} on machines {𝑚1, 𝑚2, 𝑚3}, respectively. From Table 1 and
from the Gantt charts in Fig. 2, it is possible to see that, if the semi-
active assumption is made and 𝐶𝑊 𝑇 is taken as objective function,
then the optimal schedule is 𝑆2, with an optimal 𝐶𝑊 𝑇 value equal to
26. However, if general schedules are allowed, then the optimum is
𝐶𝑊 𝑇 = 0, obtained by both sequences. The waiting time is shown in
Fig. 2 with the red-dotted areas.

In the second example (bottom part of Table 1, Fig. 3), the idle time
is considered. In this case, the processing times of jobs on machines
are {9, 54, 5} for job 𝑗1 and {29, 9, 2} for 𝑗2 on machines {𝑚1, 𝑚2, 𝑚3},
respectively. In this case, if core idle time is considered, under the
semi-active assumption the optimum is 𝐶𝐼𝑇 = 3, provided by 𝑆 ,
4

1

while, if general schedules are allowed, then the optimum is 𝐶𝐼𝑇 = 0,
reached by both sequences. The idle time is shown in Fig. 3 with the
green-dotted areas. □

4. Mathematical formulations

This section presents three different formulations for each of the
problems defined in Section 3. The first two formulations are MILP,
which rely on positional variables and precedence variables, respec-
tively. The last formulation is based on Constraint Programming and
makes use of global constraints and structures included in the library
of IBM ILOG CP Optimizer (Laborie et al., 2018).

In the models, 𝑀 is the set of machine indexes {1,… , |𝑀|}, while 𝐽
is the set of job indexes {1,… , |𝐽 |}. As in Section 3, 𝑃 is used to refer
to the set of all the possible positions {1,… , |𝐽 |} where a job can be
scheduled. The considered parameters are:

• 𝑝𝑗,𝑚 ∈ R+ is the processing time of job 𝑗 ∈ 𝐽 on machine 𝑚 ∈𝑀 ;
• 𝛼 ∈ [0, 1] is the weight of 𝐶𝑚𝑎𝑥 in the objective function;
• 𝐾 ∈ R+ is a large enough constant.

For all models, the objective functions 𝑜.𝑓 . can be:

𝐶𝐼𝑇𝑤 = 𝑤𝐶𝑚𝑎𝑥 + (1 −𝑤)𝐶𝐼𝑇 𝐶𝑊 𝑇𝑤 = 𝑤𝐶𝑚𝑎𝑥 + (1 −𝑤)𝐶𝑊 𝑇 (1)

where the calculations of 𝐶𝑚𝑎𝑥, 𝐶𝐼𝑇 , 𝐶𝑊 𝑇 will be computed differently
for each model.

4.1. MILP with positional variables

The MILP formulation based on positional variables, and denoted

by MILP-POS, is presented in this section.
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Fig. 3. Proof of Proposition 3.1. Example 2, Gantt chart of the four schedules.
The considered decision variables are:

• 𝑥𝑗,𝑘 ∈ {0, 1}: binary variable equal to 1 if job 𝑗 ∈ 𝐽 is scheduled
at position 𝑘 ∈ 𝑃 , 0 otherwise;

• 𝑐𝑘,𝑚 ∈ R+: completion time of the job at position 𝑘 ∈ 𝑃 on
machine 𝑚 ∈𝑀 ;

In the case where the schedules may not be semi-active, the follow-
ing formulation holds:

min 𝑜.𝑓 . (2)

s.t.
∑

𝑗∈𝐽
𝑥𝑗,𝑘 = 1 ∀𝑘 ∈ 𝑃 (3)

∑

𝑘∈𝑃
𝑥𝑗,𝑘 = 1 ∀𝑗 ∈ 𝐽 (4)

𝑐1,1 =
∑

𝑗∈𝐽
𝑥𝑗,1𝑝𝑗,1 (5)

𝑐𝑘,𝑚 ≥ 𝑐𝑘,𝑚−1 +
∑

𝑗∈𝐽
𝑥𝑗,𝑘𝑝𝑗,𝑚 ∀𝑘 ∈ 𝑃 ,𝑚 ∈𝑀 − {1} (6)

𝑐𝑘,𝑚 ≥ 𝑐𝑘−1,𝑚 +
∑

𝑗∈𝐽
𝑥𝑗,𝑘𝑝𝑗,𝑚 ∀𝑘 ∈ 𝑃 − {1}, 𝑚 ∈𝑀 (7)

𝑥𝑗,𝑘 ∈ {0, 1} ∀𝑗 ∈ 𝐽 , 𝑘 ∈ 𝑃 (8)

𝑐𝑘,𝑚 ∈ R+ ∀𝑚 ∈𝑀,𝑘 ∈ 𝑃 (9)

The components of 𝑜.𝑓 . are:

𝐶𝑚𝑎𝑥 = 𝑐
|𝐽 |,|𝑀|

𝐶𝐼𝑇 =
∑

𝑚∈𝑀

(

𝑐
|𝐽 |,𝑚 − 𝑐1,𝑚 −

∑

𝑘∈𝑃−{1}

∑

𝑗∈𝐽
𝑝𝑗,𝑚𝑥𝑗,𝑘

)

𝐶𝑊 𝑇 =
∑

𝑘∈𝑃

(

𝑐𝑘,|𝑀|

− 𝑐𝑘,1 −
∑

𝑚∈𝑀−{1}

∑

𝑗∈𝐽
𝑝𝑗,𝑚𝑥𝑗,𝑘

)

(10)

Constraints (3) state that each position is assigned to a single job,
while constraints (4) impose that each job is assigned to a single
position. Constraints (5) force the starting time of the first job on the
first machine to be equal to zero. Constraints (6) are the flow shop
constraints establishing that a job can start to be processed on machine
𝑚 ∈ 𝑀 − {1} once completed by the previous machine. Constraints
5

(7) impose that the job at position 𝑘 ∈ 𝑃 − {1} starts being processed
by a machine 𝑚 ∈ 𝑀 after the completion time of the job at position
𝑘 − 1 ∈ 𝑃 . Finally, (8)–(9) define the domain of the decision variables.

In order to impose that the schedules are semi-active, the following
constraints must be added to the model:

𝑐𝑘,1 = 𝑐𝑘−1,1 +
∑

𝑗∈𝐽
𝑥𝑗,𝑘𝑝𝑗,1 ∀𝑘 ∈ 𝑃 − {1} (11)

𝑐1,𝑚 = 𝑐1,𝑚−1 +
∑

𝑗∈𝐽
𝑥𝑗,1𝑝𝑗,𝑚 ∀𝑚 ∈𝑀 − {1} (12)

Constraints (11) impose that there is no idle time on the first machine.
Constraints (12) force the waiting time related to the first job to be
zero.

4.2. A MILP formulation based on precedence variables

This formulation is referred to as MILP-PREC in the rest of the
paper.

The considered decision variables are:

• 𝑧𝑖,𝑗 ∈ {0, 1}: binary variable equal to 1 if job 𝑖 ∈ 𝐽 is scheduled
before another job 𝑗 ∈ 𝐽 , 0 otherwise;

• 𝑐𝑗,𝑚 ∈ R+: completion time of job 𝑗 ∈ 𝐽 on machine 𝑚 ∈𝑀 ;
• 𝑏𝑚,𝑚𝑖𝑛 ∈ R+ is the minimum starting time of a job on machine
𝑚 ∈𝑀 ;

• 𝑐𝑚,𝑚𝑎𝑥 ∈ R+ is the maximum completion time of a job on machine
𝑚 ∈𝑀 ;

• 𝑐𝑚,𝑚𝑖𝑛 ∈ R+: the minimum completion time of a job on machine
𝑚 ∈𝑀 ;

The formulation, which allows for general schedules, is as follows:

min 𝑜.𝑓 . (13)

s.t. 𝑧𝑖,𝑗 + 𝑧𝑗,𝑖 = 1 ∀𝑖, 𝑗 ∈ 𝐽 ∶ 𝑖 ≠ 𝑗 (14)

𝑧𝑖,𝑗 + 𝑧𝑗,𝑘 + 𝑧𝑘,𝑖 ≤ 2 𝑖, 𝑗, 𝑘 ∈ 𝐽 ∶ 𝑖 ≠ 𝑗 ≠ 𝑘 (15)

𝑐𝑗,𝑚 ≥ 𝑐𝑗,𝑚−1 + 𝑝𝑗,𝑚 ∀𝑗 ∈ 𝐽 , 𝑚 ∈𝑀 − {1} (16)

𝑐𝑗,𝑚 − 𝑝𝑗,𝑚 ≥ 𝑐𝑖,𝑚 −𝐾𝑧𝑗,𝑖 ∀𝑖, 𝑗 ∈ 𝐽 ∶ 𝑖 ≠ 𝑗, 𝑚 ∈𝑀 (17)

𝑐 ≤ 𝑐 ∀𝑗 ∈ 𝐽 , 𝑚 ∈𝑀 (18)
𝑗,𝑚 𝑚,𝑚𝑎𝑥
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𝑐𝑗,𝑚 − 𝑝𝑗,𝑚 ≥ 𝑏𝑚,𝑚𝑖𝑛 ∀𝑗 ∈ 𝐽 , 𝑚 ∈𝑀 (19)

𝑧𝑖,𝑗 ∈ {0, 1} ∀𝑖, 𝑗 ∈ 𝐽 ∶ 𝑖 ≠ 𝑗 (20)

𝑐𝑗,𝑚 ∈ R+ ∀𝑗 ∈ 𝐽 ,∀𝑚 ∈𝑀 (21)

𝑐𝑚,𝑚𝑎𝑥 ∈ R+ ∀𝑚 ∈𝑀 (22)

𝑏𝑚,𝑚𝑖𝑛 ∈ R+ ∀𝑚 ∈𝑀 (23)

he components of 𝑜.𝑓 . are:

𝑚𝑎𝑥 = 𝑐
|𝑀|,𝑚𝑎𝑥

𝐼𝑇 =
∑

𝑚∈𝑀
(𝑐𝑚,𝑚𝑎𝑥 − 𝑏𝑚,𝑚𝑖𝑛 −

∑

𝑗∈𝐽
𝑝𝑗,𝑚)

𝑊 𝑇 =
∑

𝑗∈𝐽
(𝑐𝑗,|𝑀|

− 𝑐𝑗,1 −
∑

𝑚∈𝑀−{1}
𝑝𝑗,𝑚)

It can be noticed that variables 𝑐𝑚,𝑚𝑎𝑥 and 𝑏𝑚,𝑚𝑖𝑛 are not necessary
n case 𝐶𝑊 𝑇 is used as objective function.

Constraints (14) ensure that 𝑖 ∈ 𝐽 precedes 𝑗 ∈ 𝐽 or vice-versa.
onstraints (15) guarantee that there is no precedence loop. Constraints
16) and (17) impose the flow-shop constraints and the precedence
onstraints over each machine. Constraints (18)–(19) ensure that 𝑏𝑚,𝑚𝑖𝑛
nd 𝑐𝑚,𝑚𝑎𝑥 are correctly related with the other variables when minimiz-
ng the objective function. Finally, (20)–(23) state the domain of the
ecision variables.

In the case semi-active schedules are assumed, the following vari-
bles and constraints need to be included in the model:

|𝑀|,𝑚𝑖𝑛 ∈ R+ (24)

1,𝑚𝑎𝑥 =
∑

𝑗∈𝐽
𝑝𝑗,1 (25)

𝑗,|𝑀|

≤ 𝑐
|𝑀|,𝑚𝑖𝑛 +

∑

𝑖∈𝐽
𝐾𝑥𝑖,𝑗 ∀𝑗 ∈ 𝐽 (26)

|𝑀|,𝑚𝑖𝑛 ≤ (1 +
∑

𝑖∈𝐽
𝐾𝑥𝑖,𝑗 )

∑

𝑚∈𝑀
𝑝𝑗,𝑚 ∀𝑗 ∈ 𝐽 (27)

new variable 𝑐
|𝑀|,𝑚𝑖𝑛 ∈ R+ is introduced in (24). Constraint (25)

nforces that there is no idle time on the first machine. Constraint (26)
nd (27) impose that:

• 𝑐
|𝑀|,𝑚𝑖𝑛 is equal to the minimum completion time of a job in the

last machine, when minimizing the objective function;
• there is no waiting time associated with the first job of the

sequence [1], hence 𝑐[1],|𝑀|

=
∑

𝑚∈𝑀 𝑝[1],𝑚.

.3. A constraint programming formulation

The CP formulation presented in this section, based on interval
ariables, is indicated with CP-IV from this point forward.

The considered decision variables are:

• 𝑇𝑗,𝑚: interval variable related to job 𝑗 ∈ 𝐽 scheduled at machine
𝑚 ∈𝑀 ;

• 𝑆𝑚: sequence variable including all the jobs processed at machine
𝑚 ∈𝑀 ;

• 𝐶𝑚𝑎𝑥: integer variable used to indicate the makespan.

The following CP formulation holds:

in 𝑜.𝑓 . (28)

s.t. 𝑆𝑚 = 𝑆𝑒𝑞𝑢𝑒𝑛𝑐𝑒𝑉 𝑎𝑟({𝑇𝑗,𝑚}𝑗∈𝐽 ) ∀𝑚 ∈𝑀 (29)

𝑠𝑎𝑚𝑒𝑆𝑒𝑞𝑢𝑒𝑛𝑐𝑒(𝑆1, 𝑆𝑚) ∀𝑚 ∈𝑀 − {1} (30)

𝑛𝑜𝑂𝑣𝑒𝑟𝑙𝑎𝑝(𝑆𝑚) ∀𝑚 ∈𝑀 (31)

𝑒𝑛𝑑𝐵𝑒𝑓𝑜𝑟𝑒𝑆𝑡𝑎𝑟𝑡(𝑇𝑗,𝑚, 𝑇𝑗,𝑚+1) ∀𝐽 ∈ 𝐽 , 𝑚 ∈𝑀 − {|𝑀|} (32)

𝐶𝑚𝑎𝑥 ≥ 𝑒𝑛𝑑𝑂𝑓 (𝑇𝑗,|𝑀|

) ∀𝑗 ∈ 𝐽 (33)
6

r

he components of 𝑜.𝑓 ., which has to be minimized (28), can be
xpressed as follows:

𝐼𝑇 =
∑

𝑚∈𝑀
(max
𝑗∈𝐽

{𝑒𝑛𝑑𝑂𝑓 (𝑇𝑗,𝑚)} − min
𝑗∈𝐽

{𝑠𝑡𝑎𝑟𝑡𝑂𝑓 (𝑇𝑗,𝑚)} −
∑

𝑗∈𝐽
𝑝𝑗,𝑚)

𝑊 𝑇 =
∑

𝑗∈𝐽
(𝑒𝑛𝑑𝑂𝑓 (𝑇𝑗,|𝑀|

) − 𝑠𝑡𝑎𝑟𝑡𝑂𝑓 (𝑇𝑗,1) −
∑

𝑚∈𝑀
𝑝𝑗,𝑚)

Constraints (29) and (30) ensure that the jobs are performed in the
ame order in all the machines. Constraints (31) enforce that the jobs
ssigned to each machine do not overlap in time. Constraints (32) are
lowshop constraints, while Constraints (33) state that 𝐶𝑚𝑎𝑥 is greater
han the completion times of the jobs on the last machine.

In case semi-active schedules are assumed, the following constraints
ust be included in the model:

max
𝑗∈𝐽

{𝑒𝑛𝑑𝑂𝑓 (𝑇𝑗,1)} =
∑

𝑗∈𝐽
𝑝𝑗,1 (34)

𝑓 min
𝑗∈𝐽

{𝑒𝑛𝑑𝑂𝑓 (𝑇𝑗,1)} = 𝑒𝑛𝑑𝑂𝑓 (𝑇[1],1)

𝑡ℎ𝑒𝑛 𝑒𝑛𝑑𝑂𝑓 (𝑇[1],|𝑀|

) =
∑

𝑚∈𝑀
𝑝[1],𝑚 (35)

onstraint (34) imposes that there is no idle time on the first machine,
hile constraints (35) force the first job of the sequence to have zero

ore waiting time.

. Solution algorithms

Three local search based matheuristics are developed to find solu-
ions of the considered problems. The structure of the algorithms is the
ame for both the considered objective functions of (1) (𝐶𝐼𝑇𝑤, 𝐶𝑊 𝑇𝑤)
nd for both semi-active and general schedule assumptions. For all the
ersions of the problem, the local search algorithms exploit the posi-
ional MILP formulation MILP-POS. Matheuristics are hybrid solution
pproaches that couple heuristic frameworks with exact methods. In
his case, for example, neighborhoods are defined as integer programs
nd their exploration is performed by a MILP solver. The sliding
indow local search starts from an initial solution and, iteratively, fixes
subset of the solution and the non-fixed part is re-optimized through
ILP-POS. Instead, the one-opt and swap local searches start from an

nitial solution, iteratively change part of it with different rules, and
se MILP-POS to find the optimal timing related to the new solution;
n this case MILP-POS is reduced to a LP model, as all the binary
ariables related to the schedule are fixed, while all the continuous
ariables related to the timing of the sequence must be optimized.

.1. Sliding window local search

Let 𝜋,𝜓,𝑤𝑃 be the neighborhood structure of a given solution 𝜋,
ith an initial position 𝜓 of the solution 𝜋 and a size parameter
𝑃 . The job-window 𝜋(𝑤𝑃 , 𝜓) is the index set of jobs located in the

onsecutive positions [𝜓], [𝜓 + 1],… , [𝜓 + 𝑤𝑃 − 1] of the schedule 𝜋.
he neighborhood 𝜋,𝜓,𝑤𝑃 is composed of all the solutions that can be
btained by fixing all the positions of 𝜋 not included in 𝜋(𝑤𝑃 , 𝜓). The
ositions in 𝜋(𝑤𝑃 , 𝜓) are optimized by means of the MILP-POS.

The pseudo-code of the local search is devised in Algorithm 1. The
lgorithm takes an initial solution 𝜋, a window size 𝑤𝑃 and a time
imit 𝜃 as input, and gives as output the heuristic solution 𝜋∗. At each
teration (lines 3–13 of Algorithm 1), the best solution in 𝜋,𝜓,𝑤𝑃
s found by means of MILP-POS and stored if it is better than the
est solution found so far. The 𝑤𝑃 parameter needs to be carefully
hosen, since the solution of each sub-problem (line 4 of Algorithm
) has an exponential time complexity with respect to this parameter.
t each iteration, the first job position 𝜓 increases by one unit, thus

he job-window slides. The algorithm stops when the time limit 𝜃 is

eached.
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Algorithm 1 Sliding window local search
Input: 𝜋, 𝑤𝑃 , 𝜃
Output: 𝜋∗

1: 𝜓 ← 0;
2: 𝑂𝐹 ∗ ←𝑀𝐴𝑋𝑉 𝐴𝐿𝑈𝐸;
3: while 𝜃 is not reached do
4: 𝜋 ← best solution in 𝜋,𝜓,𝑤𝑃

computed by means of MILP-POS;
5: Evaluate o.f. 𝑂𝐹𝜋 of 𝜋;
6: if 𝑂𝐹𝜋 < 𝑂𝐹 ∗ then
7: 𝑂𝐹 ∗ ← 𝑂𝐹𝜋 ;
8: 𝜋∗ ← 𝜋;
9: end if

10: 𝜓 ← 𝜓 + 1;
11: if 𝜓 > |𝑃 | −𝑤𝑃 ; then
12: 𝜓 ← 0
13: end if
14: end while

5.2. One-opt and swap local searches

The structure of the local searches based on the one-opt and swap
neighborhoods is similar to that using the sliding windows. The one-opt
local search works as follows: until the time limit 𝜃 is not reached, for
each position [𝑘] from |𝐽 | - 1 to 1, jobs at positions [𝑘] and [𝑘 − 1] are
swapped and the new solution is evaluated by means of MILP-POS.
When the stopping criterion is reached, the best solution found is the
final solution 𝜋∗ given as output of the algorithm. For the swap local
search, the same mechanism is applied; however, instead of swapping
positions [𝑘] and [𝑘 − 1], all the possible swaps between [𝑘] and [𝑙]
(with 𝑙 > 𝑘) are evaluated. For both algorithms, MILP-POS is used
only to evaluate the objective function; indeed, the sequence is fixed
at each iteration (all the binary scheduling variables are fixed), thus
MILP-POS reduces to a LP problem to be solved.

5.3. Initial solution

The initial solution 𝜋 can be generated in many ways (e.g., ran-
domized, constructive heuristics, etc.). In this paper, the NEH-based
heuristics of Maassen et al. (2019) and Liu et al. (2016) are used to
find the initial solutions of the problems with, respectively, 𝐶𝑊 𝑇𝑤 and
𝐶𝐼𝑇𝑤 objective functions. Both algorithms are based on the standard
NEH constructive algorithm, but develop ad-hoc methods to initially
sort jobs. The reader is referred to these papers for further details on
the technical aspects of the NEH heuristics. However, the general NEH
procedure follows:

1. All jobs are sorted according to a specific rule: for 𝐶𝑊 𝑇𝑤
problems, jobs are sorted according to the descending order of
the index 𝐼𝐹𝑁𝐸𝐻𝑀

defined by Maassen et al. (2019); for 𝐶𝐼𝑇𝑤
problems, jobs are sorted according to the descending order of
the index 𝑃𝑅𝐿𝐽𝑃 defined by Liu et al. (2016).

2. The first two jobs are scheduled and the sub-sequence with the
smallest 𝑜.𝑓 . (either 𝐶𝐼𝑇𝑤 or 𝐶𝐼𝑇𝑤, evaluated by exploiting the
MILP formulation) is chosen.

3. The next unscheduled job is assigned to the sub-sequence and
scheduled in each possible position to find the schedule with the
minimum 𝑜.𝑓 . value. This step is iterated for all the remaining
jobs.

4. For the 𝐶𝐼𝑇𝑤 problem, if ties exist, the tie-braking rule proposed
in Liu et al. (2016) is used.

Maassen et al. (2019) and Liu et al. (2016) actually solves the
problems with semi-active schedules. However, in the proposed local
searches, the found schedule is used as initial solution both in the case
of semi-active and general schedules. Moreover, while Liu et al. (2016)
7

uses the 𝐶𝐼𝑇𝑤 objective function, Maassen et al. (2019) minimizes a
only the core waiting time. In our approach, the NEH by Maassen
et al. (2019) is slightly modified such that all the partial and complete
sequences are evaluated in terms of 𝐶𝑊 𝑇𝑤.

6. Computational experiments

The developed algorithms have been tested on the well-known
Taillard (Taillard, 1993) and Vallada–Ruiz–Framinan (VRF) (Vallada
et al., 2015) benchmarks.

The Taillard benchmark is composed of 12 different problems in
terms of number of jobs and machines. The number of jobs 𝑛 varies
between 20 and 500, while the number of machines 𝑚 between 5 and
20. For each problem, 10 instances are available, for a total number of
120 instance.

The VRF benchmark is composed of 480 instances, and it includes
both small and large problems (for each problem, 10 instances are
available). The small problems range between 10 and 60 jobs, and 5
and 20 machines. Large problems, instead, include from 100 to 800
jobs, and from 20 to 60 machines.

Summing up, 600 instances are available in total.
Two types of computational experiments have been carried on. The

first experiment deals with the comparison among the mathematical
formulations presented in Section 4 on a subset of instances. The aim
is to assess the performance of such formulations, both in terms of the
quality of the feasible solutions and lower bounds provided within a
given time limit.

The second experiment compares the three heuristic algorithms
presented in Section 5 to evaluate the efficiency of the proposed
approaches. For the problems with semi-active schedules, the proposed
local searches are also compared with the state-of-the-art NEH algo-
rithms of Maassen et al. (2019) and Liu et al. (2016), to assess the
improvement with respect to the literature.

CPLEX 12.10 and CP Optimizer 12.10 by IBM ILOG are used as
MILP and CP solvers, respectively. All the algorithms are implemented
in Java through the IBM ILOG Concert Technology. Tests are run on a
Intel(R) Core(TM) i7-8700K CPU processor at 3.70 GHz, with 32 GB of
RAM.

For reason of conciseness, in all the experiments the weights of
the objective functions 𝐶𝑊 𝑇𝑤 and 𝐶𝐼𝑇𝑤 are set to 0.5. However,
preliminary results shown that the same results and considerations can
be found for the other weights. Detailed results of all the experiments
are available upon requests to the authors.

6.1. Computational assessment of the MILP and CP models

This section compares the performance of the MILP and CP models
on a subset of 180 instances corresponding to the instances in Taillard
and VRF benchmarks with up to 100 jobs. For each combination of
values of 𝑛 and 𝑚, 5 of the 10 available instances are randomly selected
and solved by all the three models with a time limit of 5 min. For each
instance, the models are tested on the four problems previously defined
(o.f.: 𝐶𝑊 𝑇𝑤, 𝐶𝐼𝑇𝑤; schedule: general, semi-active). For each instance-
problem-model, upper-bound (𝑢𝑏), lower-bound (𝑙𝑏), and computation
time (𝑡) have been collected.

The quality of the results provided by the models is evaluated by (i)
the Average Percentage Gap (APG) and (ii) the Average Relative Per-
centage Deviation (ARPD). (i) The percentage gap of the model 𝑘 on the
instance 𝑖 is computed as 𝑃𝐺𝑘,𝑖 =

𝑢𝑏𝑘,𝑖−𝑙𝑏𝑘,𝑖
𝑢𝑏𝑘,𝑖

. The average percentage gap
of a model 𝑘 over a set of instances 𝐼 is the average over all instances 𝑖 ∈
𝐼 of 𝑃𝐺𝑘,𝑖. This value represents both the quality of the upper and lower
bounds provided by the given model, and it is equal to zero when all
instances in 𝐼 are solved to optimality. (ii) The relative percentage devi-
ation of 𝑘 on 𝑖 is computed as 𝑅𝑃𝐷𝑘,𝑖 = 100 × 𝑢𝑏𝑘,𝑖−𝑢𝑏𝑚𝑖𝑛

𝑢𝑏𝑚𝑖𝑛
, where 𝑢𝑏𝑚𝑖𝑛 =

min𝑘∈𝐾 𝑢𝑏𝑘,𝑖 (i.e., 𝑢𝑏𝑚𝑖𝑛 is the best 𝑢𝑏 found for the instance 𝑖 among
the available models in 𝐾 = {𝙼𝙸𝙻𝙿− 𝙿𝙾𝚂, 𝙼𝙸𝙻𝙿− 𝙿𝚁𝙴𝙲, 𝙲𝙿− 𝙸𝚅}). The
verage relative percentage deviation of 𝑘 over a set of instances 𝐼 is
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Table 2
APG and ARPD results for VRF and Taillard instances for the problem related to 𝐶𝑊 𝑇𝑤 (%).

n General Semi-active

MILP-POS MILP-PREC CP-IV MILP-POS MILP-PREC CP-IV

APG ARPD APG ARPD APG ARPD APG ARPD APG ARPD APG ARPD

10 0.0 0.0 0.0 0.0 50.9 15.9 0.0 0.0 0.0 0.0 25.4 0.0
20 22.0 0.2 49.9 2.5 61.1 28.8 43.3 1.3 73.0 8.1 75.2 3.1
30 33.3 0.0 72.2 9.5 73.6 33.5 62.8 8.1 88.3 39.4 80.4 0.1
40 38.2 0.0 80.5 12.3 75.8 29.3 70.8 15.2 93.5 68.6 83.9 0.0
50 38.6 0.0 85.9 22.0 77.7 28.9 72.4 14.4 96.4 104.9 86.9 0.0
60 43.8 0.0 89.2 29.8 79.7 26.2 77.6 27.3 97.7 160.2 88.2 0.0
100 60.4 0.8 94.9 84.7 82.7 12.3 87.3 54.4 98.9 137.7 93.6 0.0

Overall 33.9 0.1 72.7 22.9 80.0 25.1 60.9 16.7 80.0 73.0 77.5 0.6
Table 3
APG and ARPD results for VRF and Taillard instances for the problem related to 𝐶𝐼𝑇𝑤 (%).

n General Semi-active

MILP-POS MILP-PREC CP-IV MILP-POS MILP-PREC CP-IV

APG ARPD APG ARPD APG ARPD APG ARPD APG ARPD APG ARPD

10 0.0 0.0 35.4 0.3 100.0 8.0 0.0 0.0 25.1 0.0 100.0 0.5
20 2.9 0.0 100.0 4.9 100.0 14.4 14.8 0.4 100.0 11.6 100.0 4.5
30 6.4 0.0 100.0 11.2 100.0 17.6 23.2 0.5 100.0 33.4 100.0 4.5
40 7.5 0.0 100.0 17.0 100.0 16.4 26.0 1.5 100.0 51.2 100.0 4.0
50 5.8 0.0 100.0 20.5 100.0 16.9 21.6 0.2 100.0 61.1 100.0 4.5
60 7.4 0.0 100.0 24.6 100.0 17.5 28.1 3.0 100.0 71.9 100.0 3.0
100 29.4 0.5 100.0 30.1 100.0 5.3 46.0 29.0 100.0 48.8 100.0 0.7

Overall 8.4 0.1 100.0 15.4 91.4 13.8 24.8 4.8 91.4 39.4 100.0 3.3
h

P
l
m

the average over all instances 𝑖 ∈ 𝐼 of 𝑅𝐷𝑘,𝑖. This value measures the
quality of the solutions computed by the model 𝑘 compared to other
available models.

Tables 2 and 3 show the summary of the experimental campaign in
terms of APG and ARPD values for all the considered instances, grouped
by the number of jobs 𝑛. In each table, the last row shows the average

PG and ARPD values for each model over all the instances.
The results clearly indicate that the best performing model in terms

f APG is the positional MILP model (MILP-POS). This finding holds
or all the four considered problem variants. The other two models
MILP-PREC and CP-IV) achieve poor values of APG, since they are
ot relying on a strong lower bound. More specifically, these models are
ot capable of computing any lower bound different from 0, for most
f the instances of 𝐹𝑚|𝑝𝑟𝑚𝑢|𝐶𝐼𝑇𝑤 and 𝐹𝑚|𝑝𝑟𝑚𝑢, 𝑠𝑒𝑚𝑖 − 𝑎𝑐𝑡|𝐶𝐼𝑇𝑤. This

is due to the fact that MILP-PREC yields a weak continuous relaxation
and CP-IV relies on a trivial combinatorial bound.

When the ARPD is considered, the trend is slightly different. MILP-
OS still outperforms the other models for the problems with general
chedules, while CP-IV yields better performance when semi-active
chedules are considered. This indicates that the automatic search
trategy used by IBM ILOG CP Optimizer 12.10 achieves impressive
erformance, even without any aid from an effective bounding algo-
ithm. This allows to compute high quality upper bounds by means
f CP-IV. A likely reason for this is that the inclusion of the semi-
ctive constraints allows CP-IV to achieve a much more effective
ropagation.

.2. Computational assessment of the local search procedures

The VRF and Taillard benchmarks have been used to compare
he three local searches proposed in Section 5 in terms of solution
uality. Each of the 600 available instances has been used to solve
he four problems addressed in the paper with the three algorithms.
or the problems with semi-active schedules, the proposed algorithms
8

ave been compared to the state-of-the-art NEH heuristics: the 𝐶𝑊 𝑇𝑤
problems are solved with the NEH of Maassen et al. (2019), while the
𝐶𝐼𝑇𝑤 with that of Liu et al. (2016).

arameters. Each instance-problem-algorithm has been run with a time
imit proportional to the size of the problem (number of jobs 𝑛 and of
achines 𝑚); it is computed as 𝜃 = 60 nm

1000 (Balogh et al., 2022; Riahi
et al., 2020), and measured in seconds (note that the NEH algorithms
are constructive heuristics, thus no time limit is set in these cases). The
effect of the time limit value has been analyzed in Appendix, which
show detailed results of the performance of the proposed algorithms
with various time limit values.

For the sliding window algorithm, after preliminary tests, the win-
dow size 𝑤𝑃 has been set to assure the neighborhood exploration to be
run in, on average, less than 10 s. The resulting 𝑤𝑃 values are: 8 jobs
if 𝑚 ≤ 20, 6 if 20 < 𝑚 ≤ 40, 4 if 𝑚 > 40; the window size is reduced
for larger values of 𝑚 as the problem complexity increases; also, a
time limit of 10 s has been set for all the MILP-based neighborhood
explorations.

Results. Tables 4 and 5 show the results of the experiment in terms
of ARPD values for the algorithms: sliding window (SW), one-opt and
swap local searches. ARPD values are shown also for the state-of-the-art
NEHs (by Maassen et al. (2019) and Liu et al. (2016)) for the problems
with semi-active schedules. Each row displays the ARPD values of each
algorithm for each problem version: the first part of each table displays
the results for the VRF instances, and the last part for the Taillard
benchmark. Each value is the average RPD among the 10 instances
available for the combination 𝑛, 𝑚 for each benchmark. The second-last
row of each table shows the ARPD for each algorithm over all the VRF
and Taillard instances, divided by small (i.e., with less than 100 jobs
— problem ‘S’ in the tables) and large (i.e., with at least 100 jobs —
problem ‘L’ in the tables) instances. The last row of each table shows
the value of the percentage of instances in which each local search is
able to improve the initial solution given by the NEH (i.e., the 𝛼 value).
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Table 4
Average RPD of each algorithm for the problems related to 𝐶𝑊 𝑇𝑤 (%). The algorithm NEH refers to Maassen et al. (2019).

General Semi-active

Problem SW One-opt Swap SW One-opt Swap NEH

S L S L S L S L S L S L S L S L

VRF instances
10, 5 100, 20 0.0 0.0 33.7 18.2 22.4 16.5 0.0 0.0 86.4 73.3 56.0 52.1 106.1 77.3
10, 10 100, 40 0.0 0.0 31.1 33.8 25.4 32.2 0.0 0.0 99.3 47.0 60.2 37.5 113.4 49.4
10, 15 100, 60 0.0 0.0 33.1 25.0 24.4 23.1 0.0 0.0 92.1 28.6 59.1 22.6 99.1 30.0
10, 20 200, 20 0.0 0.0 30.0 7.6 22.8 7.0 0.0 0.0 60.0 37.8 43.2 34.4 68.8 40.1
20, 5 200, 40 0.0 0.0 42.7 18.3 34.8 17.1 0.0 0.0 146.6 30.9 107.6 28.2 171.4 33.0
20, 10 200, 60 0.0 0.0 38.9 13.9 35.3 13.1 0.0 0.0 128.3 20.0 100.2 18.2 142.8 21.2
20, 15 300, 20 0.0 0.0 41.7 4.7 32.5 4.2 0.0 0.0 99.8 22.2 74.5 20.0 112.4 24.4
20, 20 300, 40 0.0 0.0 39.5 9.6 33.8 9.0 0.0 0.0 92.5 25.9 68.8 24.0 100.8 27.6
30, 5 300, 60 0.0 0.0 38.6 7.0 33.7 6.6 0.0 0.0 157.5 13.4 121.9 12.6 177.6 14.7
30, 10 400, 20 0.0 0.0 39.3 3.5 34.6 3.0 0.0 0.0 146.5 12.3 101.2 10.5 159.3 14.1
30, 15 400, 40 0.0 0.0 42.6 6.2 37.8 5.7 0.0 0.0 117.1 14.1 90.8 13.1 124.0 15.4
30, 20 400, 60 0.0 0.0 41.5 4.6 36.5 4.1 0.0 0.0 97.4 7.4 75.6 6.6 106.1 8.4
40, 5 500, 20 0.0 0.0 36.8 3.4 32.3 3.2 0.0 0.0 197.8 11.6 133.1 9.8 217.6 12.3
40, 10 500, 40 0.0 0.0 39.7 5.0 35.4 4.8 0.0 0.0 146.5 8.9 114.8 7.6 159.9 9.4
40, 15 500, 60 0.0 0.0 37.5 2.4 32.3 2.0 0.0 0.0 138.3 6.9 97.3 5.8 150.9 7.4
40, 20 600, 20 0.0 0.0 41.8 2.8 36.6 2.6 0.0 0.0 110.3 9.0 89.5 7.5 118.6 9.9
50, 5 600, 40 0.0 0.0 34.3 5.2 30.8 5.0 0.0 0.0 214.5 5.7 154.5 4.8 237.7 6.7
50, 10 600, 60 0.0 0.0 37.2 2.5 32.0 2.1 0.0 0.0 153.2 6.2 109.7 5.2 160.7 6.7
50, 15 700, 20 0.0 0.0 39.2 2.6 35.7 2.4 0.0 0.0 129.1 9.2 104.5 7.8 140.9 10.1
50, 20 700, 40 0.0 0.0 39.6 2.3 34.4 2.1 0.0 0.0 92.4 5.5 76.4 4.4 98.9 6.0
60, 5 700, 60 0.0 0.0 33.9 1.8 31.5 1.6 0.0 0.0 202.8 5.3 170.8 4.3 221.0 5.6
60, 10 800, 20 0.0 0.0 38.2 3.4 35.1 3.2 0.0 0.0 173.6 7.3 140.8 5.6 188.8 7.8
60, 15 800, 40 0.0 0.0 32.6 1.5 30.6 1.2 0.0 0.0 125.8 5.2 96.2 4.2 135.2 5.8
60, 20 800, 60 0.0 0.0 36.8 1.7 34.7 1.4 0.0 0.0 91.7 4.8 74.8 3.7 97.6 5.0
Taillard instances
20, 5 100, 5 0.0 0.0 36.2 34.5 30.1 32.2 0.0 0.0 127.4 277.3 90.7 214.4 152.2 296.7
20, 10 100, 10 0.0 0.0 39.6 32.2 30.2 30.4 0.0 0.0 121.5 184.0 94.3 153.8 131.8 191.3
20, 20 100, 20 0.0 0.0 38.8 20.5 31.4 18.9 0.0 0.0 86.8 76.7 64.0 60.2 98.7 80.0
50, 5 200, 10 0.0 0.0 35.5 13.1 31.9 12.4 0.0 0.0 192.3 101.7 135.2 90.9 206.3 104.2
50, 10 200, 20 0.0 0.0 41.7 8.2 35.7 7.6 0.0 0.0 165.5 46.8 122.6 41.7 173.6 49.3
50, 20 500, 20 0.0 0.0 37.8 3.2 33.9 2.9 0.0 0.0 108.8 10.2 83.8 8.5 117.1 11.3

Overall 0.0 0.0 41.3 9.9 35.8 9.3 0.0 0.0 142.5 37.1 108.4 30.6 143.0 39.3
𝛼 100% 90% 100% 100% 96% 100%
For each version of the problem, among the three local searches, the
liding window algorithm achieves the best performance (i.e., it always
as a zero ARPD), while there is no significant difference between
he one-opt and swap algorithms (an Anova test has been used to
etect it). Also non parametric tests such as the Kruskal–Wallis (Corder

Foreman, 2014) confirmed the statistical difference between the
erformance of the sliding window with respect to the other algorithms,
or all the problem versions. For small problems, the sliding windows
argely outperforms the other algorithms for each problem version,
hile for large problems the average RPDs for the one-opt and swap
lgorithms notably decrease. Also, by comparing the two tables, the
ifference between SW and the other two local searches is larger for the
𝑊 𝑇𝑤 problem than for the 𝐶𝐼𝑇𝑤; this can be motivated by the fact

that the sliding window local search is able to explore a larger portion
of solution space to find good solutions for the 𝐶𝑊 𝑇𝑤 problem, while
for the 𝐶𝐼𝑇𝑤 all the local searches perform similarly (however with a
positive statistical difference for the SW). While there is no appreciable
difference in the behavior of each algorithm in the cases of general and
semi-active schedules for the 𝐶𝐼𝑇𝑤 problem (see the Overall results of
Table 5), a largely different performance is achieved by each of the
three searches for the 𝐶𝑊 𝑇𝑤 problem when moving from general to
semi-active schedules (see the Overall results of Table 4).

To compare the proposed algorithms with the state-of-the-art NEH
heuristics, the ARPD and 𝛼 values are available in the two tables. For all
the problem versions, the SW local search is able to improve the NEH
algorithm in 2384 instances out of 2400 (i.e., 600 available instances
times 4 problem versions). More specifically, no improvement from the
NEH is achieved in 16 instances for the 𝐶𝐼𝑇 semi-active problem.
9

𝑤

Indeed, this problem version results the most difficult to solve from
Table 5. For the 𝐶𝐼𝑇𝑤 problem, the one-opt and swap searches could
improve the NEH initial solution only in 122 and 20 instances out of
600, respectively (i.e., 𝛼 equal to 20% and 3%). All in all, the NEH state-
of-the-art heuristics are largely outperformed by the proposed SW local
search for all the problem versions. The one-opt and swap algorithms
outperform the state-of-the-art in all the problem versions but the 𝐶𝐼𝑇𝑤
semi-active.

7. Conclusions and future works

This paper addressed four variants of the permutation flow shop
scheduling problem. Two objective functions were studied: the weighted
sum of core waiting time and makespan, and the weighted sum of
core idle time and makespan. For each of them, both the cases of
semi-active and general schedules were considered. A unique and
general framework was proposed to consider alternatively these four
problem variants. Within the framework, three formalization models
were proposed and tested (i.e., a MILP with positional variables,
a MILP with precedence variables, and a Constraint Programming
model). Also, three local searches were developed, each based on a
different neighborhood. The framework was tested over two bench-
mark data-sets available in the literature (600 instances at all for
each problem variant), and compared with the state-of-the-art solving
algorithms.

The results showed that the MILP with positional variables is the
most efficient formalization model for all the problem variants. Also,
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Table 5
Average RPD of each algorithm for the problems related to 𝐶𝐼𝑇𝑤 (%). The algorithm NEH refers to Liu et al. (2016).

General Semi-active

Problem SW One-opt Swap SW One-opt Swap NEH

S L S L S L S L S L S L S L S L

VRF instances
10, 5 100, 20 0.0 0.0 10.3 9.9 5.8 8.3 0.0 0.0 1.9 10.1 1.9 10.4 1.9 10.4
10, 10 100, 40 0.0 0.0 11.9 11.9 6.1 10.6 0.0 0.0 4.5 5.6 4.7 5.6 4.7 5.6
10, 15 100, 60 0.0 0.0 12.1 6.9 8.4 5.5 0.0 0.0 8.0 1.9 8.0 2.0 8.0 2.0
10, 20 200, 20 0.0 0.0 10.2 3.9 7.2 2.8 0.0 0.0 8.8 4.2 9.1 4.3 9.1 4.3
20, 5 200, 40 0.0 0.0 7.5 4.2 5.4 3.3 0.0 0.0 6.4 4.1 6.7 4.1 6.7 4.1
20, 10 200, 60 0.0 0.0 13.8 3.1 9.9 2.2 0.0 0.0 12.2 2.0 13.8 2.1 13.8 2.1
20, 15 300, 20 0.0 0.0 13.9 2.3 10.4 1.4 0.0 0.0 10.2 2.2 10.3 2.3 10.3 2.3
20, 20 300, 40 0.0 0.0 15.2 1.8 14.0 1.3 0.0 0.0 12.3 1.9 12.6 1.9 10.1 1.9
30, 5 300, 60 0.0 0.0 5.5 1.7 3.3 1.0 0.0 0.0 3.9 1.2 3.9 1.2 3.9 1.2
30, 10 400, 20 0.0 0.0 13.8 1.5 10.0 1.0 0.0 0.0 12.5 1.1 12.6 1.1 12.6 1.1
30, 15 400, 40 0.0 0.0 15.9 1.6 13.8 1.1 0.0 0.0 13.6 1.1 13.5 1.2 13.9 1.2
30, 20 400, 60 0.0 0.0 16.7 1.1 14.1 0.6 0.0 0.0 12.7 0.7 12.7 0.8 12.7 0.8
40, 5 500, 20 0.0 0.0 4.8 1.3 2.3 1.0 0.0 0.0 2.7 0.8 2.6 0.8 2.8 0.8
40, 10 500, 40 0.0 0.0 10.2 1.3 7.5 0.7 0.0 0.0 8.6 0.6 8.6 0.7 8.6 0.7
40, 15 500, 60 0.0 0.0 16.0 0.8 13.2 0.4 0.0 0.0 13.7 0.4 13.8 0.5 13.9 0.5
40, 20 600, 20 0.0 0.0 18.5 1.1 16.7 0.6 0.0 0.0 11.4 0.6 12.3 0.7 12.3 0.7
50, 5 600, 40 0.2 0.0 4.9 0.9 2.4 0.4 0.0 0.0 1.3 0.3 1.2 0.3 1.3 0.3
50, 10 600, 60 0.0 0.0 9.6 0.6 6.7 0.2 0.0 0.0 8.8 0.4 8.8 0.4 8.8 0.4
50, 15 700, 20 0.0 0.0 14.6 0.9 12.4 0.5 0.0 0.0 14.2 0.4 14.3 0.4 14.3 0.4
50, 20 700, 40 0.0 0.0 17.4 0.7 14.8 0.3 0.0 0.0 13.5 0.4 13.6 0.4 13.6 0.4
60, 5 700, 60 0.0 0.0 4.5 0.5 2.8 0.0 0.0 0.0 2.9 0.3 2.2 0.4 3.0 0.4
60, 10 800, 20 0.0 0.0 7.9 1.0 5.7 0.6 0.0 0.0 6.7 0.3 6.8 0.3 6.8 0.3
60, 15 800, 40 0.0 0.0 12.8 0.5 10.9 0.1 0.0 0.0 14.6 0.3 14.7 0.3 14.7 0.3
60, 20 800, 60 0.0 0.0 16.1 0.4 13.2 0.0 0.0 0.0 12.8 0.3 13.1 0.3 13.1 0.4
Taillard instances
20, 5 100, 5 0.0 0.0 8.8 1.8 5.8 0.5 0.0 0.0 5.5 0.5 5.2 0.5 5.8 0.5
20, 10 100, 10 0.0 0.0 12.7 4.9 9.3 3.0 0.0 0.0 13.5 2.2 13.5 2.2 9.3 3.0
20, 20 100, 20 0.0 0.0 16.1 9.6 12.6 7.7 0.0 0.0 13.0 8.3 13.2 8.4 12.6 7.7
50, 5 200, 10 0.0 0.0 3.4 2.1 1.2 1.1 0.0 0.0 1.3 1.2 0.8 1.2 1.3 1.1
50, 10 200, 20 0.0 0.0 8.8 3.8 6.1 2.8 0.0 0.0 6.9 4.1 6.9 4.2 6.9 2.8
50, 20 500, 20 0.0 0.0 16.3 1.2 14.0 0.7 0.0 0.0 10.7 0.7 10.9 0.7 14.0 0.7

Overall 0.0 0.0 15.0 2.8 12.1 2.0 0.0 0.0 15.0 1.9 15.1 2.0 12.2 1.9
𝛼 100% 73% 100% 97% 20% 3%
6

the proposed local searches are competitive with respect to the state-of-
the-art algorithms available in the literature. More specifically, the pro-
posed sliding window algorithm largely outperforms the state-of-the-art
in almost all the cases.

Future research will involve the design of ad-hoc exact and meta-
heuristic approaches for each of the problems studied in this paper,
which may take advantage of problem-specific properties. Regarding
exact approaches, the study of combinatorial bounds and/or dominance
rules may be worthwhile to explore in order to strengthen the MILP/CP
formulations and/or design efficient branching algorithm based on
memorization. Regarding metaheuristics, the definition of speed up
techniques for the computation of the objective function seems to be a
key point for achieving high quality results. Moreover, as the approach
proposed in this paper is able to address both semi-active and general
schedules, and different objective functions, it can be further improved
to handle multi-objective problems.

CRediT authorship contribution statement

Arianna Alfieri: Conceptualization, Methodology, Validation, Writ-
ing – original draft, Writing – review & editing. Michele Garraffa:
Conceptualization, Methodology, Software, Validation, Writing – origi-
nal draft, Writing – review & editing. Erica Pastore: Conceptualization,
Methodology, Software, Validation, Investigation, Writing – original
draft, Writing – review & editing. Fabio Salassa: Conceptualization,
Methodology, Validation, Writing – original draft, Writing – review &
editing.
10
Data availability

Data will be made available on request.

Appendix. Time limit analysis

The developed algorithms (sliding window, one-opt and swap lo-
cal searches) are tested to assess the performance with various time
limits. For this experiment, the Taillard and VRF instances are used
(as in Section 6) and, for each combination of number of jobs and
machines, five out of the available 10 instances are tested for all the
algorithms and for the four problem variants. In total, 300 instances are
considered.

To check how the results obtained by the three algorithms change
with various time limits, three time limit values are tested. As in
Section 6.2, the time limits depend on the numbers of jobs 𝑛 and of
machines 𝑚, and the following values are considered: 𝜃 = 60 nm

1000 (as in
.2), 𝜃

2 ,
𝜃
4 . For each instance-problem-algorithm (defined by index 𝑖),

the solutions obtained in the three time limits are compared in terms
of Percentage Difference (PD) as:

𝑃𝐷𝑖, 𝜃2
=
𝑢𝑏𝑖, 𝜃2

− 𝑢𝑏𝑖,𝜃

𝑢𝑏𝑖,𝜃
, 𝑃𝐷𝑖, 𝜃4

=
𝑢𝑏𝑖, 𝜃4

− 𝑢𝑏𝑖,𝜃

𝑢𝑏𝑖,𝜃
.

Tables A.6 and A.7 show the results in terms of Average PD (APD),
i.e., the average of PD values over the five instances for the 𝐶𝑊 𝑇𝑤 and
the 𝐶𝐼𝑇 problems, respectively.
𝑤
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Table A.6
APD values of each algorithm for different time limits for the problems related to 𝐶𝑊 𝑇𝑤 (%).

Instance General Semi active

SW One-opt Swap SW One-opt Swap

𝐴𝑃𝐷 𝜃
2

𝐴𝑃𝐷 𝜃
4

𝐴𝑃𝐷 𝜃
2

𝐴𝑃𝐷 𝜃
4

𝐴𝑃𝐷 𝜃
2

𝐴𝑃𝐷 𝜃
4

𝐴𝑃𝐷 𝜃
2

𝐴𝑃𝐷 𝜃
4

𝐴𝑃𝐷 𝜃
2

𝐴𝑃𝐷 𝜃
4

𝐴𝑃𝐷 𝜃
2

𝐴𝑃𝐷 𝜃
4

VRF instances
10, 5 0.0 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
10, 10 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.2 0.0 0.0 0.0 0.0
10, 15 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
10, 20 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
20, 5 0.9 6.7 0.0 0.0 0.0 0.0 3.1 11.2 0.0 0.0 0.0 0.0
20, 10 1.0 6.2 0.0 0.0 0.0 0.0 2.0 7.8 0.0 0.0 0.0 0.0
20, 15 4.6 8.0 0.0 0.0 0.0 0.0 0.3 9.3 0.0 0.0 0.0 0.0
20, 20 2.1 7.8 0.0 0.0 0.0 0.0 3.2 17.4 0.0 0.0 0.0 0.0
30, 5 2.9 7.5 0.0 0.0 0.0 0.0 7.6 16.8 0.0 0.0 0.0 0.0
30, 10 3.7 11.5 0.0 0.0 0.0 0.0 8.1 21.2 0.0 0.0 0.0 0.0
30, 15 5.7 16.0 0.0 0.0 0.0 0.0 7.7 24.7 0.0 0.0 0.0 0.0
30, 20 7.1 16.8 0.0 0.0 0.0 0.0 10.0 41.1 0.0 0.0 0.0 0.0
40, 5 2.4 11.9 0.0 0.0 0.0 0.0 5.1 27.2 0.0 0.0 0.0 0.0
40, 10 4.5 17.3 0.0 0.0 0.0 0.0 6.6 31.8 0.0 0.0 0.0 0.0
40, 15 4.1 14.1 0.0 0.0 0.0 0.0 11.9 57.0 0.0 0.0 0.0 0.0
40, 20 6.0 16.8 0.0 0.0 0.0 0.0 11.1 45.9 0.0 0.0 0.0 0.0
50, 5 5.2 14.9 0.0 0.0 0.0 0.0 8.2 27.9 0.0 0.0 0.0 0.0
50, 10 5.5 18.1 0.0 0.0 0.0 0.0 10.1 40.2 0.0 0.0 0.0 0.0
50, 15 7.9 17.4 0.0 0.0 0.0 0.0 16.6 59.4 0.0 0.0 0.0 0.0
50, 20 11.1 22.2 0.0 0.0 0.0 0.0 14.2 43.3 0.0 0.0 0.0 0.0
60, 5 7.1 16.5 0.0 0.0 0.0 0.0 10.0 77.8 0.0 0.0 0.0 0.0
60, 10 10.4 21.9 0.0 0.0 0.0 0.0 24.6 63.7 0.0 0.0 0.0 0.0
60, 15 12.4 19.1 0.0 0.0 0.0 0.0 19.1 62.8 0.0 0.0 0.0 0.0
60, 20 13.7 21.1 0.0 0.0 0.0 0.0 25.1 47.3 0.0 0.0 0.0 0.0
100, 20 8.3 11.4 0.0 0.0 0.0 0.0 31.2 49.7 0.0 0.0 0.0 0.0
100, 40 12.2 21.3 0.0 0.0 0.0 0.0 8.4 20.4 0.0 0.0 0.0 0.0
100, 60 7.9 17.5 0.0 0.0 0.0 0.0 4.9 11.3 0.0 0.0 0.0 0.0
200, 20 2.9 4.5 0.0 0.0 0.0 0.0 18.5 24.9 0.0 0.0 0.0 0.0
200, 40 8.7 12.2 0.0 0.0 0.0 0.0 12.6 20.9 0.0 0.0 0.0 0.0
200, 60 8.5 11.5 0.0 0.0 0.0 0.0 6.7 11.4 0.0 0.0 0.0 0.0
300, 20 1.8 2.7 0.0 0.0 0.0 0.0 12.4 16.4 0.0 0.0 0.0 0.0
300, 40 5.4 7.1 0.0 0.0 0.0 0.0 11.5 16.2 0.0 0.5 0.2 0.4
300, 60 3.8 5.2 0.0 0.0 0.0 0.0 5.4 8.4 0.0 0.6 0.0 0.2
400, 20 1.8 2.1 0.0 0.0 0.0 0.0 6.8 9.3 0.0 0.4 0.3 0.4
400, 40 2.8 3.8 0.0 0.0 0.0 0.0 6.4 9.3 0.1 0.7 0.1 0.3
400, 60 2.6 3.6 0.0 0.0 0.0 0.0 2.8 5.5 0.4 0.6 0.1 0.2
500, 20 2.0 2.4 0.0 0.0 0.0 0.0 5.5 7.0 0.1 0.2 0.2 0.3
500, 40 2.7 3.7 0.0 0.0 0.0 0.0 5.2 7.2 0.2 0.3 0.2 0.3
500, 60 0.1 1.2 0.0 0.0 0.0 0.0 3.2 5.1 0.1 0.3 0.0 0.0
600, 20 1.6 2.0 0.0 0.0 0.0 0.1 4.5 6.8 0.1 0.3 0.1 0.2
600, 40 2.8 3.9 0.0 0.0 0.0 0.1 2.0 5.0 0.2 0.5 0.3 0.4
600, 60 0.4 1.2 0.0 0.0 0.0 0.0 3.7 5.2 0.2 0.3 0.3 0.4
700, 20 1.5 1.8 0.0 0.0 0.0 0.0 5.6 6.4 0.3 0.6 0.2 0.5
700, 40 0.2 0.9 0.0 0.0 0.0 0.0 2.4 3.6 0.2 0.2 0.2 0.4
700, 60 0.4 1.0 0.0 0.0 0.0 0.0 3.7 4.3 0.1 0.2 0.2 0.3
800, 20 2.2 2.5 0.0 0.0 0.0 0.0 4.3 5.2 0.3 0.4 0.2 0.3
800, 40 0.1 0.5 0.0 0.0 0.0 0.0 3.2 4.0 0.2 0.4 0.3 0.4
800, 60 0.9 1.2 0.0 0.0 0.0 0.0 3.4 3.9 0.1 0.2 0.1 0.2
Taillard instances
20, 5 0.5 3.1 0.0 0.0 0.0 0.0 1.9 5.4 0.0 0.0 0.0 0.0
20, 10 2.2 4.8 0.0 0.0 0.0 0.0 2.0 6.2 0.0 0.0 0.0 0.0
20, 20 0.9 4.8 0.0 0.0 0.0 0.0 1.9 8.9 0.0 0.0 0.0 0.0
50, 5 5.1 15.6 0.0 0.0 −0.4 0.7 7.3 53.3 0.0 0.0 1.4 4.2
50, 10 9.6 18.7 0.0 0.0 0.1 0.2 16.3 73.7 0.0 0.0 0.0 1.7
50, 20 13.1 22.6 0.0 0.0 0.3 0.6 22.5 48.8 0.0 0.0 0.0 −0.1
100, 5 11.0 21.8 0.0 0.0 0.4 0.5 33.4 129.5 0.0 0.0 2.5 6.0
100, 10 15.3 21.2 0.0 0.0 0.6 0.8 33.6 107.0 0.0 0.0 3.2 10.6
100, 20 8.4 11.5 0.0 0.0 0.3 0.5 27.2 44.1 0.0 0.0 1.5 3.1
200, 10 7.0 9.7 0.0 0.0 0.0 0.0 49.6 76.1 0.0 0.0 0.8 1.0
200, 20 3.3 4.9 0.0 0.0 0.0 0.1 22.6 30.4 0.0 0.0 0.8 1.1
500, 20 1.8 2.2 0.0 0.0 0.1 0.1 5.0 6.8 0.0 1.0 0.1 0.0
The results of Tables A.6 and A.7 show that the one-opt and swap
ocal searches are poorly affected by different time limits. In fact,
specially for the semi-active problem variants with a small number of
obs and machines, they rarely reach the time limit. Instead, for larger
11
instances, they have positive percentage gap that increases with the
decrease of the time limit value (from 𝜃

2 to 𝜃
4 ). The sliding window

search, instead, is more affected by the time limit, and the APD values
are positive also for small instances.
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Table A.7
APD values of each algorithm for different time limits for the problems related to 𝐶𝐼𝑇𝑤 (%).

Instance General Semi active

SW One-opt Swap SW One-opt Swap

𝐴𝑃𝐷 𝜃
2

𝐴𝑃𝐷 𝜃
4

𝐴𝑃𝐷 𝜃
2

𝐴𝑃𝐷 𝜃
4

𝐴𝑃𝐷 𝜃
2

𝐴𝑃𝐷 𝜃
4

𝐴𝑃𝐷 𝜃
2

𝐴𝑃𝐷 𝜃
4

𝐴𝑃𝐷 𝜃
2

𝐴𝑃𝐷 𝜃
4

𝐴𝑃𝐷 𝜃
2

𝐴𝑃𝐷 𝜃
4

VRF instances
10, 5 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
10, 10 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.5 0.0 0.0 0.0 0.0
10, 15 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
10, 20 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
20, 5 0.0 0.6 0.0 0.0 0.0 0.0 0.0 1.1 0.0 0.0 0.0 0.0
20, 10 0.0 0.7 0.0 0.0 0.0 0.0 0.4 1.1 0.0 0.0 0.0 0.0
20, 15 0.0 1.0 0.0 0.0 0.0 0.0 0.9 2.3 0.0 0.0 0.0 0.0
20, 20 0.4 2.3 0.0 0.0 0.0 0.0 1.4 2.7 0.0 0.0 0.0 0.0
30, 5 0.5 0.8 0.0 0.0 0.0 0.0 0.0 0.1 0.0 0.0 0.0 0.0
30, 10 0.0 2.1 0.0 0.0 0.0 0.0 1.5 6.4 0.0 0.0 0.0 0.0
30, 15 0.9 3.3 0.0 0.0 0.0 0.0 0.6 2.8 0.0 0.0 0.0 0.0
30, 20 0.2 2.6 0.0 0.0 0.0 0.0 1.7 3.5 0.0 0.0 0.0 0.0
40, 5 0.0 0.2 0.0 0.0 0.0 0.0 0.1 0.3 0.0 0.0 0.0 0.0
40, 10 1.4 3.4 0.0 0.0 0.0 0.0 0.5 2.6 0.0 0.0 0.0 0.0
40, 15 1.0 3.6 0.0 0.0 0.0 0.0 1.5 4.4 0.0 0.0 0.0 0.0
40, 20 2.0 5.9 0.0 0.0 0.0 0.0 1.9 6.1 0.0 0.0 0.0 0.0
50, 5 0.0 0.2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
50, 10 0.9 2.1 0.0 0.0 0.0 0.0 1.9 4.4 0.0 0.0 0.0 0.0
50, 15 2.0 5.7 0.0 0.0 0.0 0.0 2.1 5.4 0.0 0.0 0.0 0.0
50, 20 2.9 5.4 0.0 0.0 0.0 0.0 3.0 7.8 0.0 0.0 0.0 0.0
60, 5 0.4 1.2 0.0 0.0 0.0 0.0 0.4 1.1 0.0 0.0 0.0 0.0
60, 10 0.6 1.1 0.0 0.0 0.0 0.0 1.1 2.1 0.0 0.0 0.0 0.0
60, 15 2.5 5.8 0.0 0.0 0.0 0.0 3.3 8.0 0.0 0.0 0.0 0.0
60, 20 4.1 7.4 0.0 0.0 0.0 0.0 5.1 10.0 0.0 0.0 0.0 0.0
100. 20 3.3 4.6 0.0 0.0 0.0 0.0 3.0 6.9 0.0 0.0 0.0 0.0
100. 40 5.6 7.7 0.0 0.0 0.0 0.0 1.5 3.6 0.0 0.0 0.0 0.0
100. 60 2.6 4.3 0.0 0.0 0.0 0.0 0.5 1.4 0.0 0.0 0.0 0.0
200. 20 0.9 1.3 0.0 0.1 0.0 0.0 2.7 3.0 0.0 0.0 0.0 0.0
200. 40 1.5 2.3 0.0 0.0 0.0 0.0 2.5 3.3 0.0 0.0 0.0 0.0
200. 60 1.3 1.9 0.0 0.1 0.0 0.0 1.1 1.5 0.0 0.0 0.0 0.0
300. 20 0.3 0.7 0.0 0.1 0.0 0.0 1.7 1.9 0.0 0.0 0.0 0.0
300. 40 0.4 0.7 0.0 0.1 0.0 0.0 1.1 1.4 0.0 0.0 0.0 0.0
300. 60 0.5 0.9 0.0 0.0 0.0 0.0 0.7 0.9 0.0 0.0 0.0 0.0
400. 20 0.4 0.5 0.2 0.2 0.0 0.0 0.4 0.6 0.0 0.0 0.0 0.0
400. 40 0.4 0.7 0.0 0.1 0.0 0.0 0.3 0.8 0.0 0.0 0.0 0.0
400. 60 0.5 0.8 0.2 0.2 0.0 0.0 0.5 0.6 0.1 0.1 0.0 0.0
500. 20 0.2 0.4 0.1 0.1 0.0 0.0 0.4 0.5 0.0 0.0 0.0 0.0
500. 40 0.5 0.6 0.1 0.1 0.0 0.0 0.2 0.3 0.0 0.1 0.0 0.0
500. 60 0.3 0.5 0.0 0.1 0.0 0.0 0.2 0.3 0.0 0.0 0.0 0.0
600. 20 0.1 0.2 0.0 0.0 0.0 0.2 0.2 0.3 0.0 0.0 0.0 0.0
600. 40 0.2 0.4 0.0 0.1 0.0 0.0 −0.1 0.0 0.0 0.0 0.0 0.0
600. 60 0.0 0.3 0.1 0.1 0.0 0.0 0.2 0.3 0.0 0.0 0.0 0.0
700. 20 0.1 0.1 0.0 0.0 0.0 0.0 0.0 0.1 0.0 0.0 0.0 0.0
700. 40 0.0 0.3 0.0 0.0 0.0 0.0 0.1 0.2 0.0 0.0 0.0 0.0
700. 60 −0.1 0.1 0.0 0.0 0.0 0.0 0.2 0.2 0.0 0.0 0.0 0.0
800. 20 0.0 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
800. 40 −0.2 0.0 0.0 0.0 0.0 0.0 −0.1 0.1 0.0 0.0 0.0 0.0
800. 60 −0.3 −0.1 0.0 0.0 0.0 0.0 0.2 0.2 0.0 0.0 0.0 0.0
Taillard instances
20, 5 0.8 1.0 0.0 0.0 0.0 0.0 0.0 0.3 0.0 0.0 0.0 0.0
20, 10 0.0 1.2 0.0 0.0 0.0 0.0 0.0 1.4 0.0 0.0 0.0 0.0
20, 20 0.7 1.8 0.0 0.0 0.0 0.0 1.4 3.8 0.0 0.0 0.0 0.0
50, 5 0.0 0.2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
50, 10 0.9 2.4 0.0 0.0 0.0 0.0 1.8 4.3 0.0 0.0 0.0 0.0
50, 20 3.1 5.3 0.0 0.0 0.0 0.4 2.6 5.7 0.0 0.0 0.0 0.0
100, 5 0.0 0.1 0.0 0.0 0.0 0.0 0.2 0.2 0.0 0.0 0.0 0.0
100, 10 0.6 1.3 0.0 0.0 0.0 0.1 0.4 1.0 0.0 0.0 0.0 0.0
100, 20 2.8 4.4 0.0 0.0 0.2 0.6 2.5 5.0 0.0 0.0 0.0 0.0
200, 10 1.0 1.1 0.0 0.0 0.1 0.2 0.4 0.6 0.0 0.0 0.0 0.0
200, 20 0.9 1.5 0.0 0.1 0.3 0.3 2.1 2.7 0.0 0.0 0.0 0.0
500, 20 0.1 0.3 0.1 0.2 0.2 0.3 0.2 0.3 0.0 0.0 0.0 0.0
B
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