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A Dynamic System Approach to Spiking Second
Order Memristor Networks

Francesco Marrone, Student Member, IEEE,, Gianluca Zoppo, Fernando Corinto, Senior Member, IEEE, and
Marco Gilli, Fellow, IEEE

Abstract—Second order memristors are two terminal devices
that present a conductance depending on two orders of variables,
namely the geometric parameters and the internal temperature.
They have shown to be able to mimic some specific features of
neuron synapses, specifically Spike-Timing-Dependent-Plasticity
(STDP), and consequently to be good candidates for neuromor-
phic computing. In particular, memristor crossbar structures
appear to be suitable for implementing locally competitive
algorithms and for tackling classification problems by exploiting
temporal learning techniques. On the other hand, neuromorphic
studies and experiments have revealed the existence of differ-
ent kinds of plasticity and have shown the effect of calcium
concentration on synaptic changes. Computational studies have
investigated the behavior of spiking networks in the context of
supervised, unsupervised, and reinforcement learning. In this
paper, we first derive a simplified, almost analytical, model of a
second-order memristor, only involving two variables, the mem-
conductance, and the temperature, directly attributable to the
synaptic efficacy and to the calcium concentration. Then we study
in detail the response of a single memristive synapse to the most
relevant plasticity models, including cycles of spike pairs, triplets,
and quadruplets at different frequencies. Finally, we accurately
characterize memristor spiking networks as discrete nonlinear
dynamic systems, with mem-conductances as state variables and
pre and postsynaptic spikes as inputs and outputs, respectively.
The result shows that the model developed in this manuscript
can explain and accurately reproduce a significant portion of
observed synaptic behaviors, including those not captured by
classical spike pair-based STDP models. Furthermore, under such
an approach, the global dynamic behavior of memristor networks
and the related learning mechanisms can be deeply analyzed by
employing advanced nonlinear dynamic techniques.

Index Terms—Memristor, Spiking Neural Networks, STDP,
Neuromorphic Computing.

I. INTRODUCTION

MEMRISTORS and memristive systems were theoret-
ically conceived by L. O. Chua [1], [2] and firstly

realized as thin-film electrical elements, based on Titanium
Oxide, [3]. They have been widely exploited in analog and
digital systems for a broad scope of applications, including
amplifiers, filters, oscillators, logic gates and pseudo-random
number generators [4], [5], [6]. In terms of voltage-current
characteristic a two terminal memristor device is described by
a mem-conductance, which may depend on a set of first and
second order state variables, linked to the internal geometric
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parameters and to the internal temperature respectively. Due to
their intrinsic properties, memristors have found to be suitable
to emulate some synaptic functions and consequently to be
attractive candidates for neuromorphic computing [7], [8],
[9], [10]. In particular second order memristors have shown
to be able to mimic a crucial synaptic feature, specifically
Spike-Timing-Dependent-Plasticity (STDP) [8] and memristor
crossbar structures appear to be qualified to implement locally
competitive algorithms (LCA) and to tackle classification
problems, by exploiting STDP rules and temporal learning
techniques [15], [14]. In the last two decades many studies and
experiments in neuroscience have shown the effect of spike-
timing on synaptic efficacy. Early experiments [16], [17] have
revealed that a sequence of pairs of presynaptic and postsy-
naptic spikes gives rise to potentiation, whereas depression is
observed if presynaptic spikes follow postsynaptic ones. As
a consequence synaptic plasticity has been characterized by
the time difference between pair of spikes and many STDP
models have been investigated, both from the biophysical
and the computational point of view [18], [19], [20]. Further
experiments have shown that spike pairs are not able to explain
more complex protocols, for example synaptic changes when
the repetition frequency increases [18]. In order to characterize
such a large variety of synaptic behavior, new phenomeno-
logical models were introduced, based on elementary blocks
composed of three/four spikes (triplets/quadruplets) [21], [22],
[23], [24]. It was found that classical STDP models, based
on spike pairs are not sufficient to capture synaptic changes
generated by spike triplets and quadruplets. [25].

A field of investigation, which is of specific interest for de-
signing neuromorphic electric circuits, concerns the biophysi-
cal dynamic models of synaptic plasticity. In particular many
stimulation protocols have outlined that calcium concentration
dynamics plays a crucial role for inducing potentiation and
depression. In [26] synaptic changes are described by means
of a second order system of ODEs, with synaptic efficacy
and calcium concentration as state variables and pre/post
synaptic spike trains as inputs (see eq. 1 of [26] and the
SI Appendix of [26]). Through this simple model a large
variety of STDP curves can be reproduced, for different spike
patterns, including pairs, triplets and quadruplets, and the
effect of the frequency on the synaptic plasticity is accurately
predicted.

Second order memristors are described as mathematical
models whose internal state depends on two state variables.
The advantage of using higher-order memristive devices lies in
their multiple state variables that can model the operation per-
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formed by biological synapses. For example, [8] presents some
surprising similarities with respect to the biophysical model
presented in [26], by assuming that the role of the synaptic
efficacy and of the calcium concentration is played by the
mem-conductance and by the memristor internal temperature
respectively. This fact has been exploited in [8] to show that a
second-order memristor is capable of reproducing some crucial
features of synaptic plasticity, in particular potentiation and
depression in presence of pre/post (post/pre) synaptic spikes,
suitably modeled as sequence of heating and programming
pulses. The capability of second order memristor to model
synaptic plasticity with spike triplets and the related STDP
rules were investigated in [10]. Many different models with
different complexity have been proposed in the literature.
However, there is an ongoing debate over which model should
be adopted for the investigation of biological phenomena [11],
[12], [13].

In parallel to biophysical studies, an important research
topic in computational neuroscience and neuromorphic engi-
neering has regarded spiking neural networks that are attrac-
tive systems for real-time applications, primarily if they are
implemented in hardware platforms, like memristor crossbar
networks [15], [27]. Spiking networks have been shown to
exhibit the same computational power of conventional artificial
neuron networks (ANNs) [28]. Starting from the relation
between spiking and Hebbian learning [27], they have been
investigated in the context of supervised, unsupervised and
reinforcement learning [29], [30]. However, they have not
reached the same accuracy as ANNs, mainly because of the
lack of adequate and efficient training algorithms.

This manuscript, which is an extension of some conference
papers [31], [32], [33], presents three main results. First, we
derive a simplified ODE model of a second-order memristor,
based on [8], that only involves two state variables, the mem-
comductance, and the internal temperature, directly ascribable
to the already mentioned biophysical quantities, namely the
synaptic efficacy and the calcium concentration. Through this
model the mem-conductance variation, due to various combi-
nations of spike inputs, can be almost analytically computed.
Second, we examine in detail the memristor behavior as a
single synapse by studying the response to some relevant
plasticity models, in particular cycles of spike pairs, triplets,
and quadruplets at different frequencies. We show that through
our approach: I) the most significant synaptic properties of
second-order memristors can be easily studied and predicted;
II) a significant portion of the synaptic behaviors that are
not captured by classical spike pair based STDP models
can be readily reproduced. Third, we accurately characterize
memristor spiking networks as discrete nonlinear dynamic
systems, with mem-conductances as state variables and pre and
postsynaptic spikes as inputs and outputs. We explicitly derive
the state equations governing the mem-conductance evolution,
and we show that the network response to periodic presynaptic
inputs can be readily determined by computing the system
equilibrium points and discussing their stability properties.
Through our approach, we are confident that the response of
memristor networks to arbitrary presynaptic inputs and the un-
derlying learning mechanisms can be effectively investigated

by employing advanced nonlinear dynamic techniques.

II. SECOND ORDER MEMRISTOR MODEL

We consider the second order memristor illustrated in
Fig. S8b of the SI Appendix of [8], which exhibits a conductive
region divided into three serial parts: base-conductive filament
(CF), sub-CF, and depleted gap. In accordance with eqs. (S5a)-
(S5e) and eqs. (S6)-(S9) of [8], the memristor is described
as a two terminal circuit element, with the following relation
between the voltage v(t) and the current i(t):

v(t) =
ρL0

πr20
I0

[
1 +

L− L0 − g

L0

(r0
r

)2] i(t)
I0

+ V0 sinh−1
[
i(t)

I0
exp

(
g

gm

)]
(1)

where, according to Table S1 of [8], L = 5nm is the total
layer thickness, ρ = 2.2 10−6 S/m is the resistivity of the CF
regions, r0 = 2.5nm and L0 = 2.5nm are the constant radius
and length of the base-CF region, r is the modulated radius
of the sub-CF region, g is the gap length and I0 = 15mA,
V0 = 0.2V , gm = 0.2nm are parameters depending on the
material.

The radius r and the gap length g are two dynamic variables,
whose evolution is governed by the following system of ODEs,
which strongly depend on the temperature T of the inner
region around the filament:

dg

d t
=


− 1

2 exp
(
− Ea

kbT

)
ζ(t) (v ≥ 0)

− 1
2 exp

(
− Ea

kbT

) (
r0
r

)2
ζ(t) (v < 0)

(2)

ζ(t) =
αa2 f

L0 − g
− 2 a f sinh

(
q av

g kbT

)
(3)

d r

d t
=


− 1

2 exp
(
− Ea

kbT

) [
β a2 f
r−rm

]
(v ≥ 0)

+ 1
2 exp

(
− Ea

kbT

) (
r0
r

)2 [β a2 f
r−rm

]
(v < 0)

(4)

In the above equations (2)-(4) , Ea = 0.85 eV represents
the ion migration energy barrier, kb = 1.38 10−23 J/K is the
Boltzmann constant, q = 1.6 10−19 C is the electron charge,
f = 1012Hz is the escape-attempt frequency, a = 0.1nm is
the hopping distance, and rm = 0.8nm, α = 3 104, β = 8 103

are model parameters estimated in [8].
The dynamics of the internal temperature T is described by

the following set of two coupled ODEs, which are expressed
in term of the bulk temperature Tb of the outer region:

Cp1
dT

d t
= v(t) i(t) − kth1 (T−Tb) (5)

Cp2
dTb

d t
= v(t) i(t) − kth2 (Tb − 300) (6)

where Cp1, Cp2 and kth1, kth2 are fitting parameters denot-
ing the effective heat capacitances and the effective thermal
conductances respectively.

In accordance with the parameters used in the spice sim-
ulation reported in the SI Appendix of [8] we have assumed
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Figure 1: Current-voltage characteristic, for different values of the
radius r (expressed in nm), and of the gap length (g = 0.2nm, and
g = 0.4nm). Solid lines represent the exact characteristic, obtained
by numerically inverting the v-i relation (1); the current values
derived from the approximate expression of the mem-conductance
given in (9) are represented as circles.

kth1 = 2.8 10−5 JK−1s−1, kth2 = 5.4/5.5 10−5 JK−1s−1

and the following values for the temperature and the bulk
temperature time constants τT and τb:

τT =
1

λT
=

Cp1
kth1

≈ 0.325 10−9 s (7)

τb =
1

λb
=

Cp2
kth2

=
1

5.4 106
≈ 0.185 10−6 s (8)

The internal temperature time constant τT turns out to be
of some order of magnitude smaller than the bulk temperature
time constant τb. This latter property, which also holds if the
fitting parameters are differently estimated, is essential for
explaining the role played by the temperature in second order
memristors.

III. COMPARISON BETWEEN THE MEMRISTOR MODEL AND
THE CALCIUM BASED BIOPHYSICAL MODEL

The second order model derived in [8] and briefly described
above is expressed by the algebraic equation (1) , that cannot
be inverted in a closed form, and by a set of four nonlinear
coupled ODEs (2)-(4), (5)-(6). A first significant difference
with respect to the calcium based model presented in [26]
is that a direct expression of the time-evolution of the mem-
conductance, representing a synaptic efficacy variable, is not
directly available, as in eq. (1) of [26]. A second major
difference regards the roles played by the internal temperature
T and the calcium concentration in equations (2)-(4) and in
eq. (1) of [26] respectively.

In this section, to deeply understand and exploit memris-
tors neuromorphic features, we derive a simplified model of
second-order memristors, involving only two dynamic vari-
ables, the mem-conductance, and the temperature, which are

Figure 2: Current-voltage characteristic, for different values of the
radius r (expressed in nm), and of the length gap (g = 0.6nm, and
g = 0.8nm). Solid lines represent the exact characteristic, obtained
by numerically inverting the v-i relation (1); the current values
derived from the approximate expression of the mem-conductance
given in (9) are represented by circles.

directly ascribable to the synaptic efficacy and to the calcium
concentration of [26].

By exploiting (1) the direct relationship between the current
i(t) and the voltage v(t) can be numerically computed and the
mem-conductance turns out to be a function of the voltage
v(t), of the radius r and of the gap length g. An explicit
form of the mem-conductance can be derived in two ways.
The first one is to exploit a first order approximation of the
sinh−1 function, valid for

∣∣∣ i(t)I0 exp
(

g
gm

)∣∣∣ < 1, which gives
rise to the following expression:

G̃ (g, r) =
1

ρL0

πr20

[
1 + L−L0−g

L0

(
r0
r

)2]
+ V0

I0
exp

(
g
gm

) (9)

The accuracy of the above expression can be checked by
reporting in a graph the exact and the approximate relationship
between the current i(t) and the voltage v(t) for different
values of g and r, as shown in Figs. 1-2. As expected, it is
observed that for a given radius r, a reasonable range of input
voltages, and relatively small values of the gap length g, the i-
v characteristic is almost linear and accurately represented by
the approximate expression (9). Some numerical inaccuracies
occur for larger values of g. However, by computing the
stationary points of equation (2), governing the gap length
evolution, it can be shown that large values of g are not
reached for actual temperature and voltage ranges.

The second way to approximate the i-v characteristic is
to observe that the mem-conductance presents a weak de-
pendence on the gap length g, as shown in Figs. 3-4. It is
noticed that for voltage higher than 1 V the mem-conductance
is almost constant with respect to the gap length and it sub-
stantially only depends on the radius r. For smaller voltages
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Figure 3: Mem-conductance, as a function of the gap length g,
for different values of the radius r (expressed in nm), and different
voltages (v = 0.5V , and v = 1V ).

it is easily shown, in accordance with (2), that only a limited
extension of the gap length is admissible, e.g. g < 0.4 nm,
and consequently the mem-conductance can still be considered
mainly dependent on the radius r.

It is worth noting that, despite such a strong approximation,
simulations results show that the resulting expression is rea-
sonably accurate and able to explain all the relevant plasticity
properties of second order memristors (see Appendix A where
the mem-conductance approximation is justified in detail and
it is shown that it holds for any admissible activation energy
Ea).

From (1), by only considering the base-CF and sub-CF
regions and by noting that L0 = 0.5L, it is obtained:

Ĝ(r) =
1

Rs

1 +

(
r0

r

)2
 ,

(
Rs =

ρL0

πr20

)
(10)

and consequently the variable r can be expressed as a function
of the approximate conductance Ĝ:

r = r0

√
RsĜ

1−RsĜ
(11)

The following expression of the time derivative of the mem-
conductance Ĝ is readily derived from (10) and (4):

1

Ĝ

dĜ

dt
=

1

Ĝ

dĜ

dr

dr

dt
= 2

1

r
(1−RsĜ)

dr

dt

= exp

(
− Ea
kbT

)
η(Ĝ) (12)

Figure 4: Mem-conductance, as a function of the gap length g,
for different values of the radius r (expressed in nm), and different
voltages (v = 1.5V , and v = 2V ).

η(Ĝ) =

√
(1−RsĜ)3

RsĜ√
RsĜ

1−RsĜ
− rm

r0

(
a

r0

)2

βf


−1 (v ≥ 0)

1−RsĜ

RsĜ
(v < 0)

(13)
As expected, the above expression can be directly compared

with equation (1) of [26] since it only depends on Ĝ and T,
which play the role of the synaptic efficacy and of the calcium
concentration.

As far as temperature dynamic equations (5)-(6) are con-
cerned, we exploit the fact that spikes can be modeled by
constant input voltages, applied for short time periods. Since
the conductance dynamics is significantly slower than the
temperature dynamics, governed by time constants (7)-(8), we
can assume that for the time intervals of interest (around 20ns
and 1µs for programming and heating voltages, according to
[8]) the conductance exhibits small variation with respect to
the temperature and can be considered almost constant. By
denoting with G the value of the conductance and by V
the constant voltage, the following expressions hold for the
temperatures T and Tb in a generic interval [t0, t]:

Tb(t) = exp[−λb(t− t0)] (Tb(t0)− T∞b ) + T∞b

T∞b = 300 +
1

kth2
GV2 (14)

T(t) = exp[−λT (t− t0)]

(
T (t0)− 1

kth1
GV2 − T∞b

)
+

1

kth1
GV2 + T∞b

+

{
λT

λT − λb
{exp[−λb(t− t0)]− exp[−λT (t− t0)]}

}
· {Tb(t0)− T∞b } (15)
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By taking into account that, according to (7)-(8), λT >> λb
and that for t − t0 of the order of 10 − 20ns the term
exp[−λT (t − t0)] is almost null, the following simplified
approximated expression of the internal temperature T(t) is
readily obtained:

T(t) ≈ exp[−λb(t− t0)] (Tb(t0)− T∞b ) + T∞b +
1

kth1
GV2

≈ Tb(t) +
1

kth1
GV2 (16)

In accordance with [8], a typical input to the memristor
is a pre/postsynaptic spike, composed by the sequence of
a programming and a heating pulse of duration ts and tH ,
respectively. This introduces some additional complexity with
respect to the standard STDP models where a single pulse
represents the spikes: in particular, the programming pulse of
the second post/pre synaptic spike may occur either before or
after the end of the heating pulse of the first pre/post synaptic
pulse. These two cases are shown in Fig. 5 for a pre/post
spike pair, a similar representation holding for post/pre pair.
In general we denote with γtH the time shift between the
beginning of the programming pulse of the second spike and
the beginning of the heating pulse of the first spike; the
parameter γ turns out to be greater than 1 if the programming
pulse occurs after the end of the heating pulse and less than
1 otherwise.

By slightly elaborating expression (16), a very accurate
analytic expression of the internal temperature T(γ) associated
to the programming pulse, can be derived:

T(γ) ≈ 300+Ĝ

{
V 2
P

kth1
+

V 2
P

kth2

[
1− exp

(
− ts
τb

)]
+ Γ

V 2
H

kth2

}

Γ =


exp

(
− ts
τb

)[
1−exp

(
−γtHτb

)]
γ < 1

exp
(
− ts+(γ−1)tH

τb

) [
1− exp

(
− tHτb

)]
γ ≥ 1

(17)
where VH and VP denote the heating and programming pulse
magnitude, Ĝ denotes the approximate conductance (which
is assumed to present slow variations with respect to the
Temperature), kth1 and kth2 denote the effective thermal
conductances of the internal and bulk temperature respectively,
defined above and τb is the bulk temperature time constant.

The simplified model developed above involves only two
equations, (12) and (17), and two variables, the mem-
conductance Ĝ and the internal temperature T, which are
directly attributable to the two fundamental quantities, synaptic
efficacy and calcium concentration, used in biophysical models
for reproducing a large variety of STDP curves [26].

In addition, it is worth noting that, a part from the memristor
geometrical (r0, rm) and physical parameters (Rs, a, β , f ,
kth1, kth2), the two equations and hence the entire model only
depends on five quantities: the magnitude of the heating and
programming pulsed VH and VP , the ratios between the two
pulses duration and the bulk temperature time-constant tsτb and
tH
τb

, and the parameter γ describing the shift between each
spike pair.

Figure 5: Input voltage corresponding to a pre/post spike pair. Each
spike is represented by the sequence of a programming pulse of
duration ts and a heating pulse of duration tH , whereas tsh denotes
the time shift between the programming and the heating pulse. Left
part: the programming pulse of the postsynaptic spike occurs before
the end of the heating pulse of the first presynaptic pulse. Right part:
the programming pulse of the postsynaptic spike occurs after the
end of the heating pulse of the presynaptic pulse. The time interval
between two spikes is denoted by ∆t = (γ − 1)tH , with γ greater
than 1 in the first case and less than 1 in the second one.

IV. MEMRISTOR RESPONSE TO SPIKE PAIRS, TRIPLETS
AND QUADRUPLETS

The analytic approach developed above is an effective tool
for analyzing and deeply investigating synaptic properties of
single second order memristors and consequently neuromor-
phic properties of large memristor networks.

As a first step, by substituting the expression (17) into (12)
the STDP function corresponding to the mem-conductance
variation, generated by a pre/post (post/pre) spike pair can be
easily derived, as a function of the time interval which sepa-
rates two subsequent spikes. We assume that the programming
pulse of the second spike occurs after the end of the heating
pulse of the first spike, i.e. γ ≥ 1, and we denote such a time
shift by ∆t = (γ−1)tH . Figs. 6-7 show the mem-conductance
variation, due to a single pre/post (post/pre) spike pair. As
expected, potentiation is observed for pre/post pairs (where
∆t is assumed conventionally positive) whereas depression
occurs for post/pre pairs (where ∆t is assumed conventionally
negative). It is worth noting that a special feature of second
order memristor synapses is that the normalized variation
of the mem-conductance depends on the initial value of the
conductance, because the internal Temperature T depends on
the current value of Ĝ (see eq. (17)).

As already mentioned spike pairs represent a useful neu-
romorphic paradigm, but are not able to explain more com-
plex protocols, like the effect of the repetition frequency
on synaptic changes [18]. Such complex protocols, including
experiments involving triplets and quadruplets, can be studied
and readily reproduced by simply exploiting eqs. (12) and (17).
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Figure 6: STDP function corresponding to the mem-conductance
variation, generated by a pre/post (post/pre) spike pair, as a function
of the time interval ∆t

tH
, which separates two subsequent spikes. It is

assumed VH = 0.8 V, tH
τb

= 5.4, and ts
τb

= 0.108; Gin denote the
initial value of the mem-conductance.

Following the approach presented in [26] and with reference
to experiments from hippocampal cultures, we examine and
compare the response to spike pairs and to different configu-
rations of spike triplets and quadruplets. A first set of results
is reported in Figs. 8-9-10 which show the mem-conductance
change as a function of the spike interval ∆t, for 30 cycles
of pre-post pairs, post-pre-post triplets and post-pre-pre-post
quadruplets at different frequencies. The following considera-
tions hold: 1) in all cases we observe long term potentiation
(LTP) and for spike triplets the conductance saturates to the
maximum acceptable value, corresponding to Ĝ = 1

2Rs
in

(10); 2) as expected, in case of spike pairs the potentiation
decreases as the repetition frequency increases (i.e. as the
time interval tf between two pairs decreases), which is not
in agreement with most experimental protocols and represent
a major drawback of classical STDP models [25]; 3) in order
to observe a correct frequency response, spike triplets and/or
quadruplets should be exploited, as reported in [25] and [26].

A second set of results is reported in Figs. 11-12 which
show the mem-conductance change as a function of the spike
interval ∆t for 30 cycles of pre-post-pre triplets and pre-post-
post-pre quadruplets at different frequencies. In accordance
with the results reported in [26], those configurations evoke
little or no potentiation.

It is shown in Appendix B that STDP functions are not
significantly affected by parameter variations and consequently
the proposed model is sufficiently robust to accurately describe
the actual second order memristor functionalities.

Figure 7: STDP function corresponding to the mem-conductance
variation, generated by a pre/post (post/pre) spike pair, as a function
of the time interval ∆t

tH
, which separates two subsequent spikes. It is

assumed VH = 0.8 V, tH
τb

= 5.4, and ts
τb

= 0.108; Gin denote the
initial value of the mem-conductance.

Figure 8: Mem-conductance change versus ∆t
tH

, for 30 cycles of
pre-post pairs at different frequencies, and different programming
voltages. It is assumed VH = 0.8 V, tH

τb
= 5.4, and ts

τb
= 0.108;

tf denotes the time interval between two pairs; the initial mem-
conductance is Ĝ = 1 mS.

V. SPIKING MEMRISTOR NETWORKS

Second order memristor networks have shown to be able
to process temporal events and to classify dynamic and static
data, by creating unique patterns, resulting from local potenti-
ation and depression [14]. By using our simplified model, we
will show that the pattern formation process in such networks
can be studied and deeply investigated by characterizing them
as discrete nonlinear dynamic systems.
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Figure 9: Mem-conductance change versus ∆t
tH

, for 30 cycles of post-
pre-post triplets at different frequencies, and different programming
voltages. It is assumed VH = 0.8 V, tH

τb
= 5.4, and ts

τb
= 0.108;

tf denotes the time interval between two triplets; the initial mem-
conductance is Ĝ = 1 mS.

Figure 10: Mem-conductance change versus ∆t
tH

, for 30 cycles of
post-pre-pre-post quadruplets at different frequencies, and different
programming voltages. It is assumed VH = 0.8 V, tH

τb
= 5.4, and

ts
τb

= 0.108; tf denotes the time interval between two quadruplets;
the initial mem-conductance is Ĝ = 1 mS.

We consider a structure composed by N presynaptic neu-
rons and M postsynaptic neurons, connected through a matrix
of second-order memristors, which exhibit a conductance
described by eqs. (12)-(13) and (17). The input data may be
encoded through a temporal or rate code, giving rise for each
neuron to a set of presynaptic spikes. As already discussed,
each presynaptic/postsynaptic spike may be modeled as a
positive/negative programming pulse of amplitude Vpre/Vpost

Figure 11: Mem-conductance change versus ∆t
tH

, for 30 cycles
of pre-post-pre triplets at different frequencies, and different pro-
gramming voltages. It is assumed VH = 0.8 V, tH

τb
= 5.4, and

ts
τb

= 0.108; tf denotes the time interval between two triplets; the
initial mem-conductance is Ĝ = 1 mS.

Figure 12: Mem-conductance change versus ∆t
tH

, for 30 cycles of
pre-post-post-pre quadruplets at different frequencies, and different
programming voltages. It is assumed VH = 0.8 V, tH

τb
= 5.4, and

ts
τb

= 0.108; tf denotes the time interval between two quadruplets;
the initial mem-conductance is Ĝ = 1 mS.

and duration ts, followed by a longer negative/positive heating
pulse of magnitude VH and duration tH . We indicate with
Xj and Yi the ensembles of all the spikes of the generic
presynaptic neuron j and postsynaptic neuron i respectively:

Xj =
{
tprej,1 , t

pre
j,2 , ... , t

pre
j,Kj

}
Yi =

{
tposti,1 , tposti,2 , ... , tposti,Hi

}
(18)
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where tprej,k (1 ≤ k ≤ Kj) denotes the time when neuron j

emits its kth presynaptic spike and tposti,h (1 ≤ h ≤ Hi) denotes
the time when neuron i emits its hth postsynaptic spike.

We conventionally assume that all spikes occur at the
beginning of the programming pulse of duration ts and that
the postsynaptic neuron voltage ui(t) is reset to zero, as soon
as it exceeds a given threshold, and consequently emits a
postsynaptic spike tposti,h . The voltage ui(t) turns out to be
described by the following expression:

ui(t) = R

Hi+1∑
h=1

N∑
j=1

∑
tprejk ∈(t

post
i,h−1,t

post
i,h )

Ĝi,j(t
pre
j,k ) vprej,k (t)

vprej,k (t) = VH

[
ε(t− tsh − tprej,k ) − ε(t− tsh − tH − tprej,k )

]
+ VP

[
ε(t− tprej,k ) − ε(t− ts − tprej,k )

]
ε(t) = Θ(t)

[
1− exp

(
− t

τm

)]
(19)

where R is a resistive constant, τm is the postsynaptic neuron
time constant, Θ(·) is the Heaviside function, [tposti,0 tposti,Hi+1]

represents the interval under consideration, Ĝi,j(t
pre
j,k ) denotes

the value of the mem-conductance at t = tprej,k , and tsh denotes
the time shift between the beginning of the programming pulse
and the beginning of the heating pulse, shown in Fig. (13).

By denoting the voltage threshold with uth and with Ĝh
i,j

the value assumed by the time-variant mem-conductance at
t = tposti,h , in correspondence of the hth postsynaptic spike
of neuron i, the mem-conductance dynamic evolution can
accordingly be described by the following set of N × M
discrete-time state equations:

Ĝh+1
i,j = min

{
Gmax, Ĝ

h+1/2
i,j + ∆

pre/post
G (Ĝ

h+1/2
i,j , γpre/post)

}
Ĝ
h+1/2
i,j = max

{
Gmin, Ĝ

h
i,j + ∆

post/pre
G (Ĝh

i,j , γ
post/pre)

}
(20)

γpost/pre =
tpre
j,kh

F

− tposti,h − tsh
tH

γpre/post =
tposti,h+1 − t

pre

j,kh
L

− tsh
tH

(21)

with

ui(t
post
i,h ) = uth and ∀ t 6= tposti,h → ui(t) < uth (1 ≤ h ≤ Hi)

(22)

In the above equations, khF and khL are the indexes of the
first and of the last presynaptic spike of neuron j occurring
in the time interval [tposti,h , tposti,h+1), Ĝh+1/2

i,j denotes the con-
ductance value due to the first variation ∆

post/pre
G determined

by the post/pre pair and Ĝh
i,j denotes the final value of the

conductance due to the second variation ∆
pre/post
G determined

by the pre/post pair. Gmax and Gmin represent the maximum
and the minimum value, that, according to (10), each mem-
conductance can reach:

Gmax = Ĝ(r0) =
1

2Rs

Gmin = Ĝ(rm) =
1

Rs

[
1 +

(
r0
rm

)2] (23)

The conductance variations ∆
post/pre
G (Ĝh

i,j , γ
post/pre) and

∆
pre/post
G (Ĝ

h+1/2
i,j , γpre/post) can be readily computed by

substituting in (12)-(13) the conductance values and in (17)
the appropriate values of γpost/pre, γpre/post given in (21).

The set of equations (20) - (21) - (22) together with (19)
can be effectively employed to study the dynamic behavior of
a memristor spiking network, with arbitrary presynaptic input
spikes Xj .

VI. NETWORK RESPONSE TO PRESYNAPTIC PERIODIC
INPUT SPIKES

In order to show the potentiality of the method of analysis
that we have developed, we consider the network response to
a sequence of periodic presynaptic spikes. By employing the
formalism introduced in (18), with Kj = 1 for all cells, the
series of N presynaptic spikes can be visualized by the vector
below assuming that the time shift between two subsequent
spikes be constant and equal to a constant period T :

I =
{
tpre1,1 , t

pre
2,1 , · · ·, t

pre
N,1

}
(tprej+1,1−t

pre
j,1 = T, 1 ≤ j ≤ N−1)

(24)

Since in memristor crossbar networks, all columns are
uncoupled, without losing in generality we only consider a
postsynaptic neuron i. According to (19), we assume that
the contribution of the programming pulses to the membrane
voltage ui(t) is negligible because of their short duration.
Consequently, a given threshold uth triggering a postsynaptic
spike may only occur in correspondence to a presynaptic
neuron heating pulse. In such a case, we denote with αjtH
(αj > 0) the time shift between the postsynaptic spike
and the beginning of the generic jth heating pulse at which
the threshold uth is reached (see Fig. (13) for details). The
following Proposition holds:

Proposition 1. Let a network be composed of N presynaptic
neurons and one postsynaptic neuron and let us assume that
N is a multiple of an integer P and that the input I , given by
(24), is presented multiple times to the postsynaptic neuron.
Let us consider the following set of P + 1 equations:

∆pre/post/pre(Ĝ0
p, γ

post/pre
p , γpre/postp ) = Ĝ1

p − Ĝ0
p = 0

(1 ≤ p ≤ P ) (25)

Ĝ1
p = min

{
Gmax, Ĝ

1/2
p + ∆

pre/post
G (Ĝ1/2

p , γpre/postp )
}

Ĝ1/2
p = max

{
Gmin, Ĝ

0
p + ∆

post/pre
G (Ĝ0

p, γ
post/pre
p )

}
(26)

γpost/prep =
pT − α tH − 2tsh

tH

γpre/postp =
(P − p)T + α tH

tH
(27)
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Figure 13: Example of a sequence of presynaptic input spikes of
period T (upper figure), giving rise to postsynaptic output of period
3T . Each pre/post synaptic spike is represented by a programming
pulse of magnitude VP and duration ts, followed by a heating
pulse of duration tH ; the time interval between the beginning of the
programming pulse and the beginning of the heating pulse is denoted
with tsh. It is assumed that the postsynaptic spike occurs αtH time
units after the beginning of one presynaptic spike (with 0 ≤ α ≤ 1)
and the following parameters, reported in (27), are shown for some
mem-conductances: γpost/pre1,2 (related to the time shift between the
beginning of the presynaptic programming pulses and the beginning
of the postsynaptic heating pulse) and γpre/post2,3 (related to the time
shift between the beginning of the postsynaptic programming pulse
and the beginning of the presynaptic heating pulses).

uth = RVH

{
P−1∑
p=1

Ĝ1/2
p exp

(
− (P − p)T

τm

)[
exp

(
− (α− 1)tH

τm

)
− exp

(
−αtH
τm

)]
+ Ĝ

1/2
P

[
1− exp

(
−αtH
τm

)]}
(28)

and the following inequality:

RVH

P−1∑
p=1

Ĝ1/2
p exp

(
− (P − p)T

τm

)[
1− exp

(
− (tH
τm

)]
< uth

(29)

If the inequality (29) is satisfied and there exist α > 0
and P mem-conductances Ĝ0

p, (1 ≤ p ≤ P ) satisfying the
above set of P + 1 equations (25) - (28), then the discrete
time system (20) - (22) exhibits a steady state solution, which
presents the following features: 1) mem-conductance patterns
have a spatial periodicity of order P ; 2) postsynaptic spikes
occur with a temporal periodicity of P T .

Proof. The periodic input I under consideration presents one
presynaptic spike for each presynaptic neuron, with periodicity
T , i.e. according to (24) tprej+1 − t

pre
j = T (the second index

is omitted because it is identical for all neurons). Let us
consider the interval between two generic postsynaptic spikes

[tposth , tposth+1), where again, the neuron index i is omitted
because, as notice above, in memristor crossbar networks,
postsynaptic neurons are uncoupled.

We assume that the last presynaptic spike prior to the
postsynaptic spike tposth occurs for the presynaptic neuron of
order J and that P presynaptic-spikes occur in [tposth , tposth+1).
According to (19), by neglecting the effect of the programming
pulse, the voltage u(t), due to the input I, in the generic
interval [tposth , tposth+1) can be written as follows:

u(t) = R

P∑
p=1

ĜJ+p(t
pre
J+p) v

pre
J+p(t)

vpreJ+p(t) = VH

[
ε(t− tsh − tprej,k ) − ε(t− tsh − tH − tprej,k )

]
(30)

As already noticed, the threshold uth can only be reached
during a presynaptic heating pulse. Without losing generality,
as illustrated in Fig. (13), we may assume that the threshold,
giving rise to the postsynaptic spike tposth occurs after a time
αtH from the beginning of the J th presynaptic heating pulse.

By assuming that the voltage u(t) is reset after the postsy-
naptic spike, the above expression (30) takes the form:

u(t) = RVH

P∑
p=1

ĜJ+p(t
pre
J+p)

[
ε(t− tposth − pT + αtH)

− ε(t− tposth − pT + αtH − tH)
]

(31)

To simplify (31) we note that the index J , which indi-
cates the order of the presynaptic spike, preceding the tposth

postsynaptic spike, can be omitted. In addition we observe
that if we denote by Ĝ0

p the mem-conductance values in
correspondence of the occurrence of the tposth postsynaptic
spike, then, according to (20) and (26), Ĝp(t

pre
p ) is given by

Ĝ
1/2
p , i.e. it is obtained by Ĝ0

p through a post/pre variation.
By employing the above simplified notation, the following

expression for the voltage u(t) at t = tposth + PT is easily
derived from (31):

u(tposth + PT )=RVH

{
P−1∑
p=1

Ĝ1/2
p exp

(
− (P − p)T

τm

)

·
[
exp

(
− (α− 1)tH

τm

)
− exp

(
−αtH
τm

)]

+ Ĝ
1/2
P

[
1− exp

(
−αtH
τm

)]}
(32)

Similarly, the postsynaptic voltages occurring at the end of
the heating pulses of the first P − 1 presynaptic spikes, can
be derived from (31) as uq = u[tposth + qT + (1−α)tH ], (1 ≤
q ≤ P − 1):
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uq = u[tposth + qT + (1− α)tH ] = RVH

{
q∑
p=1

Ĝ1/2
p

· exp

(
− (q − p)T

τm

)[
1− exp

(
− tH
τm

)]}
(33)

The following considerations hold:
1) If the set of P equations (26)-(27) is satisfied, each

mem-conductance Ĝ0
p, (1 ≤ p ≤ P ) turns out to be

unaltered after a pre/post/pre triplet.
2) The second side of (32) is identical to the second side of

(28), which means that if the additional P + 1 equation
(28) is satisfied, then the voltage threshold uth is reached
at t = tposth +PT . It follows that PT is the time interval
between the two subsequent postsynaptic spikes under
consideration tposth and tposth+1, i.e. tposth+1 − t

post
h = PT .

3) It is readily verified that the voltages uq given by (33)
satisfy the following property:

uq ≤ uq+1, (1 ≤ q ≤ P − 2) (34)

which implies that the maximum value of uq is uP−1.
Since the maximum of u(t) is reached in correspondence
of the end of the heating pulse of a presynaptic spike,
uP−1 also represents the maximum value taken by u(t)
as a result of the contribution of the first P − 1 presy-
naptic spikes. It is readily observed that the expression
of uP−1, i.e. (33) with q = P − 1, is identical to the
first side of inequality (29). Hence if (29) is satisfied
the voltage u(t) remains below the threshold uth until
the end of the heating pulse of the P − 1th presynaptic
spike, which implies, according to (32) that the threshold
is reached for the first time at t = tposth+1 = tposth + PT .

Let us now consider a pattern composed by a replica of P
mem-conductances Ĝ0

1, Ĝ
0
2, ···, Ĝ0

P satisfying (25) - (28), and
(29). It is readily seen that such a pattern is an equilibrium
point of the discrete-time dynamic system described by (20) -
(22), which proves the first part of the thesis, i.e. the existence
of a steady state solution with spatial periodicity P . Moreover,
since for such a pattern tposth+1 − t

post
h = PT , it is also proved

that postsynaptic spikes occurs with a periodicity of PT ,
which is the second part of the thesis.

It is worth noting that by studying the curves representing
∆pre/post/pre(Ĝp, γ

post/pre
p , γ

pre/post
p ) as a function of Ĝp, it

is derived that either they do not exhibit zeroes (which means
that the mem-conductance converges to Gmin or Gmax) or
they presents a negative slope in correspondence of the zero,
thereby implying that the solution is stable.

The above result may have some significant applications.
A first application regards the study of the dynamic behavior
of spiking networks, and the consequent characterization of
space and temporal periodic patterns. A second application
concerns the investigation of unsupervised learning mecha-
nisms occurring in memristive networks. Extensive numerical
solutions of (25) - (28) show that each presynaptic frequency is
dynamically encoded onto a mem-conductance pattern. Hence

Figure 14: Spiking network composed by 60 presynaptic neurons
and one postsynaptic neuron. Upper part: mem-conductance pattern
periodicity (2, for T

τb
= 1.25 tH

τb
, and 3, for T

τb
= 1.3 tH

τb
); lower

parts: mem-conductance variations, due to a sequence of post/pre/post
spikes.

Figure 15: Spiking network composed by 60 presynaptic neurons
and one postsynaptic neuron. Upper part: mem-conductance pattern
periodicity (4, for T

τb
= 1.4 tH

τb
, and 5, for T

τb
= 1.45 tH

τb
); lower

parts: mem-conductance variations, due to a sequence of post/pre/post
spikes.

such patterns can be exploited for classifying different sets
of presynaptic spikes. Finally, a third application regards
the possibility of developing supervised learning techniques
to optimize network performance. As shown in [29], this
would require estimating the mem-conductance pattern, which
maximizes the probability of a given postsynaptic output. We
expect that also this task could be effectively addressed by
further elaborating our dynamic system-based approach.

As an example, we have examined a network of 60 presy-
naptic neurons. The results are shown in Fig. 14 and 15
for tH = 2τb and increasing values of the input period,
i.e. decreasing values of the input frequency. The follow-
ing observations hold: 1) as expected, the mem-conductance
pattern and the postsynaptic spike periodicity increase with
the presynaptic periodic input T , ranging from a spatial
periodicity of 2 (with temporal period 2T ) for presynaptic
period T

τb
= 1.25 tHτb to a spatial periodicity of 5 (with temporal
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period 5T ) for T
τb

= 1.45 tHτb ; 2) the first P − 1 mem-
conductances converge to a stable value comprised in the range
(Gmin, Gmax), characterized by a zero of the post-pre-post
curve, with a negative slope; 3) the P th mem-conductance
assumes the value Gmax, in accordance with (26), because
the post-pre-post variation is always positive for any Ĝ in the
interval (Gmin, Gmax); 4) the network simulation, obtained
by applying 240 iterations of each input sequence, reproduces
precisely the results theoretically predicted by (25) - (28). As a
final remark, we note that the results also provide a theoretical
framework for understanding temporal learning properties of
second order memristors [15], [14].

VII. CONCLUSION

In this manuscript we have firstly derived a simplified
analytical model of second order memristors, which only
involves two variables, the mem-conductance and the internal
temperature, directly attributable to the quantities used in some
advanced biophysical models, namely the synaptic efficacy and
the calcium concentration. Then, by exploiting this model,
which allows computing the mem-conductance variation for
multiple combinations of spike inputs, we have investigated
the synaptic properties of single memristors and the global
dynamics of memristor spiking networks. For what concerns
the memristor behavior as a synapse, we have examined in
detail the response to some relevant stimulation protocols, in
particular cycles of spike pairs, triplets, and quadruplets at
different frequencies. Through our approach, we have shown
that: I) the most significant synaptic properties of second-
order memristors can be easily studied and predicted; II)
a significant portion of the synaptic behaviors that are not
captured by classical spike pair based STDP models can
be readily reproduced. As far as memristor networks are
concerned, they have been accurately characterized as discrete

Figure 16: Gap length time derivative dg/dt as a function of g, for
T = 400K, r/r0 = 1, Ea = 0.85 eV and different input voltages
ranging from −2V to 2V .

nonlinear dynamic systems, with mem-conductances as state
variables and pre and postsynaptic spikes as inputs and out-
puts. We have explicitly derived the state equations governing
the mem-conductance evolution, and we have proved that the
network response to periodic presynaptic inputs can be readily
determined by computing the system equilibrium points and
discussing their stability properties. We are confident that by
employing together our second-order model and some theo-
retical and numerical advanced nonlinear dynamic techniques,
the response of memristor networks to arbitrary presynaptic
inputs and the underlying learning mechanisms can be further
effectively investigated.

APPENDIX A
In this appendix, we show that the second order memristor

model developed in sections II and III and particularly the
mem-conductance expressions (9) - (10) derived in section III
are accurate for the whole voltage range of interest and for
any admissible activation Energy Ea.
We first note that the exact current-voltage characteristic (1) of
the second-order memristor explicitly depends only on the two
geometric parameters g and r. However, it implicitly depends
on the activation energy Ea since both the gap length g, and
the radius r are related to Ea through differential equations
(2)-(3), and (4).
It is shown in Figs. 3-4 that the mem–conductance exhibits a
weak dependence on the gap length g for reasonably small
values of g (0 ≤ g ≤ 0.4nm for voltages below 1V ,
and 0 ≤ g ≤ 0.8nm for voltages between 1 and 2 V).
Furthermore by increasing the voltage above 2V the weak
dependence range extends beyond 0.8nm.
Since the mem-conductance expressions (9) and (10) fully
incorporates the radius dependence, to prove their accuracy,
it is sufficient to show that the variation range of g lies within

Figure 17: Gap length time derivative dg/dt as a function of g, for
T = 500K, r/r0 = 1, Ea = 0.85 eV and different input voltages
ranging from −2V to 2V .
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Figure 18: Gap length time derivative dg/dt as a function of g, for
T = 600K, r/r0 = 1, Ea = 0.85 eV and different input voltages
ranging from −2V to 2V .

the interval [0, 0.8nm]. By examining equation (2) - (3) it is
noticed that, for constant voltages, the zeroes of the the gap
length time derivative dg/dt are given by the solutions of eq.
(3), which does not depend on the activation energy:

αa2 f

L0 − g
− 2 a f sinh

(
q av

g kbT

)
= 0 (35)

The graph of the gap-length time derivative dg/dt as a
function of g is shown in Figs. 16-19, for Ea = 0.85 eV ,
different values of the temperature, within the interval reached
during the heating phase, and constant voltages ranging from
−2 to 2 V.
For negative voltages the time derivative is always negative and
therefore we may assume that the gap length remains below
the values reached with positive inputs.
For positive voltages, each curve exhibits a single zero, which
depends on the voltage and on the temperature. By denoting
with ĝ(v,T) such zeroes, due to the negative slope, it is ex-
pected that the gap length g(t) lies in the interval [0, ĝ(v,T)],
i.e. ĝ(v,T) can be considered the greatest value assumed by
the gap length for given voltages and temperatures.
It is observed from Figs. 16-19 that: a) for positive voltages the
zeroes ĝ(v,T) decreases as the temperature increases; b) for
given temperatures the zeroes ĝ(v,T) increases as the voltage
increases.
In the temperature range under consideration, from 400 to
700K, the greatest value of ĝ(v,T), reached for T = 400K
and v = 2V , is less than 0.8nm; for voltages inferior to 1V
the greatest value is below 0.4nm. According to Figs. 3-4 it
turns out that in both cases (0 ≤ v ≤ 1 and g(t) < 0.4nm,
1 ≤ v ≤ 2 and g(t) < 0.8nm ) the mem–conductance
presents a weak dependence on the gap length and therefore its
approximate expression is accurate for Ea = 0.85 eV . Note
that for higher voltages, superior to 2V , the time derivative
zeroes slightly shift beyond 0.8nm, but the gap length range

Figure 19: Gap length time derivative dg/dt as a function of g, for
T = 700K, r/r0 = 1, Ea = 0.85 eV and different input voltages
ranging from −2V to 2V .

for which the mem.-conductance substantially depends on the
sole radius r also increases.

As noticed above, if different activation energy values are
considered, the zeroes of the gap length time derivative dg/dt
are not altered, and the graph of dg/dt versus g is accordingly
obtained by a suitable scaling on the vertical axis. Since the
zeroes ĝ(v,T) are not changed, we may conclude that the
mem-conductance approximation holds for the actual input
voltage ranges and for each admissible value of the activation
energy Ea.
The above analysis also shows that the model is pretty accurate
for any gap length in the interval [0, 0.8nm], and hence also
works in the absence of gap.

APPENDIX B

In this Appendix, we examine the effect of parameter
variations on the proposed second order memristor model. It
is shown in Appendix A that the mem-conductance presents
a weak dependence on the gap-length within the range of
interest. The mem-conductance expression (10), on which the
second order model is based, fully includes the dependence on
the radius r and the related parameters r0 and rm. In order to
evaluate the effect of the device intrinsic parametric variations,
it is worth examining the dependence of the STDP function
on the parameters r0 and rm.
The STDP function is derived from the mem-conductance time
derivative (12), which is expressed as the product of two terms,
the first containing the temperature and the second, η(Ĝ),
depending on r0 and rm.
The sensitivity of the mem-conductance time derivative with
respect to the parameter variation is therefore equivalent to the
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Figure 20: Impact on STDP functions of a 5 % variation of the
parameter r0. A continuous line represents nominal values, circles
represent perturbed values.

sensitivity of η(Ĝ), that can be readily derived from (13):

r0

η(Ĝ, r0)

∂η(Ĝ, r0)

∂r0
=

rm
r0
− 2

√
RsĜ

1−RsĜ√
RsĜ

1−RsĜ
− rm

r0

(36)

rm

η(Ĝ, rm)

∂η(Ĝ, rm)

∂rm
=

rm
r0√

RsĜ

1−RsĜ
− rm

r0

(37)

From Eqs. (36) and (37) it is seen that the sensitivity only
depends on the mem-conductance Ĝ and on the nominal
values of the parameters r0 and rm. As a consequence for
a small perturbation of the parameters, the STDP variation is
only affected by the mem-conductance value and not by the
time shift ∆t between pre/post (post/pre) pairs.
Figs. 20-21 show some examples, from which it is seen that
STDP curves are only marginally affected by small variations
of the parameters r0 and rm. Extensive simulations have
confirmed that the proposed simplified model is sufficiently
robust to accurately described the main second order mem-
ristor functionalities, in presence of intrinsic device parameter
variations.
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