
28 April 2024

POLITECNICO DI TORINO
Repository ISTITUZIONALE

Reducing Microservices Interference and Deployment Time in Resource-constrained Cloud Systems / Adeppady,
Madhura; Giaccone, Paolo; Karl, Holger; Chiasserini, Carla Fabiana. - In: IEEE TRANSACTIONS ON NETWORK AND
SERVICE MANAGEMENT. - ISSN 1932-4537. - STAMPA. - 20:3(2023), pp. 3135-3147. [10.1109/TNSM.2023.3235710]

Original

Reducing Microservices Interference and Deployment Time in Resource-constrained Cloud Systems

IEEE postprint/Author's Accepted Manuscript

Publisher:

Published
DOI:10.1109/TNSM.2023.3235710

Terms of use:

Publisher copyright

©2023 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any
current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating
new collecting works, for resale or lists, or reuse of any copyrighted component of this work in other works.

(Article begins on next page)

This article is made available under terms and conditions as specified in the corresponding bibliographic description in
the repository

Availability:
This version is available at: 11583/2974353 since: 2023-10-11T07:45:18Z

IEEE

1

Reducing Microservices Interference and
Deployment Time in Resource-constrained

Cloud Systems
Madhura Adeppady, Student Member, IEEE, Paolo Giaccone, Senior Member, IEEE, Holger Karl, Member, IEEE,

Carla Fabiana Chiasserini, Fellow, IEEE

Abstract—In resource-constrained cloud systems, e.g., at the
network edge or in private clouds, it is essential to deploy
microservices (MSs) efficiently. Unlike most of the existing
approaches, we tackle this issue by accounting for two important
facts: (i) the interference that arises when MSs compete for the
same resources and degrades their performance, and (ii) the MSs’
deployment time. In particular, we first present some experiments
highlighting the impact of interference on the throughput of
MSs co-located in the same server, as well as the benefits of
MSs’ parallel deployment. Then, we formulate an optimization
problem that minimizes the number of used servers while
meeting the MSs’ performance requirements. In light of the
problem complexity, we design a low-complexity heuristic, called
iPlace, that clusters together MSs competing for resources as
diverse as possible and, hence, interfering as little as possible.
Importantly, clustering MSs also allows us to exploit the benefit
of parallel deployment, which greatly reduces the deployment
time as compared to the sequential approach applied in prior art
and by default in state-of-the-art orchestrators. Our numerical
results show that iPlace closely matches the optimum and uses
21-92% fewer servers compared to alternative schemes while
proving to be highly scalable. Further, by deploying MSs in
parallel using Kubernetes, iPlace reduces the deployment time
by 69% compared to state-of-the-art solutions.

Index Terms—Microservices, Performance Interference, Edge
Computing, Microservice Placement, Resource Contention

I. INTRODUCTION

Cloud computing provides isolated environments to run
heterogeneous applications of multiple tenants on the same un-
derlying hardware using virtualization techniques. Customers
can often request computing and memory resources from
public cloud systems such as Amazon EC2 and Microsoft
Azure to execute their applications. While such public systems
have abundant resources for their users, edge computing and
private cloud systems are often resource-constrained.

Applications deployed on either public or edge cloud sys-
tems are increasingly composed of multiple, simple com-
ponents. For example, service function chains (SFCs) [1]
comprise individual virtual network functions (VNFs) [2] or

M. Adeppady, P. Giaccone, and C. F. Chiasserini are with the Electronics
and Telecommunications Dept., Politecnico di Torino, Italy, and with CNIT,
Parma, Italy. Email: {firstname.lastname@polito.it}. C. F. Chiasserini is also
with IEIIT-CNR, Torino, Italy. H. Karl is with the Hasso Plattner Institute,
University of Potsdam, Germany. Email: holger.karl@hpi.de
This work was supported partially through H2020 MSCA-ITN SEMANTIC
(Grant No. 861165), and partially by the European Union’s NextGenerationEU
instrument, under the Italian National Recovery and Resilience Plan (NRRP),
Mission 4 Component 2 Investment 1.3, enlarged partnership “Telecommuni-
cations of the Future” (PE0000001), program “RESTART”.

even other, simpler chains. Likewise, microservice chains are
composed of individual microservices (MSs) [3] or other
chains. Differences exist: VNFs might run close-to hardware,
whereas MSs might run inside general-purpose containers.
But while details and terminology certainly differ, many core
ideas and issues are very similar across these domains. In the
following, for the sake of concreteness, we focus on an MS
architecture running inside containers, however our ideas and
results apply to SFCs/VNFs as well.

Services as such are deployed by an orchestrator that places,
deploys, connects, and configures the needed components in
one or several data centers, so as to meet the associated Service
Level Agreement (SLA). Locally, components run inside a
container, facilitated by a hypervisor. Current hypervisors
isolate containers running on the same server by, e.g., placing
them on dedicated cores [4]–[7], thus allowing to consoli-
date multiple components on the same hardware. Nonethe-
less, containers still compete for other hardware resources,
predominantly memory subsystem resources [8]–[11]. Thus,
unregulated competition for a server’s shared resources by the
MSs degrades throughput compared to them running alone on
the same server. Such performance degradation experienced by
competing MSs is referred to as interference or noisy neighbor
problem [12]–[14].

Interference is complicated by the multitude of different
MSs, each with its own code: they contend for resources
differently (e.g., emphasizing memory over I/O) and, hence,
experience interference differently [15]. Thus, resources that
might have sufficed to meet a particular MS’s SLA goal in
some combination of components might no longer suffice
when combined with other components. This makes guaran-
teeing SLAs challenging when MSs have to be consolidated
dynamically on a limited set of resource-constrained servers,
which is the typical operational condition in edge computing1.

Recently, several research efforts have been made to ad-
dress the above issue [11], [14], [16]–[18]. The proposed
solutions leverage either resource partitioning schemes [11],
[14], [19] or supply-demand models [16], [17] to quantify
interference. However, none of these methods fully addresses
interference completely, as they fail to consider all resources
responsible for interference, according to [8]. A few notable
approaches [8]–[10], [20] have built models to predict the

1Although we mainly focus on edge computing scenarios, our approach
applies to other environments, e.g., data centers, as well.

This article has been accepted for publication in IEEE Transactions on Network and Service Management. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TNSM.2023.3235710

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Politecnico di Torino. Downloaded on January 12,2023 at 09:38:22 UTC from IEEE Xplore. Restrictions apply.

2

throughput of a target MS when co-located with other MSs
and, using such prediction models, they have proposed place-
ment solutions to decide where to execute each component.
But even though the prediction models are accurate [8], these
placement approaches may suffer from scalability issues.

Often, multiple requests for new services arrive at the
orchestrator at the same time. Moreover, each request will typ-
ically be an SFC that comprises multiple individual microser-
vices (or network functions). Also, these requests are usually
not known in advance, prohibiting proactive deployment and
requiring on-the-spot activation of the related services. In
summary, the orchestrator usually needs to place batches of
MSs on the available servers as fast as possible to ensure low
deployment time.

Current orchestrators [21], [22] and MS placement algo-
rithms [23], [24] focus on improving data locality or reducing
contention for shared resources, however they pay little atten-
tion to reducing deployment time. Although there exist some
few prior works that address deployment time by lowering
the container startup latency [25]–[27], they have not paid
any attention to the adverse effect of interference on the
performance of MSs placed in the same server.

To provide this missing feature combination, we here pro-
pose iPlace, an Interference-aware Microservice Placement
(IMSP) approach based on clustering, with clusters being de-
ployed on different servers. iPlace specifically seeks to group
services such that cluster members have minimal interference
with each other. A cluster is then placed on that server with
whose MSs it least interferes. In more detail, this is done
via a recursive process where a large cluster of MSs is split
into smaller ones until each cluster can be placed in a server
without violating the SLA requirements of any of the involved
MSs. Importantly, although clustering has been widely used
in the literature [18], [28]–[30], existing approaches are not
suitable to effectively cope with the problem we address.
Indeed, the use of interference among and between cluster
members has not yet been investigated, nor has the setup of
existing MSs on servers been taken into account.

Additionally, a naive clustering approach would need many
comparisons between cluster members and existing MSs,
which is costly when using interference as a clustering metric
and prevents a placement scheme to scale well with the number
of MSs. Hence, we replace some of these comparisons by only
looking at cluster representatives, resulting in an approxima-
tion of actual interference. Interference is then predicted using
an ML approach. Specifically, we use the contentiousness
metric [8], [9], which captures the pressure of an MS on shared
resources, and build a prediction model inspired by [8], which
takes into account the interference among MSs co-located in
the same server. As shown in our performance evaluation, this
prediction-based approximation yields excellent results at a
fraction of the computational overhead.

Once clusters have been identified, it would now be straight-
forward to deploy the MSs inside a cluster onto their respective
servers, one after the other, as typically performed by state-of-
the-art, real-world orchestrators. However, this may result in
very high deployment times. Instead, we show experimentally
the advantage of deploying the MSs included in a cluster

Docker bridge Docker bridge

Core 0

Container 0

Target
MS+iperf

server

Core 2

Container 1

Competing test
MS+iperf

server

iperf client iperf client

Core 1 Core 3

Profiling
Server

Fig. 1. Experimental testbed with target MS and competing MS.

in parallel onto the selected server, compared to the default,
sequential deployment strategy.

To summarize, our main contributions are as follows:
1) Using our testbed and such real-world orchestrators as

Kubernetes and Docker Swarm, we provide experimen-
tal evidence for the necessity to carefully cluster, place,
and start up MSs in resource-limited environments.
Indeed, our results show that interference among co-
located MSs can degrade performance by up to 50%.

2) We formulate the Interference-aware Microservice
Placement (IMSP) as an optimization problem that min-
imizes the number of servers needed to place the MSs
at the network edge, while still meeting the MSs target
performance.

3) Owing to the problem’s NP-hardness, we develop iPlace,
an interference-aware heuristic for cluster-based MS
placement, which has cubic worst-case complexity. We
remark that our work is the first to explore clustering
to mitigate the effects of interference and to reduce the
deployment time during MS placement.

4) Through extensive simulations and experiments with real
systems, we show that the proposed interference-based
clustering using prediction-information approximations
effectively solves the IMSP and outperforms state-of-
the-art alternatives. We also demonstrate that starting
up MSs in parallel, according to the iPlace’s clustering
strategy, yields much shorter deployment time than
sequential start up.

The rest of the paper is organized as follows. Sec. II
demonstrates experimentally both how interference can affect
the MSs performance and the reduction in deployment time
obtained through a parallel start up of the MSs. In Sec. III,
we describe the background necessary to understand our pro-
posed work and interference prediction model. Then Sec. IV
introduces the methodology we use for interference prediction,
while Sec. V presents the system model and formulates IMSP
as an optimization problem. Sec. VI describes our heuristic,
iPlace, which is then evaluated in Sec. VII. Sec. VIII sum-
marizes related work and highlights our novel contributions.
Finally, Sec. IX concludes the paper.

II. EXPERIMENTAL EVIDENCE AND WORK MOTIVATION

We start by giving experimental evidence of how throughput
degrades due to interference among competing MSs, despite
a resource isolation setup in the server. We then show that
MS deployment can be sped up significantly by working with
batches of MSs instead of placing MSs sequentially.

This article has been accepted for publication in IEEE Transactions on Network and Service Management. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TNSM.2023.3235710

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Politecnico di Torino. Downloaded on January 12,2023 at 09:38:22 UTC from IEEE Xplore. Restrictions apply.

3

pktstat snort mqtt nginx
0.0

0.2

0.4

0.6

0.8

1.0

1.2

No
rm

al
ize

d
th

ro
ug

hp
ut pktstat

snort
mqtt
nginx

Fig. 2. Throughput of target MSs running with different competitors,
normalized to the throughput obtained when the target MS runs solo.

A. Experimental interference assessment

To assess the throughput degradation experienced by MSs,
we develop a testbed, as depicted in Fig. 1. The experiments
were conducted on an Intel Core(TM) i7-7700K server with 4
CPU cores, 16 GB memory, and 8 MB Last Level Cache (LLC)
cache shared across all the CPU cores, while individual cores
have 1 MB L2 cache and 128 KB L1 cache, respectively. Each
MS runs on a Docker container, pinned to a dedicated core
using Docker runtime option cpuset-cpus.

Concerning the MSs, we consider both network services and
application-level services:
• Pktstat2: a flow-monitoring tool that displays the real-

time packet activity of a specific network interface. It
reads the packet header to identify the flows and shows
the data rate associated with each flow. The iperf3 tool
is used for generating the traffic incoming to Pktstat.

• Snort3: a well-known intrusion prevention system that
uses predefined rules to identify anomalous network
activities. snort reads the packet header and payload of
every incoming packet and compares them against the set
of rules, in order to perform real-time intrusion detection.
As before, iperf3 acts as a traffic generator for snort..

• Nginx4: We use it as a load balancer that forwards in-
coming requests to one of two web servers by modifying
the requests’ IP addresses. The web server MSs used in
the experiments are developed using Python Flask. The
httperf tool is used to generate input traffic to nginx.

• MQTT5: It is a lightweight message transmission protocol
that relies on the publish-subscriber model. We have used
Mosquittoas an MQTT broker to which publishers and
subscribers are connected. MQTTLoader [31] is used on
both publisher and subscriber sides to apply load on the
MQTT broker MS and measure the throughput.

Our experimental settings pin each MS to a dedicated CPU
core, however competing MSs still share memory resources,
namely, last-level cache and memory bandwidth. In the first
set of experiments, we investigate how the performance of
MSs degrades due to interference by running them in pairs,
despite the fact that, as mentioned, each of them is pinned

2https://linux.die.net/man/1/pktstat
3https://www.snort.org/
4https://nginx.com
5https://mqtt.org

to a dedicated CPU core. Normalized throughput is used as
the metric for identifying the performance interference. It is
defined as the ratio of throughput when running the target MS
with the other MS to the target MS solo performance, i.e., the
throughput of target MS when it is running alone on the server.
Hence, lower values of normalized throughput indicate higher
performance degradation. Note that computing and memory
resources allocated to the MSs remain the same when running
alone or in pairs.

As the per-MS load is small enough to be handled by
a single server, in the absence of interference, one would
expect to see a normalized throughput of 1. Instead, as
shown in Fig. 2, all considered MSs suffer from performance
degradation when run in pairs. The horizontal axis of Fig. 2
indicates the target MSs, while the MS with which they
run in pair is the competitor MS. Interestingly, each pair
of MSs experiences different normalized throughput. MQTT
and snort as target MSs suffer from considerable performance
degradation, regardless of their competitor MS, while nginx
suffers from the competition with another MS least.

In the next set of experiments, we evaluate the throughput of
a target MS in the presence of a competitor MS when varying
the number of flows and per-flow offered load of the competi-
tor MS. The results, shown in Fig. 3, highlight a throughput
drop of 28.5 % for pktstat and of 22.5 % for snort, relative
to their solo performance, both for 100 concurrent competing
flows. Also, as the workload and the number of concurrent
flows of the competitor MS increase, the throughput of the
target MS degrades more.

In summary, our experiments reveal that performance inter-
ference is a relevant problem, despite the isolation of CPU
cycles. Furthermore, throughput degradation of the target MS
depends upon the traffic load and processing logic of the com-
peting MSs. As the competitor’s workload characteristics vary,
competition for various hardware resources changes, degrading
throughput differently. It is thus evident that interference plays
a vital role in MS placement and that interference-oblivious
co-location of MSs would seriously degrade throughput.

B. Experimenting sequential versus parallel MSs deployment
MS placement requests often arrive at the scheduler simul-

taneously, and these requests need to be deployed as fast as
possible to provide efficient services. However, state-of-the-
art MS scheduling algorithms deploy MSs only sequentially,
and such is also the default deployment strategy in real-world
orchestrators, with MS placement requests being kept in a
queue following their order of arrival. According to prior MS
algorithms, the scheduler acts upon these placement requests
one after another and selects the best node to place the request
depending on various scheduling policies. Such sequential
deployment of the MSs has a high deployment latency, making
it unacceptable for strictly latency-constrained edge services.
This section briefly demonstrates the significant improvement
in the deployment latency that can instead result from parallel
deployment of MSs compared to that of sequential deployment.

The experiments have been conducted on a local Linux
machine with 4 CPU cores and 16 GB of memory. To de-
ploy the containerized MS placement requests, we used both

This article has been accepted for publication in IEEE Transactions on Network and Service Management. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TNSM.2023.3235710

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Politecnico di Torino. Downloaded on January 12,2023 at 09:38:22 UTC from IEEE Xplore. Restrictions apply.

4

0 5 10 15 20 25 30
Workload of competing MS [Gbps]

12.5

17.5

22.5

27.5

32.5

37.5
Ta

rg
et

 M
S

th
ro

ug
hp

ut
 [G

bp
s] snort (100 flows) vs 10 pktstat flows

pktstat (100 flows) vs 10 snort flows

0 5 10 15 20 25 30
Workload of competing MS [Gbps]

12.5

17.5

22.5

27.5

32.5

37.5

Ta
rg

et
 M

S
th

ro
ug

hp
ut

 [G
bp

s] snort (100 flows) vs 50 pktstat flows
pktstat (100 flows) vs 50 snort flows

0 5 10 15 20 25 30
Workload of competing MS [Gbps]

12.5

17.5

22.5

27.5

32.5

37.5

Ta
rg

et
 M

S
th

ro
ug

hp
ut

 [G
bp

s] snort (100 flows) vs 100 pktstat flows
pktstat (100 flows) vs 100 snort flows

Fig. 3. Throughput of the target MS running with a competing MS, as the workload of the latter varies: 10 (left), 50 (center), 100 (right) concurrent flows,
and traffic load equally distributed across the flows.

Kubernetes [21] and Docker Swarm [22]. Kubernetes is a well-
known open-source cloud infrastructure tool that automati-
cally deploys, scales, and manages containerized applications.
Docker Swarm is a container orchestration tool native to
the Docker platform, and it has been used to cross-check
Kubernetes characteristics. To run Kubernetes locally, we
used minikube, a single-node Kubernetes cluster. As native
schedulers of Kubernetes and Docker Swarm orchestrators do
not explicitly support parallel deployment of MSs, we have
proceeded as set forth below.

For the experiments with Kubernetes, we leveraged the
Volcano scheduler. Indeed, Volcano defines a new job, called
Volcano job, that deploys a group of pods simultaneously,
making it an excellent choice for parallel deployment. In our
experiments, we created a Volcano job containing pods varying
from 10 to 100 in steps of 10, each time measuring the per-pod
deployment time.

For Docker swarm, we realized parallel deployment using
the --replicas option. Docker swarm replicas aim at a
stable set of running containers at any time. We created two
batches for Docker swarm parallel deployment experiments
and scaled the number of containers present in those batches
using the --replicas option of Docker swarm from 5 to
50 in steps of 5, in order to mimic the same workload as in
the Kubernetes scenario.

For the sequential deployment scenario using Kubernetes,
we deployed sequentially Volcano jobs with a single container.
In a sequential deployment scenario using Docker swarm,
instead, we just used the default scheduler. We evaluated
the average per-container start-up time for the sequential
deployment and parallel deployment scenarios, using either
Kubernetes or Docker swarm, as a function of the number
of created containers. The experimental evidence in Fig. 4
demonstrates that parallel deployment (i.e., deploying MSs in
batches) reduces the per-container start-up time by 81.25%
and 80% compared to sequential deployment for Kubernetes
and Docker swarm, respectively. This observation further
motivated us to design an algorithm that schedules MS clusters
instead of individual MSs, thereby reducing the incurred
deployment time.

III. BACKGROUND

For the sake of concreteness and later evaluation, we de-
scribe here a throughput prediction model based on [8], which
leverages two main concepts: contentiousness and sensitivity.

10 20 30 40 50 60 70 80 90 100
Number of containers

0.0

0.5

1.0

1.5

2.0

2.5

3.0

Av
e

pe
r-c

on
ta

in
er

 st
ar

t t
im

e
fo

r
 D

oc
ke

r-S
wa

rm
 [s

ec
on

ds
]

Batch
Sequential

0.000

0.375

0.750

1.125

1.500

1.875

2.250

Av
e

pe
r-c

on
ta

in
er

 st
ar

t t
im

e
fo

r
 K

ub
er

ne
te

s [
se

co
nd

s]

Kubernetes
Docker-Swarm

Fig. 4. Average per-container start-up time for batch and sequential deploy-
ment, using Kubernetes and Docker swarm.

Contentiousness measures the pressure (i.e., load) applied on
shared server resources by an MS in the presence of competing
MSs. Sensitivity models the target MS’s throughput as a
function of its competitors’ aggregate contentiousness.

This prediction model includes two phases: offline profiling
and online prediction. In the former phase, contentiousness
and sensitivity are computed a priori, considering a target
MS running on a server in the presence of a synthetic load.
By increasing this load, the increasing pressure of competing
MS(s) on the shared resources can be measured. Thus, con-
tentiousness profiling consists of determining a set of vectors,
with each vector corresponding to a different pressure level
of the synthetic competitor(s). Such vectors also comprise
various system-level metrics, as detailed below. Then, sen-
sitivity profiling builds on a regression model leveraging the
target MS’s throughput in the presence of varying synthetic
contentiousness vectors.

In the online prediction phase, the sensitivity model predicts
the target MS’s throughput, given the contentiousness vector
of any real competitor(s) as input.

A. Offline profiling phase

For each considered MS, the offline profiling phase char-
acterizes its contentiousness and sensitivity. Here, we discuss
further the methodology we adopted gtom [8].

The contentiousness vector of MS r is denoted by V̂
(k)
r (x),

where k is the number of the competing MSs and x represents
the competing workload and its specific configuration (e.g.,
traffic rate, number of flows, etc.). More in detail, x is a multi-
dimensional vector [x1, . . . , xk] where the generic entry xi,

This article has been accepted for publication in IEEE Transactions on Network and Service Management. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TNSM.2023.3235710

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Politecnico di Torino. Downloaded on January 12,2023 at 09:38:22 UTC from IEEE Xplore. Restrictions apply.

5

i = 1, . . . , k, is a tuple of the form (name, configuration):
the name of the competing MS and its configuration. For
instance, let us assume the contentiousness vector of snort
consists of two metrics, LLC-misses and system-read. Also,
suppose LLC-misses = 100 s−1 and system-read = 20MB/s,
when snort runs with an instance of pktstat as a competitor
processing 5 Gbps incoming traffic consisting of 10 concur-
rent flows. Then, in this case the contentiousness vector
of snort is given by V̂

(1)
snort(x) = [100, 20] where x =

[(pktstat, 5Gbps, 10flows)]. During the offline profiling phase
for MS r, we vary x and k to measure V̂

(k)
r (x) as well as the

corresponding observed throughput P (k)
r (x).

Concerning the sensitivity model of an MS r, this is defined
as a function Mr : V̂

(k)
r (x) → P

(k)
r (x) [8]. It is obtained

by training a regression model mapping the contentiousness
vector V̂

(k)
r (x) into the observed throughput P (k)

r (x), for
different x and k.

Finally, we leverage experimental results to compute the
representative contentiousness vector V(k)

r of MS r, obtained
by averaging over all the observed contentiousness vectors
with k competing MSs, with respect to the workload values
x. V(k)

r is then fed as input to the sensitivity model in the
online prediction phase. For brevity, we will refer to such a
vector as the contentiousness vector hearafter.

B. Online prediction phase

It leverages the specific contentiousness vectors of the
competitors and the sensitivity model of the target MS, in
order to predict the throughput of the latter. As an example,
let us consider three MSs, ra, rb and rc, running on the same
server; similar arguments hold for an arbitrary number of MSs.
To predict the throughput of ra in the presence of rb and rc, we
compute the aggregate contentiousness V

(2)
rb,rc , characterizing

the pressure on the resources jointly caused by MSs rb and
rc, by combining their representative contentiousness vectors
as follows: V

(2)
rb,rc = V

(2)
rb + V

(2)
rc . In this expression, with

an abuse of notation, + denotes an appropriate linear operator
(e.g., sum for cache occupancy or the cache read/write opera-
tions, or average for cache hit or miss probability) applied to
each component of the contentiousness vector, so as to reflect
the combined effect of the two competing MSs. We stress that
this approach proved to be very accurate, as reported in [8].
Next, the throughput of ra can be predicted as:

Pra({ra, rb, rc}) =Mra(V
(2)
rb,rc

) . (1)

Generalizing (1), the throughput of ra when running on
server s with set Ys \ {ra} of competing MSs is predicted as:

Pra(Ys) =Mra

(∑
r∈Ys\{ra}

V(|Ys|−1)
r

)
. (2)

IV. MEASURING AND PREDICTING INTERFERENCE

We now show how to build a prediction model for esti-
mating the throughput of competing MSs, which is required
for an interference-aware MS placement solution. We stress,
however, that our solution, introduced in Sec. V, can work
with any other appropriate interference prediction model.

5 6 7 8 9 10 11 12
Memory Read [MBps]

23

25

27

29

31

Ta
rg

et
 M

S
th

ro
ug

hp
ut

 [G
bp

s]

Fig. 5. Degradation of snort performance when competing with pkstat.

A. Selecting metrics for contentiousness vector

To determine the contentiousness vector, we have con-
sidered various system-level metrics (e.g., instructions/cycle,
L2/L3 cache misses/hits/occupancy, memory read/write op-
erations) exposed by Intel’s PCM framework, which is a
performance-monitoring API to collect real-time, architecture-
specific resource usage metrics.

We recall that each core of a modern system comprises
its own L1 and L2 cache while all cores share LLC and
memory bandwidth. Even running MSs on dedicated cores
does not perfectly isolate their performance from each other
as they will still compete for LLC and memory bandwidth.
Furthermore, the Linux Kernel does not pin the Interrupt
Service Routines (ISR) to the same core as the code causing
these interrupts: code pinned to core 1 and causing an interrupt
might still have its ISR executed on core 2. These ISRs
then impact the performance of code pinned to core 2. As
a consequence, containers running MSs with heavy network
traffic can interfere with MSs co-located on the same machine.
This motivated us to collect core-wise software interrupts
using mpstat [32].

Intel PCM and mpstat output a wide range of metrics, but
not all of them are relevant for the interference. Out of those,
we selected components for the contentiousness vector that
are highly correlated with the target MS’s throughput, i.e., for
which the Pearson correlation coefficient [33] is larger than
0.7. Table I lists such system-level metrics for the considered
MSs. The READ and WRITE operations appear to be very
relevant since the interference is due to the LLC and memory
bandwidth contentions. To better characterize this effect, Fig. 5
shows, for snort competing with pktstat, the high performance
degradation due to such contention. Furthermore, softirq are
also relevant because of the sharing of interrupt handling
among the cores, as discussed before.

B. Building the Interference Prediction Model

Recall that sensitivity models the performance of a target
MS as a function of its contentiousness. The sensitivity is
measured by building a model that takes the contentiousness
vector as input and outputs the MS performance. Such a
prediction model is a regressor, as input and output are
continuous variables.

We train the sensitivity prediction model per MS by using its
contentiousness vectors generated during the offline profiling

This article has been accepted for publication in IEEE Transactions on Network and Service Management. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TNSM.2023.3235710

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Politecnico di Torino. Downloaded on January 12,2023 at 09:38:22 UTC from IEEE Xplore. Restrictions apply.

6

TABLE I
MOST MEANINGFUL SYSTEM LEVEL METRICS BASED ON THE CORRELATION COEFFICIENT (CC).

Snort Pktstat MQTT Nginx
Metric CC Metric CC Metric CC Metric CC

Core-1 EXEC 0.96 System L2MPI 0.98 System READ 0.97 Core-0 IPC 0.91
System READ 0.90 Core-0 IPC 0.98 Core-0 IPC 0.98 System L3MISS 0.85
Core-1 IPC 0.89 Core-1 EXEC 0.96 Core-0 L3MPI 0.79 Core-4 L3MISS 0.83
System WRITE 0.88 Core-2 L2MISS 0.95 Core-1 IPC 0.75 System READ 0.81
Core-2 L3MISS 0.85 System L2MISS 0.95 Core-4 softirqs 0.74 Core-0 L2MPI 0.80
Core-1 L2MISS 0.83 Core-0 softirqs 0.94 Core-1 L3MISS 0.73 System L3MPI 0.74

phase. Specifically, we use a Gradient Boosting Regressor
model as sensitivity is a non-linear, non-continuous function of
the contentiousness vectors. For each trained sensitivity model,
we measured the prediction error using the absolute mean
prediction error, which is 2.5%, 3.6%, 4.5%, and 5.2% for
snort, pktstat, MQTT, and nginx, respectively. Thus, despite
the differences between our experimental setup and the one
used in [8], we obtain an accurate interference prediction that
is coherent with that presented in [8].

V. SYSTEM MODEL AND PROBLEM FORMULATION

We now describe our system model and formalize the IMSP
problem to optimally place MSs at the network edge.

A. System model

Let us focus on a single data center and let S be the set of
servers available therein. We consider an online MS placement
scenario in which a subset of servers in S run some pre-
existing MSs, each of them currently satisfying its SLA. Let
Fs be the set of pre-existing MSs running on server s, with
Fs = ∅ if s is idle. Then, consider a set R of requests for MS
instances, (possibly) related to different services, arriving at
the orchestrator. Let tr be the minimum required throughput,
as specified by the SLA, for an MS r ∈ R.

We assume that the data center has ample symmetric
bandwidth and, hence, the throughput of an MS depends only
upon its server’s processing capacity, potentially influenced
by interference. Thus, each MS r ∈ R can be placed
independently from other r′ ∈ R. Furthermore, each server
s ∈ S has limited CPU and memory budget denoted by τ̂s
and µ̂s, respectively, while there is ample availability of other
resource types. In addition, each MS request r entails CPU
and memory demand as denoted by τr and µr, respectively.

While placing new MSs, pre-existing ones are not moved
and their SLAs must be still met. If an MS request cannot
be placed in any of the existing servers without violating the
SLAs, then an additional server is provisioned.

Let yr,s ∈ {0, 1}, with r ∈ R and s ∈ S, be a binary
decision variable expressing whether a new MS r should be
placed on server s or not, and let Ys = {r ∈ R|yr,s = 1}
be the set of MSs placed on server s. A server s is active
(indicated by ns ∈ {0, 1}) if and only if it serves at least
one MS r. Using the model introduced in Sec. IV, we can
predict the throughput of any MS in a server with co-located
MSs. We denote by Pr(Ys) the predicted throughput of MS
r ∈ R when running in server s and competing with MSs in

TABLE II
LIST OF SYMBOLS USED IN THE PROBLEM FORMULATION

Symbol Description

Parameters for Servers

S Set of available servers
µ̂s Memory capacity of server s
τ̂s Computation capacity of server s
Fs Set of MSs already placed on server s

Parameters for MS

µr Required memory of MS r
τr Required computation of MS r
tr minimum throughput for MS r based on its SLA
R Set of MSs to deploy in a new batch of requests, R∩

Fs = ∅, ∀s
Pr(Ys) Predicted throughput of MS r on server s when

competing with MSs in Fs∪Ys \{r}, with Ys being
the set of requests placed on server s

Variables

yr,s Binary decision variable, indicating whether MS r is
running on server s

ns Binary decision variable, indicating whether server s
is actively running at least one MS

Fs ∪ Ys \ {r}, i.e., with both pre-existing and newly placed
MSs. Key parameters of the system model, along with their
notation, are listed in Table II.

B. The IMSP problem formulation

Given the set of requested MSs, the goal is to minimize the
number of edge servers used to place the MSs, i.e.,

min
∑
s∈S

ns (3)

subject to system and SLA constraints:∑
s∈S

yr,s = 1 ∀r ∈ R (4)

ns ≤
∑
r∈R

yr,s + |Fs| ∀s ∈ S (5)∑
r∈Ys

yr,s · µr +
∑
r∈Fs

µr ≤ ns · µ̂s ∀s ∈ S (6)∑
r∈Ys

yr,s · τr +
∑
r∈Fs

τr ≤ ns · τ̂s ∀s ∈ S (7)

Pr(Ys ∪ Fs) ≥ tr ∀s ∈ S, r ∈ R ∪ Fs (8)
ns ∈ {0, 1} ∀s ∈ S, (9)

yr,s ∈ {0, 1} ∀s ∈ S, r ∈ R . (10)

This article has been accepted for publication in IEEE Transactions on Network and Service Management. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TNSM.2023.3235710

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Politecnico di Torino. Downloaded on January 12,2023 at 09:38:22 UTC from IEEE Xplore. Restrictions apply.

7

Eq. (4) specifies that a new MS must be placed on exactly
one server. Eq. (5) ensures that a server is turned off if no
MS is assigned to it. Equations. (6)–(7) mandate that the
memory and computing resource requirements of all (new
and pre-existing) MSs allocated in server s cannot exceed the
available server memory or computing capability; they also
ensure that server s is active if any MS is assigned to it. Eq. (8)
leverages (2) and imposes that the predicted throughput for any
new and pre-existing MS must satisfy the minimum required
throughput as specified in the corresponding SLA, thus the
mutual interference across all MSs is acceptable.

About the problem complexity, the following result holds.

Theorem 1. The IMSP problem in (3), subject to constraints
(4)–(10), is NP-hard.

Proof. We consider a simplified offline version of our IMSP
problem where (i) the interference among MSs is neglected,
(ii) each server has infinity memory, (iii) no pre-existing MSs
are running, i.e., Fs = ∅, (iv) no throughput constraints exist,
i.e., tr = 0, ∀r ∈ R. In this case, each of the requested MSs
in R has only a computing requirement and overall the server
capacity cannot be exceeded.

Next, consider the bin packing problem, which is NP-
hard [34], where we are given a set of items and bins. Observe
that each item can be mapped onto an MS request with the
required computation equal to the item size, and each bin can
be mapped onto a server with a computation capacity equal
to the bin size. It follows that any instance of the bin packing
problem can be reduced in polynomial time to the above
simplified version of the IMSP, thus proving the thesis.

In light of the complexity of the IMSP problem, we intro-
duce below a heuristic, which has cubic wort-case complexity
and, as shown in Sec. VII closely matches the optimum.

VI. IPLACE: THE INTERFERENCE-AWARE MS PLACEMENT

This section first presents in Sec. VI-A our heuristics, along
with an example of how the iPlace algorithmic framework
works. Then it discusses the complexity of iPlace in Sec. VI-B.

A. Algorithmic framework

The key idea of our MS placement algorithm, iPlace, is to
partition the set of new MSs into clusters in which the MSs
contend for different types of resources. Importantly, clustering
is motivated by the much smaller time for parallel deployment
compared to sequential deployment, as showed experimentally
in Sec. II-B. Furthermore, while clustering MSs, we reduce the
mutual interference of MSs in the same cluster, which allows
them to better coexist on the same server.

As depicted in Fig. 6 and presented in Alg. 1, the iPlace
algorithm works in two phases:
• the clustering phase, which clusters the new MS place-

ment requests based on their contentiousness, and
• the placement phase, which selects the server where to

place each created cluster, accounting for the MSs that
are already hosted in the active servers.

In the clustering phase, iPlace leverages the distance between
any ri, rj∈R (ri 6=rj) of MS placement requests with the

Fig. 6. Example of the clustering and placement phases for a batch of requests:
colors indicate the different types of resources an MS competes for; shapes
distinguish old from new MSs).

following criterion: larger distance between MSs means that
their corresponding contentiousness vectors are more similar
and compete more for similar resources. More formally, we
define the distance between two MSs ri, rj∈R as:

d(ri, rj) = ‖V(1)
ri −V(1)

rj ‖
−1
2 . (11)

The MSs in R are initially clustered using the mean-shift
clustering [35] technique, which automatically discovers the
number of clusters and the MSs to be included therein based
on the chosen distance metric.

After clustering the MSs in R into clusters, the placement
phase starts and the clusters are put in a queue in a random
order, processed until each cluster is assigned to a server.
Servers with enough computing and memory resources are
considered as eligible servers for placing a given cluster C.
We denote the set of eligible servers as A. For any eligible
server a ∈ A, we compute the distance between cluster C and
server a as presented in Alg. 2. More specifically, we define
the distance between server a running pre-existing MSs in Fa

and cluster C as:∥∥V(|Fa|+|C|−1)
w∈Fa

−V
(|Fa|+|C|−1)
w∈C

∥∥−1
2

(12)

where V
(|Fa|+|C|−1)
w∈Fa

is the aggregate contentiousness vector
of all MSs placed in a and V

(|Fa|+|C|−1)
w∈C is the one for C. All

the eligible servers in A are sorted in the increasing order of
their distance with cluster C according to (12).

To assess the impact of interference of the new MSs in C on
the nearest server s ∈ A consisting of Fs pre-existing MSs,
we use the PredictSLAViolations function described in
Alg 3. PredictSLAViolations returns True if placing
cluster C on the nearest server s violates the minimum required
throughput specified in the SLA of the most critical MS place-
ment request r̂. The most critical request r̂ is the one exhibiting
the minimum difference between its solo-run throughput and
the minimum required throughput. In particular, the function
uses the prediction model for r̂ ∈ C ∪ Fs as follows:

Pr̂(C ∪ Fs) =Mr̂(V
(|Fs|+|C|−1)
w∈Fs∪C\{r̂}) (13)

where the aggregate contentiousness vectors of the (|Fs| +
|C| − 1) competitors of r̂ is given by:

V
(|Fs|+|C|−1)
w∈Fs∪C\{r̂} = V

(|Fs|+|C|−1)
w∈Fs\{r̂} +V

(|Fs|+|C|−1)
w∈C . (14)

If the predicted throughput of r̂ following (14) satisfies its
SLA requirements, then we can safely place cluster C on server
s. Otherwise, C will be provisionally placed on the next nearest

This article has been accepted for publication in IEEE Transactions on Network and Service Management. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TNSM.2023.3235710

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Politecnico di Torino. Downloaded on January 12,2023 at 09:38:22 UTC from IEEE Xplore. Restrictions apply.

8

Algorithm 1 iPlace: Interference-aware MS placement

1: procedure MsPlacement(R,V, Ŝ,M) . Ŝ : set of currently
active servers, V : set of contentiousness vectors

2: Z ← MeanShiftClustering (R,V) . Initially apply
mean-shift clustering on the placement requests based on V

3: while Z 6= ∅ do
4: C ← Z.pop() . Move the first cluster from Z to C
5: A ← {s ∈ S|µC ≤ µ̂s ∧ τC ≤ τ̂s} . Servers with

enough resources
6: Sort A in increasing Distance(C,Fa,V)
7: for every s in A do . For each server
8: r̂ ← most critical MS in C ∪ Fs

9: if PredictSLAViolations(r̂, C,Fs,V,M) =
no violations then

10: Fs ← Fs ∪ C . Place the cluster C on the server
s

11: break . Consider a new cluster
12: if Cluster C is not placed then . Placing C in any

s ∈ A violates SLA
13: if |C| = 1 then . If size of C is 1
14: Ŝ ← Ŝ ∪ {n} . Start a new server n and place
C there

15: Fn ← C . Update pre-existing MSs in n to
include cluster C

16: else . The cluster is too large and must be split
17: Z ← Z.append(K-meansClustering(C,V))

. Apply K-means clustering on C based on V with K= 2

18: end procedure

Algorithm 2 Compute cluster-server distance
1: procedure Distance(C,Fa,V)
2: c← |C|+ |Fa| − 1 . Every MS will compete with c number of competitors
3: Vc ←

∑
r∈C V

(c)
r . Find the aggregate contentiousness vector of the

cluster C
4: Va ←

∑
r∈Fa

V(c)
r . Find the aggregate contentiousness vector of the

server a
5: return ‖Vc −Va‖−1

2 . Distance evaluated as in (12)
6: end procedure

Algorithm 3 Predict SLA violations
1: procedure PredictSLAViolations(r̂, C,Fs,V,M)
2: c ← |C|+ |Fs| − 1 . Compute number of competing MSs
3: Vaggr ←

∑
∀i∈Fs∪C,i 6=r̂ V

(c)
i . Aggregate cont. vector of r̂’s competitors

4: pr̂ ← Mr̂(Vaggr) . Predict the performance
5: if pr̂ < tr̂ then . Compare with throughput according to SLA
6: return True . At least one SLA violation is experienced
7: return False . No SLA violation is experienced
8: end procedure

server and the procedure is repeated until a server is found that
can host C without violating the SLA of any involved MS, or
all the active servers have been examined. In the latter case,
if C > 1, we partition the cluster into two smaller ones using
K-means clustering with K=2, and we add such two new
clusters to the end of the cluster queue. If C = 1, we open a
new server to place C.

It is worth noting that the algorithm will tend to consolidate
the MSs in the minimum number of servers, in line with the
considered objective function in (3). In order to further clarify
how iPlace work, we provide the example below.

Example 1 (MS placement using iPlace). Consider a batch
request R consisting of two MS placement requests arriving at
the orchestrator, R = {snort, pktstat}. Further, consider that

TABLE III
A SIMPLE EXAMPLE OF CONTENTIOUSNESS VECTORS OF MSS

LLC-misses [s−1] system-read [MB/s]

snort 120 40
pktstat 10 200
nginx 50 40

there is a single active server running one instance of nginx,
represented as Ŝ = {S0} where S0 = {nginx}. Each MS in
the considered system is associated with an SLA that specifies
minimum required throughput, and let us say that tsnort =
1Gbps, tpktstat = 2Gbps, and tnginx = 4Gbps. Without loss
of generality, let us assume that the contentiousness vector of
the MSs comprises of two metrics; LLC-miss and system-read.
For simplicity, we have considered the contentiousness vectors
of the MSs as shown in Table III consisting of arbitrary values
for the considered metrics.

Initially, iPlace creates clusters of the MSs based on their
contentiousness. We can represent the created clusters as
Z = {C0}, with C0 = {snort, pktstat}. It is obvious from
Tab. III that snort and pktstat belong to the same cluster
because they compete for different kinds of resources. During
the placement phase, we check whether the placement of
cluster C0 on server S0, already running nginx, violates
the minimum required throughput in the SLA of the most
critical MS. Assume that the most critical MS here is pktstat,
then we calculate the aggregate contentiousness vector of
snort and nginx and give it as input to prediction model
Mpktstat. The aggregate contentiousness vector is calculated
by combining the contentiousness vectors of snort and pktstat
using appropriate linear operators; sum for system-read and
average for LLC-miss. Let the output of Mpktstat be 2.5 Gbps,
which is greater than tpktstat; then C0 can be placed on S0
without violating the SLAs of the MSs present in C0 and S0.

B. iPlace complexity

The overall worst-case complexity of iPlace can be deter-
mined by inspecting Alg. 1–Alg. 3.

Alg. 1 performs MeanShiftClustering, which has
complexity O(|R|2), once, and meansClustering, which
has complexity O(|R|), log2 |R| times, where we re-
call that |R| is the number of newly requested MS in-
stances. Furthermore, iPlace executes the distance and
predictSLAViolations functions for every created clus-
ter and for every, still partially empty, active server, with the
number of such servers being denoted with |Ŝ|. The worst-case
complexity of the distance function is equal to O(|R|),
as it might need to loop over the contentiousness vectors of
the number of MSs present in the cluster and the server.
Similarly, the predictSLAViolations function has a
worst-case complexity of O(|R|), as in the worst-case, we
might need to calculate the aggregate contentiousness vector
using the contentiousness vectors of |R|−1 competitors of the
target MS. Thus, iPlace’s worst-case is dominated by that of

This article has been accepted for publication in IEEE Transactions on Network and Service Management. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TNSM.2023.3235710

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Politecnico di Torino. Downloaded on January 12,2023 at 09:38:22 UTC from IEEE Xplore. Restrictions apply.

9

Min Avg Max
0

2

4

6
|

|
iPlace
Optimal

pktstat snort
0

10

20

30

Av
g

th
ro

ug
hp

ut
 [G

bp
s]

iPlace
Optimal

Fig. 7. iPlace vs. optimal: number of used servers (left); throughput (right).
The thin bars represent 95%-level confidence intervals.

the distance and predictSLAViolations functions,
which is O(|Ŝ||R|2).

We therefore remark that iPlace will scale well in the
number of allocated MSs, and, importantly, it will not grow
quadratically in the number of already running MSs.

VII. PERFORMANCE EVALUATION

In order to evaluate iPlace against the optimum, we first
investigate a small-scale, stationary scenario, where the IMSP
problem can be solved by brute force. Then we move on
to a larger-scale, dynamic scenario that we use to compare
iPlace against state-of-the-art alternatives. In both scenarios,
we consider MS placement requests, arriving in batches of size
|R|, each with its associated minimum required throughput.
Specifically, for each MS in R, the associated minimum
required throughput is chosen from a uniform distribution
between 50% and 70% of the MS solo performance.

Small-scale, stationary scenario. We first compare the
results yielded by iPlace to the optimal solution. The latter is
obtained through brute-force search by generating all possible
placement combinations and selecting the one that uses the
minimum number of servers while satisfying the SLA of all
MSs. We consider that each request arriving at the orchestrator
includes six MSs, and that two servers are already active: one
running a pre-existing snort MS and the other a pre-existing
pkstat MS. We repeat the experiment 100 times, each time
varying the MSs’ required throughput, and we compute the
confidence interval with a confidence level of 95%.

Fig. 7 shows that iPlace requires the same minimum and
maximum number of servers as the optimum, while the
average is just slightly higher. Interestingly, iPlace can provide
better6 performance, thanks to the higher number of activated
servers, mitigating the interference among co-located MSs.

Large-scale, dynamic scenario. We used “short-lived” MSs
to capture a dynamic scenario, in which the container is
activated when a request arrives and is deactivated after serving
the request. We assume that the MSs do not maintain state in
their containers, and the startup time is negligible compared
to the service execution time; this is quite typical for the
“serverless” computing paradigm. Note that, if MSs are instead
“long-lived”, iPlace is still perfectly applicable, but since start-
ups happen much less frequently, this scenario is much less of
a challenge, thus we have not considered it in our evaluation.

6Since the throughput performance is not the goal of the optimization, it
is indeed possible that iPlace outperforms the optimum in this respect.

We now model MS arrivals according to a Poisson process
and the service duration according to a negative exponential
distribution. As it is common that the requested services
are chains of multiple functions, we consider batch arrivals
and departures where the batch size |R| follows a geometric
distribution with mean varying between 5 to 30 MSs. Each
MS in the batch is picked randomly from a pool of profiled
MSs and their associated minimum required throughput is
chosen from a uniform distribution between 50%-70% of
their solo performance. In the considered model, the arrival
rate of each MS batch and the expected service duration of
all the MSs within the same batch are denoted with λ and
1/µ, respectively. Then let ρ = λ/µ be the utilization factor.
Whenever a batch arrival occurs, iPlace processes the newly
arrived MS requests and places the corresponding MSs in the
available servers, avoiding violating the SLAs of new and pre-
existing MSs. In case of any SLA violation, a new server is
provisioned. When an MS batch’s service time expires, all
of the MSs in that batch are removed and a server becomes
inactive if it is not running any MS.

We fix λ = 3 arrivals per time unit and the system is
evaluated in and with ρ = 0.2 (low-load) and ρ = 0.9 (high-
load). Each simulation begins by setting the initial number of
servers to 0, and it lasts 1000 time units. At every event, i.e.,
batch arrival or departure, we calculate the number of active
servers in the system and the number of active MSs.

We evaluate the average number of servers, average MSs
per server, and average active MSs, as R varies, for both high-
load and low-load scenarios. While doing so, we compare the
performance of iPlace to the following alternative solutions,
which consider sequentially all the MSs within each batch and
deploy each of them individually:

slomo [8]: A new MS is placed in the first available server,
according to a fixed order, that can host the MS without any
SLA violation. To detect SLA violations, slomo uses the same
prediction model as iPlace.

bestfit: A new MS is placed in the server with the highest
cumulative throughput of the pre-existing MSs.

worstfit: A new MS is placed in the server with the lowest
cumulative throughput of the pre-existing MSs.
In all the three benchmark algorithms, if a new MS request
cannot be placed in any of the active servers, then a new
server is provisioned. Thus, the MSs of the same batch can
be eventually placed on different servers. Also, notice that,
due to the sequential approach, the overall deployment time
of these three variants will be larger than iPlace, as shown by
our experimental results in Sec. II-B.

The two plots of Fig. 8 present the average number of
servers required by iPlace and its benchmarks to deploy a
batch of MSs in low-load and high-load scenarios, respec-
tively. For an average batch size of 30 MSs, in a high-load
scenario, iPlace utilizes 21%, 92% and 72% fewer servers
than slomo, bestfit, and worstfit approaches, respectively. In a
low-load scenario, iPlace requires 25%, 89% and 68% fewer
servers for placing the MS requests compared to slomo, bestfit,
and worstfit approaches, respectively. In a nutshell, in all
the cases iPlace can reduce substantially the number of used
servers, with respect to its alternatives.

This article has been accepted for publication in IEEE Transactions on Network and Service Management. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TNSM.2023.3235710

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Politecnico di Torino. Downloaded on January 12,2023 at 09:38:22 UTC from IEEE Xplore. Restrictions apply.

10

5 10 15 20 25 30
Ave[MSs/batch]

0

1

2

3

Av
e[

se
rv

er
s]

iPlace
slomo
bestfit
worstfit

5 10 15 20 25 30
Ave[MSs/batch]

0

5

10

15

20

Av
e[

se
rv

er
s]

iPlace
slomo
bestfit
worstfit

Fig. 8. iPlace vs. its benchmarks: average number of servers under low load (left) and high load (right).

1 2 3 4 5 6
Ave[MSs]

0

1

2

3

4

Av
e[

M
Ss

/s
er

ve
r]

iPlace
slomo

bestfit
worstfit

5 10 15 20 25 30
Ave[MSs]

0

2

4

6

8

10

12

Av
e[

M
Ss

/s
er

ve
r]

iPlace
slomo

bestfit
worstfit

Fig. 9. iPlace vs. its benchmarks: average number of MSs per server under low load (left) and high load (right).

Furthermore, Fig. 9 depicts the average number of MSs
per server as a function of the average number of MSs
present in the system. The plots demonstrate that iPlace and
slomo approaches consolidate a larger number of MSs on
the same server than bestfit and worstfit approaches, without
violating any SLA. Moreover, iPlace outperforms slomo by
accommodating between 31% and 41% more MSs on the same
server, depending on the scenario settings.

Deployment time. We now evaluate experimentally the
deployment time in a realistic scenario according to the
following methodology. We simulate the MS batch arrivals
and compute the placement according to a given policy. For
each batch, iPlace computes a sequence of MS clusters and the
corresponding servers. Then we run the Volcano scheduler of
Kubernetes to place each cluster individually by deploying in
parallel all the MSs within each cluster on the same server. On
the contrary, slomo placement algorithm computes a sequence
of MSs and a server associated to each individual MS. Thus,
in this cases we run the Volcano scheduler of Kubernetes to
deploy sequentially each MS on the desired server.

In each experiment we consider the arrival of 10 batches,
with an average number of MSs per batch varying between 5
and 30. Each experiment is repeated 5 times to estimate the
average deployment time (the results show sample mean and
confidence intervals for a 95 % confidence level).

Fig. 10 presents the average per-container deployment time
for iPlace and slomo, as a function of the number of MSs
per batch. Remarkably, one can observe that iPlace reduces
the deployment time by 69% as compared to slomo. Thus, in
addition to reducing the number of used servers by packing
more MSs on the same server, iPlace also benefits greatly
from batch deployment when compared with state-of-the-art
solutions and achieves a lower deployment time.

5 10 15 20 25 30
Ave[MSs/batch]

0.0

0.5

1.0

1.5

2.0
Av

e
pe

r-c
on

ta
in

er

 d
ep

lo
ym

en
t t

im
e

[s
ec

on
ds

]

iPlace
slomo

Fig. 10. Average per-container deployment time for iPlace and slomo.

VIII. RELATED WORK

The problem of MS, or, alternatively, VNF, placement has
been extensively studied in the literature with multiple scopes
and objectives. Examples include works that have aimed at
properly accounting for user mobility, or at minimizing the
delay or the number of used servers. However, most of the
existing studies have not considered performance interference,
which is instead vital when deciding on which edge server an
MS/VNF has to be placed.

Among the few prior approaches that propose interference-
aware MS/VNF placement, [16], [17], [36] leverage a supply-
demand model to quantify interference. In particular, [16],
[17] propose an Adaptive Interference Aware (AIA) VNF
placement to automatically place VNFs maximizing the total
throughput of the accepted placement requests. AIA quantifies
interference experienced by the consolidated VNFs through a
demand-supply model by profiling each VNF with the aim
to measure CPU and memory utilization and meet diverse
service requirements. Unlike iPlace, the proposed supply-

This article has been accepted for publication in IEEE Transactions on Network and Service Management. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TNSM.2023.3235710

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Politecnico di Torino. Downloaded on January 12,2023 at 09:38:22 UTC from IEEE Xplore. Restrictions apply.

11

demand model in AIA does not consider other sources of
contention such as LLC, memory bandwidths and software
interrupts. Moreover, AIA proposes a sequential deployment
of the placement requests to maximize the total throughput of
the accepted requests, which incurs a large deployment time
as discussed in Sec. II-B and shown in Fig. 10.

Many efforts have addressed performance interference using
partitioning techniques. ResQ [11] proposes a contention-
aware VNF scheduler, based on the observation that LLC
and DDIO7 packet buffers are the critical factors for perfor-
mance degradation of consolidated VNFs. This complements
our approach, although we did not experience any effect of
DDIO since our experiments are always based on virtual
interfaces. ResQ combines two techniques: a profiling scheme
to determine the LLC partition size required to achieve a
target SLA, and a Cache Allocation Technology, which is a
hardware-based method method to partition the LLC among
the competing VNFs. The ResQ scheduler uses both an online
greedy heuristic and offline mixed-integer linear programming
to find an optimal schedule for the arriving requests based
on profiling information. ResQ partitions the LLC among
competing VNFs, but it does not isolate other resources
degrading throughput, making it an incomplete solution to
IMSP. Also, unlike iPlace, ResQ works sequentially on each
MS individually and is not able to exploit parallel deployment.

Other works [9], [10] model the contention-induced perfor-
mance drop suffered by a packet processing unit as a function
of competitors’ aggregate Cache Access Rate (CAR). Their
main observation is that some VNFs are sensitive to co-located
VNFs’ behavior, and that VNFs can also be “aggressive”
in causing such sensitive VNFs to suffer. This is coherent
with our experimental evidence presented in Sec. II-A. Their
proposed solution is to co-locate such sensitive VNFs with
non-aggressive VNFs. They have considered a single metric
to quantify the interference and classify the VNFs. The modern
memory architecture is complex; thus, measuring interference
based on a single metric may be inefficient. In contrast, the
iPlace clustering scheme tends to co-locate the MSs by consid-
ering several system-level metrics to quantify the interference.

DeepDive [18] proposes a solution to transparently iden-
tify and manage performance interference between co-located
virtual machines using a warning system based on low-
level metrics and an interference analyzer for determining the
culprit resource. Unlike iPlace, which takes interference-aware
decisions while deploying the MSs in the first place, DeepDive
identifies the interference after the initial placement of the MS
and, when necessary, migrates an MS to a different physical
machine, which incurs additional migration cost.

The most relevant study to ours is however [8], which
presents an interference-aware VNF placement solution. We
adopt the same machine learning approach to estimate the
interference of slomo, as discussed in Sec. IV-A. Even if the
interference model is the same, the way it is adopted to solve
the IMSP is different. Notably, the cluster-based approach
in iPlace is compatible with any method to estimate the

7Intel Data Direct I/O Technology is a proprietary solution to optimize data
plane forwarding performance in physical network cards.

interference. To solve the placement problem, slomo proposes
a greedy incremental approach to minimize the number of
active servers, according to which it verifies whether adding
a new VNF request to a server leads to SLA violations for
each scheduling request. If there is no feasible solution, slomo
provisions a new server to place the request. The greedy
incremental approach in slomo is inefficient as it involves
tentatively placing new requests in each active server and
checking each VNF individually for SLA violations. Instead,
iPlace introduces a two-stage method consisting of clustering
the MSs that do not contend for the same resources and placing
these clusters on separate servers to minimize interference.
Moreover, as evident in the experimental results, the batch
approach exploited by iPlace dramatically reduces the deploy-
ment time compared to slomo.

Finally, our preliminary work in [37] explores interference-
aware MS placement using clustering, which has shown
improvement of 10-60% in the number of used servers
against various state-of-the-art solutions for a batch size of
50 consisting of only two MS instances. In our preliminary
work, we considered only network services, i.e., pktstat and
snort, while building the prediction model and evaluating the
performance of iPlace. In this work, we have extended the
set of MSs to include both network and application-level
services, i.e., MQTT and nginx. This extension allowed us
to better represent the real-world scenario where network and
application-level services coexist. Furthermore, we highlight
the benefit of parallel MS deployment over a sequential
approach in reducing the deployment time using real-world
orchestrators (Kubernetes and Docker swarm). This important
observation motivated us to design iPlace so that it deploys
clusters of MSs rather than a single MS each time. We further
extended the simulation of our prior work to consider a large-
scale dynamic scenario in which MS batch arrivals and their
service time are modeled using a Poisson process and negative
exponential distribution, respectively. The simulated extension
demonstrates that iPlace reduces the number of used servers
both in high and low-load scenarios. Furthermore, the number
of consolidated MSs per server is higher in iPlace than in
considered benchmarks.

IX. CONCLUSIONS

We addressed resource-constrained cloud systems, a typical
operational condition in edge computing and private clouds. In
this context, we designed a microservice placement algorithm
that minimizes the use of computing resources while still
meeting the performance requirements of MSs. In doing so, we
showed experimentally the gain of parallel versus sequential
MSs deployment, and the substantial impact that interference
among MSs co-located in the same server can have on the
MSs performance. We formulated the interference-aware MSs
placement as an optimization problem that aims at minimizing
the number of used servers. Given the problem’s NP-hardness,
we developed a low-complexity heuristic that places batches of
MSs that compete for different resources on the same server,
thus also allowing for parallel MSs deployment.

Our numerical results show that the proposed approach
closely matches the optimum and, when compared to state-

This article has been accepted for publication in IEEE Transactions on Network and Service Management. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TNSM.2023.3235710

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Politecnico di Torino. Downloaded on January 12,2023 at 09:38:22 UTC from IEEE Xplore. Restrictions apply.

12

of-the-art solutions, it reduces the number of used servers by
21-92%, while proving to be highly scalable. Furthermore,
by exploiting parallel deployment, iPlace can reduce the
deployment time by 69%.

REFERENCES

[1] D. Bhamare, R. Jain, M. Samaka, and A. Erbad, “A survey on service
function chaining,” J. of Network and Computer Applications, 2016.

[2] R. Mijumbi, J. Serrat, J. L. Gorricho, N. Bouten, F. D. Turck, and
R. Boutaba, “Network Function Virtualization: State-of-the-art and re-
search challenges,” IEEE Comm. Surveys & Tutorials, vol. 18, no. 1,
2017.

[3] N. Dragoni, S. Giallorenzo, A. L. Lafuente, M. Mazzara, F. Montesi,
R. Mustafin, and L. Safina, Microservices: Yesterday, Today and Tomor-
row. Springer International Publishing, 2017.

[4] W. Zhang, G. Liu, W. Zhang, N. Shah, P. Lopreiato, G. Todeschi,
K. Ramakrishnan, and T. Wood, “OpenNetVM: A platform for high
performance network service chains,” in ACM HotMiddlebox, 2016.

[5] J. Martins, M. Ahmed, C. Raiciu, V. Olteanu, M. Honda, R. Bifulco,
and F. Huici, “ClickOS and the art of network function virtualization,”
in USENIX NSDI, 2014.

[6] A. Panda, S. Han, K. Jang, M. Walls, S. Ratnasamy, and S. Shenker,
“NetBricks: Taking the V out of NFV,” in ACM OSDI, 2016.

[7] S. Palkar and et al., “E2: A Framework for NFV Applications,” in ACM
SOSP, 2015.

[8] A. Manousis, R. A. Sharma, V. Sekar, and J. Sherry, “Contention-
aware performance prediction for virtualized network functions,” in
ACM SIGCOMM, 2020.

[9] J. Mars, L. Tang, R. Hundt, K. Skadron, and M. L. Soffa, “Bubble-up:
Increasing utilization in modern warehouse scale computers via sensible
co-locations,” in IEEE/ACM MICRO, 2011.

[10] M. Dobrescu, K. Argyraki, and S. Ratnasamy, “Toward predictable
performance in software packet processing platforms,” in ACM NSDI,
2012.

[11] A. Tootoonchian, A. Panda, C. Lan, M. Walls, K. Argyraki, S. Rat-
nasamy, and S. Shenker, “ResQ: Enabling SLOs in network function
virtualization,” in USENIX NSDI, 2018.

[12] V. Varadarajan, T. Kooburat, B. Farley, T. Ristenpart, and M. M. Swift,
“Resource-Freeing Attacks: Improve Your Cloud Performance (at Your
Neighbor’s Expense),” in ACM CCS, 2021.

[13] S. Akundi, S. Prabhu, N. U. B.K., and S. C. Mondal, “Suppressing
noisy neighbours in 5g networks: An end-to-end nfv-based framework
to detect and suppress noisy neighbours,” in ACM ICDCN, 2020.

[14] P. Veitch, E. Curley, and T. Kantecki, “Performance evaluation of cache
allocation technology for NFV noisy neighbor mitigation,” in IEEE
NetSoft, 2017.

[15] C. Zeng, F. Liu, S. Chen, W. Jiang, and M. Li, “Demystifying the
performance interference of co-located virtual network functions,” in
IEEE INFOCOM, 2018.

[16] Q. Zhang, F. Liu, and C. Zeng, “Adaptive interference-aware VNF place-
ment for service-customized 5G network slices,” in IEEE INFOCOM,
2019.

[17] Q. Zhang, F. Liu, and C. Zeng, “Online adaptive interference-aware
VNF deployment and migration for 5G network slice,” IEEE/ACM
Transactions on Networking, 2021.

[18] D. Novaković, N. Vasić, S. Novaković, D. Kostić, and R. Bianchini,
“DeepDive: Transparently identifying and managing performance inter-
ference in virtualized environments,” in USENIX ATC, 2013.

[19] K. Nikas, N. Papadopoulou, D. Giantsidi, V. Karakostas, G. Goumas,
and N. Koziris, “Dicer: Diligent cache partitioning for efficient workload
consolidation,” in ACM ICPP, 2019.

[20] A. Baluta, J. Mukherjee, and M. Litoiu, “Machine learning based
interference modelling in cloud-native applications,” in ACM ICPE,
2022.

[21] “Kubernetes.” https://kubernetes.io.
[22] “Docker-swarm.” https://docs.docker.com.
[23] M. Isard, V. Prabhakaran, J. Currey, U. Wieder, K. Talwar, and A. Gold-

berg, “Quincy: Fair scheduling for distributed computing clusters,” in
ACM SOSP, 2009.

[24] M. Zaharia, D. Borthakur, J. Sen Sarma, K. Elmeleegy, S. Shenker, and
I. Stoica, “Delay scheduling: A simple technique for achieving locality
and fairness in cluster scheduling,” in ACM EuroSys, 2010.

[25] S. Fu, R. Mittal, L. Zhang, and S. Ratnasamy, “Fast and efficient
container startup at the edge via dependency scheduling,” in USENIX
HotEdge, 2020.

[26] L. Gu, D. Zeng, J. Hu, B. Li, and H. Jin, “Layer aware microservice
placement and request scheduling at the edge,” in IEEE INFOCOM,
2021.

[27] L. Gu, D. Zeng, J. Hu, H. Jin, S. Guo, and A. Y. Zomaya, “Exploring
layered container structure for cost efficient microservice deployment,”
in IEEE INFOCOM, 2021.

[28] S. Song, C. Lee, H. Cho, G. Lim, and J.-M. Chung, “Clustered
virtualized network functions resource allocation based on context-
aware grouping in 5G edge networks,” IEEE Transactions on Mobile
Computing, 2020.

[29] H. Bouattour, Y. B. Slimen, M. Mechteri, and H. Biallach, “Root cause
analysis of noisy neighbors in a virtualized infrastructure,” in IEEE
WCNC, 2020.

[30] O. A. Wahab, N. Kara, C. Edstrom, and Y. Lemieux, “Maple: A machine
learning approach for efficient placement and adjustment of virtual
network functions,” J. of Network and Computer Applications, vol. 142,
pp. 37–50, 2019.

[31] “Mqttloader.” https://github.com/dist-sys/mqttloader.
[32] J. Khalid, E. Rozner, W. Felter, C. Xu, K. Rajamani, A. Ferreira, and

A. Akella, “Iron: Isolating network-based CPU in container environ-
ments,” in ACM NSDI, 2018.

[33] J. Benesty, J. Chen, Y. Huang, and I. Cohen, Pearson Correlation
Coefficient, pp. 1–4. Springer, 2009.

[34] E. G. C. Jr, M. R. Garey, and D. S. Johnson, “Approximation algorithms
for bin packing: A survey,” 1996.

[35] K. Fukunaga and L. Hostetler, “The estimation of the gradient of
a density function, with applications in pattern recognition,” IEEE
Transactions on Information Theory, 1975.

[36] Y. Mu, L. Wang, and J. Zhao, “Energy-efficient and interference-aware
vnf placement with deep reinforcement learning,” in 2021 IFIP, 2021.

[37] M. Adeppady, C. F. Chiasserini, H. Karl, and P. Giaccone, “iPlace: An
interference-aware clustering algorithm for microservice placement,” in
IEEE ICC, 2022.

Madhura Adeppady has received her Master of Tech-
nology in Computer Science and Engineering from IIT Hy-
derabad, in 2020. She is currently pursuing her Ph.D. at
Politecnico di Torino.

Paolo Giaccone (SM’16) received his Ph.D. degree from
the Politecnico di Torino, Italy, where he is currently Associate
Professor. In 2000-2001 and 2002 he was with Stanford
University. His main area of interest is the design of network
control and optimization algorithms.

Carla Fabiana Chiasserini (F’18) worked as a visiting
researcher at UCSD and as a Visiting Professor at Monash
University in 2012 and 2016. She is currently a Professor at
Politecnico di Torino and EiC of Computer Communications.

Holger Karl leads the Internet Technology and Softwariza-
tion working group at the Hasso Plattner Institute, University
Potsdam. His research interests are in network softwarization,
machine learning in and for networks, and mobile systems.

This article has been accepted for publication in IEEE Transactions on Network and Service Management. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TNSM.2023.3235710

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Politecnico di Torino. Downloaded on January 12,2023 at 09:38:22 UTC from IEEE Xplore. Restrictions apply.

