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Classial, Re�ned and Component-Wise Analysis ofReinfored-Shell Wing StruturesE. Carrera1, A. Pagani2, and M. Petrolo3Politenio di Torino, Corso Dua degli Abruzzi 24, 10129 Torino, ItalyThis paper ompares early and very reent approahes to the stati analysis ofreinfored-shell wing strutures. Early approahes were those based on the pure semi-monooque theory along with beam assumptions of the Euler-Bernoulli and Timoshenkotype. The reent approahes are based on a hierarhial, one-dimensional (1D) formu-lation. These are obtained by adopting various polynomial expansions of the displae-ment �eld above the ross-setion of the struture aording to the Uni�ed Formulation(UF) whih was reently proposed by the �rst author. Two lasses were developed inthe UF framework: (1) In the �rst lass we developed Taylor Expansion (TE) modelswhih exploit N-order Taylor-like polynomials; lassial beam theories (Euler-Bernoulliand Timoshenko) were obtained as speial ases of TE. (2) In the seond lass LagrangeExpansion (LE) models were built by means of four- (L4) and nine-point (L9) Lagrange-type polynomials over the ross-setion of the wing. Component-wise (CW) approahwas obtained by using di�erent L4 and L9 desriptions for di�erent wing omponentsinluding panels, ribs, spar aps, stringers and transverse ribs. The �nite elementmethod was used to develop numerial appliations in the weak form. Finite elementmatries and vetors are expressed in terms of fundamental nulei whose forms do notformally depend on the order and the expansion. A number of typial aeronautialstrutures were analyzed and semimonooque results were ompared to lassial (Euler-Bernoulli and Timoshenko), re�ned (TE) and omponent-wise (LE) models. Stress and1 Professor of Aerospae Strutures and Aeroelastiity, Department of Mehanial and Aerospae Engineering,erasmo.arrera�polito.it. Member AIAA, Corresponding Author.2 PhD student, Department of Mehanial and Aerospae Engineering, alfonso.pagani�polito.it.3 Researh assistant, Department of Mehanial and Aerospae Engineering, maro.petrolo�polito.it.1



displaement �elds of simple statially determinate, redundant and open setion wing-box strutures were analyzed. Finite element models by a ommerial software thatmake use of solid and shell elements were used for omparison purposes. Results havehighlighted the enhaned apabilities of the present re�ned and omponent-wise for-mulations. The present Component-Wise approah appears the natural tool to analyzewing strutures, as it leads to results that an only be obtained by use of 3D elasti-ity (solid) elements whose osts are at least one-order of magnitude higher than CWases. CW models in onjuntion with FE ould be seen as a modern way of analyzingreinfored shell strutures by removing lassial assumptions of onstant shear in thespar webs and panels.
Nomenlature

C̃ij = material oe�ients
C̃pp, C̃pn, C̃np, C̃nn = material sti�ness subarrays
Dp, Dnp, Dny = di�erential operator matries
E = Young's modulusFs = ross-setion funtion of the variationFτ = ross-setion funtion of the variable
G = shear modulusKijτs = fundamental nulei of sti�ness matrixL = dimension of the struture in the y diretion
Lext = external work
Lint = internal workN = order of the expansion above the ross-setion for the TE modelsNi = shape funtion of the variableNj = shape funtion of the variationq = nodal displaement vetor2



u = displaement vetorux, uy, uz = displaement omponents in the x, y, and z diretionsx, y, z = oordinates referene system
δ = virtual variation
ǫ = strain vetor
ν = Poisson's ratio
σ = stress vetor
Ω = ross-setion domain I. IntrodutionPrimary airraft strutures are essentially reinfored thin shells [1℄. These are so-alled semi-monooque onstrutions whih are obtained by assembling three main omponents: skins (or pan-els), longitudinal sti�ening members (inluding spar aps) and transversal sti�eners (ribs). Thedetermination of stress/strain �elds in these strutural omponents is of prime interest for stru-tural analysts. Many di�erent approahes were developed in the �rst half of the last entury. Theseare disussed in major referene books [1, 2℄ and more reently in [3℄. Among these approahesthe so-alled Pure Semimonooque (PS) (or �idealized semimonooque�) is the most popular, sineit assumes onstant shear into panels and shear webs. The main advantage of PS is that it leadsto a system of linear algebraial equations. However the number of suh equations rapidly in-reases for multi-bay box strutures with high redundany. The number of resulting equations (andredundany) an be strongly redued by oupling PS with assumptions from Euler-Bernoulli (Euler-Bernoulli Beam Theory, EBBT) or Timoshenko theories (Timoshenko Beam Theories, TBT). Manyworks are known to overome limitations related to onstant shear hypotheses, see [4�8℄ as examples.The systemati use of matrix methods in airraft struture analysis was introdued by Argyris andKensley [9℄. Here, the PS approah and fore methods were used to desribe an automati tehniqueto build ompliane matries. This automati tehnique is one of the pioneering ontributions tothe development of �nite element methods (FEM).Due to the advent of omputational methods, mostly FEM, the analysis of omplex airraft3



strutures ontinued to be made using a ombination of solids (3D), plates/shells (2D) and beams(1D). These were implemented �rst in NASTRAN odes. Many others ommerial FE odes havebeen developed and used in aerospae industries. Nowadays FEM models with a number of un-knowns (degrees of freedom, DOFs) lose to 106 are widely used in ommon pratise. The possiblemanner in whih stringers, spar aps, spar webs, panels, ribs are introdued into FE mathematialmodels is part of the knowledge of strutural analysts. A short disussion of this follows. A numberof works have shown the neessity for a proper simulation of the sti�eners-panel �linkage�. Satsangiand Murkhopadhyay [10℄ used 8-node plate elements assuming the same displaement �eld for sti�-eners and plates. Kolli and Chandrashekhara [11℄ formulated an FE model with 9-node plate and
3-node beam elements. Gangadhara [12℄ arried out linear stati analyzes of omposite laminatedshells using a ombination of 8-node plate elements and 3-node beam elements. Reently, Thinhand Khoa [13℄ have developed a new 9-node retangular plate model to study the free vibrations ofshell strutures with arbitrary oriented sti�eners. It is often neessary to model sti�eners out of theplate/shell element plane. In this ase beam nodes are onneted to the shell element nodes via rigid�titious links. This methodology presents some inonsistenies. The main problem is that the out-of-plane warping displaements in the sti�ener setion are negleted and the beam torsional rigidityis not orretly predited. Several solutions have been proposed in the literature to overome thisissue. Patel et al. [14℄ introdued a torsion orretion fator. Vörös [15, 16℄ proposed a proedure tomodel the onnetion between the plate/shell and the sti�ener where the shear deformation of thebeam is negleted and the formulation of the sti�ener is based on the well-known Bernoulli-Vlasov[17℄ theory. In Vörös' method the sti�ener element has two nodes with seven degrees of freedomper node. In order to maintain the displaement ompatibility between the beam and the sti�enedelement, a speial transformation was used, whih inluded torsional-bending oupling and the e-entriity of internal fores between the sti�ener and the plate elements. 3D �nite element modelsare usually implemented as soon as the wing's strutural layouts are determined. Beause of theiromplexity, solid models are ommonly used only within optimization proedures. In fat, despitethe availabilities of even heaper omputer power, these FEM models present large omputationalosts and their use in a multi-�eld iterative proess, suh as in an aeroelasti analysis, is quite a4



burden. Nowadays the trend is to use equivalent, simpli�ed, lower �delity 1D FEM models (theso-alled �stik-model�) of the wing struture to be used within iterative algorithms. There are nu-merous papers dealing with wing stik models in the literature, suh as [18�20℄. These methodologiesare based on the extration of the strutural sti�ness of the wing with respet to its prinipal axes.Those sti�ness properties are then employed to generate the wing stik model. Simpli�ed modelsare generally reated along the wing's elasti axis. This applies a geometrial onstraint so thatthe stik model prinipal torsional axis at as the wing elasti axis. It ould be onluded that thedevelopment of omputationally heaper models ompared to those by standard FE models, butwith high auray, still plays a ruial role in airraft struture analysis.The present work falls in the framework of the Carrera Uni�ed Formulation, CUF, whih hasbeen developed during the last deade by the �rst author and his o-workers. CUF was initiallydevoted to the development of re�ned plate and shell theories, see [21, 22℄. In reent works [23, 24℄,CUF has been extended to beam modeling. Two lasses of CUF 1D models were proposed: theTaylor-expansion lass, hereafter referred to as TE, and the Lagrange-expansion lass, hereafterreferred to as LE. TE models exploit N -order Taylor-like polynomials to de�ne the displaement�eld above the ross-setion with N as a free parameter of the formulation. Stati [25, 26℄ andfree-vibration analyzes [27, 28℄ showed the strength of CUF 1D models in dealing with arbitrarygeometries, thin-walled strutures and loal e�ets. Moreover, asymptoti-like analyzes leading toredued re�ned models were arried out [29℄. The Euler-Bernoulli (EBBT) and Timoshenko (TBT)lassial beam theories are derived from the linear Taylor-type expansion. The LE lass is based onLagrange-like polynomials to disretize the ross-setion displaement �eld. LE models have onlypure displaement variables. Stati analyzes on isotropi [30℄ and omposite strutures [31℄ revealedthe strength of LE models in dealing with open ross-setions, arbitrary boundary onditions andobtaining Layer-Wise desriptions of the 1D model.The present paper proposes CUF-based approah in the analysis of omplex wing strutures.A number of signi�ant problems dealing with reinfored-shell strutures are addressed in the fol-lowing setions. Classial, re�ned and omponent-wise (CW) models are implemented for di�erentstrutural on�gurations. Partiular attention is given to the CW approah. 'Component-wise'5



means that eah typial omponent of a reinfored-shell struture (i.e. stringers, sheet panels andribs) an be modelled by means of a unique 1D formulation. The CW approah has reently beenexploited for the analysis of laminated omposites [32℄ and it has proven to be able to model single�bers and related matries, entire layers and whole multilayers. Moreover, free vibration analysisof omplex wing strutures has been arried out by using the CW formulation in [33℄ where theapability of the present approah to detet loal modes - modes in whih the vibration of singleomponents, e.g. panels, spars, stringers and bays, are learly evident - has been demonstrated. In[33℄, MSC/PATRAN © has been used as pre- post-proessor with referene to CW models to reduethe man-power time related to the reation of the mathematial model and MSC/NASTRAN ©solvers have been exploit to solve the eigenvalue problem. In the present work the CW approah ispresented as a e�ient way of dealing with stati analysis of reinfored-shell wing strutures.The paper is organized as follows: a brief desription of the models adopted is given in Setion II;advaned beam theories based on CUF are desribed in Setion III, together with the �nite elementformulation; numerial results are provided in Setion IV; main onlusions are then outlined inSetion V. II. Desription of the onsidered Strutural ModelsA brief desription of the models used in the present paper is herein provided. Firstly analytialPure Semimonooque approahes are drawn. Re�ned and CW as well as lassial beam theories arethen introdued by means of 1D CUF, whih is desribed in Setion III.A. Pure Semimonooque (PS)These models are based on the simplifying assumptions of the semimonooque assembled om-ponents, as desribed in the Setion I. Stringers are here onsidered as onentrated areas arryingonly axial stresses, while webs and panels arry only shearing stresses. Aording to [1�3℄ the in-ternal loads in a statially determinate reinfored-shell struture an be found by the use of statiequilibrium equations alone. In a statially indeterminate struture, additional equations along withthe stati equilibrium equations are neessary to �nd all the internal stresses. In suh a ase weshould impose ompatibility onditions in order to deal with redundant fores and stresses. These6



onditions an be written in various forms by applying elastiity theorems; among these the Prin-iple of Virtual Displaements (PVD) is used in this artile as in [2, 3℄. This approah is hereafterreferred to as the PS (Pure Semimonooque) model.B. Beam Semimonooque (BS)The lassial and best-known beam theories are EBBT [34℄ and TBT [35℄. The former does notaount for transverse shear deformations. The latter foresees a uniform shear distribution alongthe ross-setion of the beam. For instane, referring to the oordinate frame shown in Fig. 1, thedisplaement omponents given by TBT an be written as:
ux = ux1

uy = uy1 + x uy2 + z uy3

uz = uz1

(1)
where the parameters on the right hand sides (ux1 , uy1 , uz1 , uy2, uy3) are the displaements and therotations on the referene axis. EBBT requires a further ondition, whih results in the penalizationof the shear strain omponents, ǫxy and ǫzy.If EBBT is applied to the idealized semimonooque assumptions it is possible to redue re-dundany in statially indeterminate strutures. This method, hereafter referred to as BS (BeamSemimonooque) model, is ertainly less aurate than PS sine more assumptions are required. Itshould be noted that for statially determinate strutures the two methods oinide.C. Re�ned Beam Models based on Taylor-Expansion (TE)Several higher-order beam models an be found in open literature to overome planar onditionson the displaement �eld over the wing ross-setion. The Taylor-based CUF an be adopted tore�ne the displaement �eld of lassial 1D models by adding expansion terms in Eq. (1). For
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instane, the TE seond-order (N = 2) re�ned 1D model presents the following kinemati model
ux = ux1 + x ux2 + z ux3 + x2 ux4 + xz ux5 + z2 ux6

uy = uy1 + x uy2 + z uy3 + x2 uy4 + xz uy5 + z2 uy6

uz = uz1 + x uz2 + z uz3 + x2 uz4 + xz uz5 + z2 uz6

(2)
The 1D model desribed by Eq. 2 has 18 generalized displaement variables: three onstant, sixlinear, and nine paraboli terms. The possibility of re�ning 1D models permits us to deal with awide variety of problems with no need for ad ho formulations. Non-lassial e�ets (e.g. warping,in-plane deformations, shear e�ets, bending-torsion ouplings) are aounted for by opportunelyvarying the order of the adopted model. More details about TE models an be found in Setion IIIand in the book by Carrera et al. [24℄.D. Component-Wise (CW)In a wing strutural analysis, eah omponent (e.g. ribs, stringers, panels, et.) is ommonlymodelled through di�erent elements (e.g. beams, shells, solids, et.). For instane, by onsideringa simpli�ed wing-box (see Fig. 2), stringers are onsidered as beams, whereas panels and ribs aremodelled with 2D plate elements. 3D elastiity elements ould be also used for stringers or for bothstringers and panels. In the present paper, 1D LE elements were used to simultaneously model allthe wing omponents. In a �nite element framework this means that spar aps, webs, panels andribs are modelled by means of the same 1D �nite element and, therefore, with no need of ad hoformulations for eah omponent. More details about the LE beam theory and the implementationof CW models an be found in Setion III.III. CUF 1D FormulationIn this Setion a brief desription of models based on CUF is provided. First, some notationsare introdued. Then TE and LE models are desribed. In Setion III C the higher-order �niteelements are formulated. Finally, in Setion IIID the use of the LE 1D elements in CW models isdisussed. 8



A. PreliminariesReferring to the oordinate frame shown in Fig. 1, let us introdue the transposed displaementvetor, u(x, y, z) = { ux uy uz

}T (3)The ross-setion of the struture is Ω, and the beam boundaries over y are 0 ≤ y ≤ L. The stress,
σ, and strain, ǫ, omponents are grouped as follows:

σp =

{

σzz σxx σzx

}T

, ǫp =

{

ǫzz ǫxx ǫzx

}T

σn =

{

σzy σxy σyy

}T

, ǫn =

{

ǫzy ǫxy ǫyy

}T (4)The subsript "n" stands for terms lying on the ross-setion, while "p" stands for terms lying onplanes whih are orthogonal to Ω. In the ase of small displaements with respet to a harateristidimension of Ω, linear strain - displaement relations an be used
ǫp = Dpu
ǫn = Dnu = (DnΩ +Dny)u (5)where Dp and Dn are linear di�erential operators,
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(6)
Constitutive laws were exploited to obtain stress omponents,

σ = Cǫ (7)
9



Aording to Eq.s (4), Eq. (7) beomes
σp = C̃ppǫp + C̃pnǫn

σn = C̃npǫp + C̃nnǫn

(8)In the ase of isotropi material the matries C̃pp, C̃nn, C̃pn, and C̃np are
C̃pp =

















C̃11 C̃12 0

C̃12 C̃22 0

0 0 C̃44
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(9)
For the sake of brevity, the dependene of material oe�ients [C̃℄ij versus Young's modulus andPoisson's ratio is not reported here. It an be found in several books, suh as [36℄ or [37℄.B. One-dimensional advaned formulation with variable (hierarhial) kinematisIn the framework of the CUF, the displaement �eld above the ross-setion is the expansion ofgeneri funtions, Fτ , u(x, y, z) = Fτ (x, z)uτ (y), τ = 1, 2, ....,M (10)where Fτ vary over the ross-setion. uτ is the displaement vetor and M stands for the numberof terms of the expansion. Aording to the Einstein notation, the repeated subsript, τ , indiatessummation. The hoie of Fτ determines the lass of 1D CUF model that has to be adopted. Twoases are addressed in this paper: TE and LE.TE 1D models are based on polynomial expansions, xi zj, of the displaement �eld above theross-setion of the struture, where i and j are positive integers. A generi N-order displaement�eld is therefore expressed byu =

N
∑

Ni=0

(

Ni
∑

M=0

xN−M zM uN(N+1)+M+1
2

) (11)
10



Eq. (2) is a partiular ase of Eq. (11). The order N of the expansion is arbitrary and de�nes thebeam theory. N is set as an input of the analysis. The hoie of N , for a given strutural problem,is usually made through a onvergene study.The re�ned TE models desribed above are haraterized by degrees of freedom (displaementsand N-order derivatives of displaements) with a orrespondene to the axis of the beam (see Fig.3). The expansion an also be made by using only pure displaement values, e.g. by using Lagrangepolynomials. The LE lass exploits Lagrange-like polynomials to build 1D higher-order models. Inthis work, two types of ross-setion polynomial sets were adopted: four-point elements, L4, andnine-point elements, L9. The isoparametri formulation was exploited to deal with arbitrary shapedgeometries. The L4 interpolation funtions are given in [38℄,
Fτ =

1

4
(1 + r rτ )(1 + s sτ ) τ = 1, 2, 3, 4 (12)where r and s vary from −1 to +1, whereas rτ and sτ are the oordinates of the four points whosenumbering and loation in the natural oordinate frame are shown in Fig. 4a. In the ase of an L9element the interpolation funtions are given by

Fτ = 1

4
(r2 + r rτ )(s

2 + s sτ ) τ = 1, 3, 5, 7

Fτ = 1

2
s2τ (s

2 − s sτ )(1− r2) + 1

2
r2τ (r

2 − r rτ )(1− s2) τ = 2, 4, 6, 8

Fτ = (1− r2)(1 − s2) τ = 9

(13)
The nine points of the L9 element are shown in Fig. 4b. For instane, the displaement �eld givenby an L4 element is

ux = F1 ux1 + F2 ux2 + F3 ux3 + F4 ux4

uy = F1 uy1 + F2 uy2 + F3 uy3 + F4 uy4

uz = F1 uz1 + F2 uz2 + F3 uz3 + F4 uz4

(14)
11



where ux1 , ..., uz4 are the displaement variables of the problem and represent the translationaldisplaement omponents of eah of the four points of the L4 element. The adopted ross-setiondisplaement �eld (L4 or L9) de�nes the beam theory. For further re�nements, the ross-setionan be disretized by using several L-elements as in Fig. 3b-d. More details about LE models anbe found in the paper by Carrera and Petrolo [30℄.C. FE Formulation based on LE and TEThe FE approah was adopted to disretize the struture along the y-axis. This proess isonduted via a lassial �nite element tehnique, where the displaement vetor is given byu(x, y, z; t) = Fτ (x, z)Ni(y)qτi(t) (15)
Ni stands for the shape funtions and qτi for the nodal displaement vetor,qτi =

{

quxτi
quyτi

quzτi

}T (16)For the sake of brevity, the shape funtions are not reported here. They an be found in manybooks, for instane in [39℄. Elements with four nodes (B4) were adopted in this work, that is, aubi approximation along the y axis was assumed. The hoie of the ross-setion disretization forthe LE lass (i.e. the hoie of the type, the number and the distribution of ross-setion elements)or the theory order, N , for the TE lass is ompletely independent of the hoie of the beam �niteelement to be used along the axis of the beam.The sti�ness matrix of the elements and the external loadings vetor were obtained via the PVD
δLint =

∫

V

(δǫTp σp + δǫTnσn)dV = δLext (17)where Lint stands for the strain energy, Lext is the work of the external loadings and δ stands forthe virtual variation. The virtual variation of the strain energy was rewritten using Eq.s (5), (8),
12



(10) and (15):
δLint = δqT

τiKijτsqsj (18)where Kijτs is the sti�ness matrix in the form of the fundamental nuleus. In a ompat notation,it an be written as:
K

ij τ s = I
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where:
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)

=

∫

l

(

NiNj , NiNj,y
, Ni,y

Nj , Ni,y
Nj,y

)

dy (21)It should be noted that Kijτs does not depend either on the expansion order or on the hoieof the Fτ expansion polynomials. These are the key-points of CUF whih allows, with only nineFORTRAN statements, the implementation of any-order of multiple lass theories.The loadings vetor whih is variationally oherent to the model was derived for the ase of ageneri onentrated load P ating on the appliation point (xp, yp, zp),P =

{

Pux
Puy

Puz

}T (22)13



Any other loading ondition an be similarly treated. The virtual work due to P is
δLext = PδuT (23)The virtual variation of u in the framework of CUF has been introdued in Eq. (10), then

δLext = FτPδuT
τ (24)By introduing the nodal displaements and the shape funtions, Eq. (24) beomes

δLext = FτNiPδqT
τi (25)where Fτ and Ni are evaluated in (xp, zp) and yp respetively. The last equation permits theidenti�ation of the omponents of the nuleus whih have to be loaded, that is, it permits theproper assembling of the loading vetor by deteting the displaement variables that have to beloaded.A detailed desription of 1D formulations based on CUF an be found in the reent book byCarrera et al. [24℄.D. CW models through 1D LE elementsThe LE formulation was used in this paper to implement CW models of reinfored-shell wingstrutures, as shown in Fig. 5a where a two-stringer spar is onsidered. Figure 5b shows a possibleCW model of the spar where eah omponent was modelled via one 1D LE element. Eah LEelement is then assembled above the ross-setion to obtain the global sti�ness matrix based onthe 1D formulation. Sine panels ould not be reasonably modelled via a 1D formulation, 1DCW models an be re�ned by using several L-elements for one omponent. This aspet is shownin Fig. 5 where the panel is modelled via two 1D LE elements. By exploiting the present 1Dformulation, the analysis apabilities of a strutural model an be enhaned by 1. loally re�ningthe LE disretization; 2. using higher-order LE elements (e.g. 4-node, 9-node, 16-node, et.).14



IV. Numerial ResultsThe various approahes onsidered to wing struture analysis are evaluated in this setion andompared to ommerial FEM software results.Two lassial spars are onsidered for the �rst assessment. Then two more omplex wing stru-tures are analyzed to show the apaity of the present CUF models of dealing with ribs and opensetions. Unless di�erently stated, the results by re�ned and CW models are ompared to 3D solidFEM models sine the present models are not a�eted by the disontinuities in the displaement�elds that may result from a ombination of 1D, 2D, and 3D elements. TE and LE models arealso ompared with lassial beam theories and analytial results by theories based on idealizedsti�ened-shell strutures for further omparisons. Partiular attention is given to the apabilitieso�ered by CW models of dealing with thin-walled reinfored strutures as well as with solid andshell-like FEM analyzes with signi�antly lower omputational osts.A. Two-Stringer SparThe simplest spar struture shown in Fig. 6 was onsidered �rst. Stringers were taken to beretangular for onveniene, however their shape does not e�et the validity of the proposed analysis.The geometrial data are as follows: axial length, L = 3 [m]; ross-setion height, h = 1 [m]; area ofthe spar aps, As = 0.9× 10−3 [m2]; web thikness, t = 1× 10−3 [m]. The whole struture is madeof an aluminum alloy material. The material data are: the Young modulus, E=75 [GPa℄; Poissonratio, ν= 0.33. The beam was lamped at y = 0 and a point load, Fz = −1× 104 [N ], was appliedat [0, L, 0].The vertial displaement, uz, at the loaded point is reported in Table 1. Results were relatedto a MSC/NASTRAN © FE model with 8-node solid elements and to lassial beam theories, EBBTand TBT. Re�ned theories related to higher-order TE models are also reported in Table 1. N refersto the expansion order of the TE beam theory. Component-Wise LE results are given. These modelswere obtained by using two di�erent L9 ross-setion distributions, as shown in Fig. 7. All the 1DCUF models were implemented by onsidering 10 B4 elements along the y-axis sine this mesho�ers good auray. A detailed analysis of the e�ets of the number and the type of �nite elements15



along the beam axis an be found in [24℄. The third olumn in Table 1 quotes the number of thedegrees of freedom (DOFs) for eah model. DOFs are used to estimate the omputational e�ienyof the proposed models. It should be notied that another advantage given by 1D formulations isthat they an, in general, lead to lower sti�ness-matrix bandwidths with respet to 2D or 3D FEmathematial models.It should be noted that the CW FE approah uses only physial surfaes (the four faes of apsand the inner and outer surfaes of the panel) to build FE mathematial models. The FE modelsand the lassial beam and plate/shell approahes usually introdue arti�ial surfaes and lines (e.g.the beam axis and the referene surfae for shell elements). This harateristi of CW models is aunique feature that makes this approah advantageous in a CAE/CAD senario.The analytial results related to BS and PS approahes are provided and evaluated as follows(see [3℄):
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(26)where I is the ross-setion moment of inertia about the x-axis, G is the shear modulus and A is theoverall ross-setion area. In the present paper stress �elds are evaluated in terms of axial loads instringers and shear �ows on panels/webs, in order to ompare the results with lassial analytialmodels. Table 2 reports the axial load in the upper stringer, P , at y = 0 and the mean shear �ow inthe panel, q, at y =

L

2
. In aording with [3, hap. 6 p. 88℄, for both BS and PS analytial models,

P and q were evaluated as
P =
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, q = −
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(27)where h is the distane between the enters of the two stringers.CUF and solid models are not a�eted by the generalization of the lassial ideal reinfored-shell assumptions. For this reason, the shear �ows ating on panels in 1D re�ned CUF models andin MSC/NASTRAN © models are not onstant within the panels and are reported as mean shear16



�ows, evaluated as
qm =

1
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∫
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τ dAConversely, in both MSC/NASTRAN © and CUF models, P was omputed by evaluating the on-straint fores multiplying the non-onstrained sti�ness matrix by the displaement vetor.The variation in the axial stress and the shear stress versus the z-axis is presented in Fig.s8. Results by SOLID, TE, LE and lassial beam models are reported. A onvergene study wasarried out for MSC/NASTRAN © models and the results are shown in Table 3. The followingonsiderations arise from the analyzes.1. Re�ned beam theories, espeially LE, allows us to obtain the results of the solid model (whihis the most aurate and at the same time the most omputationally expensive).2. The number of degrees of freedom of the present models is signi�antly redued with respetto the MSC/NASTRAN © solid model.3. Both MSC/NASTRAN © and higher-order CUF models, unlike analytial theories based onidealized sti�ened-shell strutures and lassial 1D models, highlight the fat that the axialstress omponent, σyy is not linear versus z and that the shear stress omponent, σyz , is notonstant along the sheet panel.4. The Component-Wise apability of the present LE approah is learly evident from the on-duted analysis.B. Three-Stringer SparA longeron with three longitudinal sti�eners was subsequently onsidered. The geometry of thestruture is shown in Fig. 9. The spar was lamped at y = 0, whereas a point load, Fz , was appliedat the enter of the upper stringer at y = L. The magnitude of Fz is equal to −1 × 104 [N ]. Thegeometrial harateristis were as follows: axial length, L = 3 [m]; ross-setion height, h = 1 [m];area of the stringers, As = 1.6× 10−3 [m2]; sheet panel thikness, t = 2 × 10−3 [m]; distane from17



the intermediate stringer to the x-y plane, b = 0.18 [m]. The whole struture is made of the sameisotropi material as in the previous ase.Table 4 shows the displaement, uz, evaluated at the enter of the intermediate stringer togetherwith the indiation of the number of degrees of freedom for eah onsidered model. In the 1st and2nd rows lassial analytial models results are reported. The inreasing order Taylor-type modelsare onsidered in rows 3 to 7. The CW LE model was obtained by disretizing the ross-setion with
5 L9 elements, one for eah spar omponent (stringers and webs), and the results are shown in row7. The last row shows the solid model result obtained by an FE model in MSC/NASTRAN ©. TheSOLID model was obtained so that to guarantee a low aspet-ratio of the 8-node solid elements.Table 5 shows the stress �elds of the onsidered struture. Axial loads in the top (P1), middle(P2) and bottom (P3) stringers are evaluated at y = 0, together with the mean shear �ows on theupper (q1) and bottom (q2) sheet panels at y =

L

2
. Referring to the BS model, the axial loads in thestringers were evaluated by means of the Navier equation that gives the longitudinal normal stressdistribution over the spar setion. Considering a oordinate frame laying on the enter of mass, thefollowing equation holds,

PiBS
=

FzL

I
AiZi (28)where Pi is the axial fore in the i-th stringer, Ai the onentrated boom area and Zi the vertialoordinate. The shear �ows qi were evaluated from the equilibrium equations. For the struturalon�guration analyzed, the PS di�ers from the BS solution. In fat, the three-stringer spar hasone redundane (q1 and q2 onsist of two independent unknowns along the z-axis whih are relatedby only one ommon equilibrium equation). The PVD was employed to take into aount thedeformability of stringers and panels. Let X be the redundant fore in the lower longitudinal. Byusing the formula in [3℄, one has:
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where h1 is the distane between the top and the intermediate stringer, h2 is the distane betweenthe intermediate and the bottom stringer. The axial fores PiPS
and the shear �ows qiPS

wereomputed by substituting Eq. (29) in the equilibrium equations (for details see [3, hap. 8 p.168℄).
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The distribution of the axial stress, σyy, and the shear stress, σyz versus the z-axis are shown inFig. 10. The following statements hold.5. The 5 L9 model is very lose to the solid solution with a signi�ant redution of omputationalosts.6. Results from Taylor-type models are less aurate than those from CW models.7. The lassial models are totally inadequate for the detetion of stress �elds of the onsideredstrutural problems.8. Even in this partiular ase the CW apability of the CUF-based LE approah is highlyevident. Hene, the stress �elds in the stringers/panels are desribed as aurately as thosein the FE solids ases.C. Retangular Wing BoxA proper wing box both with and without a rib at the tip setion (Fig. 11) was further analyzed.The length-to-width ratio, L/b, is equal to 3.125 with L as high as 3 [m]. The ross-setion height,
h, is equal to 0.46 [m], whereas the thikness of the four sheet panels is t = 2× 10−3 [m]. The areaof the spar aps is As = 1.6×10−3 [m2]. The wing box on�guration with a rib at the tip presents atransversal sti�ener with a thikness of r = t. The struture is made of the same isotropi materialas in the previous ases. A point load, Fz = −1× 104 [N ], was applied at [b, L, h

2
].19



First, a onvergene study of the LE CW models was arried out. Table 6 shows the mean shear�ows on the panels, the axial fores in the stringers and the number of degrees of freedom for bothCW and MSC/NASTRAN © models. Eah CW model has a di�erent number of LE elements onthe panels. In partiular, in the 8 L9 model stringers and panels were modelled with 1 L9 elementeah. In the 12 L9 model, one L9 element was used for eah stringer and two elements were used foreah panel. In the 20 L9 model, one L9 element was used for eah stringer and four elements wereused for eah panel. The rib was disretized with a ombination of L4 and L9 elements. The SOLIDmodel was ompletely built with 8-node solid elements, while the SHELL model was obtained as aombination of both solid and 4-node plate �nite elements. Both stringers and rib were disretizedby means of solid elements in the SHELL model, whereas plate elements were used for skins andwebs. q1 and P1 refer to the top panel and to the top right stringer respetively, q2, q3, q4 and P2,
P3, P4 follow a lok-wise enumeration. It should be underlined that LE CW models, di�erentlyfrom TE, allow the loal re�nement of the omponents. For the struture onsidered, one L9 elementwas not su�ient to aurately detet the shear lag within the panel. Consequently, the axial foresin the stringers were not orret. The solution was enhaned by inreasing the number of 1D L9elements used to disretize the panel.Table 7 quotes the mean shear �ows on the panels, the axial fores in the stringers and thenumber of degrees of freedom for eah implemented model. Results from both analytial methodsand lassial beam theories are reported. Rows 5 to 7 onsider the TE models. Finally, the onver-gent solution by the CW method is given in row 8 and the MSC/NASTRAN © models are reportedin the last two rows.BS and PS models (but also lassial beam theories) are not able to orretly detet the behaviorof the no rib on�guration of the retangular wing box. In fat, one of the main assumptions of thesemethods is that the ribs are �rigid within their planes�. The solutions provided by these methodsfor the wing box are desribed in the following. In aordane with the BS method, the axial foresand the shear �ows were evaluated by solving �rstly Eq. (28) and then the equilibrium equations.Conversely, as in the previous ase, the PS solution requires the appliation of the PVD. Let X be

20



the redundant fore applied in the bottom left stringer [3, hap. 10 p.196℄,
X =
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Fz (31)Subsequently, PS stress �elds were omputed by substituting X in the equilibrium equations.Deformed tip ross-setions of both on�gurations are shown in Fig. 12 and 13, together withvariations in the shear stress omponents on the sheet panels. Con�rming the previous remarks,the following further onsiderations an be made:9. The results from the LE and MSC/NASTRAN © models oinide for both strutural on�g-urations. In partiular, the results from the CW model of the un-ribbed box are more similarto those from the SOLID model than to those from the SHELL model. This is due to the dis-ontinuities of the displaement �elds on the panel-stringer interfaes that a�et the SHELLmodel. In fat, unlikely the presents theories and the SOLID model, interfae relations shouldbe introdued at the interfaes for the SHELL model.10. For the wing-box onsidered, the results given by the eight-order (N = 8) TE model are notsu�iently aurate. An higher than eight-order TE model ould be neessary to orretlydetet the shear-lag. However, higher-order models imply a larger number of the degrees offreedom.11. Classial beam models and the PS approah are not able to orretly desribe the wing boxmodel without the rib.D. Three-Bay Wing BoxThe last analysis ase was arried out on the three-bay wing box for whih PS and BS solutionswere given in Rivello's book. The onsidered struture is shown in Fig. 14a [2, hap. 11 p. 301℄,whereas Fig.s 14b and  show its variations. These examples highlight the apability of the presentadvaned 1D models to aurately desribe the e�ets due to ribs and open setions. The struturesonsist of three wing boxes eah with a length, l, equal to 0.5 [m]. The ross-setion is a trapeziumwith a height b = 1 [m]. The two webs of the spars have a thikness of 1.6 × 10−3 [m], whereas21



h1 = 0.16 [m] and h2 = 0.08 [m]. The top and the bottom panels have a thikness of 0.8 × 10−3

[m], as well as ribs. The area of the stringers is As = 8× 10−4 [m2]. The wing is ompletely madeof an aluminium alloy 2024, having G/E = 0.4. The ross-setion in y = 0 was lamped and a pointload, Fz = 2× 104 [N ], was applied at [b, 2× l,
h2

2
].Table 8 shows the vertial displaement values, uz and the omputational osts for eah model.Results related to the CUF models are validated by an MSC/NASTRAN © model built both withsolid and shell FE elements as disussed in the previous analysis. The CW models were obtainedby using both L4 and L9 elements, as in the retangular wing box.Fig.s 15, 16 and 17 show the spanwise variation of the axial and the shear stress omponentsfor the three di�erent on�gurations. BS and PS solutions are provided for the full model of thethree-bay wing box for omparison. The struture has three redundanies. The PVD an be usedto orret the BS solution. Let X1, X2 and X3 be the redundant fores that must be added to theBS solution to obtain the true fores in the lower left stringer at a distane of 0, l and 2 × l fromthe root. The redundant fores are alulated by means of the PVD. The following results hold:

X1 = −36.446 [N ]; X2 = −6.912 [N ]; X3 = 13.908 [N ] (32)These values allow us to ompute the axial fores and the shear �ows for the PS method. For theomplete resolution see [2, hap. 11 p. 301℄.Finally, Table 9 reports the values of the stress omponents of both LE and SOLID/SHELLmodels. The following remarks an be made.12. LE models orretly predit ribs and loal e�ets, as math the results obtained with solid/shellmodels.13. Higher than sixth-order TE models are required to orretly predit the ross-setion deforma-bility.14. The PS method is quite aurate in the desription of the full on�guration of the three-baywing box. Conversely, the BS method is not suitable as the struture is statially indetermi-nate. 22



V. ConlusionsThis paper has onsidered and ompared existing methods and reent approahes that exploitone-dimensional strutural theories based on the Uni�ed Formulation, whih allows for the straight-forward implementation of higher-order analysis without the need of extensive revisions to the model.Pure Semimonooque analyzes along with beam assumptions have been ompared to re�ned andomponent-wise models and to shell and solid solutions obtained by a ommerial FEM software.The main onlusion to be drawn is that the present omponent-wise analysis of reinforedshell strutures appears to the authors as the most onvenient way, in terms of both auray andomputational osts, to apture the global and loal (omponent-wise) physial behavior of wingstrutures. 3D FEM analysis is required to reah the same auray with a number of degrees offreedom at least one-order of magnitude higher than the present models. Additionally, the presentCW approah allows us to build FE mathematial models by only using physial surfaes; arti�iallines (beam axes) and surfaes (plate/shell referene surfaes) are no longer used.Referenes[1℄ Bruhn, E. F., Analysis and Design of Flight Vehile Strutures, Tri-State O�set Company, 1973.[2℄ Rivello, R. M., Theory and analysis of �ight strutures, MGraw-Hill, 1969.[3℄ Carrera, E., Fondamenti sul Calolo di Strutture a Gusio Rinforzato per Veioli Aerospaziali , Levrotto& Bella, 2011.[4℄ Ciala, P., �Sul Calolo delle Strutture a Gusio,� L'Aerotenia, Vol. XXVI, No. 3, 1946, pp. 138�148,Part 1 of 4.[5℄ Goodey, W. J., �A Stressed Skin Problem,� Airr. Engin, 1938.[6℄ Ebner, H. and Koller, H., �Zur Berehnung des Kraftver laufes in versteiften Zylindershalen,� Luftf.Forshg., 1937.[7℄ Ebner, H. and Koller, H., �Ueber den Kraftverlauf in längs und querversteiften Sheiben,� Luftf.Forshg., 1938.[8℄ Broglio, L., Introduzione di un metodo generale per il alolo delle strutture a gusio, Ist. poligr. delloStato, Roma, 1952, Monogra�e sienti�he di aeronautia n. 1.[9℄ Argyris, J. M. and Kelsey, S., Energy theorems and strutural analysis, Butterworths, 1960.[10℄ Satsangi, S. and Mukhopadhyay, M., �Finite element state analysis of girder bridges having arbitrary23
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Tables
uz × 103 [m℄ DOFsAnalytial MethodsBS −2.671 -PS −3.059 -Classial Beam TheoriesEBBT −1.827 279TBT −2.117 279TE

N = 3 −2.514 930

N = 5 −2.629 1953

N = 7 −2.738 3348

N = 9 −2.890 5115CW
4 L9, Fig. 7a −3.639 2883

8 L9, Fig. 7b −3.639 4743MSC/NASTRAN ©SOLID −3.815 76050Table 1 Displaement values, uz, at the loaded point and number of degrees of freedom ofeah model, two-stringer spar.
P [N℄ q [N/m℄

∗all values are multiplied ×10−4Analytial MethodsBS 3.192 −1.064PS 3.192 −1.064Classial Beam TheoriesEBBT 1.993 −0.274TBT 1.993 −0.274TE
N = 3 2.434 −0.665

N = 5 2.350 −0.561CW
4 L9, Fig. 7a 2.833 −1.034

8 L9, Fig. 7b 2.739 −1.035MSC/NASTRAN ©SOLID 2.713 −1.036Table 2 Axial load in the upper stringer, P , at y = 0 and mean shear �ow on the sheet panel,
q, at y =

L

2
, two-stringer spar.

26



uz × 103 [m℄ P [N℄ DOFsSOLID #1 −3.785 2.577 2805SOLID #2 −3.815 2.713 76050SOLID #3 −3.862 2.709 198246Table 3 Displaement values, uz, at the loaded point, axial load in the upper stringer, P , at
y = 0 and number of degrees of freedom of SOLID models, two-stringer spar.

uz × 103 [m℄ DOFsAnalytial MethodsBS −1.309 -PS −1.471 -Classial Beam TheoriesEBBT −1.325 279TBT −1.487 279TE
N = 4 −1.661 1395

N = 6 −1.707 2604

N = 8 −1.730 4185CW
5 L9 −1.846 3813MSC/NASTRAN ©SOLID −1.857 72450Table 4 Displaement values, uz, at the enter of the intermediate stringer and number ofdegrees of freedom, three-stringer spar.

q1 [N/m℄ q2 [N/m℄ P1 [N℄ P2 [N℄ P3 [N℄
∗all values are multiplied ×10

−4Analytial MethodsBS −0.859 −1.095 2.574 0.730 −3.285PS −0.949 −1.118 2.847 0.507 −3.353Classial Beam TheoryEBBT −0.305 −0.305 2.323 0.733 −2.766TBT −0.305 −0.305 2.323 0.733 −2.766TE
N = 4 −0.071 −0.902 3.208 0.081 −3.202

N = 6 −0.402 −1.006 2.997 0.727 −3.251

N = 8 −0.469 −1.052 2.916 0.639 −3.215CW
5 L9 −0.820 −1.150 2.495 0.633 −2.980MSC/NASTRAN ©SOLID −0.816 −1.150 2.457 0.572 −2.781Table 5 Axial loads in the stringers at y = 0 and mean shear �ows on the sheet panels at

y =
L

2
, three-stringer spar. 27



q1 [N/m℄ q2 [N/m℄ q3 [N/m℄ q4 [N/m℄ P1 [N℄ P2 [N℄ P3 [N℄ P4 [N℄ DOFs
∗all values are multiplied ×10−3 CW
8 L9 5.092 −5.173 −5.121 −16.624 23.313 −23.313 −26.211 26.211 6588

(−0.032) (0.005) (0.033) (−21.789) (−5.839) (5.839) (−55.007) (55.007) (5952)

12 L9 4.969 −5.171 −4.966 −16.654 21.033 −21.033 −24.603 24.603 9036
(−0.164) (0.013) (0.164) (−21.841) (−5.488) (5.488) (−51.143) (51.143) (8184)

20 L9 5.037 −5.145 −5.034 −16.654 20.286 −20.286 −23.767 23.767 13932
(−0.061) (0.010) (0.092) (−21.827) (−5.235) (5.235) (−49.548) (49.548) (12648)MSC/NASTRAN ©SHELL 5.077 −5.200 −5.149 −16.651 21.670 −21.670 −24.660 24.660 22346
(−0.381) (0.293) (−0.242) (−21.530) (−5.435) (5.435) (−51.765) (51.765) (22020)SOLID 5.074 −5.104 −5.074 −16.368 20.166 −20.166 −22.942 22.942 115362
(−0.071) (0.011) (0.071) (−21.483) (−5.163) (5.163) (−48.271) (48.271) (112200)Table 6 Convergene of the CW models. Mean shear �ows on the sheet panels at y =

L

2
, axialloads in the stringers at y = 0 and number of degrees of freedom. Retangular wing box withrib at the tip. Results by models without rib are reported in brakets.

q1 [N/m℄ q2 [N/m℄ q3 [N/m℄ q4 [N/m℄ P1 [N℄ P2 [N℄ P3 [N℄ P4 [N℄ DOFs
∗all values are multiplied ×10−3 Analytial MethodsBS 5.435 −5.435 −5.435 −16.304 32.609 −32.609 −32.609 32.609 -PS 5.221 −5.221 −5.221 −16.518 31.325 −31.325 −33.893 33.893 -Classial Beam TheoriesEBBT 0 −1.701 0 −1.701 19.757 −19.757 −19.757 19.757 306TBT 0 −1.701 0 −1.701 19.757 −19.757 −19.757 19.757 306TE
N = 4 4.470 −4.603 −4.470 −14.142 23.197 −23.197 −26.418 26.418 1530

(4.769) (−4.897) (−4.769) (−13.848) (23.167) (−23.167) (−26.448) (26.448) (1395)

N = 6 4.848 −4.579 −4.846 −14.218 23.529 −23.523 −27.567 27.556 2856
(5.654) (−5.329) (−5.655) (−13.467) (23.404) (−23.404) (−27.684) (27.686) (2604)

N = 8 4.647 −5.148 −4.894 −16.240 23.803 −23.837 −26.579 26.722 4490
(1.478) (−1.204) (−1.478) (−20.060) (1.555) (−1.531) (−48.968) (48.976) (4185)CW
5.037 −5.145 −5.034 −16.654 20.286 −20.286 −23.767 23.767 13932

(−0.061) (0.010) (0.092) (−21.827) (−5.235) (5.235) (−49.548) (49.548) (12648)MSC/NASTRAN ©SHELL 5.077 −5.200 −5.149 −16.651 21.670 −21.670 −24.660 24.660 22346
(−0.381) (0.293) (−0.242) (−21.530) (−5.435) (5.435) (−51.765) (51.765) (22020)SOLID 5.074 −5.104 −5.074 −16.368 20.166 −20.166 −22.942 22.942 115362
(−0.071) (0.011) (0.071) (−21.483) (−5.163) (5.163) (−48.271) (48.271) (112200)Table 7 Mean shear �ows on the sheet panels at y =

L

2
, axial loads in the stringers at y = 0and number of degrees of freedom. Retangular wing box with rib at the tip. Results bymodels without rib are reported in brakets.28



Full Model No Ribs Case Open Mid-bay Case
uz × 102 [m℄ DOFs uz × 102 [m℄ DOFs uz × 102 [m℄ DOFsMSC/NASTRAN ©SOLID + SHELL 1.412 100026 3.051 89400 1.963 89621Classial Beam TheoriesEBBT 0.464 495 0.464 495 0.464 495TBT 0.477 495 0.477 495 0.477 495TE

N = 3 0.793 1650 0.794 1650 0.873 1650

N = 5 1.108 3465 1.203 3465 1.500 3465

N = 7 1.251 5940 2.158 5940 1.745 5940

N = 9 1.325 9075 2.649 9075 1.836 9075CW
1.397 10750 2.981 10560 1.919 10446Table 8 Displaement values, uz, at the loaded point and number of degrees of freedom forthe onsidered strutural on�gurations of the three-bay wing box.

Full Model No Ribs Case Open Mid-bay CaseModel σyy [MPa℄ σyz [MPa℄ σyy [MPa℄ σyz [MPa℄ σyy [MPa℄ σyz [Pa℄SOLID/SHELL 80.598 120.730 178.147 155.368 123.841 115.351CW LE 80.404 120.603 177.018 151.876 118.684 115.810Table 9 Stress omponents, σyy at [b, l

2
,−h2

2
] and σyz at [b, l

2
, 0], of the di�erent struturalon�gurations of the three-bay wing box.
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