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Abstract: The fetal echocardiogram is useful for monitoring and diagnosing cardiovascular diseases
in the fetus in utero. Importantly, it can be used for assessing prenatal congenital heart disease,
for which timely intervention can improve the unborn child’s outcomes. In this regard, artificial
intelligence (AI) can be used for the automatic analysis of fetal heart ultrasound images. This study
reviews nondeep and deep learning approaches for assessing the fetal heart using standard four-
chamber ultrasound images. The state-of-the-art techniques in the field are described and discussed.
The compendium demonstrates the capability of automatic assessment of the fetal heart using AI
technology. This work can serve as a resource for research in the field.

Keywords: computer-based diagnostic tool; congenital heart disease; deep learning approaches;
ultrasound imagery

1. Introduction

Congenital heart disease (CHD) has a prevalence ranging from 2 to 6.5 per 1000 live
births [1,2] and is a major cause of neonatal morbidity and mortality. The incidence of
CHD is not related to the maternal risk status [3]. More than half of all CHD cases require
early medical and/or surgical intervention at or soon after birth, which underscores the
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importance of antenatal screening [4]. Fetal echocardiography is a specialized detailed
ultrasound (US) examination that evaluates cardiac structure and function in utero [5] for
prenatal diagnosis of CHD as well as myocardial dysfunction [6]. Fetal echocardiography is
typically performed between 18 and 22 weeks of gestation when the fetal heart has matured
sufficiently to be feasibly imaged using transabdominal US. Prior to that, transvaginal US
was utilized to detect the developing fetal heart with less granularity at 12 to 13 weeks of
gestation, but the findings would usually have to be confirmed later with detailed fetal
echocardiography. Fetal echocardiography is indicated in pregnancies where maternal or
fetal factors are present that may increase the risk of cardiac anomaly. Prenatal diagnosis of
CHD or myocardial dysfunction significantly impacts pregnancy course, the decision for
termination, fetal therapy, delivery mode, and the need for tertiary care [4].

US imaging of the fetal heart is challenging, as the position of the fetus relative to the
mother is highly variable, and the operator must be familiar with normal and variant car-
diovascular anatomy to orient the US probe to image the heart in the correct view [7]. The
standard four-chamber view is the most basic (Figure 1), on which 43 to 96% of fetal anoma-
lies can be detected [5,8]. Test sensitivity can be improved by adding comprehensive views
of the left and right ventricular outflow tracts [9]. Sequential segmental analysis [10,11] is a
systematic approach to identify the morphologic atria, ventricles [12], and great vessels to
deconstruct the veno-atrial, atrioventricular, and ventriculo-arterial connections to arrive at
an anatomical diagnosis in CHD.
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which is especially relevant in high-risk pregnancies with intrauterine growth restriction 
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Figure 1. Standard four-chamber view showing normal appearance and spatial relationships of
the four heart chambers and aorta. This image was acquired from the subcostal window with an
ultrasound beam perpendicular to the interventricular septum. A similar image can be acquired from
the cardiac apex; in which case, the ultrasound beam would be parallel to the interventricular septum.

In addition to cardiac structure, fetal echocardiography allows for the assessment
of heart function, including the quantification of chamber dimensions and ventricular
ejection fraction. However, the latter is load-dependent and may not represent intrinsic
myocardial contractility. Advanced techniques such as tissue Doppler and speckle tracking
imaging may be used to detect subclinical systolic and diastolic myocardial dysfunction,
which is especially relevant in high-risk pregnancies with intrauterine growth restriction
or gestational diabetes mellitus [13]. On a cautionary note, impaired myocardial function
or cardiac output in utero may be a sign of compromised umbilical venous return from
placental insufficiency [14,15], which puts the fetus at risk of developing hypoxia and
acidosis during parturition.

The interpretation of fetal echocardiographic images demands expertise and is time-
consuming. Subtle myocardial dysfunction may be missed, even by skilled operators.
Computer-aided diagnostic systems can assist physicians in screening out abnormalities
for review to save time and potentially enhance diagnostic accuracy. In this regard, many
artificial intelligence (AI) approaches have been developed for medical US image analy-
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sis [16–20]. This review aims to systematically assess AI methods for automated analysis
of fetal US images. In particular, we focused on studies that utilized the standard four-
chamber view, as it is the most basic, has the highest diagnostic yield, and will allow us to
compare the different AI techniques using a uniform standard.

The remainder of the paper is structured as follows: Section 2 details our search
methodology, Section 3 mentions the studies included, and Section 4 analyzes four-chamber
(4Ch) heart images. In Section 5, results and discussion are stated, and in Section 6, the
conclusion is provided.

2. Article Selection for Systematic Review

Following PRISMA guidelines [21], we searched for scientific articles published be-
tween January 2010 and November 2021 on Scopus, IEEE Xplore, PubMed, Google Scholar,
and Web of Science using the search string: ((“segmentation” OR “classification” OR
“identification” OR “categorization” OR “detection”) AND (“fetal heart”) AND (“echocar-
diography” OR “cardiac ultrasound”) AND (“deep learning” OR “machine learning” OR
“artificial intelligence” OR “feature based”)). Other keywords, such as “fetal heart ultra-
sound”, “fetal echocardiography”, and “fetal heart segmentation”, were also tested to
extract the technical articles. We included articles that used AI techniques for segmen-
tation or diagnostic classification of standard four-chamber US images of the fetal heart
and excluded non-English publications, view detection using fetal heart US, cardiac cycle
detection using fetal heart US, abnormality detection other than four-chamber US images,
non-US studies, medical articles unrelated to AI content, case studies, adult studies, animal
studies, articles on fetal growth and related abnormalities, and articles that used AI for
organ segmentation other than in the heart. The search query returned 190 articles. After
reading the articles, 145 were discarded, as they met the repetition and exclusion criteria,
leaving 45 articles that comprised 40 technical and five review articles. The review articles
are considered, as they have shown the significance of fetal heart US images in automated
assessment with AI technology. The complete selection procedure is shown in Figure 2.
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3. AI in Fetal Echocardiography

Figure 3 depicts the pipeline for implementing AI-based computer-aided diagnosis
for fetal heart echocardiography, which comprises distinct tasks completed automatically
in sequence. First, the region of interest (ROI) containing the fetal heart image is localized,
and extraneous signals are removed in order to reduce data dimensionality and preserve
downstream computational efficiency. Second, structures of interest, including endocardial
borders or US speckles, are segmented, i.e., identified and tracked spatially (and where
applicable, temporally), which facilitates derivation of quantitative measures, e.g., indices
of chamber function. These first two steps are considered collectively in segmentation.
Third, input samples are classified into prespecified diagnostic categories. Both fetal heart
US image segmentation and classification tasks can be performed using deep learning (DL),
non-DL, or hybrid methodology [16,18,20].
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Traditional non-DL generally comprises distinct sequential steps of feature extraction,
detection, dimensionality reduction, and classification [17,22–26], and it would typically
require design input at every step. For instance, established algorithms based on threshold-
ing, graph theory, gradient vector flow, etc. would be used for the segmentation step [19].
In contrast, DL is a newer type of AI that incorporates neural networks to mimic human
reasoning [20], and feature engineering is automatically learned within the model rather
than being imposed. DL is modeled on a network of layers—deep architecture—with a
hierarchy of features in which features at the next higher level are informed and defined by
features at the preceding lower level [27]. Supervised DL models are extensively used in
US image segmentation and classification tasks. The most popular architectures are convo-
lutional neural networks (CNNs) and recurrent neural networks (RNNs). CNN consists of
convolutional and pooling layers and a rectified linear unit (ReLu), and batch normalization
layers are added if required. The last layer is a fully connected layer. These layers are
stacked to form the deep model [28]. CNNs are widely used for static two-dimensional
image analysis. In contrast, RNNs are more adept at analyzing time-varying input signals.
RNNs compute the hidden state vector and output vector iteratively and uses the long
short-term memory (LSTM) module to access the long-range context [29].
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3.1. Segmentation of Fetal Heart Structures

To replace manual cropping, automatic identification of the ROI containing the fetal
heart in a static image or a sequence of images in a video loop is an obligatory and challeng-
ing first step. This is followed by identifying and tracking relevant pixels corresponding
to the structure of interest in each image. Segmentation techniques can be segregated into
non-DL (Table 1) and DL approaches (Table 2).

Table 1. Nondeep learning segmentation techniques for fetal heart ultrasound images and videos.

Paper Method Goal Dataset Result

[30]
Rayleigh-trimmed

anisotropic
diffusion + AAM

The structure detection of
the fetal heart Images: 258 Detection = 74

[31] Active cardiac model The detection of cardiac
structure 738 images Point position

error = 7.11 ± 6.77

[32] PPBMLE + fuzzy
connectedness

Fetal heart
structure delineation First image DC = 0.985

[33] Improved AAM + sparse
representation The segmentation of LV Training: 23 images

Testing: 23 images AO = 84.39

[34] Connected component
analysis Heart detection 13 cine-loop sequences

[35] RG + PCM clustering The segmentation of fetal
heart chambers Images: 93

[36] Multitexture AAM
with HT The segmentation of LV Training: 98 images

Validation: 45 images DC = 0.8631

[37] FOH + circular basis
functions + SVM Heart detection Videos: 63 Acc. = 88

[38] Horn–Schunck’s optical
flow + PCM

Fetal heart chamber
segmentation 70 frames Segmentation

Error = 2.17%

[39] Improved RCV model The segmentation of
anatomical structure Videos: 12 subjects SPM = more than 99.95

HF = 2.5204 ± 1.2503

[40] TDyWT Preserving curvature and
border of the chambers

Images: 100 normal
and abnormal Contrast = 85% improvement

[41] k-means clustering + AAM The detection of fetal
cardiac structure

Three ultrasound
sequences

[42]
16 distances from border to
center + back-propagation

neural network (BPNN)
LV volume prediction 50 cases

Highest intraclass correlation
coefficient and concordance

correlation coefficient

[43] Discrete Haar
wavelet transform Chamber segmentation 73 cine loop sequences LV/RV ratio = 0.97

Acc (%): accuracy; SPM (%): segmentation performance measure; detection (%); AO (%): area overlap; DS/DC:
dice score/coefficient; HF: Hausdorff distance.

3.1.1. Nondeep Learning (non-DL) Approaches

A US image, whether static or moving, gets easier to analyze when US speckles in the
image are reduced. Techniques for reducing US speckle noise include the Rayleigh-trimmed
filter and anisotropic diffusion [30,31], probabilistic patch-based maximum likelihood esti-
mation (PPBMLE) [32], and a combination of sparse representation and nonlocal means [33].
Techniques to localize the ROI containing the fetal heart image include the superimposition
of frames and connected component labelling [34] and the region growing (RG) method [35].
Once the ROI has been detected, structures of interest within it can be identified. The fetal
heart structure was determined using an active appearance model (AAM) [30]. An im-
proved AAM model with sparse representation was employed by Guo et al. to segment
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the left ventricle (LV) [33]. In addition, simultaneous tracking of motion and structural
information can improve the detection of the fetal heart [31]. It is observed that multi-
texture AAM was combined with the Hermite transform (HT) to segment the LV [36]. A
feature-based approach using Fourier orientation histograms (FOH) and a support vector
machine (SVM) classifier was used to detect the fetal heart [37]. However, optical flow
was also implemented to find the heart region [38]. An improved region-based Chan–Vese
(RCV) model was proposed [39], wherein energy minimization was carried out using
the global-pollination-based CAT swarm optimizer with the flower pollination algorithm.
Furthermore, possibilistic c-means (PCM) clustering was used to detect the LV and right
ventricle (RV) [35]. The curvatures and borders of all four fetal heart chambers were pre-
served using the transverse dyadic wavelet transform (TDyWT) algorithm [40]. Table 1
lists the non-DL methods reviewed along with their performance for the segmentation of
US fetal heart images.

3.1.2. Deep Learning (DL) Approaches

DL segmentation techniques are based on CNNs and RNNs. LV segmentation was
performed by using deep tuning and shallow tuning approaches that tracked the mitral
valve base points [44]. Two models, the Visual Geometry Group (VGG)-16 and modified
region proposals with CNNs (RCNNs), were used to detect anatomical structures [45].
Multiple fine fetal heart structures—LV, epicardium (EP), thorax, descending aorta, right
atrium, left atrium, and RV—were segmented with cascaded U-Nets (CU-Net), and the
structural similarity index measure (SSIM) was added as a loss function [46]. You Only
Look Once (YOLOv3) was incorporated to improve classification accuracy to detect the
ROI [47]. Fully CNN was applied to locate the fetal heart in [48]. VGG and U-Net modules
were combined to segment the ventricular septum, yielding superior results when time-
series information was used [49]. The authors combined dilated convolutional chains
(DCCs) and W-Net modules and attained excellent segmentation results [50]. In addition,
the authors utilized Mask-RCNN (MRCNN) with ResNet50 as the backbone for multiclass
segmentation [51]. Table 2 lists the various DL approaches for the segmentation of US fetal
heart images.

Table 2. Deep learning segmentation techniques for fetal heart ultrasound images and videos.

Paper Method Goal Dataset Result

[52] CNN Fetal annulus segmentation 250 cases DS = 0.78

[46] CU-Net + SSIM Fetal heart segmentation Training: 1284 Images
Testing: 428 images

DS = 0.856
HF = 3.33

Pixel Acc. = 92.9

[53] CNN Localization 2694 examinations Acc. = 77.8

[47] Deep learning hybrid
approach

Localization of end-systolic
(ES) and end-diastolic (ED)

frames
350 pregnant women Avg. Acc. = 94.84

[45] VGG-16 + modified RCNN The detection of
anatomical structures 91 videos from 12 subjects Acc. = 82.31

[50] DW-Net The segmentation of
anatomical structures 895 views

DC = 0.827
PA = 93.3

AUC = 0.990

[54]

Feature learning detection
system with multistage

residual hybrid
attention module

The detection of
anatomical structures

1250 views from
1000 healthy

pregnant women

Precision = 0.919,
Recall = 0.971,

F1 score = 0.944, and
mAP = 0.953

[44] Dynamic CNN LV segmentation 51 sequences DC = 94.5
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Table 2. Cont.

Paper Method Goal Dataset Result

[49] Cropping–segmentation–
calibration

Ventricular septum
segmentation

615 images from
211 pregnant women

mIoU = 0.5543
mDC = 0.6891

[55]
Multiframe + cylinder

based on ensemble
learning

Thoracic wall segmentation 538 frames from
256 normal cases mIoU = 0.493

[56]
Supervised object

detection with normal data
only based on CNN

The detection of structure
abnormalities

349 normal cases
14 CHD cases

Area under ROC
Heart = 0.787
Vessel = 0.891

[57] DeeplabV3 + U-net Multidisease segmentation 602 Frames from
301 patients

mIoU = 0.768 ± 0.035
DC = 0.926 ± 0.020

for Ebstein’s anomaly

[58] CNN-based U-Net
The segmentation of

atrioventricular septal
defect

AVSD: 337 images
Normal: 332 images DC = 96.02%

[51] MRCNN Multiclass segmentation Images: 764

Hole detection
mIoU = 76

mAP = 99.48
DC = 87.78

[59] CNNs–U-Net and
Otsu threshold Fetal heart segmentation Images: 519 Mean Accuracy = 96.73

Error rate = 0.21%

Acc (%): accuracy; SPM (%): segmentation performance measure; detection (%); DS/DC: dice score/coefficient; HF:
Hausdorff distance; PA (%): pixel accuracy; mean average precision (mAP); mean intersection over union (IoU).

3.2. Classification of Fetal Abnormality

Fetal heart pathologies were classified using deep learning and other conventional
approaches. The three main steps for image analysis using non-DL approaches were seg-
mentation, feature extraction and reduction, and classification. First, noise and undesirable
distortions from US images were removed using a patch-based Wiener filter (WF) [60] and
PPBMLE [61]. Further, morphological operation [60], fuzzy connectedness [61], image-
and-spatial transformer networks (Atlas-ISTN) [62], and Faster-RCNN [63] were used to
segment the ROI. Next, texture features of US images were extracted using the gray-level
co-occurrence matrix (GLCM) [60,61,64]. The generated features were further reduced by
applying the Fisher discriminant ratio (FDR) [61] and local preserving class separation
(LPCS) [64]. Moreover, scale invariant feature transform (SIFT) descriptors and histogram
of optical flow (HOF) descriptors were used, and a codebook was constructed using a
bag of words (BoW) [65]. Finally, classifiers such as BPNN [60], the adaptive neuro fuzzy
inference system classifier (ANFIS) [61], SVM [64,65], and the Gaussian process [62] were
deployed to categorize the normal versus diseased fetal heart. DL models were used to
classify the US images in [66]. The DANomaly and GACNN (Wgan-GP and CNN) were
combined to form a DGACNN architecture [63]. An ensemble of neural networks achieved
promising results in [67]. Table 3 summarizes the various state-of-the-art approaches to
fetal heart disease categorization.
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Table 3. State-of-the-art decision support systems using fetal heart ultrasound images and videos.

Paper Method Dataset Result Classes

[60]

Patch-based
WF + morphological

operation + features from
GLCM + BPNN

From fetal US
image gallery

Correctly classified:
30 images

Not correctly classified:
9 images

3 (normal, hole in the heart,
and defect in the valve.)

[61]

PPBMLE + fuzzy
connectedness + statistical

and texture
features + FDR + ANFIS

Normal: 185 images
TA-CHD heart: 39 images

ROC: 0.8954
F-score: 0.9673

2 (normal and truncus
arteriosus (TA))

[65] SIFT + HOF + BoW + SVM Normal: 240 cases
Abnormal: 60 cases Acc. (Avg.): 95.1% 2 (normal and abnormal)

[66] Deep learning model
Normal: 493

TOF: 87
HLHS: 105

Normal heart vs. TOF:
Sen: 75, Spe: 76

Normal vs. HLHS:
Sen: 100, Spe: 90

3 (normal heart, tetralogy of
Fallot (TOF), and hypoplastic
left heart syndrome (HLHS))

[64] Texture features based on
shearlet + LPCS + SVM

Normal: 221 images
Pre-GDM/GDM:

212 images

Acc.: 98.15
PPV: 97.22
Sen: 99.05
Spe: 97.28

2 (normal and pre-GDM/
gestational diabetes

mellitus (GDM))

[63] DGACNN 3596 images and
video slices

Acc.: 85
AUC: 0.881 2 (normal and diseased)

[62] Atlas-ISTN + area ratios +
Gaussian process

Normal: 1560 images
HLHS: 68 images AUC-ROC: 0.978 2 (normal and HLHS)

[68] Auto-encoding generative
adversarial network

Normal: 2224 cases
Abnormal: 93 cases AUC (avg.): 0.81 2 (normal and HLHS)

[67] Ensemble of
neural networks 107,823 images

AUC: 0.99
Sen: 95
Spe: 96

NPV: 100

2 (normal and abnormal)

PPV (%): positive predictive value; Sen. (%): sensitivity; Spe. (%): specificity; NPV (%): negative predictive value.

4. Analysis of CHD Using Four-Chamber US Images

To understand CHD, we analyzed the 4Ch US heart images and the different ap-
proaches used, as described in the subsequent sections.

4.1. Data Description

The fetal cardiac ultrasound images were acquired using the Vivid 7 GE healthcare
echocardiographic machine with the transducer being a linear convex probe set at 3 to
4 MHz. The 4Ch view helps in the identification of cardiac chamber anatomy and the
presence of any intracardiac shunt lesions. Structural anomalies of the cardiac chambers
are well-diagnosed using lateral or apical four-chamber views of the fetal heart. The
collected images are shown in Figure 4. In the healthy normal fetus, the apical 4Ch view
demonstrates four well-developed chambers, a concordant atrioventricular (AV) connection,
unobstructed AV valves (mitral and tricuspid valves), the foramen ovale flap opening into
left atrium (LA), and an intact interventricular septum. Additionally, the pulmonary venous
opening can be visualized at the LA wall. Any structural deviations from normal anatomy
may lead to congenital heart disease that can be determined by the 4Ch view of the fetal
heart’s ultrasound imaging. We illustrate a few such examples that can be diagnosed by the
4Ch view of the fetal heart alone. Figure 4a displays the normal cardiac structural anatomy,
where all four chambers are well-developed without any dilatation/hypoplasia of any
chamber and nonobstructive AV valves. Figure 4b shows an atrioventricular septal defect,
commonly termed as an endocardial cushion defect, mainly affecting AV valve formation
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and the abnormal AV connection to the respective ventricle. Figure 4c shows an abnormal
atrioventricular connection, where the anatomical LA is connected to the RV through the
tricuspid valve, and the RA is connected to the LV through the mitral valve. This structural
anomaly is one of the diagnostic criteria for the diagnosis of L-posed transposition of the
great artery (L-TGA) or congenitally corrected transposition of the great artery (CCTGA).
The presence of an intracardiac tumor in the fetus can also be determined in the 4Ch view
of the fetal heart, as shown in Figure 4d. Moreover, Figure 4e describes the tricuspid valve
anomaly seen in Ebstein’s anomaly, characterized by the apical displacement of tricuspid
valve leaflet insertion. Fetal echocardiography can also show complex congenital heart
disease such as hypoplastic RV (Figure 4f), hypoplastic LV (Figure 4g), and tricuspid atresia
(Figure 4h). Hypoplasia of the ventricle is characterized by a small-sized chamber with
or without ventricular septal defects, whereas the atretic valve is defined as being when
the muscle bundle completely seals the respective AV valve segment. The obstructive
AV valve with congenital stenosis and thickening can be identified in the fetal cardiac
4Ch view by a restricted movement of the AV valves during diastole. Significant AV
valve stenosis will be associated with respective atrial enlargement (Figure 4i). Further,
Figure 4j shows a 4Ch view of a fetus with total anomalous pulmonary venous connection
(TAPVC). Although anomalous pulmonary venous insertion cannot be identified in 4Ch
view alone, the appearance of a bald LA is considered to be the classic finding for the
suspicion of TAPVC.
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4.2. Analysis Using Various Approaches

The 4Ch view is a basic view in the cardiac examination for the structural and func-
tional assessment of the heart. Most of the complex congenital heart diseases can be
detected straightforwardly by the 4Ch view. Hence, we have obtained a sample of the 4Ch
cardiac view from normal and CHD fetuses. Here, we have used a few CHD images for
analysis purposes, and the study lacked individual CHD images with a greater sample
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size. However, we strategize automated individual CHD detection using more of such data
in the future. In the present study, we have used methods such as steerable filters [69,70],
gist [71], and higher-order spectra (HOS) cumulants [72] to analyze the structure of the
heart. The application of these methods to characterize image uncertainties and their
analysis to achieve efficient results have motivated us to analyze the 4Ch fetal heart im-
ages [73–81]. These approaches can be further utilized with non-DL and DL approaches to
efficiently characterize CHDs.

Steerable filters are used to enhance the various clinical features in different orienta-
tions. A set of basis filters is used to produce an arbitrary orientation [69,70]. Moreover, a
linear combination of the oriented functions is used to generate the steered filters. The gen-
erated filters are then applied to a US image with the help of a linear operator, convolution,
and it is also noted that the obtained filter responses are steerable [70] (refer to Figure 5).
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Gist is an efficient, holistic lower-dimension representation of an image. It investigates
the image on a spatial four-by-four nonoverlapping grid. Initially, the power spectrum of
an image is computed and a set of Gabor filters are then used [71,73]. Then, the feature
maps are generated to accumulate the information over subregions of an image. Figure 6
shows the computed gist descriptor using four-chamber US images [74].
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(i) mitral and tricuspid stenosis, and (j) bald LA in TAPVC.

HOS are the spectral representation of the moments and cumulants from the third
order and beyond. Cumulants are computed using certain nonlinear mixtures of mo-
ments [72]. Although the process is random, cumulants are deterministic functions. It
is noted that, in the spectral domain, cumulant spectra are determined using moment
spectra [72]. Herein, fetal heart US images are analyzed for order n = 3 and a step angle of
10 degrees (refer to Figure 7).
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5. Results and Discussion

In this work, we have reviewed 45 articles that were segregated into the following
areas: segmentation/detection (31/40) and classification (9/40) using four-chamber fetal
heart US images and reviews (5/45). The distribution of the articles based on non-DL and
DL approaches is shown in Figure 8.

Non-DL and DL are the major approaches implemented with segmentation/detection and
classification techniques for the automated assessment of the US fetal heart. From Tables 1 and 2,
most of the articles availed of the dice score/coefficient (DS/DC) [32,36,44,46,49–52,57,58]
as a performance indicator for the detection scheme. For classification, accuracy (Acc.) [63–65],
positive predictive value (PPV) [64], sensitivity (Sen.) [64,66,67], specificity (Spe.) [64,66,67],
F-score [61], and area under curve (AUC) [62,63,67,68] were the reported performance
indicators. Among non-DL techniques, AAM was commonly deployed in many ap-
proaches [30,33,36,41] for the detection of the fetal heart. SVM [37] and BPNN [42] showed
good accuracy for detecting the heart’s features. The combination of PPBMLE and fuzzy



Informatics 2022, 9, 34 13 of 19

connectedness achieved a DC of 0.985, while the improved RCV model achieved a seg-
mentation performance measure (SPM) of more than 99.95% [32]. Further, the CNN-based
U-Net approach achieved a DC of 96.02% for the segmentation of atrioventricular septal de-
fects [58]. In Table 3, the classification of fetal heart abnormalities was posed as a two-class
(07/09) [61–65,67,68] and three-class (03/09) [60,66] classification problem. An ensemble of
neural networks achieved a sensitivity and specificity of 95% and 96%, respectively, on a
large image dataset (over 100,000 images) for two-class classification [67]. From the litera-
ture, we observed that almost all methods had been developed using private datasets, and
it is difficult to compare the performance of non-DL and DL methods. From Tables 1 and 2,
it is noted that MRCNN [51] and the U-Net based approach [58,59] achieved maximum
segmentation results. It is noted that CNN-based approaches need high-end computers
with GPU [51]. The number of layers depends on the architecture used by the individual
approaches. In the CNN-based approach, the parameters, such as learning rate, batch size,
number of layers, etc., change from model to model. The selection of these parameters is
based on the efficient performance measures obtained from a particular model. On the
other hand, it is difficult to generalize a particular model for segmentation or classification
using US images. Further, DL methods might not perform well on test data collected from
different centers, as they may differ too much from the training data. It is observed from
the literature that the non-DL method uses feature-based learning approaches, wherein
the hand-crafted features are used in the feature extraction stage. These are the features
that data scientists manually compute; hence, it requires domain knowledge. From Table 3,
it is observed that the highest classification accuracy achieved by using a hand-crafted
feature learning-based approach is 98.15% [64]. The method uses the graph embedding
approach on the generated texture features, and it uses only 28 features to obtain maximum
accuracy. Hence, only a standalone personal computer is required for its execution, and
these techniques can be utilized to analyze other medical images.
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On the other hand, segmentation and ensemble neural networks are used to obtain
an AUC of 0.99 on a larger dataset [67]. In addition, all of the works used private datasets
and the hold-out method instead of the k-fold cross-validation scheme. Hence, it would be
difficult to generalize the results.

As far as we know, this research is the first to report a full range of 4Ch fetal heart US
images with CHDs, including endocardial cushion defects, CCTGA, myocardial tumors,
and mitral and tricuspid stenosis, to name a few. These images were analyzed via various
approaches such as steerable filters, gist, and HOS cumulants. It is clear from Figure 5 that
a steerable filter enhanced the edges, curvatures, and corners for improved structural iden-
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tification. The “filtered” image can then be used to analyze the textures of an image [75–77].
It is noted from Figure 6 that gist was able to characterize the CHDs from the different
patterns. Moving forward, the fusion of features obtained from steerable filters and gist
can be used to improve the discrimination among different classes of CHDs. Since the
collected dataset is very small, we grouped normal and abnormal (various CHDs) classes
(i.e., three normal and nine abnormal images) to test the significance of the generated
features. Initially, 512 gist features were generated for all the images. Then, the Student’s
t-test as performed and arranged with the highest t-values and lower p-values [82,83].
Table 4 shows the highest-ranked ten features. It is noted that the generated features are
significant, as their p-values are <0.005. Further, these features can be used to identify the
CHDs. It is difficult to generalize the system, as we have used a smaller dataset. The main
goal of the proposed work is to show the structural changes in the fetal heart, and in the
future, we want to extend the work by collecting a larger number of samples.

Table 4. Mean and standard deviation (SD) of ranked gist features.

Gist
Features

Normal CHD
p-Value t-Value

Mean SD Mean SD

g163 0.01452 0.012148 0.04007 0.004682 0.000232 5.58766
g147 0.018778 0.016078 0.047104 0.003378 0.000282 5.447707
g435 0.025952 0.023764 0.067444 0.005714 0.000359 5.27778
g179 0.015138 0.014876 0.045054 0.005949 0.000364 5.267412
g19 0.011812 0.010194 0.030654 0.003365 0.000417 5.173703

g227 0.014975 0.010206 0.034879 0.003961 0.000421 5.167139
g432 0.053077 0.002696 0.043768 0.002758 0.000473 5.086565
g35 0.009664 0.007529 0.027647 0.004663 0.000512 5.032358

g291 0.019373 0.015107 0.045137 0.004374 0.000578 4.950172
g99 0.009573 0.00628 0.023637 0.003746 0.000697 4.825387

To capture the subtle variations in the inherent structure of the fetal heart, researchers
can also employ the HOS cumulants. The plot of HOS cumulants in Figure 7 clearly shows
distinctly different plot patterns for various CHDs. The significant changes in the HOS
cumulants plots could help the analysis of CHDs by generating compact features. The
extraction of texture features [84] and various entropies [85] based on these plots will better
assist researchers in analyzing the fetal heart’s intrinsic characteristics. Moreover, it can
be utilized to enhance the discriminable capability of the model by understanding pixel
organization of US images. There is a small change between Figures 7c,d, where CCTGA
and the myocardial tumor may have a similar structure problem. Further, it can be analyzed
by considering the intrinsic structure of CCTGA and the myocardial tumor. In addition, the
generation of a hybrid model using gist and features from various HOS cumulants plots
could also help identify different classes more efficiently. A greater number of US images of
various CHDs will allow for a significant solution to the multiclass classification problem
using US images.

5.1. Future Scope

It is observed that there are approximately the same number of statistical or non-DL-
based and DL-based methods developed. It is noted from the Tables 1–3 that the former
methods were developed using smaller datasets. For huge datasets, the DL-based methods
are more suitable. In addition, feature extraction in the non-DL methods demands domain
knowledge. To date, there is a lack of publicly available datasets for fetal heart analysis
using US imagery. In addition, annotating the data into the various diagnostic categories
is a challenge that requires support from expert radiologists. Image collection should be
extended to multiple centers to ensure a balanced dataset. This will help in the global effort
to develop more accurate models to assess fetal hearts for CHDs.
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In future, the development of the smart healthcare system using the internet of things
(IoT) is essential for early diagnosis and treatment of CHDs in expectant mothers living
in rural areas of developing countries (refer Figure 9). Here, the collected US images are
analyzed using a cloud-based system. The obtained reports can then be sent to doctors
and specialists in multispecialty hospitals in the city. Based on the specialists’ advice,
the obstetricians in the rural areas can make appropriate decisions regarding the baby’s
birth. In addition, the proper medication can be provided to the expectant mother for a
better outcome.
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5.2. Limitations of the Current Study

Some limitations of the proposed study include:

1. This review considers only manuscripts written in English.
2. The articles are based on specific keywords used. We may have overlooked potential

studies based on non-DL and DL approaches.
3. The study targets AI-based techniques for fetal heart assessment using only four-

chamber US images and did not consider other views or other imaging modalities.

6. Conclusions

AI techniques have the potential to make a huge impact in the field of medical image
processing and analysis. Computer-based diagnostic tools have shown significant growth
in clinical and medical applications. In this study, 45 articles were selected from 190. These
articles were thoroughly reviewed so as to provide a comprehensive insight into the AI
techniques utilized for the characterization of fetal heart US images. These studies were
summarized and analyzed in terms of different cutting-edge approaches. The survey
showed that AI techniques are able to improve the assessment of the fetal heart and are
likely to be valuable resources for medical decision support.
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