
29 November 2023

POLITECNICO DI TORINO
Repository ISTITUZIONALE

Fast Spread in Controlled Evolutionary Dynamics / Zino, Lorenzo; Como, Giacomo; Fagnani, Fabio. - In: IEEE
TRANSACTIONS ON CONTROL OF NETWORK SYSTEMS. - ISSN 2325-5870. - ELETTRONICO. - 10:3(2023), pp.
1555-1567. [10.1109/TCNS.2023.3234593]

Original

Fast Spread in Controlled Evolutionary Dynamics

IEEE postprint/Author's Accepted Manuscript

Publisher:

Published
DOI:10.1109/TCNS.2023.3234593

Terms of use:

Publisher copyright

©2023 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any
current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating
new collecting works, for resale or lists, or reuse of any copyrighted component of this work in other works.

(Article begins on next page)

This article is made available under terms and conditions as specified in the  corresponding bibliographic description in
the repository

Availability:
This version is available at: 11583/2974407 since: 2023-09-21T11:48:06Z

IEEE



1

Fast Spread in Controlled Evolutionary Dynamics
Lorenzo Zino, Member, IEEE, Giacomo Como, Member, IEEE, and Fabio Fagnani, Member, IEEE

Abstract—We study a controlled evolutionary dynamics that
models the spread of a novel state in a network where the
exogenous control aims to quickly spread the novel state. We
estimate the performance of the system by analytically estab-
lishing upper and lower bounds on the expected time needed
for the novel state to replace the original one. Such bounds
are expressed as functions of the control policy adopted and of
the network structure, and establish fundamental limitations on
the system’s performance. Leveraging these results, we classify
network structures depending on the possibility of achieving a
fast spread of the novel state (i.e., complete replacement in a
time growing logarithmically with the network size) using simple
open-loop control policies. Finally, we propose a feedback control
policy that using little knowledge of the network and of the
system’s evolution at a macroscopic level allows for a substantial
speed up of the spreading process, guaranteeing fast spread
on topologies where simple open-loop control policies are not
sufficient. Examples and simulations corroborate our findings.

Index Terms—Network systems; Feedback control; Spreading
processes; Evolutionary dynamics; Diffusion of innovation.

I. INTRODUCTION

IN the last decades, the study of spreading processes in
network systems has significantly advanced. Increasingly

refined models have been proposed, with applications spanning
from epidemic spreading to the diffusion of innovation and
the adoption of social norms. The theoretical analysis of
these models has guided the development of accurate control
policies. The literature on epidemics offers a paradigmatic
example, whereby the understanding of how the network of
interactions influences the spread of a disease [2]–[5] has
paved the way for the design and study of control policies
to mitigate or stop epidemic outbreaks [6]–[9]. Similar, for
decision-making in social systems, the extensive analysis of
the voter model [10] and of dynamical interaction models in
game-theoretic frameworks [11], [12] have inspired the design
of techniques to optimally place spreaders in a network [13],
[14] and to control networks of imitative agents [15].

In this paper, we focus on a dynamical network system that
models the spread of novel states in a population. It first ap-
peared in the literature in [16] under the name of evolutionary
dynamics, where it is used to model the competition between
a novel species and the original one in a geographic region. In
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this formulation, the network’s nodes represent locations and
interconnections are determined by proximity. Locations are
assumed to be small, so it is reasonable to assume that each
location is fully occupied by a single species, as in [16]. This
is modeled by equipping each node with a binary state. The
spreading process follows a probabilistic rule and takes place
through pairwise interactions between adjacent nodes, which
yield a competition between the species present in the two
nodes to place their offspring. This model naturally accounts
for possible biases that favor one species against the other,
thus reflecting the presence of an evolutionary advantage.
Besides evolutionary competition, this model may also find
other valuable applications, e.g., diffusion of innovation in
social systems. In this setting, the two states may represent two
alternative technologies, and the nodes are users interacting
and exchanging information on a social network. As a result of
these pairwise interactions, one of the two individuals may get
convinced to adopt the technology used by the other one, thus
via an imitative/contagion mechanism. Evolutionary advantage
captures an intrinsic bias, thus accounting, e.g., for a quality
or cost difference between the two products.

The literature on evolutionary dynamics [16]–[20] focuses
on understanding how the network structure influences the
probability that the novel state diffuses in the network (termed
fixation probability) and the duration of such a spreading
process. However, few analytical results have been established.
To the best of our knowledge, the fixation probability has been
analytically computed for specific network topologies [17],
[18], while most of the results are based on simulations [16],
[19], [20], and no control policies have been studied. In
a preliminary work [1], we proposed a new formalism for
evolutionary dynamics, which presents two main novelties:
i) the spreading process is modeled through a link-based
(instead of a node-based as in [16]) activation mechanism,
and ii) an exogenous control action is incorporated to model
the controlled introduction of the novel state in some nodes.
This change of perspective and the explicit introduction of a
control action have enabled us to gain new analytical insight
into the expected duration of the spreading process. In [1],
we introduced a first feedback control policy to speed up
the spreading process, but its feasibility was limited to very
specific networks and it presented two drawbacks: it was
sensible to small data errors and very costly from the control
viewpoint. An improved policy was proposed in [21] and
tested on a real-world case study via numerical simulations.

Here, we undertake a fundamental analysis of controlled
evolutionary dynamics in great generality, encompassing both
open-loop and feedback control policies. Control actions are
evaluated on the basis of their cost —in terms of the number
of nodes where the control acts and of its total energy— and
the spreading time of the process. Our main contribution is
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the establishment of fundamental limitations between these
quantities, from which we derive an array of ready-to-use tools
to estimate the expected spreading time and control cost for
specific control policies and network structures. In particular,
this allows for performing a full theoretical analysis of the
feedback control law presented in [21].

Formally, we cast the controlled evolutionary dynamics as a
Markov process [22]. Under mild assumptions on the network
structure and on the form of the exogenous control, the process
has a unique absorbing state coinciding with the complete
spread of the novel state. Our study focuses on the estimation
of the expected time needed for the Markov process to reach
such an absorbing state, in the presence of an evolutionary
advantage. The exogenous control makes this Markov process
nonhomogeneous, thereby hindering a direct application of
classical results for homogeneous Markov processes [22]–
[24]. Our analysis is based on two key properties of the
dynamics, which allow us to establish performance guarantees
and fundamental limitations on the controlled evolutionary
dynamics. First, the process presents natural monotonicity
properties with respect to the initial configuration and the
evolutionary advantage of the novel state. Second, the speed
of the spreading process is proportional to the size of the
boundary separating the set of nodes in the two different states,
similar to what was observed in network epidemic models [8].

To illustrate the implications of our findings, we analyze
network families with different characteristics. For highly
connected networks, we prove that the evolutionary advantage
and the monotonicity properties of the dynamics generate
positive feedback, yielding fast spread, even in the absence
of any exogenous control (except for the initial seeding): the
novel state reaches complete spread in a time that grows
logarithmically in the network size. On the other hand, we
show that the poorly connected topologies hinder such positive
feedback, as the system may enter and remain stuck in
bottlenecks where the spreading process is significantly slowed
down. It is in these cases that an exogenous control is the most
valuable in reinforcing the spreading process.

To this aim, we design and study a feedback control law
that compensates for such slowdowns by concentrating the
control efforts when the system enters configurations whose
boundary is too small to guarantee a fast spread. The proposed
feedback policy needs limited a-priori knowledge on the
topology of the network for its implementation and is driven by
two macroscopic one-dimensional observables: the number of
nodes in the novel state and the size of the boundary separating
the set of nodes in the two different states. Despite such a
low complexity structure, our control policy exhibits good
performance that is guaranteed by analytical results. We apply
the proposed policy to stochastic block models (SBMs), which
are representative of many real-world networks [25]. For them,
while simple open-loop control policies fail in yielding fast
spread, our feedback control law succeeds. We believe that
the capability of incorporating and studying control architec-
tures in spreading processes and, more generally, in network
dynamics is a crucial step from the application viewpoint.

The rest of the paper is organized as follows. Section II
introduces the model. Section III presents the main results.

Section IV analyzes open-loop control policies, in particular
constant policies, for three fundamental network examples.
Section V, we propose and study a feedback control policy.
Section VI concludes the paper.

Notation. R+ stands for the set of nonnegative reals. The
n-dimensional all-0 and all-1 vectors are denoted by 0 and
1, respectively; δ(i) is a vector with a 1 in its ith entry and
0 elsewhere; for S ⊆ {1, . . . , n}, δ(S) =

∑
i∈S δ

(i). The
transpose of a matrix M is denoted as M⊤. An inequality
x ≥ y between two vectors is meant to hold true entrywise,
i.e., xi ≥ yi, for all i. Finally, we use the notation 1A for the
indicator function of a set A and f(t−0 ) := limt↗t0 f(t) and
f(t+0 ) := limt↘t0 f(t) for the left and right limits.

II. MODEL

We describe the network as a finite weighted undirected
graph G = (V, E ,W ), whereby V = {1, . . . , n} is the node
set, E is the set of undirected links, and W = W⊤ in Rn×n

+

is the (symmetric) weight matrix, with Wij = Wji > 0 if
and only if {i, j} ∈ E . Throughout, we shall assume that
G is connected, i.e., W is irreducible. Each node i in V is
characterized by a binary state

Xi(t) =

{
0 if at time t node i is in the original state,
1 if at time t node i is in the novel state,

evolving in continuous time according to the following two
mechanisms.

Spreading mechanism. Each undirected link {i, j} in E is
equipped with an independent rate-Wij Poisson clock model-
ing the interactions between nodes i and j. If the clock ticks
at time t and both nodes have the same state, nothing happens.
Otherwise, a conflict takes place and the winning state occu-
pies both nodes. Conflicts are solved in a probabilistic way: the
novel state wins a conflict (independently of the others) with
fixed probability β ∈ [0, 1], yielding Xi(t

+) = Xj(t
+) = 1,

otherwise the original state wins and Xi(t
+) = Xj(t

+) = 0.
The parameter β captures the evolutionary advantage of the
original state (β < 1/2) or of the novel state (β > 1/2). For
simplicity, we assume that β is uniform over edges and that
every conflict ends with a winner. These assumptions may be
partially relaxed, as we shall discuss in Remarks 3 and 7.

Exogenous control. We fix a locally integrable function
U : R+ → Rn

+ whose ith entry Ui(t) represents the control
rate at which the novel state is enforced at node i at time t.
The node will be occupied by the novel state (i.e., xi(t+) = 1)
according to a rate-Ui(t) Poisson clock, independent of others.

The triple (G, β, U(t)) shall be referred to as the controlled
evolutionary dynamics, whose mechanisms induce a Markov
process X(t) = (X1(t), . . . , Xn(t)) on the configuration
space {0, 1}n. The only transitions that can take place from a
configuration X(t) = x are towards configurations that differ
from x in a single entry. Specifically, the transition rates

λ±i (x, t) := lim
h↘0

1

h
P[X(t+ h) = x± δ(i)|X(t) = x]
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Fig. 1: Transitions of the Markov process X(t). Red and blue
nodes denote the original and novel state, respectively.

from x to x+ δ(i) (if xi = 0) and x− δ(i) (if xi = 1) at time
t ≥ 0 (see Fig. 1 for an illustration) satisfy

λ+i (x, t) = (1− xi)(β(Wx)i + Ui(t))
λ−i (x, t) = xi(1− β) (W (1− x))i .

(1)

Equation (1) states that, if node i is in state xi = 0 at time t,
then its transition rate to 1 is the sum of two terms: the first
addend is proportional to the total weight of links towards
neighbors of node i that are in state 1 at time t; the second
one accounts for the control effort exerted on the node. On
the other hand, if node i is in state xi = 1, its transition
rate to 0 is proportional to the total weight of links toward
neighbors that are in state 0 at time t. In general, the process
is nonhomogeneous, since the terms Ui(t) can be time-varying.

The proposed framework captures key features of real-world
spreading processes discussed in the introduction, such as
the role of the network structure, the competition between
different species or products, the possible presence of an
evolutionary advantage, and the possibility to exert exogenous
control on the system, and has been successfully adopted
in a preliminary form in [21] to study the introduction of
genetically modified mosquitoes in a geographic region to
substitute species that transmit diseases. We refer to [26] for
more details on the problem. Moreover, the framework has
fundamental ties with existing models for network dynamics.

Remark 1: If U(t) = 0 for every t ≥ 0, the model reduces
to a voter model [10], which is biased if β ̸= 1/2 [27]. A
homogeneous version of the model without control and where
clocks are associated with nodes instead of links has been
proposed in [16]. However, the analytical results for such a
model are limited to the computation of the probability that
the novel state diffuses to the whole network, while more in-
depth analyses are limited to specific network structures [17],
[18], and the convergence time is studied only numerically.

Remark 2: An equivalent model can be obtained by re-
placing the exogenous control with a fictitious stubborn node
s with fixed state Xs(t) = 1, for t ≥ 0, and considering
links with time-varying weights Wis = Ui(t)/β. Models with
stubborn nodes have been studied in opinion dynamics [28],
[29]. Differently from these works, we focus on the transient
rather than the asymptotic analysis, using different tools.

Throughout the paper, we make the following assumptions.

Assumption 1: (i) β > 1/2; (ii) if X(t) = 0, then U(t) ̸= 0.

Assumption 1 implies that the novel state has an evolution-
ary advantage on the original state and that the exogenous
control is always active whenever the system is in the novel-
free configuration x = 0.

From (1), Assumption 1, and the fact that G is connected,
it follows that x = 1 is the unique absorbing configuration of
the system and it is reachable from every other configuration.
Hence, the novel state eventually spreads to the whole network
almost surely in finite time [22]. From an application perspec-
tive, our interest is to shed light on the transient behavior of the
system. To this aim, we introduce two performance indices:
the spreading time and the control cost defined respectively as

T := inf {t ≥ 0 : X(t) = 1} , J =

∫ T

0

1⊤U(t)dt .

We shall then focus on the estimation of the expected values
of these two indices. Since these may depend on the initial
configuration distribution, we denote the conditional expected
values of the spreading time and of the control cost as

Ex0
[T ] := E[T |X(0) = x0] , Ex0

[J ] := E[J |X(0) = x0] ,

respectively. For the purpose of this paper, we will typically be
interested in the scenario with X(0) = 0, that is the novel-free
configuration. Hence, most of our results will be expressed as
bounds on E0[T ] and E0[J ].

We consider two main types of control policy:
Open-loop control policies, where the control signal U(t)

is predetermined. A simple example of such control policies
are those with U(t) = u constant for every t ≥ 0. We will
refer to these as constant control policies.

Feedback control policies, where the control signal U(t)
is chosen as a function of the process X(t) itself. Precisely,
in this case we consider a function ν : {0, 1}n → Rn

+ and
we take U(t) = ν(X(t)). The triple (G, β, ν) is then called a
feedback controlled evolutionary dynamics.

There are typically some constraints that we want to enforce
on the admissible control policies. In general, the exogenous
control U(t) is constrained to be active only at certain specified
nodes, denoted by U ⊆ V . In this case, the triple (G, β, U(t))
is called an U-controlled evolutionary dynamics.

We now introduce some fundamental quantities.

Definition 1: Given a weighted graph G = (V, E ,W ):

(i) the weighted boundary [30] of a node subset W ⊆ V is

ζ(W) =
∑
i∈W

∑
j /∈W

Wij ;

(ii) the minimum conductance and the maximum expansive-
ness profiles are the functions ϕ, η : {0, . . . , n} → R+,

ϕ(a) = min
W⊂V,|W|=a

ζ(W) , η(a) = max
W⊂V,|W|=a

ζ(W) .

Since G is undirected, ζ(W) = ζ(V ∖W) for all W ⊆ V .
Since G is connected, ϕ(a) ≥ η(a) > 0 for 0 < a < n.

We end this section by defining three one-dimensional
stochastic processes as aggregate statistics of the process X(t):

• the number of nodes with novel state A(t) := 1⊤X(t) ;
• the size of the boundary of the set of nodes that are in

the novel state B(t) := X(t)⊤W (1−X(t)) ; and
• the effective control rate in nodes that are in the original

state C(t) := (1−X(t))
⊤
U(t) .
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III. GENERAL PERFORMANCE ANALYSIS

In this section, we present a series of theoretical results on
the performance of controlled evolutionary dynamics. First,
we focus on deriving performance guarantees, consisting in
bounds on the expected spreading time that depend on the
network topology and on the form and intensity of the control.
Then, we derive some fundamental limitations of the con-
trolled evolutionary dynamics. They are expressed as control-
independent lower bounds on the expected spreading time.
Leveraging these general results, ready-to-use corollaries are
derived for specific choices of the control policy.

A. Performance Guarantees

Here, we present a general result estimating the performance
of controlled evolutionary dynamics, which will be then ap-
plied to both open-loop and feedback control policies.

The core of the proposed analysis consists in the estimation
of the expected time spent by the process X(t) before reaching
the absorbing configuration 1. To perform such analysis, we
focus on the aggregate statistics A(t) = 1⊤X(t) counting the
number of state-1 nodes in the network, and estimate the time
spent by A(t) before being absorbed in state n. The analysis is
nontrivial because, in general, A(t) is not a Markov process:
each transition of X(t) increases or decreases A(t) by 1 unit
and its rate depends on the whole vector X(t) through the
network weight matrix W , not just on A(t) itself. Specifically,
the increase and decrease rates of A(t) respectively satisfy

λ+t =
∑

i∈V
λ+i (X(t), t) = βB(t) + C(t) , (2a)

λ−t =
∑

i∈V
λ−i (X(t), t) = (1− β)B(t) . (2b)

For t ≥ 0, let p+t and p−t be the conditional probabilities
that, should the process X(t) have a transition at time t, such
transition would increase the value of A(t) or decrease it,
respectively, by 1 unit. Clearly, when A(t) = 0, we get p+t = 1
and p−t = 0, whereas, (2) yields

p+t = 1− p−t =
λ+t

λ+t + λ−t
=
βB(t) + C(t)

B(t) + C(t)
≥ β , (3)

whenever X(t) ̸= 1. The above is a uniform bound that
allows us to estimate the conditional probability that, given
that A(t0) = a, the aggregate process A(t) will ever go below
a at some time t > t0, before reaching its absorbing state
A(T ) = n. Specifically we have the following result for

qa := inf
t0≥0

min
1⊤x=a

P[A(t) ≥ a, ∀t ≥ t0 |X(t0) = x] .

Lemma 1: For every 1 ≤ a < n, qa ≥ (2β − 1)/β.
Proof: See Appendix A.

Lemma 1 provides a lower bound on qa and, ultimately,
on the desired probability, depending only on the evolutionary
advantage β. Using this uniform bound, we now estimate the
total amount of time that the process spends in each of its
nonabsorbing states, when a relation between the three aggre-
gate statistics A(t), B(t), and C(t) is verified. Specifically,
the following is the key technical result which allows us to
formulate our performance guarantees.

Proposition 1: Let f : {0, . . . , n} → R+ be such that

B(t) + C(t) ≥ f(A(t)) , ∀t ≥ 0 . (4)

For 0 ≤ a < n, let Ta be the total amount of time spent by
process A(t) in state a. Then,

E[Ta |X(0) = 0] ≤


β

2β − 1

1

f(0)
if a = 0 ,

1

2β − 1

1

f(a)
if 0 < a < n .

(5)

Proof: For s ≥ 0, let Ta(s) denote the total time spent
by A(t) in a state a from time s on. Clearly, Ta = Ta(0) and,
for x0 in {0, 1}n, the Markov property implies that

E[Ta(s) |X(s) = x0, X(0) = 0] = E[Ta(s) |X(s) = x0] .

Let S(t) = inf{h ≥ 0 : X(t + h) ̸= X(t)} be the waiting
time for the first configuration change after time t. Observe
that, for t < r ≤ t + S(t), the total jump rate of the process
A(t) can be bounded, using (2) and (4), as

ξ(r) = λ+r + λ−r = B(r) + C(r) ≥ f(1⊤x) .

Standard properties of Markov processes yield

E[S(t)|X(t) = x] =
∫ +∞
0

exp
(
−
∫ t+s

t
ξ(r)dr

)
ds

≤
∫ +∞
0

exp
(
−
∫ t+s

t
f(1⊤x)dr

)
ds

= 1/f(1⊤x) .
(6)

Now, fix t0 ≥ 0 and state X(t0) = x0 such that 1⊤x0 ≤ a.
Let t1 ≥ t0 be the time when A(t) reaches the value a for the
first time after t0 and let t2 = t1+S(t1) be the time of the first
subsequent configuration change. Using the Markov property,
separating the time spent in a during its first entrance from
the other contributions to Ta(t0), and finally using (6) we get:

E[Ta(t0)|X(t0) = x0, X(t1) = x1]

= E[Ta(t1)|X(t1) = x1]

= E[S(t1)|X(t1) = x1] + E[Ta(t2)|X(t1) = x1)]

≤ 1/f(a) + E[Ta(t2)|X(t1) = x1)] .

(7)

Now, we can estimate the term E[Ta(t2)|X(t1) = x1] by
conditioning on the direction of the jump at time t2, getting

E[Ta(t2)|X(t1) = x1] ≤ p−t1θa + p+t1(1− qa+1)θa , (8)

where θa := sups≥0 max1⊤x0≤a E[Ta(s) |X(s) = x0]. In-
serting (8) into (7), we get

E[Ta(t0)|X(t0) = x0] ≤
1

f(a)
+p−t1θa+p

+
t1(1−qa+1)θa . (9)

For a = 0, we have 0 = p−t1 = 1−p+t1 , so that Lemma 1 gives

E[T0(t0)|X(t0) = 0] ≤ 1

f(0)
+(1−f1)θ0 ≤ 1

f(0)
+
1− β

β
θ0 .

Taking the supremum over t0 ≥ 0 in the above, we get that
θ0 ≤ 1/f(0) + θ0(1− β)/β, which yields the bound

θ0 ≤ β

2β − 1

1

f(0)
. (10)
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For 1 ≤ a < n, applying (3) to the right-hand side of (9) gives

E[Ta(t0) |X(t0) = x0] ≤ 1

f(a)
+ (1− β)θa + β

1− β

β
θa

=
1

f(a)
+ 2(1− β)θa .

Since this holds true for every t0 ≥ 0 and x0 ∈ {0, 1}n such
that 1⊤x0 ≤ a, we get θa ≤ 1/f(a) + 2(1− β)θa, yielding

θa ≤ 1

2β − 1

1

f(a)
. (11)

Since E [Ta|X(0) = 0] ≤ θa, (10)–(11) yield the claim.

We can now prove the fundamental result of this section.
Theorem 1: Let (G, β, U(t)) be a controlled evolutionary

dynamics with initial configuration X(0) = 0. Then, for every
f : {0, . . . , n} → R+ such that (4) holds true, the expected
spreading time satisfies

E0[T ] ≤
β

(2β − 1)f(0)
+

1

2β − 1

n−1∑
a=1

1

f(a)
. (12)

Proof: It follows from Proposition 1 that

E0[T ] = E

[
n−1∑
a=0

Ta |X(0) = 0

]

≤ β

(2β − 1)f(0)
+

1

2β − 1

n−1∑
a=1

1

f(a)
,

thus proving the claim.

As special case, for constant policies, we have the following.
Corollary 1: Consider a controlled evolutionary dynamics

(G, β,u) under constant control policy U(t) = u with initial
configuration X(0) = 0 and let ϕ be the minimum conduc-
tance profile of G. Then, the expected spreading time satisfies

E0[T ] ≤
β

(2β − 1)1⊤u
+

1

2β − 1

n−1∑
a=1

1
ϕ(a)

. (13)

Proof: For every 1 ≤ a < n, and for all subsets S ⊂ V
with |S| = a, we have ϕ(a) ≤ ζ(S). Hence, if A(t) = a, then
B(t)+C(t) ≥ ϕ(a). If A(t) = 0, then C(t) = 1⊤u. We obtain
estimation (13) by applying Theorem 1 with f(a) = ϕ(a), for
a ̸= 0, and f(0) = 1⊤u.

Our performance guarantees can be easily extended to
scenarios that include heterogeneous evolutionary advantage
and conflicts with no winners, as we discuss in the following.
However, to keep the presentation and the discussion of the
results as simple as possible throughout the paper, we opted
for keeping the simpler formulation described in Section II.

Remark 3: If the evolutionary advantage is heterogeneous
across links (and/or time-varying), but always within the range
(1/2, 1], the result in Proposition 1 (and, consequently, in
Theorem 1) can be obtained using a uniform lower bound
on β, which may add a conservative multiplicative factor to
the bound, but would not change its possible dependence on
the network size. Similarly, if a conflict ends without any
winner (i.e., with no state change) with probability ψ ∈ [0, 1),
a multiplicative constant 1/(1− ψ) is added to the bounds.

B. Fundamental Performance Limitation

We present a series of results illustrating fundamental lim-
itations of the controlled evolutionary dynamics. We start by
reporting two monotonicity properties, which will be instru-
mental to our main results.

Lemma 2: Let (G, β, U(t)) and (G, γ, U(t)) be two con-
trolled evolutionary dynamics and let X(t) and Y (t) be
the corresponding Markov processes with X(0) = x0 and
Y (0) = y0. If β ≤ γ and x0 ≤ y0, then Ey0

[TY ] ≤ Ex0
[TX ]

and Ey0 [JY ] ≤ Ex0 [JX ], where the subscripts of T and J
refer to the processes they are associated with.

Proof: See Appendix B.

Lemma 3: Let (G, 1, U(t)) and (G, 1, 0) be two controlled
evolutionary dynamics and let X(t) and Y (t) be the corre-
sponding Markov processes with X(0) = x0 and Y (0) = y0.
If x0 ≤ y0 and (1 − y0)

⊤U(t) = 0, for every t ≥ 0, then,
Ey0

[TY ] ≤ Ex0
[TX ], where the subscripts of T and J refer

to the processes they are associated with.
Proof: See Appendix C.

Remark 4: These results have straightforward consequences.
First, Lemma 2 implies that any lower bound on the expected
spreading time obtained for the case when β = 1 will auto-
matically yield a lower bound for every value of β. Second,
Lemma 3 implies that, if β = 1, then it is always possible
to establish a lower bound on the expected spreading time
by considering an uncontrolled process with initial condition
equal to 1 in all the nodes in which the exogenous control
is exerted. We wish to emphasize that controlled evolutionary
dynamics with β < 1 do not, in general, enjoy this property.

The previous results motivate a deeper analysis of the
controlled evolutionary dynamics with β = 1. In this case, if
the initial configuration is such that 1⊤X(0) = k, the Markov
process X(t), will always undergo exactly n − k transitions
before being absorbed in the all-1 configuration. Indeed, for
β = 1, (1) shows that λ−i (x, t) = 0 for every x in {0, 1}n, i in
V , and t ≥ 0. Hence, the process can only undergo transitions
where the number of 1’s is increasing, either driven by the
spreading mechanism or by the exogenous control.

Let 0 = Tk < Tk+1 < · · · < Tn = T be the random
times at which these n − k jumps occur and denote by
Xh = X(T+

h ) the configurations of the process after the
corresponding jumps, so that Xk = X(0) and Xn = 1. Hence,
Th is the time of the jump from Xh−1 to Xh. Finally, let Bh be
the corresponding values for the boundary of the process when
in configuration Xh, that is Bh = ζ(Xh). This time process
can be described recursively as follows. We first let σh to be
the σ-algebra generated by Th and by the process X(t) for
t ≤ Th. Given σh−1 we consider two independent r.v.s tsh and
tch whose distribution functions are given, respectively, by

P[tsh ≥ t |σh−1] = exp (−Bh−1t) , (14a)

P[tch ≥ t |σh−1] = exp
(
−
∫ Th−1+t

Th−1

C(s)ds
)
. (14b)

We then put th = min{tsh, tch}. The interpretation of th
is the following: from Xh−1 the system can evolve either
through the spreading mechanisms or through the exogenous
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control exerted in a node currently in state 0; tsh and tch are
exponentially distributed r.v.s that model the random times at
which the two phenomena would independently take place,
according to their definition. According to the properties of
Markov processes [22], the minimum of these two r.v.s models
the time to wait for the next jump, i.e., Th = Th−1+th. Define

ch :=

∫ Th

Th−1

C(s)ds (15)

to be the effective control rate exerted during the interval
[Th−1, Th]. The following result shows that there is an exact
algebraic relation that ties the average length of the interval
[Th−1, Th], the average effective control rate in this interval
ch, and the active boundary after the (h− 1)-th jump Bh−1.

Proposition 2: For every k ≤ h ≤ n, it holds

E[Th − Th−1 |σh−1] =
1− E[ch |σh−1]

Bh−1
, (16a)

E[ch |σh−1] = P[tch < tsh |σh−1] . (16b)

Proof: First, observe that Th−Th−1 = th = min{tsh, tch} .
Using the property of the minimum of two independent
exponentially distributed r.v.s, we note that

P[th ≥ t |σh−1] = exp
(
−
∫ Th−1+t

Th−1

(
Bh−1 + C(s)

)
ds
)
,

(17)
which yields

d

dt
P[th ≥ t |σh−1] =

(
Bh−1+C(Th−1+ t)

)
P[th ≥ t |σh−1] .

From this and the fact that Th−1 and {C(s) | s ∈ [Th−1, Th]}
are both σh−1-measurable, we have

E[ch|σh−1] = E
[ ∫ +∞

Th−1

C(s)1[Th−1,Th](s)ds |σh−1

]
=

∫ +∞

Th−1

C(s)E
[
1[Th−1,Th](s) |σh−1

]
ds

=

∫ +∞

Th−1

C(s)P[th ≥ s− Th−1 |σh−1]ds

=

∫ +∞

Th−1

d

ds
P[th ≥ s− Th−1 |σh−1]ds

−Bh−1

∫ +∞

Th−1

P[th ≥ s− Th−1 |σh−1]ds

= 1−Bh−1E[th |σh−1] ,
(18)

which yields (16a). On the other hand, it follows from (18),
(17), and the fact that tch and tsh are conditionally independent
given σh−1 with conditional marginal distributions as in (14),

that

E[ch |σh−1] = 1−Bh−1E[th |σh−1]

= 1−Bh−1

∫ +∞

0

P[th ≥ t |σh−1]dt

= 1−Bh−1

∫ +∞

0

e
−

∫ Th−1+t

Th−1
(Bh−1+C(s))ds

dt

=

∫ +∞

0

Bh−1e
−Bh−1t

(
1− e

−
∫ Th−1+t

Th−1
C(s)ds

)
dt

= P (tsh − tch > 0 |σh−1)

= P (tch < tsh |σh−1) ,

thus proving (16b).

If we define the control rate exerted during the interval
[Th−1, Th] as

Jh :=

∫ Th

Th−1

1⊤U(s)ds , (19)

we can derive the following estimation.

Corollary 2: Let (G, β, U(t)) be a controlled evolutionary
dynamics with initial condition X(0) = x0 such that 1⊤x0 =
k > 0. Then,

Ex0
[T ] ≥

n∑
h=k+1

E
[1− E[Jh |σh−1]

Bh−1

]
, (20a)

Ex0
[J ] =

n∑
h=k+1

E
[
E[Jh |σh−1]

]
. (20b)

Proof: Summing and averaging (16a), using that Bh ̸=
0 for h = k, . . . , n − 1 and that Jh ≥ ch (this follows by
comparing (15) and (19)), we obtain the former. The latter is
obtained decomposing J into the terms in (19).

Remark 5: In the case when X(0) = 0, inequality in
(20a) with k = 1 continues to hold. Since the first jump is
necessarily triggered by an exogenous activation, we can make
(20a) tighter adding the term

E[t1] =
∫ +∞

0

exp
(
−
∫ t

0

1⊤U(s)ds
)

dt . (21)

Regarding (20b), we notice that (18) yields E[c1] = E[J1] = 1.
Relation (20b) remains an equality if we simply add 1 to the
formula with k = 1.

The direct applicability of (20) is limited by the fact that
the control efforts and the boundary evolutions can not be
uncoupled when the averaging operation is taken. For U-
controlled evolutionary dynamics, Corollary 2 can be relaxed,
yielding more explicit—but conservative—bounds that turn to
be useful in case when U is sufficiently small.

Corollary 3: Let (G, β, U(t)) be a U-controlled evolution-
ary dynamics with initial condition X(0) = x0 ≤ δ(U). Then,

Ex0
[T ] ≥

n−1∑
h=|U|

1

η(h)
, (22)
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where η is defined as in Definition 1. Moreover, if the control
is constant equal to u and x0 = 0,

E0[T ] ≥
1

1⊤u
+

n−1∑
h=|U|

1

η(h)
. (23)

Proof: It follows from Lemmas 2 and 3 that it is sufficient
to prove the bound for the controlled evolutionary dynamics
(G, 1, 0) with Y (0) = δ(U). In this case, (20a) reduces to

Ex0 [T ] ≥ Eδ(U) [TY ] ≥
n−1∑
h=|U|

E[1/Bh] .

Estimation (22) follows from the definition of η(h). For the
second inequality, consider the random time t1 corresponding
to the first jump of the process. From (21), using that 1⊤u
is constant, we compute E[t1] = 1/1⊤u and applying the
previous part with initial condition X(t1) ≤ δ(U) we obtain
the claim.

By comparing the lower bound in (23) with the correspond-
ing upper bound in (13), we conclude that, for constant U-
controlled evolutionary dynamics, the control rate 1⊤u has a
limited effect on the performance. In particular, E0[T ] remains
bounded away from 0 even in the limit case 1⊤u → +∞, even
though the expected control cost E0[J ] = (1⊤u)E0[T ] grows.

Note that (22) and (23) suggest that, together with the
network structure, the support U of the control action may
play a key role in achieving suitable spreading performance.
In this direction, we propose another bound on the expected
spreading time in which U has a central role.

Corollary 4: Let (G, β, U(t)) be a U-controlled evolutionary
dynamics with initial condition X(0) = 0. Then,

E0[T ] · min
R⊇U

ζ(R) ≥ 1 .

Proof: Using Lemmas 2 and 3, we bound the expected
spreading time by considering a controlled evolutionary dy-
namics (G, 1, 0) with initial condition Y (0) = δ(R) where
R ⊇ U . Then, (20a) yields

E0[T ] ≥ Eδ(R) [TY ] ≥
n−1∑

h=|R|
E[1/Bh] ≥ 1/ζ(R) ,

where the last equality follows from the fact that B|R| = ζ(R).
Since the above inequality holds true for every R ⊇ U , we
obtain the claim.

Remark 6: Denote now by N c the r.v. counting the
total number of activations due to exerting the con-
trol action, more formally in the notation above, N c =
|{h = 1, . . . , n : tch < tsh}|. Summing over h and averaging the
second relation in (16b), we obtain that E[N c] ≤ E[J ]. In other
terms, the expected number of activations due to the control
action is a lower bound on the control cost.

Remark 7: Lemmas 2 and 3 can be easily extended to
the scenarios with heterogeneous evolutionary advantage and
conflicts with no winners discussed in Remark 3. Hence, our
fundamental performance limitations could be directly applied
to these more general scenarios.

(a) Expander graph (b) SBM (c) Ring graph

Fig. 2: Graph families analyzed in this paper. The red links
represent ϕ(5), showing that expander graph are highly con-
nected, while SBMs and rings have thigh bottlenecks.

IV. THREE KEY EXAMPLES

We analyze the behavior and performance of controlled
evolutionary dynamics in some key examples of large-scale
networks. Formally, we shall consider infinite families of
graphs (Gn)n∈N parameterized by their order n and focus on
three special cases: expanders, SBMs, and ring graphs (see
Fig. 2 for an illustration). Expanders and ring graphs (formally
defined in the following) constitute extreme cases and, as we
will see, they represent benchmarks for topologies that are
easy to control and hard to control, respectively. SBMs [25],
instead, display an intermediate behavior: no fundamental
limitation precludes fast spread, but constant control policies
may fail in achieving it, whereas, as we shall see in Section
V, feedback control policies may be effective.

In order to get a fair comparison between the three exam-
ples, we assume that all the links within each graph Gn have
the same weight (i.e., Wij = w, for all {i, j} ∈ E). and that
such value w = α/∆ is inversely proportional to the maximum
degree ∆ in Gn as where α > 0 is a constant independent from
n. This prevents the sum of the weights of all links incident
in a single node on a node from blowing up as n grows large.

In the three examples, we consider controlled evolutionary
dynamics with initial condition X(0) = 0. Before presenting
the examples, we note that the trivial bound η(h) ≤ αh
substituted in (22) yields, for every U-controlled evolutionary
dynamics, the following bound on the expected spreading time

E0[T ] ≥
n−1∑
h=|U|

1

αh
≥ 1

α
log

n

|U|
. (24)

Hence, if U is assumed to be constant in n, the expected
spreading time grows at least logarithmically in n. In view
of this observation, we say that a graph family Gn exhibits
fast spread if there exists a constant K > 0 such that
E0[T ] ≤ K lnn for every n in N, whereas it exhibits slow
spread if the above condition is not satisfied, that is, spreading
time grows more than logaritmically in the network size. Note
that, as a consequence of Remarks 3 and 7, the presence of
heterogeneity in the evolutionary advantage β (but always
greater than 1/2) or of conflicts with no winners have no
impact on whether a graph family exhibits fast or slow spread,
since they may only yield multiplicative constants, which do
not change the scaling factor with respect to the network size.

Example 1 (Expander graphs): A family of graphs Gn is
referred to as expander if there exists a constant γ > 0 such



8

500 1,000

10

20

30

40

0
0

n

E0[T ]

(a) β = 0.7
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(b) β = 0.8

Fig. 3: Monte Carlo estimation (200 simulations) of the ex-
pected spreading time E0[T ] on complete graphs for different
values of n (α = 1), with 90% confidence intervals. The two
solid curves are the theoretical bounds from (24) and (26).

that, for every n in N, the minimum conductance profile of
the graph Gn satisfies

ϕ(h) ≥ γ ·min{h, n− h} , ∀ 0 ≤ h ≤ n . (25)

i.e., if all subsets of nodes have weighted boundary at least pro-
portional to their cardinality. Important examples of expander
families are complete graphs, as well as, with high probability,
Erdős-Rényi (illustrated in Fig. 2a), small-world models, and
many scale-free graphs, which are often used to represent well
connected real-world systems and social networks.

We now show that expander graph families exhibit fast
spread. In fact, applying (25) to the right-hand side of (13)
in Corollary 1, we obtain

E0[T ] ≤
β

(2β − 1)1⊤u
+

2 ln(n/2) + 2

γ(2β − 1)
. (26)

Figure 3 reports Monte Carlo computations of the expected
spreading time for complete graphs, together with our ana-
lytical bounds. The bound in (26) appears to be tight for the
complete graph. In fact, for complete graphs the inequality (4)
holds true as an equality when the function f(h) coincides
with the minimum conductance profile (since all subsets with
h nodes have the same weighted boundary). This suggests
that the spreading time can be expected to be close to the
upper bound (12) from Theorem 1 when one can determine a
function f(h) so that the inequality (4) is close to an equality.

Example 2 (SBMs): SBMs are made of dense (expander)
subgraphs linked among each other by few connections (see
Fig. 2b). For the sake of simplicity, we consider the case of
two subgraphs (termed communities), but our results can be
easily generalized. We consider the following implementation.
Fixed 0 < c ≤ 1/2, we partition the nodes into two disjoint
sets V = V1∪V2, with n1 = ⌊cn⌋ and n2 = ⌈(1−c)n⌉ nodes,
respectively. Nodes in each subset are linked as in Erdős-Rényi
random graph, where each link is present with probability p ∈
(0, 1], independent of the others [31]. On top of this, L links
positioned uniformly at random connect nodes belonging to
the two different subgraphs.

We now show that SBMs exhibit slow spread, unless the
control is exerted on both communities.1 Assume that the

1Since SBMs are random graphs, results will be provided with high
probability (w.h.p.), i.e., with probability converging to 1 as n grows.

control is exerted only in V1, if at all. Then we fix U ⊆ V1 and
consider any U-controlled evolutionary dynamics (G, β, U(t))
on G. Considering the standing assumptions that all nonzero
weights are equal to w = α/∆ and that the maximal degree
satisfies the inequality ∆ ≥ n2p ≥ (1−c)np (w.h.p.), we have
that ζ(V1) ≤ αL/(1− c)np. Hence, Corollary 4 yields

E0[T ] ≥
(1− c)np

αL
, (27)

that is, slow spread. We demonstrate that such an estimation is
asymptotically order-tight for constant control policies U(t) =
u by leveraging Corollary 1. To this aim, we estimate the
minimum conductance profile as follows. First, note that (even
though SMBs are no expanders) each of the two subgraphs
is expander with γ = cnpw/2 [2]. Using the trivial bound
∆ ≤ n, we get γ ≥ cαp/2. Given an integer 0 < h < n, any
subset W ⊆ V with |W| = h can be written as W = W1∪W2,
with Wi ⊆ Vi, |Wi| = hi, and h1 + h2 = h. Therefore,

ϕ(h) ≥ cαp

2
·

 min{h, n1 − h}, h ≤ n1,
min{h− n1, n2 − h}, n1 < h ≤ n2,
min{h− n2, n− h}, n2 < h < n.

(28)
For h ∈ {n1, n2}, the previous bound reduces to the trivial
inequality ϕ(h) ≥ 0. However, the presence of L links
between the two subgraphs ensures that ϕ(h) ≥ Lα/n, for
h ∈ {n1, n2}. Combining this with (28), using bounds on the
harmonic series, and applying Corollary 1, we finally obtain

E0[T ] ≤
1

2β − 1

(
2

Lα
n+

12

cαp
ln
en

2

)
+

β

(2β − 1)1⊤u
.

(29)
This, together with (27), shows that the expected spreading
time grows linearly with the network size n, as confirmed by
the simulations (blue curves) in Fig. 4.

Note that, if we allow the control nodes in both commu-
nities, we instead obtain a logarithmic growth lower bound
on E0[T ]. These considerations extend to more general SBMs
composed of many dense subgraphs. They lead to the con-
clusion that to obtain a fast spread in these graphs using
constant control policies or, more generally, control policies
with constant support U , the set U must necessarily have a
nonempty intersection with all the communities. This is a
drawback in practical applications as, not only it may require
the cardinality of U to be large, but also needs precise a-priori
information on the network topology to suitably position the
control nodes.

Example 3 (Ring graphs): We now consider the family Gn of
undirected ring graphs, whereby, for every n in N, Gn has node
set Vn = {1, . . . , n} and every node i is connected to nodes
i− 1 and i+1 (modulo n) by a link of weight w = α/2 (see
Fig. 2c). First, we observe that rings are instances of poorly
connected graphs and are not expander, since ϕn(h) = α for
all 0 ≤ h ≤ n. We bound the performance comparing our
process X(t) with the Markov process Y (t) associated with
the controlled evolutionary dynamics (G, 1, U(t)) with Y (0) =
0, since Lemma 2 ensures that the expected spreading time and
cost verify E0[TX ] ≥ E0[JY ] and E0[JX ] ≥ E0[JY ], where
the subscripts denote the process.
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We bound the performance of Y (t) applying Corollary 2.
To this aim, we start with two simple remarks. First, for every
W ⊆ V , we have ζ(W) ≤ α|W|. Second, the spreading
mechanism cannot increase the boundary B(t): it decreases
by α, if the two neighbors of the node that changes its
state are both state-1 nodes, or, otherwise, it remains the
same. Moreover, considering that every jump due to exerting
a control action can increase the boundary by α, we have, for
every h, Bh ≤ αN c. where N c is the total number of control
activations. Consider now the event E := {N c ≤ 2E[N c]}.
Using the inequality above and Markov inequality we obtain

E
[
1− E[Jh |σh−1]

Bh−1

]
≥ E

[
1− E[Jh |σh−1]

αN c 1E

]
≥ E [1− E[Jh |σh−1]]

2αE[N c]
P[E]

≥ 1− E [E[Jh |σh−1]]

4αE[N c]
.

From Corollary 2 and Remark 6, we finally obtain

E0[TX ] ≥ E0[TY ] ≥
n− E0[JY ]

4E0[JY ]
≥ 1

4E0[JX ]
n− 1

4
.

This allows us to conclude that the family of ring graphs
exhibits slow spread, unless adopting a control policy whose
cost E0[J ] blows up with the network size.

V. FEEDBACK CONTROL POLICIES

The examples discussed in the previous section revealed
different behavior of the controlled evolutionary dynamics,
depending on the network structure. Specifically, we charac-
terized families of network topologies that are easy-to-control
(e.g., expander graphs), where simple constant control policies
can guarantee fast spread, and others that are hard-to-control
(e.g., rings) where fast spread is not possible under any control
policy. Furthermore, we found that there are networks (e.g.,
SBMs) that belong to neither of these two classes, for which
the way the control is exerted plays a key role in determining
the performance. In such scenarios, the use of feedback control
policies may allow one to achieve fast spread with reasonable
control efforts, while simple open-loop control policies fail.

We observe that, in the presence of evolutionary advantage
for the novel states (β > 1/2), the evolutionary dynamics
naturally induces a positive feedback loop enhancing the
spreading process. However, the presence of bottlenecks in the
graph topology (as in the example of SBMs) may slow down
such a diffusion process. Hence, the objective of our control
policies will be to enforce such a positive feedback whenever
the process enters in a bottleneck. Technically, our policies rely
on the following two considerations: i) it is of no use to exert
control on state-1 nodes: avoiding this yields C(t) = 1⊤U(t);
and ii) in order to apply Theorem 1, the feedback control law
U(t) = ν(X(t)) must enforce a relation like (4). This suggests
to consider feedback laws whose instantaneous rate ν(X(t))
only depends on X(t) through A(t) and B(t). Moreover, (4)
suggests that a valuable control policy should compensate for
the boundary when B(t) becomes too small, in order to keep
B(t) + C(t) always sufficiently large.

Based on these considerations, we design a feedback control
policy that is determined by two ingredients: a target function
ι : {0, 1}n → {1, . . . , n}, which selects the node in which the
control is exerted (as a function of the current configuration);
and a rate function µ : {0, . . . , n} × R+ → R+, which
determines the control rate (as a function of the number of 1’s
in the current configuration, that is, A(t), and of the boundary
B(t)). We assume the target function to be any function ι(x)
such that xι(x) = 0 if x ̸= 1 (i.e., we always choose to
control a node that is currently in state 0). The rate function
is assumed to have the following form. We fix a parameter
K > 0 and we put

µ(a, b) =

{
K − b if a < n and b < K,
0 otherwise. (30)

Finally, the feedback control law ν(X(t)) is given by:

νi(X(t)) =

{
µ
(
A(t), B(t)

)
if i = ι

(
X(t)

)
,

0 else. (31)

Briefly, in the selected node i = ι(X(t)) we exert a control
action with rate µ as in (30), while in all other nodes no control
is exerted.

To analyze the expected spreading time under this feedback
control policy, it is useful to consider the following floor
version of the conductance profile.

Definition 2: For K ≥ 0, the K-floor conductance profile of
an undirected weighted graph G = (V, E ,W ) of order |V| = n
is the function ϕK : {1, . . . , n− 1} → R+ defined as

ϕK(a) := max{ϕ(a),K} = max
{

min
W⊂V,|W|=a

ζ(W),K
}
.

From Theorem 1 we establish the following upper bounds
on the expected spreading time and on the expected cost of
the feedback control policy in (31).

Corollary 5: Consider the feedback controlled evolutionary
dynamics (G, β, ν) with initial condition X(0) = 0, where ν
follows (31). Then, the expected spreading time verifies

E0[T ] ≤
β

(2β − 1)K
+

1

2β − 1

n−1∑
a=1

1

ϕK(a)
, (32)

and the expected control cost is bounded as

E0[J ] ≤
β

2β − 1
+

|{1 ≤ a < n : ϕ(a) < K}|
2β − 1

. (33)

Proof: From (30) it follows that, for all t such that A(t) <
n, C(t) = max{K − B(t), 0}. For such values of t we thus
have B(t) + C(t) = max{B(t),K} ≥ ϕK(A(t)). The upper
bound (32) follows from Theorem 1.

The expected control cost is estimated as follows. First, note
that C(t) ≤ K for every t. Moreover, if a is such that ϕ(a) >
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K, then B(t) > K and C(t) = 0. Using the bound on the time
spent by the process A(t) in each state from (5), we conclude

E0[J ] ≤ K
(
E[T0|X(0) = 0]

+

n−1∑
a=1

E[Ta|X(0) = 0]1[0,K]

(
ϕ(a)

))
= K

(
β

2β − 1

1

ϕK(0)
+

1

2β − 1

n−1∑
a=1

1[0,K]

(
ϕ(a)

)
ϕK(a)

)
=

β

2β − 1
+

|{1 ≤ a < n : ϕ(a) < K}|
2β − 1

,

thus proving (33).

We observe that the two bounds in Corollary 5 depend on
the control policy ν through the parameter K and on the
network structure through the minimum conductance profile
ϕ. Due to the monotonicity of ϕK , the bound in (32) is
nonincreasing in K, while (33) is nondecreasing in K. This
establishes a trade-off behavior between faster spread and
higher control cost, paving the way for the formalization of
optimization problems to choose the value K best compro-
mising fast spread (large K) and affordable cost (small K).

Example 4 (Fast spread on SBMs): We consider the feed-
back control policy in (31) on the implementation of SBMs
introduced in Example 2, choosing K < cαp/2. From (28),
we have that ϕ(a) ≥ K for a ∈ {1, . . . , n − 1} \ {n1, n2},
w.h.p. as n grows large. Therefore, ϕK(a) = max{K,ϕ(a)}.
The application of (32) yields

E0[T ] ≤
β

(2β − 1)K
+

1

2β − 1

( 2

K
+

12

cαp

(
ln
(n
2

)
+ 1

))
,

(34)
where the algebraic computations follow the ones carried on in
Section 2. Using (33), we bound E0[J ] ≤ 2+β

2β−1 . Hence, with a
bounded control cost, we achieve an expected spreading time
that grows logarithmically in n, that is, fast spread. Figure 4
compares our feedback control policy with constant policies,
highlighting the improvement in performance of the former
with respect to the latter. We notice that a larger improvement
is observed for highly connected communities (i.e., for large
values of p). We remark that the control strategy is designed
without knowledge of the exact partition of nodes into commu-
nities, and even of their size. This provides robustness in real-
world situations, where the network is known with uncertainty.

VI. DISCUSSION AND CONCLUSION

We have proposed a continuous-time stochastic dynami-
cal model that allows for an analytical treatment of evolu-
tionary dynamics and incorporates exogenous control input
mechanisms. The main contributions of this paper are i) the
formulation and a rigorous study of a link-based spreading
process incorporating an exogenous control and leading to a
nonhomogenous Markov process; ii) the derivation of a set of
explicit estimations of the spreading time and the control cost
for specific control policies; and iii) the design and analysis
of an effective low complexity feedback control policy.

Through our analysis, we characterized three classes of net-
work topologies depending on their controllability. Topologies
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Fig. 4: Monte Carlo estimation (200 runs) and 90% confidence
intervals of the expected spreading time E0[T ] on SBMs with
α = 1, β = 0.8, c = 0.4, and L = 5, feedback control (31)
with K = 1/4 (red squares) and constant control (blue circles),
for two values of p. Red solid curves represent the bounds (22)
and (34). Blue solid curves represent the bounds (27) and (29).

easy to control even with constant control policies, which in-
clude highly connected structures such as expander graphs. For
these topologies, little effort is required to achieve fast spread
(expected spreading time logarithmic in the network size),
for every constant control policy. Topologies easy to control
only with feedback control policies, of which stochastic block
model are a representative example. For these structures, no
fundamental limit precludes fast spread, but constant control
policies fail to achieve it. A major contribution of this paper
consists in the development of a feedback control policy that
remarkably improves the speed of the process, achieving fast
spread. Topologies hard to control under any control policy,
of which the ring graph is a representative element. For these
poorly connected topologies, any feasible control policy yields
slow spread (spreading time linear in the network size).

The generality of Theorem 1 and the effectiveness of the
feedback control policy proposed pave the way for the design
of optimal control policies for real-world applications (e.g.
introduction of genetically modified mosquitoes [21]). When
more information on the network structure is available, we
believe that such information might be exploited to design
and study targeted introduction policies. For instance, inspired
by targeted vaccination strategies [6], the introduction of the
novel states might be prioritized in nodes with high network
centrality. Other avenues of future research include the use of
the technical tools developed in this paper to study control
policies on other dynamical processes on networks, such as
opinion dynamics, diffusion of information, and epidemics.
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APPENDIX A
PROOF OF LEMMA 1

For a given time t0 ∈ R+, let Xk, Ak, Bk, Ck be the
discrete-time processes of X(t), A(t), B(t) C(t), respectively,
starting from time t+0 , with X0 = X(t0) = x. Clearly,
P[A(t) ≥ a, t ≥ t0 |X(t0) = x] = P[Ak ≥ a, k ≥
0 |X0 = x]. It follows from (3) that the increase and decrease
transition probabilities of Ak conditioned to Xk at time k,
satisfy p−k (a|x) ≤ 1 − β and p+k (a|x) ≥ β, for a /∈ {0, n},
while p+k (0|0) = 1 for all k, and a = n is an absorbing state.

Consider now a discrete-time birth-and-death chain Ãk with
state space {0, . . . , n} and transition probabilities p+(0) = 1,
p−(0) = p−(n) = p+(0) = 0, p+(a) = β, and p−(a) = 1−β,
for a = {1, . . . , n − 1}, with Ã0 = a. A standard argument
allows us to couple the two processes Ak and Ãk in such
a way that Ak ≥ Ãk for every k, yielding P[Ak ≥ a, k ≥
0 |X0 = x] ≥ P[Ãk ≥ a, k ≥ 0]. On the other hand, a direct
computation for the birth-and-death chain Ãk implies that

P[Ãk ≥ a, ∀ k] =
1−

(
1−β
β

)
1−

(
1−β
β

)n−a+1 ≥ 2β − 1

β
,

which yields the claim, since t0 can be chosen arbitrarily.

APPENDIX B
PROOF OF LEMMA 2

First, we consider β = γ and x0 ≤ y0. We define the
coupled process Z(t) = (X(t), Y (t)) on the state space
{0, 1}n × {0, 1}n, with initial condition Z(0) = (x0,y0),
associated with the same graph G. The coupling mechanism is
the following. Each link {i, j} is equipped with an independent
rate-Wij Poisson clock. When the clock associated with link
{i, j} ticks, the spreading mechanism of a controlled evolu-
tionary dynamics acts on that link for both X(t) and Y (t) and,
if a conflict occurs in both processes, then the outcome is the
same. Each node i is equipped with a Poisson clock with rate
Ui(t) associated with the exogenous control in node i. When
the clock associated with node i ticks, then both Xi and Yi are
set to 1. The marginals of X(t) and Y (t) coincide with the
distribution of a controlled evolutionary dynamics (G, β, U(t))
with initial condition X(0) = x0 and Y (0) = y0, respectively.

We show that, under this coupling, Y (t) ≥ X(t), for every
t ≥ 0. Since x0 ≤ y0, the inequality holds for t = 0. Then,
we prove that any transition of Z(t) preserves the inequality.
Assume that a transition occurs at time t. If the transition is
triggered by the spreading mechanism on link {i, j}, it means
that a conflict occurs. Since the inequality holds before the
transition, only three scenarios are possible:

a) Xi(t
−) = Yi(t

−) = 0, Xj(t
−) = 0, and Yj(t−) = 1;

b) Xi(t
−) = Yi(t

−) = 0, and Xj(t
−) = Yj(t

−) = 1;
c) Xi(t

−) = 0, Yi(t−) = 1, and Xj(t
−) = Yj(t

−) = 1.
In all these scenarios, it is straightforward to verify that,
after the transition, the inequality Y (t+) ≥ X(t+) holds,
irrespective of the state that wins the conflict. If instead the
transition is triggered by the control mechanism on node i,
then it yields Xi(t

+) = Yi(t
+) = 1, preserving the inequality.
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The proof for β < γ and x0 = y0 follows a similar
argument. We define the coupled process Z(t) = (X(t), Y (t))
in which each link {i, j} is equipped with an independent
Poisson clock with rate Wij . When the clock associated with
link {i, j} ticks, the spreading mechanism acts on that link for
both X(t) and Y (t). If a conflict occurs in only one of the
two processes, then it is solved as in a standard controlled
evolutionary dynamics with probability for the novel state
to win the conflict equal to β for X(t) and γ for Y (t),
respectively. If the conflict occurs in both processes, then
with probability β the novel state wins in both X(t) and
Y (t), with probability γ − β it wins only in Y (t), and with
probability 1 − γ the novel state loses in both X(t) and
Y (t). Each node i is given an nonhomogeneous Poisson clock
with rate Ui(t). When the clock associated with node i ticks,
then both Xi and Yi turn to 1. We immediately deduce that
the two marginals X(t) and Y (t) are controlled evolutionary
dynamics (G, β, U(t)) and (G, γ, U(t)), respectively, with the
same initial condition X(0) = Y (0) = x0 = y0.

Under this coupling, the inequality Y (t) ≥ X(t) holds true
for every t ≥ 0. In fact, at t = 0 it is verified, since X(0) =
Y (0). Then, the analysis of all possible transitions and their
effect on the inequality is performed similar to above and is
omitted due to space constraints. Finally, the case β < γ and
x0 < y0 is obtained by combining the two couplings above.

Existence of a coupling Z(t) = (X(t), Y (t)) such that
Y (t) ≥ X(t) for every t ≥ 0 implies the stochastic domination
Y (t) ⪰ X(t) [3], yielding Ey0

[TY ] ≤ Ex0
[TX ]. Finally, Since

U(t) ≥ 0, we conclude that

Ex0
[JX ] =

∫ Ex0 [TX ]

0

U(t)dt ≥
∫ Ey0 [TY ]

0

U(t)dt = Ey0
[JX ] ,

thus completing the proof.

APPENDIX C
PROOF OF LEMMA 3

We define a coupled process Z(t) = (X(t), Y (t)) on the
state space {0, 1}n × {0, 1}n, with initial condition Z(0) =
(x0,y0). Here, the marginal distributions of X(t) and Y (t) are
controlled evolutionary dynamics (G, 1, U(t)) and (G, 1, 0),
respectively, associated with a the same graph G. The coupling
mechanism is the following. Each link {i, j} of the graph G is
equipped with an independent rate-Wij Poisson clock. When
the clock associated with link {i, j} ticks, the spreading mech-
anism acts on that link for both X(t) and Y (t), with β = 1.
Each node i is given a rate-Ui(t) nonhomogeneous Poisson
clock, associated with the exogenous control in node i. When
the clock associated with node i ticks, the state Xi(t) turns
to 1. We immediately deduce that the two marginals of X(t)
and Y (t) are controlled evolutionary dynamics (G, 1, U(t))
and (G, 1, 0) with the desired initial conditions, respectively.

Now, we prove that, under this coupling, Y (t) ≥ X(t), for
every t. At t = 0, this is verified by assumption. We now show
that any transition of Z(t) preserves the inequality. Assume
that a transition occurs at time t. If the transition is triggered
by the spreading mechanism on link {i, j}, the same argument
used in the proof of Lemma 2 yields Y (t+) ≥ X(t+). If the

transition is triggered by the control mechanism on node i, we
observe that necessarily Yi(t−) = 1 (since we can only control
nodes in which Yi(0) = 1 and, being β = 1, if Yi(0) = 1 then
Yi(t) = 1, ∀t ≥ 0). Hence, the transition yields Xi(t

+) =
Yi(t

+) = 1, and the inequality is preserved.
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