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M. Petroloa*, R. Augelloa�, E. Carreraa,b�, D. Scano§, A. Pagania¶

aMUL2 Lab, Department of Mechanical and Aerospace Engineering,
Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Torino, Italy.

bDepartment of Mechanical Engineering, College of Engineering,
Prince Mohammad Bin Fahd University P.O. Box 1664. Al Khobar 31952.

Kingdom of Saudi Arabia

Abstract: This paper exploits the stress recovery technique to evaluate the out-of-plane
stress components in the static analysis of composite beams, plates and shells. This technique
is implemented in the framework of the Carrera Unified Formulation, an approach allowing
the implementation of the theories of structures in a compact way. This work uses Taylor,
Legendre and Jacobi polynomials with equivalent single-layer and layer-wise approaches. The
finite element method is applied to provide numerical solutions. Multi-layered beams, plates
and shells subjected to different loading and boundary conditions are studied to validate and
assess the proposed technique. The results are compared with those from the literature and
show that the stress recovery technique provides reasonable accuracy for the shear stresses,
even with lower-order models. Furthermore, results confirm that, when dealing with thick
structures, the adoption of layer-wise models is mandatory to obtain accurate results.

Keywords: Composite structures; Layer-Wise, Equivalent Single-Layer; Beam, plate, shell
models; Taylor, Lagrange, Jacobi polynomials; Stress recovery.

1 Introduction

The accuracy of stress analysis is highly dependent on the theory adopted to solve the three-
dimensional (3D) continuum problem for one-dimensional (1D) and two-dimensional (2D)
structures. In particular, out-of-plane stress components are greatly affected by the chosen
approximation. As an example, classical theories, such as the Euler-Bernoulli Beam Model
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(EBBM) [1] for 1D structures, or Kirchhoff-Love theory [2, 3] and Classical Lamination The-
ory (CLT) [4] for 2D metallic and composite structures, respectively, neglect the out-of-plane
stresses. Improved classical theories were developed afterwards, for instance, the Timoshenko
Beam Model (TBM) [5] for beams and First Shear Deformation Theory (FSDT), based on the
works by Reissner [6] and Mindlin [7], for 2D structures. However, since the transverse shear
stresses are considered constant via Hooke’s law, the homogeneous conditions are violated at
the top and bottom edges of the structure.
As far as layered composite structures are concerned, they show non-continuous mechanical
material properties. The high values of Young’s moduli orthotropic ratio - EL/ET and EL/Ez

with L as the fiber direction while T and z orthogonal to L - and the low transverse shear
moduli ratio - GLT/EL and GTT/EL) - lead to higher transverse shear and normal stress de-
formability than isotropic cases. For accurate analyses, the Layer-Wise (LW) approach is
often used due to the possibility of assigning sets of generalized degrees of freedom to each
layer, see Carrera [8]. However, the LW technique may require a higher computational cost
than the Equivalent Single Layer (ESL), in which the multilayered structure is modeled as a
single layer with homogenized properties. ESL may lower the computational cost but could
affect the result accuracy.
When dealing with 1D structures, improvements in classical models have been proposed to
account for non-classical effects and non-conventional materials, as described in Novozhilov
[9]. Extensive reviews for 1D theories can be found in Kapania and Raciti [10, 11] and Carrera
et al. [12]. Warping functions to capture the deformations of the beam cross-section were
proposed by Vlasov [13]. Ambrosini, Riera et al. [14], Mechab, Meiche et al. [15] and Friberg
[16], adopted these functions for the analysis of thin-walled structures. Ganapathi et al. [17]
proposed finite elements to study sandwich beams that account for transverse shear and warp-
ing. A family of finite elements considering a Heaviside function was developed by Vidal and
Polit [18]. Moreover, Schardt [19] suggested the so-called Generalized Beam Theory, which
expresses the displacement field as a linear combination of cross-sectional deformation modes.
Another class of advanced 1D models is referred to as VABS [20] and has been developed
using asymptotic methods.
Concerning 2D plate and shell theories, in addition to the already mentioned classical models,
other theories have been implemented as shown in comprehensive reviews [21, 22]. Exam-
ples of higher-order theories with the ESL approach are those developed by Reddy [23], the
so-called zig-zag theories firstly proposed by Murakami [24], and those based on Reissner’s
Mixed Variational Theorem (RMVT) developed by Carrera [25]. Furthermore, Rammerstor-
fer et al. [26], Reddy [27], Mawenya and Davies [28], and Noor and Burton [29] developed FE
implementations using LW theories.
The reduction of accuracy of ESL models is particularly evident for the out-of-plane stress
components when evaluated using Hooke’s law, as it is commonly done. Alternatively, those
stress components can be evaluated in a post-processing phase via the integration of the in-
definite equilibrium equations of 3D elasticity [30]. This procedure is also known as the stress
recovery technique, and it uses the first derivatives of the in-plane stresses integrated into
the out-of-plane direction. Patni et al. [31] studied beams with the stress recovery method
in the framework of Carrera Unified Formulation (CUF) using serendipity Lagrange expan-
sion. When dealing with 2D structures, Carrera [22] compared Taylor-Like and Legendre
expansions to study plates and shells with stress recovery technique. Finally, Park et al.
[32] proposed a nonlinear predictor-corrector procedure for accurately recovering stresses in
laminated plates.
The stress recovery technique is exploited in the present work to analyze composite beams,
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plates, and shells. To evaluate the effect of the employed theory of structure on the out-of-
plane stresses evaluated using Hooke’s law and stress recovery, the Carrera Unified Formula-
tion is exploited. CUF allows for using 1D beam and 2D plate and shell models of composite
structures, and the approximation used, i.e., the theory of structure, is considered input of
the analysis. This way, high- LW to low-order ESL models can be built without developing
any ad-hoc theory. This paper implements three types of structural theories based on Taylor,
Lagrange, and Jacobi polynomials in both ESL and LW ways.
This paper is structured as follows: Section 2 describes how the governing equations and the
relative finite element arrays are evaluated for the unified models of beams, plates, and shells.
Furthermore, the post-processing of the out-of-plane stress via the integration of the 3D in-
definite equilibrium equations is presented in Section 3. Section 4 shows four benchmarks
from the literature and the related results—finally, the main conclusions.

2 Governing equations for unified beam, plate and shell

models

The composite beam, plate and shell models considered in this work are depicted in Fig. 1.
The 1D beam model is considered in a Cartesian reference system, with the axis along the

Figure 1: Beam, plate and shell composite structures. A Cartesian reference system is em-
ployed for the 1D beam and 2D plate models (x, y, z), whereas a curvilinear system (α, β,
z) is considered for the 2D shell model.

y-direction, while the cross-section A is over the x, z plane. The same reference system is
used for the 2D plate model, and the mid-surface Ω0 lays on the x, y plane, whereas the z
coordinate is used along the thickness direction. Finally, the shell uses a curvilinear reference
frame (α, β, z), where α and β are the two in-plane directions and z is the thickness one.
Single curvature shells, i.e. cylindrical shells, are considered in this work, with curvature
radius Rβ. The displacement vector is introduced as

uk(x, y, z) =
{

uk
x uk

y uk
z

}T
, uk(α, β, z) =

{
uk
α uk

β uk
z

}T
(1)

where k indicates the generic layer of the composite structure. The stress, σk, and strain, ϵk,
components are expressed in the vectorial form as follows:

σk =
{

σk
xx σk

yy σk
zz σk

xz σk
yz σk

xy

}T
, ϵk =

{
ϵkxx ϵkyy ϵkzz ϵkxz ϵkyz ϵkxy

}T

σk =
{

σk
αα σk

ββ σk
zz σk

αz σk
βz σk

αβ

}T
, ϵk =

{
ϵkαα ϵkββ ϵkzz ϵkαz ϵkβz ϵkαβ

}T
(2)
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The displacement-strain relations are expressed as

ϵk = buk (3)

where b is the matrix of differential operators [33, 34]).
Linear elastic orthotropic materials are considered in this work. Consequently, the constitutive
relation using Hooke’s law reads as:

σk = Ckϵk, (4)

where Ck is the material elastic matrix, whose explicit form can be found in [35, 36].
Within the framework of CUF, the 3D displacement field, u(x, y, z), of the 1D beam, 2D plate
and u(α, β, z) of shell models can be written as follows:

uk(x, y, z) = F k
τ u

k
τ , δuk(x, y, z) = F k

s δu
k
s (5)

τ = 1, 2, ....,M, s = 1, 2, ....,M (6)

where Fτ and Fs are the expansion functions of the generalized displacements uk
τ and virtual

variations δuk
s , respectively. The Einstein convention with the repeated indexes τ and s

is assumed, M denotes the order of the expansion, and δ stands for the variation. This
notation allows adopting any structural theories and selecting the desired degree of precision.
Appendix A describes the adopted expansion functions, namely Taylor, Lagrange and Jacobi
polynomials. The generalized displacements uk

τ and variations δuk
s are discretized by means of

the Finite Element Method (FEM). Thus, introducing FEM in Eq. (5), the following relations
can be written

uk(x, y, z) = NiF
k
τ q

k
τi, δuk(x, y, z) = NjF

k
s δq

k
sj (7)

i = 1, 2, ...., Nn, j = 1, 2, ...., Nn (8)

where Ni and Nj stand for the shape functions, the repeated subscripts i and j indicate
summation, Nn is the number of the FE nodes per element, and qτi and δqsj are the vectors
of the FE nodal parameters. The expansions of the 3D displacement field for beams, plates
and shells are reported in Table 1. Well-known Lagrange-based shape functions, Ni and Nj,

Formulation 3D Field FEM+CUF Expansions

1D beam :
uk(x, y, z) Nk

i (y) F k
τ (x, z) qk

τi

δuk
s(y) Nk

j (y) F k
s (x, z) δqk

sj

2D plate :
uk(x, y, z) Nk

i (x, y) F k
τ (z) qk

τi

δuk(x, y, z) Nk
j (x, y) F k

s (z) δqk
sj

2D shell :
uk(α, β, z) Nk

i (α, β) F k
τ (z) qk

τi

δuk(α, β, z) Nk
j (α, β) F k

s (z) δqk
sj

Table 1: Overview of generalized primary unknowns. τ and s are repeated indexes with
τ = 1, 2, ....,M and s = 1, 2, ....,M , while M denotes the order of expansion. i and j are
repeated indexes with i = 1, 2, ...., Nn and j = 1, 2, ...., Nn, where Nn is the number of the FE
nodes per element.

are adopted [35]. In this work, one-dimensional FE with four nodes (B4) are adopted for
beams, i.e., a cubic approximation along the y-axis is assumed. On the other hand, 2D nine-
node bi-quadratic FE (Q9) are adopted as the shape functions for plates and shells.
The principle of virtual displacements is used to derive the governing equations,

δLi =

∫
Vk

(δϵTσ)dVk = δLe (9)
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where Vk is the integration domain, δLi is the variation of the internal work, and δLe is the
variation of the external work. Introducing the geometrical relations, Eq. (3), the constitutive
equations, Eq. (4), CUF and FEM, Table 1, into Eq. (9), the following governing equations
are obtained:

δqk
sj : kkijτs qk

τi = pk
sj (10)

where kkijτs is a 3×3 matrix, referred to as the fundamental nucleus of the mechanical stiffness
matrix. The stiffness matrix of each layer k is obtained from the expansion of the fundamental
nucleus on the indexes τ and s. psj is a 3×1 matrix, and is the fundamental nucleus of the

external load. For the sake of brevity, kkijτs and psj are not explicitly shown, but they can
be found in [34, 37]. The assembly over all nodes and elements leads to

K U = P (11)

where K, U and P are the stiffness matrix, the nodal displacements and the nodal forces of
the structure, respectively.

3 A posteriori evaluation of out-of-plane stress compo-

nents

As previously described, Hooke’s law, Eq. (4), allows for the evaluation of the in-plane
and out-of-plane stress components using strains and, in the case of low-order theories, the
accuracy of stress components from Hooke’s law may be unsatisfactory. This is especially
true for the out-of-plane components of the stress vector. To overcome this issue, those
components can be evaluated using a post-processing procedure via the integration of the 3D
indefinite equilibrium equations, i.e., a stress recovery technique, and using the in-plane stress
components calculated with Hooke’s law. Such a technique guarantees that the homogeneous
conditions at the top and bottom edges of the structure and the continuity of shear stresses
at the layer interfaces are fulfilled. Fig. 2 illustrates the integration direction for 1D beam
and 2D plate and shell formulations. The indefinite equilibrium equations of 3D elasticity for
1D beam and 2D plate formulations are{

δux : σxx,x + σxz,z + σxy,y = gx

δuy : σyx,x + σyz,z + σyy,y = gy
(12)

Furthermore, the volume forces are imposed as follows

g =
{

gx gy gz
}T

=
{
0 0 0

}T
(13)

Integrating from zi−1 to zi, see Fig. 2,{
σi
xz = σi−1

xz −
∫ i

i−1
(σxx,x + σxy,y) dz

σi
yz = σi−1

yz −
∫ i

i−1
(σyy,y + σxy,x) dz

(14)

For shells, the indefinite equilibrium equations are written as follows
δux : ∂σαz

∂z
+ σαz

(
2

Rα Hα
+ 1

Rβ Hβ

)
+ 1

Hα

∂σαα

∂α
+ 1

Hβ

∂σαβ

∂β
= gα

δuy :
∂σβz

∂z
+ σβz

(
1

Rα Hα
+ 2

Rβ Hβ

)
+ 1

Hβ

∂σββ

∂β
+ 1

Hα

∂σαβ

∂α
= gβ

(15)
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k=3

k=2

k=1

i

i-1

z

x

-a/2

-h/2

+h/2

+a/2

(a)

k=3

k=2

k=1

i

i-1

z=0

z

+h/2

-h/2

(b)

Figure 2: Integration of 3D equilibrium equations for 1D beam (a) and 2D plate and shell (b)
formulations.

with 
Hα = 1 + z

Rα

Hβ = 1 + z
Rβ

(16)

Furthermore, the volume forces are imposed as follows

g =
{

gα gβ gz
}T

=
{

0 0 0
}T

(17)

In this paper, only cylindrical shells are considered and the equations are modified as follows
δu : ∂σαz

∂z
+ σαz

(
1

Rβ Hβ

)
= −∂σαα

∂α
− 1

Hβ

∂σαβ

∂β

δv :
∂σβz

∂z
+ σβz

(
2

Rβ Hβ

)
= − 1

Hβ

∂σββ

∂β
− ∂σαβ

∂α

(18)

with 
Hα = 1

Hβ = 1 + z
Rβ

(19)

Eq. (18) is solved using the trapezoidal rule, i.e.,
σi
αz =

(
σi−1
αz (1−(zi−zi−1))

HβRβ
+

∫
i

i−1

(
−∂σαα

∂α
− 1

Hβ

∂σαβ

∂β

)
dz

)
/
(

1+(zi−zi−1)
HβRβ

)

σi
βz =

(
σi−1
βz (1−(zi−zi−1))

HβRβ
+

∫
i

i−1

(
− 1

Hβ

∂σββ

∂β
− ∂σαβ

∂α

)
dz

)
/
(

1+(zi−zi−1)
HβRβ

) (20)
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B1: Two-layer beam [38] B2: Three-layer plate [39]

y
t

L

L/h = 20 and h/t = 0.5 b/h = 4, 100 and a/b = 1
Cantilever beam with uniform Simply-supported, with a transverse
pressure on top, p = 1000Pa sinusoidal pressure p = pz sin

(
π y
b

)
on top, pz = 1Pa

B3: Five-layer sandwich plate [40, 41] B4: Three-layer shell [42, 25]
z

a

x

y

b

h

a/h = 100, a = b, hcore = 8mm, hskin = 0.5mm Rβ/b = π/3, Rβ/h = 4, 100 and a = 1
Simply-supported with a transverse Simply-supported with a transverse

sinusoidal pressure p = pz sin
(
π x
a

)
sin

(
π y
b

)
sinusoidal pressure p = pz sin

(
π β
b

)
on top , pz = 1Pa on top, pz = 1Pa

Table 2: Geometrical and loading conditions of the four benchmarks.

4 Numerical results

In this section, four benchmarks from the literature are considered to verify the stress recovery
technique, and they are described in Table 2. In particular, the shear stresses are evaluated
by using Hooke’s law and the stress recovery method, and compared with reference solutions.
Table 3 shows the system for labelling the adopted theory. TP indicates Taylor with order
P , ELN stands for equivalent single-layer Lagrange and LLN is layer-wise Lagrange with N
number of points used in the domain, and LJP indicates layer-wise Jacobi of P−th polynomial
order, whereas EJP stands for equivalent single-layer Jacobi. For examples,

� LL5: LW, five points Lagrange (Fourth-order).

� EJ5: ESL, Jacobi (Fifth-order).

For the shear stresses results, H indicates the use of Hooke’s law, and I stands for the stress
recovery method.
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Approach Taylor Lagrange Jacobi
ESL TP ELN EJP
LW - LLN LJP

Table 3: Theories adopted in the present work. N is the number of points used for each
section element and P is the polynomial order.

4.1 Two-layer beam

A two-layer is studied as the first case. and retrieved from [38]. The same beam is considered
in two different cases, composite and bi-metallic. In the former, the material properties are
EL/ET = 25, ET = E3, νLT = νT3 = νL3 = 0.25, GLT/ET = 0.5, GL3/ET = GT3/ET = 0.2,
being L and T the longitudinal and transverse direction, respectively, and with the stacking
sequence [0◦/90◦]. Concerning the bimetallic structure, the considered material properties are
E1 = 210 GPa, ν1 = 0.3, E2 = 75 GPa and ν1 = 0.3, where 1 and 2 indicate the two layers
of the beam. According to the LW approach, Lagrange and Jacobi models are developed by
dividing the cross-section into two sub-domains, one per layer, in both cases.
Table 4 compares several ESL and LW kinematic models for the composite beam case. The
values of transverse displacements, in-plane and shear stresses are shown. Furthermore, the
number of degrees of freedom (DOF) is illustrated for comparison purposes. The related shear
stress distributions are depicted in Figs. 3 and 4, by using Hooke’s law and the stress recovery
method, respectively.
Concerning the bimetallic structure, the results for transverse displacements, in-plane and
shear stresses are shown in Table 5. On the other hand, Figs. 5 and 6 illustrate the shear
stresses via Hooke’s law and the stress recovery method, respectively.
Some remarks can be drawn from these results:

� In both cases, transverse displacements and in-plane stresses are accurately evaluated
by LW and higher-order ESL models. EBBM and the other less-refined models, i.e., T1,
EJ1 and EL4, cannot match the reference solution, according to Tables 4 and 5.

� Table 4 and Fig. 3 show that LW higher-order theories are needed when shear stresses
are calculated through Hooke’s Law. ESL models cannot describe the distribution, even
if higher-order theories are adopted, unless the stress recovery is adopted.

� When shear stresses are evaluated for the bimetallic beam case, similar conclusions as
for the composite beam case can be drawn. However, for this case, E3 is different along
the z direction and, such a transverse anisotropy, makes LW mandatory.

4.2 Three-layer composite plate

As a second case, a three-layer composite plate is studied. Both thick (b/h = 4) and thin
(b/h = 100) configurations are considered. The study case was originally proposed by Pagano
[39] and further investigated by Reddy [23]. An orthotropic material is employed with the
following properties: EL/ET = 25, ET = E3 = 1, νLT = νT3 = νL3 = 0.25, GLT/ET = GL3/ET

= 0.5, GT3/ET = 0.2. The stacking sequence is [90◦/0◦/90◦]. The results of transverse
displacements, in-plane and shear stresses are reported in the following non-dimensional form:

uz =
100 ET uz(

b
h

)4
h pz

σxx =
σxx(
b
h

)2
pz

σxz =
σxz(
b
h

)
pz

(21)
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σyz × 103MPa
Model −uz × 103mm σyy × 103MPa H I DOF

Taylor and Classical Models
EBBM 5.140 92.96 — 23.14 198
TBM 5.265 92.38 10.07 23.20 198
T1 5.265 92.32 10.07 23.20 198
T3 5.240 91.61 15.45 23.04 660
T5 5.261 90.08 22.27 23.02 1386
T7 5.262 90.61 23.63 23.02 2376

LW Lagrange
LL4 5.220 92.65 16.38 22.98 396
LL9 5.247 90.93 16.35 23.03 990

LL16[38] 5.263 90.33 23.00 23.04 1848
ESL Lagrange

EL4 5.131 95.91 10.07 22.87 264
EL9 5.233 91.35 14.76 23.04 594
EL16 5.240 91.43 15.44 23.05 1056

LW Jacobi
LJ1 5.220 92.65 16.38 22.98 396
LJ2 5.246 91.04 16.35 23.03 858
LJ3 5.263 90.40 23.04 23.04 1320
LJ4 5.263 90.27 23.02 23.01 1914
LJ5 5.263 90.30 23.01 23.01 2640

ESL Jacobi
EJ1 5.131 95.91 10.07 22.87 264
EJ2 5.233 91.04 14.77 23.04 528
EJ3 5.240 91.55 15.44 23.03 792
EJ4 5.256 90.60 20.34 23.00 1122
EJ5 5.260 90.13 22.27 23.01 1518

Table 4: Transverse displacement and shear stresses of cantilever composite beam loaded
by a uniform pressure with 1D formulation. uz calculated in [0, L, 0], σyy calculated in
[0, L/2, 0.05m] and σyz calculated in [0, L/2,−0.025m].
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σyz × 103MPa
Model −uz × 103mm σyy × 103MPa H I DOF

Taylor and Classical Models
EBBM 0.2025 234.4 — 14.72 549
TBM 0.2029 234.8 14.80 15.45 549
T1 0.2029 234.8 14.80 14.94 549
T3 0.2006 234.9 15.49 13.25 1830
T5 0.2008 234.7 13.73 11.94 3843
T7 0.2009 234.8 12.37 12.24 6588

LW Lagrange
LL4 0.2008 237.5 12.16 14.84 1098
LL9 0.2007 234.7 11.22 13.85 2745

LL16[38] 0.2008 234.8 11.58 13.87 5124
ESL Lagrange

LL4 0.1629 234.8 14.79 14.59 732
LL9 0.2006 234.9 11.54 13.71 1647
LL16 0.2008 234.7 14.72 13.87 2928

LW Jacobi
LJ1 0.2008 237.5 12.16 14.84 1098
LJ2 0.2008 234.7 11.74 13.68 2379
LJ3 0.2009 234.7 12.22 13.68 3660
LJ4 0.2010 234.9 13.09 12.41 5307
LJ5 0.2010 234.8 12.95 12.18 7320

ESL Jacobi
EJ1 0.1629 234.8 14.79 14.59 732
EJ2 0.2006 235.0 11.35 13.68 1464
EJ3 0.2008 234.7 15.49 13.70 2196
EJ4 0.2009 234.8 15.64 12.19 3111
EJ5 0.2010 234.9 13.73 12.07 4209

Table 5: Transverse displacement and shear stresses of cantilever bimetallic beam loaded
by a uniform pressure with 1D formulation. uz calculated in [0, L, 0], σyy calculated in
[0, L/2,−0.01249m] and σyz calculated in [0, L/2,−0.01249m].
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Figure 3: Shear stress in [0, L/2, z] of cantilever two-layer composite beam loaded by a uniform
pressure with 1D formulation using Hooke’s law for LW (a) and ESL (b) approaches.
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Figure 4: Shear stress in [0, L/2, z] of cantilever two-layer composite beam loaded by a uniform
pressure with 1D formulation using stress recovery for LW (a) and ESL (b) approaches.
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Figure 5: Shear stress in [0, L/2, z] of cantilever bimetallic beam loaded by a uniform pressure
with 1D formulation using Hooke’s law for LW (a) and ESL (b) approaches for LW (a) and
ESL (b) approaches.
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Figure 6: Shear stress in [0, L/2, z] of cantilever bimetallic beam loaded by a uniform pressure
with 1D formulation using stress recovery for LW (a) and ESL (b) approaches.
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One sub-domain for each layer is used when adopting the LW Lagrange and Jacobi models.
For the thin plate, the results are compared with the reference solution [23]. A preliminary
convergence analysis is carried out, and the results are shown in Fig. 7 for the shear stresses
using Hooke’s law and the stress recovery method. It is carried out by adopting the LJ5
kinematics. In Table 6, the transverse displacements and the in-plane and shear stresses
calculated by ESL and LW models are shown, and the related distributions of the shear
stresses using Hooke’s law are plotted in Fig. 8, while Fig. 9 illustrates the behaviour of the
shear stresses via the stress recovery technique.
Regarding the thick plate, the results are compared with the exact solution provided by
Pagano [39]. Table 6 reports results for the transverse displacements, in-plane and shear
stresses as well as DOFs. The distributions of the shear stresses using Hooke’s law and
the stress recovery technique are reported in Figs. 10 and 11, respectively. The following
considerations can be made:

� Regarding the displacements and the in-plane stresses for the thin plate, all the kine-
matic models can approximate them accurately. However, when the thick plate is taken
into account, classical and lower-order ESL models cannot obtain reliable results. Same
conclusions can be given for in-plane stresses.

� Considering the shear stresses calculated via Hooke’s law for the thin case, only the LW
with higher-order polynomials can almost fulfill the inter-laminar continuity and zero
conditions at the top and bottom positions. The ESL theories are far from the reference
solution, even for higher-order theories. This is more evident for the thick plate.

� If the stress recovery method is employed, this technique can improve the results for the
LW models and the lower-order theories. In particular, when this strategy is applied to
the thin plate, each kinematics matches the reference solution.

� Given a polynomial order, Taylor, ESL Lagrange and ESL Jacobi lead to the same
results. This is also valid for LW Lagrange and Jacobi.

4.3 Five-layer composite sandwich plate

The third benchmark considers a thin sandwich plate (a/h = 100) from [40, 41]. The material
properties are EL = 50 GPa, E3 = ET = 10 GPa, GLT = GL3 = GT3 = 5 GPa, νLT = νL3 =
νTz = 0.25 for the skins. The ply sequences of the bottom and top skins are [0◦/90◦] and
[90◦/0◦], respectively. The properties of the material of the core are EL = ET = 0.01 MPa,
E3 = 75.85 MPa, GLT = GL3 = GT3 = 22.5 MPa, νLT = νL3 = νT3 = 0.25. When Lagrange
and Jacobi models LW are used, five sub-domains are used along the thickness direction, one
per layer.
A comparison for several kinematic models is listed in Table 7. Transverse displacements,
in-plane and shear stresses are shown. Figs. 12 and 13 show the distributions for the shear
stresses using Hooke’s law and stress recovery method, respectively.
The following considerations can be drawn:

� Classical and lower-order ESL models cannot accurately evaluate the transverse dis-
placements and the in-plane stresses; only higher-order kinematics such as T9, EL7 and
EJ5 can catch the transverse displacements. On the other hand, LW theories are close
to the reference solution.
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b/h = 4 b/h = 100
Model uz σxx σxz (H ) σxz (I ) DOF uz σxx σxz (H ) σxz (I ) DOF

Exact[39] 2.887 1.176 — 0.358 — — — — — —
Exact[23] — — — — — 0.513 0.631 — 0.442 —

Taylor and Classical Models
CLT 0.511 0.629 — 0.412 1302 0.510 0.630 — 0.288 9018
FSDT 2.093 0.633 0.160 0.441 1302 0.512 0.633 0.160 0.443 9018
T1 2.092 0.626 0.160 0.439 1302 0.512 0.633 0.160 0.443 9018
T3 2.687 1.136 0.285 0.380 2604 0.513 0.631 0.316 0.441 18036
T5 2.741 1.134 0.326 0.365 3906 0.514 0.631 0.402 0.441 27054
T7 2.807 1.152 0.374 0.359 5208 0.514 0.631 0.466 0.441 36072
T9 2.825 1.155 0.401 0.359 6510 0.514 0.631 0.494 0.441 45090

LW Lagrange
LL2 2.864 1.003 0.361 0.358 2604 0.514 0.631 0.442 0.441 18036
LL3 2.881 1.155 0.355 0.353 4557 0.514 0.631 0.442 0.441 31563
LL4 2.887 1.173 0.359 0.358 6510 0.514 0.631 0.442 0.441 45090
LL5 2.887 1.173 0.359 0.358 8463 0.514 0.631 0.442 0.441 58617
LL6 2.887 1.173 0.359 0.358 9765 0.514 0.631 0.442 0.441 72144
LL7 2.887 1.173 0.359 0.358 12369 0.514 0.631 0.442 0.441 85671

ESL Lagrange
EL2 2.092 0.626 0.160 0.439 1302 0.510 0.630 0.160 0.443 9018
EL3 2.074 0.651 0.159 0.439 1953 0.512 0.630 0.160 0.441 13527
EL4 2.687 1.136 0.285 0.380 2604 0.514 0.631 0.316 0.441 18036
EL5 2.685 1.134 0.285 0.380 3255 0.514 0.631 0.316 0.441 22545
EL6 2.741 1.134 0.374 0.365 3906 0.514 0.631 0.386 0.441 27054
EL7 2.741 1.134 0.374 0.365 4557 0.514 0.631 0.386 0.441 31563

LW Jacobi
LJ1 2.864 1.003 0.361 0.358 2604 0.514 0.631 0.442 0.443 18036
LJ2 2.881 1.155 0.355 0.353 4557 0.514 0.631 0.442 0.441 31563
LJ3 2.887 1.173 0.359 0.358 6510 0.514 0.631 0.442 0.441 45090
LJ4 2.887 1.173 0.359 0.358 8463 0.514 0.631 0.442 0.441 58617
LJ5 2.887 1.173 0.359 0.358 9765 0.514 0.631 0.442 0.441 72144

ESL Jacobi
EJ1 2.092 0.626 0.160 0.439 1302 0.510 0.630 0.160 0.441 9018
EJ2 2.074 0.651 0.159 0.439 1953 0.512 0.630 0.160 0.441 13527
EJ3 2.687 1.136 0.285 0.380 2604 0.514 0.631 0.316 0.441 18036
EJ4 2.685 1.134 0.285 0.380 3255 0.514 0.631 0.316 0.441 22545
EJ5 2.741 1.134 0.374 0.365 3906 0.514 0.631 0.386 0.441 27054

Table 6: Transverse displacement, in-plane and shear stresses of three-layer composite plate
loaded by sinusoidal pressure with 2D formulation. uz calculated in [a/2, b/2, 0], σxx calculated
in [a/2, b/2, h/2], σxz calculated in [a/2, 0, 0].
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approaches.
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Figure 9: Shear stresses in [a/2, 0, z] for three-layer composite plate with loaded by sinusoidal
pressure with 2D formulation for b/h = 100 case using stress recovery for LW (a) and ESL
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Figure 10: Shear stresses in [a/2, 0, z] for three-layer composite plate loaded by sinusoidal
pressure with 2D formulation for b/h = 4 case using Hooke’s law for LW (a) and ESL (b)
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Figure 11: Shear stresses in [a/2, 0, z] for three-layer composite plate loaded by sinusoidal
pressure with 2D formulation for b/h = 4 case using stress recovery for LW (a) and ESL (b)
approaches.

� Several problems arise by using Hooke’s Law for the calculation of the shear stresses.
None of the considered ESL models can evaluate the correct distribution. This is due
to the anisotropy in the material properties along the transverse direction.

� When adopting the stress recovery method, the LW solutions differ from the reference
solution. Higher-order ESL models are similar to the LW ones, while theories with fewer
degrees of freedom differ from LW integrated theories and reference solution.

� The use of Taylor, ESL Lagrange and ESL Jacobi leads to similar accuracies.

4.4 Three-layer composite shell

A cylindrical shell is studied as the last benchmark. Thick Rβ/h = 4 and thin Rβ/h = 100
shells were considered. The material properties are the same as the three-layer composite
plate example. The reference solution comes from Ren [42]. The results are reported in a
non-dimensional form as follows

w =
10 ET w

pz h
(

Rβ

h

)4 σββ =
σββ

pz

(
Rβ

h

)2 σβz =
σβz

pz

(
Rβ

h

) (22)

One sub-domain for each layer is used when adopting the LW Lagrange and Jacobi models.
The thin shell Rβ/h = 100 is analysed first. Table 8 shows a comparison for several kinematic
theories. Transverse displacements, in-plane and shear stresses are shown. The distribution
of the shear stresses using Hooke’s law is plotted in Fig. 14. On the other hand, Fig. 15
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σxz

Model uz σxx H I DOF
LW[40] 3.1167 -0.7819 0.1825 — 27783

Taylor and Classical Models
CLT 2.9363 -0.7697 — 0.0520 22326
FSDT 2.9429 -0.8004 0.0048 0.1692 22326
T1 2.9429 -0.8004 0.0048 0.1692 22326
T3 3.0220 -0.7738 0.0929 0.1768 44652
T5 3.1089 -0.7769 0.2306 0.1774 66978
T7 3.0777 -0.7690 0.2094 0.1774 89304
T9 3.1090 -0.7738 0.1540 0.1775 111630

LW Lagrange
LL2 3.1241 -0.7780 0.1823 0.1776 44652
LL3 3.1167 -0.7762 0.1859 0.1776 78141
LL4 3.1167 -0.7762 0.1825 0.1776 111630
LL5 3.1167 -0.7762 0.1825 0.1776 145119
LL6 3.1167 -0.7762 0.1825 0.1776 178608
LL7 3.1167 -0.7762 0.1825 0.1776 212097

ESL Lagrange
EL2 2.8218 -0.7674 0.0048 0.1626 22326
EL3 2.9429 -0.7713 0.0048 0.1620 33489
EL4 3.0222 -0.7739 0.0929 0.1769 44652
EL5 3.0222 -0.7738 0.0929 0.1769 55815
EL6 3.1088 -0.7690 0.2306 0.1775 66978
EL7 3.1088 -0.7699 0.2306 0.1775 78141

LW Jacobi
LJ1 3.1241 -0.7762 0.1823 0.1776 44652
LJ2 3.1167 -0.7762 0.1859 0.1776 78141
LJ3 3.1167 -0.7762 0.1825 0.1776 111630
LJ4 3.1167 -0.7762 0.1825 0.1776 145119
LJ5 3.1167 -0.7762 0.1825 0.1776 178608

ESL Jacobi
EJ1 2.8218 -0.7674 0.0048 0.1626 22326
EJ2 2.9429 -0.7713 0.0048 0.1620 33489
EJ3 3.0222 -0.7739 0.0929 0.1769 44652
EJ4 3.0222 -0.7738 0.0929 0.1769 55815
EJ5 3.1088 -0.7690 0.2306 0.1775 66978

Table 7: Transverse displacement, in-plane and shear stresses of the five-layer compos-
ite sandwich plate loaded by bi-sinusoidal pressure with 2D formulation. uz calculated in
[a/2, a/2,+h/2], σxx calculated in [a/2, a/2,−h/2], σxz calculated in [0, a/2, 0].
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Figure 12: Shear stress in [0, a/2, z] of five-layer composite sandwich loaded by bi-sinusoidal
pressure with 2D formulation using Hooke’s law for LW (a) and ESL (b) approaches.
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Figure 13: Shear stress in [0, a/2, z] of five-layer composite sandwich loaded by bi-sinusoidal
pressure with 2D formulation using stress recovery for LW (a) and ESL (b) approaches.
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illustrates the results obtained through the stress recovery technique.
As far as the thick shell Rβ/h = 4 is considered, Table 8 presents a list of several results
for the transverse displacements, in-plane and shear stresses. The distribution of the shear
stresses using Hooke’s law is given in Fig. 16, while the stress recovery technique is shown in
Fig. 17.
The analysis of the shell highlights the following conclusions:

� Higher-order ESL kinematics and LW theories are close to the reference solution when
the transverse displacements are evaluated in the thin shell. Classical models and lower-
order kinematics are not able to accurately evaluate the solution. Regarding the in-plane
stresses, the same considerations can be drawn. Dealing with the transverse displace-
ments and in-plane stresses for the thick shell, lower-order models are not capable of
being close to the Exact solution. On the other hand, almost every LW models predict
the results very well, except LL2 and LJ1.

� As far as the shear stresses calculated via Hooke’s Law are considered for the thin shell,
only the LW models almost fit the reference solution distribution. However, lower-order
LW theories such as LL2 or LJ2 do not match the reference solutions. As in the previous
case, no ESL model cannot reach the exact solution. When the thick plate is considered,
only very refined LW theories, i.e. LJ5, are very close to the exact solution.

� If the stress recovery method is employed, it can improve the results for the LW models
as for the lower-order theories. In particular, when the thin shell is analysed, every
kinematics matches the reference solution. When the thick case is studied, good results
are obtained for all the LW models, even for the lower-order LW theories. Furthermore,
this method leads to remarkable results also for ESL theories, which can respect the
continuity and zero conditions at the top and bottom positions.

� It is confirmed that the same results are obtained if Taylor, ESL Lagrange and Jacobi
are adopted. The same considerations is true for Lagrange and Jacobi LW.

5 Conclusions

This paper has evaluated the efficacy of the stress recovery technique for calculating the out-
of-plane stress components in the static analysis of composite beams, plates and shells. The
Carrera Unified Formulation (CUF) was adopted to build beam, plate and shell models using
Equivalent Single-Layer (ESL) and Layer-Wise (LW) approaches. Lower- and higher-order
theories were employed based on Taylor, Lagrange and Jacobi polynomials. Four case studies
were taken from well-known literature benchmarks, including beam, plate and shell composite
structures with various boundary conditions and external loads. The results were compared
with those from refined LW models and the literature. The following conclusions can be
drawn:

� The stress recovery technique can accurately evaluate the out-of-plane stress compo-
nents for thin beams, plates and shells regardless of the order of the employed theory
of structure. However, this is not valid when cases with transverse anisotropy are con-
sidered.

� Hooke’s law leads to accurate out-of-plane stresses when LW models are used, i.e., there
is no need for the stress recovery technique.

20



Rβ/h = 4 Rβ/h = 100
Model uz σββ σβz (H ) σβz (I ) DOF uz σββ σβz (H ) σβz (I ) DOF

Exact[42] 0.457 1.367 — 0.476 — 0.0787 0.781 — 0.523 —
Taylor and Classical Models

CLT 0.074 0.654 — 0.490 1314 0.0778 0.776 — 0.414 14418
FSDT 0.293 1.318 0.178 0.496 1314 0.0781 0.776 0.189 0.525 14418
T1 0.331 0.762 0.209 0.583 1314 0.0781 0.776 0.189 0.525 14418
T3 0.425 1.318 0.375 0.508 2628 0.0783 0.777 0.373 0.523 28836
T5 0.435 1.315 0.429 0.489 3942 0.0784 0.777 0.475 0.523 43254
T7 0.445 1.332 0.497 0.483 5256 0.0784 0.777 0.551 0.523 57672
T9 0.448 1.335 0.532 0.482 6570 0.0784 0.777 0.584 0.523 72090

LW Lagrange
LL2 0.440 1.199 0.478 0.479 2628 0.0783 0.777 0.522 0.523 28836
LL3 0.454 1.334 0.471 0.472 4599 0.0784 0.777 0.522 0.523 50463
LL4 0.458 1.354 0.475 0.477 6570 0.0784 0.777 0.523 0.523 72090
LL5 0.458 1.354 0.475 0.477 8541 0.0784 0.777 0.523 0.523 93717
LL6 0.458 1.354 0.475 0.477 10512 0.0784 0.777 0.523 0.523 115344
LL7 0.458 1.334 0.475 0.477 12483 0.0784 0.777 0.523 0.523 136971

ESL Lagrange
EL2 0.331 0.759 0.209 0.583 1314 0.0778 0.776 0.189 0.523 14418
EL3 0.329 0.789 0.209 0.584 1971 0.0781 0.776 0.189 0.523 21627
EL4 0.425 1.318 0.375 0.510 2628 0.0783 0.777 0.373 0.523 28836
EL5 0.426 1.306 0.375 0.510 3285 0.0783 0.777 0.373 0.523 36045
EL6 0.435 1.315 0.429 0.490 3942 0.0784 0.777 0.475 0.523 43254
EL7 0.435 1.314 0.429 0.490 4599 0.0784 0.777 0.475 0.523 50463

LW Jacobi
LJ1 0.440 1.199 0.478 0.479 2628 0.0783 0.777 0.522 0.523 28836
LJ2 0.454 1.334 0.471 0.472 4599 0.0784 0.777 0.522 0.523 50463
LJ3 0.458 1.354 0.475 0.477 6570 0.0784 0.777 0.523 0.523 72090
LJ4 0.458 1.354 0.475 0.477 8541 0.0784 0.777 0.523 0.523 93717
LJ5 0.458 1.354 0.475 0.477 10512 0.0784 0.777 0.523 0.523 115344

ESL Jacobi
EJ1 0.331 0.759 0.209 0.583 1314 0.0778 0.776 0.189 0.523 14418
EJ2 0.329 0.789 0.208 0.584 1971 0.0781 0.776 0.189 0.523 21627
EJ3 0.425 1.318 0.375 0.510 2628 0.0783 0.777 0.373 0.523 28836
EJ4 0.426 1.306 0.375 0.510 3285 0.0783 0.777 0.373 0.523 36045
EJ5 0.435 1.315 0.429 0.490 3942 0.0784 0.777 0.475 0.523 43254

Table 8: Transverse displacement, in-plane and shear stresses of three-layer composite shell
loaded by sinusoidal pressure with 2D shell formulation. uz calculated in [a/2, b/2, 0], σββ

calculated in [a/2, b/2, h/2] and σβz calculated in [a/2, 0, 0].
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Figure 14: Shear stresses in [a/2, 02, z] for three-layer composite shell loaded by sinusoidal
pressure with 2D shell formulation for Rβ/b = 100 case using Hooke’s law
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Figure 15: Shear stresses in [a/2, 0, z] for three-layer composite shell loaded by sinusoidal
pressure with 2D shell formulation for Rβ/b = 100 case using stress recovery for LW (a) and
ESL (b) approaches.
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Figure 16: Shear stresses in [a/2, 0, z] for three-layer composite shell loaded by sinusoidal
pressure with 2D shell formulation for Rβ/b = 4 case using Hooke’s law for LW (a) and ESL
(b) approaches.
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Figure 17: Shear stresses in [a/2, 0, z] for three-layer composite shell loaded by sinusoidal
pressure with 2D shell formulation for Rβ/b = 4 case using stress recovery for LW (a) and
ESL (b) approaches.
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� When dealing with thick structures, the stress recovery technique can improve the ac-
curacy of ESL models, but the results are still not as accurate as those from refined LW
models.
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A Structural theories for beams, plates and shells

In this paper, Taylor, Lagrange and Jacobi polynomials are used as expansion functions for
the evaluation of the displacements over the cross-section (1D beams) and thickness (2D
plates and shells) of composite structures.
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Taylor polynomials For the 2D plate and shell formulations, one-dimensional functions
depend only on the thickness coordinate z and they can be generally written as follows:

F0 = z = 1, F1 = z1 = z, . . . , FN = zN (23)

In a 1D beam formulation, 2D polynomials xizj are used (i and j are positive integers). An
example of a second-order displacement field is

ux = ux1 + xux2 + zux3 + x2ux4 + xzux5 + z2ux6

uy = uy1 + xuy2 + zuy3 + x2uy4 + xzuy5 + z2uy6 (24)

uz = uz1 + xuz2 + zuz3 + x2uz4 + xzuz5 + z2uz6

It is possible to obtain classical theories for both formulations by imposing N = 1 and using
penalty techniques, see [43].

Lagrange polynomials The general formula for 1D Lagrange polynomials is written as

Fm(ζ) =
n∏

l=0,j ̸=m

ζ − ζl
ζm − ζl

=
(ζ − ζ0) . . . (ζ − ζm−1) . . . (ζ − ζn)

(ζm − ζ0) . . . (ζm − ζm−1)(ζm − ζm+1) . . . (ζm − ζn)
(25)

where ζ is the natural coordinate [−1,+1], m is the actual coordinate, n denotes the number
of the l − th roots (namely, the Lagrange Points, LPs) of the polynomial. The polynomial
order of the expansion is equal to n− 1. The domain in the natural coordinate is [-1,+1]. For
2D plate and shell formulations, six different one-dimensional interpolations are adopted: 2
LPs, 3 LPs, 4 LPs, 5 LPs, 6 LPs, 7 LPs.
The 1D beam formulation uses bi-dimensional functions for the cross-section approximation.
In this work, three kinds of interpolations are used: bi-linear interpolation is given by 4LPs,
bi-quadratic interpolation is created by 9LPs and bi-cubic interpolation by 16LPs. More
details can be found in [43].

Jacobi polynomials The orthogonal Jacobi polynomials are built by using a recurrence
relation,

P (γ,θ)
n (ζ) = (Anζ +Bn)P

(γ,θ)
n−1 (ζ)− CnP

(γ,θ)
n−2 (ζ) (26)

where γ and θ are two parameters and n is the polynomial order. The relation is calculated
in ζ = [−1,+1], with P

(γ,θ)
0 (ζ) = 1 and P

(γ,θ)
1 (ζ) = A0ζ + B0. The parameters An, Bn and

Cn are given in Abramowitz and Stegun [44]. Other popular polynomials can be devised by
opportunely choosing values of the parameters γ and θ. For instance, Legendre polynomials
are given by γ = 0 and θ = 0. For 2D plate and shell formulation, one-dimensional expansions
can be derived by adopting the Jacobi polynomials and the following expressions

F1(ζ) =
1

2
(1− ζ)

F2(ζ) =
1

2
(1 + ζ) (27)

Fτ (ζ) =ϕτ−1(ζ), τ = 3, 4, ..., n+ 1

with
ϕj(ζ) = (1− ζ) (1 + ζ)P γ,θ

j−2(ζ), j = 2, 3, ..., n (28)
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The first two functions F1(ζ), F2(ζ) are the vertex expansions. Given the following property,

Fτ (−1) = Fτ (1) = 0, i ≥ 3 (29)

the functions Fτ (ζ), τ = 3, 4, ... are called bubble functions or edge expansions. Jacobi polyno-
mials are also adopted to build two-dimensional expansions for 1D formulation. In this case,
vertex, edge and internal polynomials are used as interpolation functions over the domain, see
[45] for more details. The vertex modes correspond to the first-order, quadrilateral Lagrange
polynomials:

Fτ (ξ, η) =
1

4
(1− ξτξ)(1− ητη), τ = 1, 2, 3, 4 (30)

where ξ and η vary above the domain between -1 and +1, and ξτ and ητ represent the vertex
coordinates in the natural plane. The edge modes are defined for p ≥ 2 as follows

Fτ (ξ, η) =
1

2
(1− η)ϕp(ξ), τ = 5, 9, 13, 18, ...

Fτ (ξ, η) =
1

2
(1 + ξ)ϕp(η), τ = 6, 10, 14, 19, ...

Fτ (ξ, η) =
1

2
(1 + η)ϕp(ξ), τ = 7, 11, 15, 20, ... (31)

Fτ (ξ, η) =
1

2
(1− ξ)ϕp(η), τ = 8, 12, 16, 21, ...

where p represents the polynomial degree of the bubble function. The internal expansions
are built by multiplying edge modes defined for one-dimensional equations, given for p ≥ 4.
The number of internal polynomials is provided by (p − 2)(p − 3)/2. The set of fifth-order
polynomials, which contains 3 internal expansions, is shown as an example

F22(ξ, η) =ϕ3(ξ)ϕ2(η), 3 + 2 = 5

F23(ξ, η) =ϕ2(ξ)ϕ3(η), 2 + 3 = 5 (32)

F17(ξ, η) =ϕ2(ξ)ϕ2(η), 2 + 2 = 4

In this work, ESL models that make use of Taylor, Lagrange and Jacobi polynomials are
used. The general behaviour of the primary mechanical variables along the thickness of the
structure in the case of ESL is depicted in Fig. 18 for a three-layer plate. In the case of LW,

k=1

k=2

k=3

LW ESL

Figure 18: Scheme for modelling approaches. k is the index of the layers.

different sets of variables are assumed per each layer and the continuity of the displacements
is imposed at the layer interface (see Fig. 18), and is obtained using Lagrange and Jacobi
polynomials.

28


	Introduction
	Governing equations for unified beam, plate and shell models
	A posteriori evaluation of out-of-plane stress components
	Numerical results
	Two-layer beam
	Three-layer composite plate
	Five-layer composite sandwich plate
	Three-layer composite shell

	Conclusions
	Structural theories for beams, plates and shells

