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Abstract—Assessing the reliability of modern devices running
CNN algorithms is a very difficult task. Actually, the com-
plexity of the state-of-the-art devices makes exhaustive Fault
Injection (FI) campaigns impractical and typically out of the
computational capabilities. A possible solution to this problem
consists of resorting to statistical FI campaigns that allow a
reduction in the number of needed experiments by injecting only
a carefully selected small part of it. Under specific hypothesis,
statistical FIs guarantee an accurate picture of the problem,
albeit selecting a reduced sample size. The main problems today
are related to the choice of the sample size, the location of
the faults, and the correct understanding of the assumptions
with respect to the target system. The intent of this paper is
twofold: first, we describe how to correctly specify statistical FIs
for Convolutional Neural Networks; second, we propose a data
analysis on the CNN parameters that drastically reduces the
number of FIs needed to achieve statistically significant results
without compromising the validity of the proposed method. The
methodology is experimentally validated on two CNNs, ResNet-
20 and MobileNetV2, and the results show that a statistical FI
campaign on about 1.50% of the possible faults, provides very
precise information of the CNN reliability. The statistical results
have been confirmed by the exhaustive FI campaigns on the same
cases of study.

Index Terms—Statistical Fault Injection, Convolutional Neural
Network, Reliability, Fault Injection

I. INTRODUCTION

Nowadays, Deep Neural Networks (DNNs), and particularly
Convolutional Neural Networks (CNNs), represent one of the
most used solutions for addressing complex computational prob-
lems. Validating safety requirements of modern computing sys-
tems leveraging DNN algorithms is today a major concern in
industry and academia. To safely deploy them in safety-critical
systems, there is an urgent need of understanding their reliability
and robustness against the occurrence of random hardware faults
[1], [2]. For example, their adoption in road vehicles needs to
comply with safety standards, such as ISO-26262 dealing with
functional safety. Parallel to reliability assessment issues, another
non-negligible aspect is the complexity of these models and their
memory requirements.

As complexity increases, the computational effort in terms
of time and costs required to perform the reliability assessment
becomes unmanageable. Fault Injection (FI) campaigns have been
accepted as valid assessment methodologies for DNNs; however,
validating the safety properties by exhaustively fault simulating a
DNN is typically out of the computational possibilities. Recently,
a widely used technique adopted to determine DNN resilience
consists in performing FIs on static parameters (weights), and

checking their behaviour in response to the occurrence of faults
[3], [4]. Indeed, when they are deployed on hardware devices,
being read-only variables, weights and static data are stored in
memories, which are the highest contributor of soft errors in the
system [5], [6], in the case not additional mechanisms such as error
correction code are present in the device. As mentioned, the costs
for performing exhaustive FIs on DNNs are typically prohibitive as
the complexity and the size of newer DNNs grow. Understanding
the minimal number of experiments that a designer must perform
to get significant results is currently one of the main issue. To
address this problem, statistical approaches have been proposed
over the past decades with the intent of reducing the cost of the
fault simulation procedure while still achieving significant results
(i.e., fault sampling) [7]–[13]. Among these, only [9] validates the
proposed statistical method with exhaustive results, but none of
these apply specifically to DNNs. Nevertheless, statistical injec-
tions are widely used in the research community also to perform
reliability assessments on DNNs (e.g., [14], [15]). In particular, the
gathered results are elaborated to identify the DNN criticalities, for
example, the most critical layer, the most critical bit in the DNN
weights, and so on. In this work, we experimentally demonstrate
that fault sampling is an effective solution if and only if the
statistical hypothesis and constraints are met and correctly applied.

This research work presents two main contributions. First, it
presents a methodology to perform Statistical Fault Injections
(SFIs) on CNNs, by defining not only how many faults need to
be injected (i.e., the sample size), but also where they should be
placed to achieve statistically significant results. Additionally, it
describes a methodology to measure the probability of a fault to
become a critical failure starting from the probability distribution
of the golden data representation (the DNN weights). The pro-
posed statistical approach is validated by comparing the results
with exhaustive fault injection campaigns. Two CNN topologies
are used: ResNet-20 and MobileNetV2, trained and tested on
CIFAR-10. The rest of the paper is organized as follows: section II
provides the reader with background knowledge about statistical
inference; it details the motivations behind the research work, and
then presents related studies. Section III describes the proposed
approach and Section IV outlines the case study. Next, Section
V reports on the experimental results. Finally, Section VI draws
conclusions and future directions.

II. STATISTICAL BACKGROUND

In statistics, the term population (N ) refers to a set of measure-
ments and is typically described by the distribution of its values
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(i.e., a probability distribution or density function PDF) [16].
Since the investigation of the entire population’s characteristics is
typically very difficult, it is usually necessary to observe a sample
(n) which is a representation of the population. The branch of
statistics that deals with generalizing from a sample is also referred
to as statistical inference. Noteworthy, when a sample n is used to
estimate the mean (µ) and the variance (σ2) of a population N , the
probability that the mean µx and the variance σ2

x of the estimation
x will be equal to µ and σ2 of the population are slim. It is possible
to compute the maximum error of the estimate, which, for finite
populations, must be adjusted by applying the finite population
correction factor. Starting from the maximum error of the estimate,
and considering specific assumptions (detailed in the following), it
is possible to derive the sample size n.

e = t ∗ σ√
n
−→ n =

N

1 + e2 · N−1
t2·p∗(1−p)

(1)

In Eq. 1, σ represents the standard deviation, n the sample size,
e the desired error margin, and t is a constant that depends on the
desired confidence level. N corresponds to the actual size of the
entire population and p to the probability of an event to success.
Being a probability, it assumes values between 0 and 1.

A. Motivations

This subsection discusses the applicability of Eq. 1 to CNNs.
As mentioned, statistical injections are widely used in the research
community to perform reliability assessments also on DNNs (e.g.,
[14], [15]). In particular, the gathered results on the sample n are
elaborated to identify the CNN criticalities, for example, the most
critical layer, the most critical bit in the CNN weights, and so on.
In the FI context, the term population (N ) is used to indicate the
total number of possible faults in a system (e.g, the total number
of stuck-at faults in a CPU, or the total number of soft errors in
CNN weights). The term sample (n) is adopted to indicate the
subset of random faults that must be injected in a system to extract
the characteristics of the entire population. Typically, n << N .
How the sample is selected, as well as its size, are the focus of
the science of statistical sampling. In practice, a FI process is
merely a set of repeated trials n, where we are interested in the
probability of getting x successes in n trials. The reader should
notice that, in the context of fault injections, a trial is a success
when a fault becomes a critical failure. Since the number of trials
is finite, x is a realization of a discrete random variable X that
follows a binomial distribution X ∼ B(n, p), where p is the
probability of success of each trial. X can take on values between
0 and n. According to the Central Limit Theorem, when n is
large enough, a binomial distribution can be approximated by a
normal distribution [16]. Additionally, the variance of a binomial
distribution with parameters n and p is given by the formula:

σ2 = n ∗ p ∗ (1− p) (2)

If replacing Eq. 2 in Eq. 1, and applying the finite population
correction factor, n is obtained. It is necessary to underline that
each single trial in a binomial distribution is a Bernoulli trial X ∼
B(p). Particularly, one single experiment is performed, and the
fault has a p probability of becoming a failure.

In repeated trials (i.e., binomial distributions), the probability
of success p is the same every time the experiment is performed.
Noteworthy, a Bernoulli trial grounds on these assumptions [16]:

1) There are only two possible outcomes for each trial (success
and failure).

2) The outcomes from different trials are independent.
3) There are a fixed number n of Bernoulli trials conducted.
4) The probability of success is the same for each trial.

If these assumptions cannot be met, Bernoulli trials should not be
used, and, as a consequence, Eq. 1 neither. Checking the adequacy
of the Bernoulli trials assumptions is necessary to determine the
validity of the statistical inference. In the following, an example
from [16] is given with the intent of clarifying when the Bernoulli
assumptions are valid and when they are not. At a checkpoint,
drivers will be screened to see if they are wearing or not a seatbelt.
If all vehicles are treated the same, every driver has the same
likelihood of not wearing a seatbelt. If drivers are categorized by
age, you may require different probability for those under the age
of 20 than those between the ages of 50 and 60. There would be
no Bernoulli trials then. In the CNN field, assuming that all faults
have the same probability of success in each trial (4th Bernoulli
assumption) is a very strong assumption. The probability that a
fault becomes a failure (p) in CNNs is not the same for each
injected fault. Based on the literature, it is known that it depends
on several factors, such as the layer, the faulty location, the bit
position, etc. Indeed, it is well-known that units inside a CNN
have different vulnerabilities. With reference to the example (the
seatbelt check), it means that we can not use Bernoulli trials to
identify the most critical layer, the most critical bit inside weights,
and so on. They would have different p probabilities. If we can
not use Bernoulli trials, we can not use Eq. 1 to carry out the
above-mentioned vulnerability analyses (critical layers, critical
units inside the CNN, etc). For the sake of clarity, it does not mean
that Eq. 1 cannot be used with CNNs: if we treat the CNN as a
black box, the only information that we can retrieve is overall
information of the behavior of the CNN to faults, but not how
vulnerable are the network’s internal units (e.g., layers) to
faults, since they have known different vulnerabilities (i.e., p
probabilities) and the last Bernoulli assumption falls.

B. Related Works
Recently, the problem of reducing the computational effort

associated with FI campaigns has gained growing interest in many
areas. The statistical background is based on a previous work [7],
and allows defining a probabilistic model to find out the probability
that r faults are detected in a random sample of R faults. The
concept of the binomial distribution is presented, but, the main
drawback is that a comparison with exhaustive results is missing.
Statistical sampling was also used to investigate the effects of
transient faults and soft-errors that propagate through processor
cores (e.g., [11]). In 2008, the authors in [12] proposed an analysis
by comparing a method for SFI into arbitrary latches within a full
system hardware-emulated model with particle-beam-accelerated
SER testing for a modern microprocessor. This investigation was
used to perform focused statistically significant bit-flips into the
system. In [10], the authors propose a machine learning-based
vulnerability model (VM) to reduce the number of FIs. The results
demonstrate the validity of the approach, but the effort for setting
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up the ML model is non-negligible. In 2009, a widely used method
to select a statistically significant sample size (i.e., the number of
faults to inject) was presented in [9]. The authors provide the same
formula presented above in Eq. 1 to calculate the sample size, the
confidence and the error interval on the results. They state that, the
number of FIs n that is necessary to perform in a system to obtain
statistically significant results is defined by Eq. 1. Moreover, the
authors in [9] assume that the characteristics of a population follow
a normal distribution. But, it is necessary to specify that the normal
approximation to the binomial distribution is applied.

III. PROPOSED APPROACH

In this section, a methodology to perform statistical fault in-
jections on CNNs that allows performing complete vulnerability
investigations on the whole network and its internal units is
presented in Section III-A. Then, an optimization is described in
Section III-B that considers the data representation of CNNs to
reduce the number of FIs.

A. Data-unaware Statistical Fault Injections on CNNs

To do comprehensive vulnerability investigations on CNN inter-
nal units, the sampling process must be modified. It is necessary
to change the granularity to identify subpopulations where the 4th

Bernoulli assumption applies, and where the probability p can be
assumed equal among the trials (binomial distribution constraint).
For example, to investigate up to the bit granularity in the CNN
weights (i.e., to figure out the most critical layers and the most
critical bits), subpopulations where Eq.1 can be applied should be
defined. To this end, it is reasonable to assume that a fault affecting
the least significant bit of a weight within a layer has the same
probability to succeed (i.e., to cause a critical failure) as a fault
affecting any other weight in the same bit position, within the same
layer.

Therefore, if considering a CNN of L layers where each weight
is represented using I bits, the subpopulation that we find by
reducing the granularity to the bit level is the set of all faults in a
specific bit position (i∈ I) within that layer (l ∈L). Consequently,
the subpopulation will be N (i,l), and the sample n(i,l) (Fig. 1, right).
The size of N (i,l) depends on the adopted fault model: if permanent
faults are studied, N (i,l) would be equal to the number of weights
in that layer multiplied by 2 (suck-at-0 and stuck-at-1). In the end,
the final sample size in a CNN (the total number of FIs nTOT) is
computed as follows.

n(i,l) =
N (i,l)

1 + e2 · N (i,l)−1

t2·p∗(1−p)

−→ nTOT =
L−1∑
l=0

I−1∑
i=0

n(i,l) (3)

The reader should note that the configurations of the parameters
e, t, and p are kept equal among all the different subpopulations.
Particularly, the probability of success p and failure (1 − p) are
both equal to 0.5. Performing FIs at this granularity allows not
only extracting the number of successes (faults leading to critical
failures), but also comprehensively inspecting the most critical
units inside the CNN model.

Fig. 1: Figure on the left: Probability of success (p). Figure
on the right: illustration of the proposed approach.

B. Data-aware Statistical Fault Injections on CNNs

Assigning to a fault the same probability of success and failure
(i.e., p = 0.5) is the safest choice because it leads to the highest
amount of FIs. As illustrated in Fig. 1 (left), when p equals 0.5 (x-
axis), the multiplication between p and (1−p) assumes the highest
value (y-axis). Clearly, being a probability, p has values from 0 to
1. The higher p ∗ (1 − p), the higher the sample size n (Eq. 1).
In line with this, it means that when the probability of success is
different from 0.5 (p! = 0.5), the sample size n reduces, and in
our context the number of FIs.

In some data type representations, the probability p that a fault
in a specific bit position of a weight becomes a critical failure is
well-known. As an example, the probability that a fault affecting,
in 32-bit floating-point (FP) representation, the least significant
bit of the mantissa could result in a critical failure is almost non-
existent. In this case, to reduce the number of fault injections (the
sample size n), we can assign to p a lower value: p < 0.5. On
the contrary, it has been proven that the probability that a fault
affecting the most significant bit of the exponent part of the 32-bit
FP representation could lead to a critical failure is extremely high.
In this case, the probability of success is very high (p > 0.5),
and the sample size greatly reduces. The reader should note that
different probabilities to faults on different bit positions can be
given because subpopulations N (i,l) are independent.

This research work proposes a methodology to determine the p
parameter starting from the CNN weights distribution with the aim
of reducing the sample size n. In this work, the Single Precision
IEEE 754 Floating-point Standard is addressed. The idea is that
the larger the variation a bit-flip introduces into a weight, the more
likely the fault will cause an incorrect prediction or a critical fault.
This variation is measured as the average distance produced by
a bit-flip in a given bit position i for all the CNN weights. An
example is reported in Fig. 2, where the distance value produced
by a bit-flip on the 28th bit is illustrated. Assuming that the CNN
weights are represented using I bits, for every bit i ∈ I , a
criticality value (Davg, Eq. 4) is computed. D0-1(i) represents the
average distance between all the golden and the faulty weights
produced by a bit-flip from 0 to 1 on the bit ith. The same reasoning
is applied to D1-0(i), where the bit ith is corrupted by a bit-flip
from 1 to 0. The average distance is not the only factor used for
determining the criticality. This parameter is used in conjunction
with the frequency with which each bit is either a logical 0 (f 0(i))
or a logical 1 (f 1(i)). In other words, for every weight within the
distribution, we first compute the frequency for each bit to be a
logical 0 or a logical 1 (f 0(i) or f 1(i)), i.e., the number of time
that the bit is naturally set at 0 or 1.
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Fig. 2: Bit-Flip Distance.

∀i ∈ I Davg(i) = D0-1(i) ∗ f 0(i) +D1-0(i) ∗ f 1(i) (4)

Davg(i) represents the effect of a bit-flip on a specific bit i
within a specific distribution of weights. The p parameter used for
determining the sample size represents the probability for a fault
to become a critical failure: the closer p is to 0.5, the higher the
number of FIs (Fig. 1). In line with this, we assume that the higher
the average distance caused by a bit-flip in a weight, the higher the
likelihood the fault will lead to a misprediction. For this reason,
the final p is computed by performing a min-max normalization
of Davg between a=0 and b=0.5, without considering the outliers
(Eq. 5). Indeed, since our assumption is that a high distance
corresponds to a high criticality (p), we could directly assign the
outliers the highest criticality (p = 0.5).

Therefore, considering the maximum average distance Davg-max

and the minimum average distance Davg-min measured for all the
bits (I), the p can be computed as follows:

∀i ∈ I p(i) = a+
(Davg(i)−Davg-min)(b− a)

(Davg-max −Davg-min)
(5)

Once p(i) is computed, n(i, l) is obtained as shown in Eq. 3.

IV. CASE STUDY

To experimentally demonstrate the effectiveness of the propos-
als, software FIs are performed on two CNNs: ResNet-20 and Mo-
bileNetV2, pretrained and tested on CIFAR-10 by using PyTorch.
ResNet-20 reaches an accuracy equal to 91.7% and MobileNetV2
to 92.01% on the test set. The architectural details of the two CNNs
are included in Table I and Table II, respectively. For reasons
of space, only the total figures for MobileNetV2 are given. The
considered fault models are permanent faults affecting the CNN
weights. The FI process has been executed by exploiting the well-
known open-source PyTorchFI tool. Faults have been classified as
Critical or Non-critical, depending on whether the top-1 prediction
is correct. In Tables I and II, the number of faults (i.e., n) that are
injected in each layer is given: along with the exhaustive FI details
(where n == N ), the following SFI campaigns are reported:

1) Network-wise SFI: The sample size n is determined by
applying Eq. 1 to the entire CNN.

2) Layer-wise SFI: The sample size n is determined by apply-
ing Eq. 1 to each layer of the CNN.

3) Data-unaware SFI: The sample size n is determined by
applying Eq. 1 at every bit position within each layer of the
CNN. The p probability is equal to 0.5 for each population.

TABLE I: ResNet-20: Exhaustive vs Statistical FIs.

Layer
Parameters
(32-bit FP)

Exhaustive FI
Statistical FI

Network-wise [9]
(e=1%, t=99%)

Layer-wise
(e=1%, t=99%)

Proposed
Data-unaware

(p==0.5)

Proposed
Data-aware

(p!=0.5)

0 432 27,648 27 10,389 26,272 2,732

1 2,304 147,456 143 14,954 115,488 6,258

2 2,304 147,456 143 14,954 115,488 6,258

3 2,304 147,456 143 14,954 115,488 6,258

4 2,304 147,456 143 14,954 115,488 6,258

5 2,304 147,456 143 14,954 115,488 6,258

6 2,304 147,456 143 14,954 115,488 6,258

7 4,608 294,912 285 15,752 189,792 8,744

8 9,216 589,824 571 16,184 279,872 11,652

9 9,216 589,824 571 16,184 279,872 11,652

10 9,216 589,824 571 16,184 279,872 11,652

11 9,226 590,464 572 16,185 280,000 11,656

12 9,216 589,824 571 16,184 279,872 11,652

13 18,432 1,179,648 1,142 16,410 366,912 14,425

14 36,864 2,359,296 2,284 16,524 434,464 16,563

15 36,864 2,359,296 2,284 16,524 434,464 16,563

16 36,864 2,359,296 2,284 16,524 434,464 16,563

17 36,864 2,359,296 2,284 16,524 434,464 16,563

18 36,864 2,359,296 2,284 16,524 434,464 16,563

19 640 40,960 40 11,834 38,048 3,309

Total 268,346 17,174,144 16,625 307,650 4,885,760 207,837

TABLE II: MobileNetV2: Exhaustive vs Statistical FIs.

Total
Layers

Total
Parameters
(32-bit FP)

Exhaustive FI
(total)

Statistical FI (total numbers)

Network-wise [9]
(e=1%, t=99%)

Layer-wise
(e=1%, t=99%)

Proposed
Data-unaware

(p==0.5)

Proposed
Data-aware

(p!=0.5)

54 2,203,584 141,029,376 16,639 838,988 14,894,400 778,951

4) Data-aware SFI: The sample size n is determined by ap-
plying Eq. 1 at every bit position within each layer of the
CNN. The p probability is not equal for each population,
and is computed as described in Section III-B.

V. EXPERIMENTAL RESULTS

To validate the proposed SFI approaches with real compar-
isons, exhaustive FIs have been carried out: under the single
fault assumption, a total of 17,174,144 stuck-at faults have been
injected on all the weights of ResNet-20, and 141,029,376 on
MobileNetV2. For every injected fault, the inferences of the entire
test set (10k images) were run. Experiments have been run on
an Intel(R) Xeon(R) Gold 6238R CPU @2.20GHz equipped with
a GPU NVIDIA GeForce RTX 3060 Ti with 8 GB of Memory.
The exhaustive FIs on ResNet-20 lasted about 37 days, while the
exhaustive FIs on MobileNetV2 about 54 days.

A. Defining the p parameter for a Data-aware SFI
One of the main contributions of this research work is the

proposal of a methodology that, starting from the golden distri-

Fig. 3: The number of times the bit i is at one (f 1(i)) or zero
(f 0(i)) within the ResNet-20 weights distribution.
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Fig. 4: Data-aware SFI: p for ResNet-20 and MobileNetV2.

Fig. 5: Layer-wise and Data-aware SFIs.

bution of the CNN weights (i.e. not affected by faults), allows
the criticality of the specific bit position (p) to be represented
and, consequently, the sample size of the SFI to be reduced. The
procedure is described for ResNet-20, but the same is applied to
MobileNetV2. ResNet-20 exploits a 32-bit FP representation for
the weights. For every bit position, the number of times the bit
is 0 (f 0(i)) or 1 (f 1(i)) has been calculated, for all the weights.
(Fig. 3). Next, we computed for each bit position i, the average
distance Davg(i) between the golden and the faulty weights that
a bit-flip causes in that specific bit position in both directions
(D0-1(i) and D1-0(i)). Therefore, given the distances D0-1(i),
D1-0(i) and the frequencies f 0(i), f 1(i), the p(i) of each bit i ∈ I
can be computed according to Eq. 5. In Fig. 4 the probabilities p
computed with this procedure are shown, for both CNNs.

B. Complete Statistical Fault Injection Results

In this subsection, the four SFI approaches are compared, and
the trade-offs are discussed for both CNNs. As mentioned, the
validity of the approaches is measured by comparing the sta-
tistical results with the exhaustive ones. Before describing the
overall findings, a first detailed analysis is provided for the first
convolutional layer of ResNet-20. As illustrated in Fig. 6, ten
random samples (S0 − S9) are extracted for each SFI approach
(x-axis); the sample size (n) is specified in Table I (first row).
The right y-axis defines the number of FIs (red line). The left
y-axis represents the percentage of critical faults in that layer:
the dark blue bar is the exhaustive result (obtained injecting all
the N possible faults), while the light blue bar is the statistical
result that we obtain by injecting a reduced number of faults (n).
For every sample (S0 − S9), a thin black vertical bar represents
the error margin of the the statistical inference. In more details,
the error margin delimits the range within which the exhaustive
result would fall into (considering that, in real scenarios, the
exhaustive result is not available). If the exhaustive results fall into
the error margin indicated in the statistical results, the statistical
approach is valid and correctly predicts the final percentage of

critical faults. Clearly, the higher the sample size, the smaller
the error margin. It is evident from Fig. 6 that the error margin
is not acceptable for the network-wise SFI; it reduces in the
layer-wise and data-unaware SFI as the sample size increases;
and slightly increases in the data-aware scenario, albeit it keeps
lower than the 1% (the initial requirement). It means that, by
trading-off the costs of the FI campaign (i.e., number of FIs)
and statistical accuracy, the proposed data-aware SFI approach
might be considered the most effective. These data suggest that
layer-wise and data-aware SFIs are the most effective in terms
of number of FIs as well as accuracy (the error margin is below
the predefined 1%). We extended this investigation to the entire
CNN: in Fig. 5, the complete analysis on all the layers of ResNet-
20 is given. As shown, in layers where almost the same number
of faults is injected (i.e., L15, L16, L17, L18), the proposed data-
aware method is, on average, more accurate (i.e., the error margin
is smaller). Very interestingly, in layers where the proposed data-
aware SFI injects a reduced number of faults (e.g., L9, L10), the
accuracy of the estimate highly increases, on average. Fig. 5 shows
that a layer-wise SFI provides good results in profiling the per-
layer criticality. However, the problem with applying a layer-wise
SFI is that it is not possible to investigate units inside the layer
entity: for instance, according to the motivation of this research
work, it is not possible to determine the most vulnerable bits inside
a CNN. The same analyses performed on MobileNetV2 confirm
the same trend. Additionally, results in Fig. 7 show that, compared
to a network-wise SFI, the proposed data-aware SFI can correctly
estimate the critical rate of layers. The data-aware SFI injects only
the 0.55% of faults (compared to the exhaustive FI), and provides
results that are closest to the exhaustive (with an average error
margin equal to 0.008%, Table III).

In Table III the four SFI approaches are compared in terms
of number of injected faults (n), and the average error margin
(the error margin averaged over all layers). It is necessary to
underline that all the statistical approaches have been performed
by pre-defining the error margin at 1% (as shown in Tables I
and II). Data in Table III demonstrate the motivation behind this
work: a network-wise SFI produces on ResNet-20 an error margin
equal to 1.56% (> 1%), and on MobileNetV2 an error margin
equal to 3.28% (> 1%). This means that the approach can not
be considered statistically valid, and that reducing the granularity
allows respecting the constraints and obtaining correct results.
Moreover, it is clear that the data-unaware SFI approach leads to
the lowest error margin, but the number of injected faults is higher
compared to the layer-wise and the data-aware SFI techniques. It
can be argued that the best compromise might be the data-aware
technique, which, when compared to the layer-wise one, leads to a
reduced margin of error and a smaller sample size.

VI. CONCLUSIONS

As the complexity of CNN models increases, the problem of
reducing the costs of reliability assessment procedures assumes
great significance. This work describes how to perform statisti-
cal inferences on CNNs to obtain statistically significant results.
Moreover, it proposes an optimization which allows to further
reduce the costs of the reliability assessment (in terms of fault
simulations), while achieving accurate results. This data-aware SFI
applies different criticalities to different subpopulations, computed
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Fig. 6: ResNet-20: first layer.

Fig. 7: MobileNetV2: a data-aware SFI yields statistically significant results, and correctly depicts the per-layer criticality.

TABLE III: Comparing the FI methodologies.

ResNet-20 FIs
(n)

Injected
Faults [%]

Avg Error
Margin [%]

(acceptable<1%)

Exhaustive FI 17,174,144 100 -
Network-wise SFI [9] 16,625 0.09 1.57
Layer-wise SFI 307,650 1.79 0.19
Data-unaware SFI 4,885,760 28.45 0.06
Data-aware SFI 207,837 1.21 0.08

MobileNetV2 FIs
(n)

Injected
Faults [%]

Avg Error
Margin [%]

(acceptable<1%)

Exhaustive FI 141,029,376 100 -
Network-wise SFI [9] 16,639 0.01 3.28
Layer-wise SFI 838,988 0.59 0.01
Data-unaware SFI 14,894,400 10.56 0.001
Data-aware SFI 778,951 0.55 0.008

by only observing the golden data distribution of a CNN. Overall,
this article shows that, by reducing the sample size to only the
1.21% (ResNet-20) or 0.55% (MobileNetV2) of the entire possible
experiments, it is possible to achieve an estimate of the CNN
reliability close to the exhaustive result with an error always
lower than 1%. To conclude, this research work underlines the
importance of properly applying statistical approaches: not only
the hypotheses must be met, but also understanding which type
of information is possible to retrieve, is extremely important.
As experimentally demonstrated, a network-wise SFI yields an
error that exceeds the predefined one. In the future, the data-
aware SFI methodology will be applied to CNNs that use different
architectures, different datasets, and different data representations
for storing their parameters.
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