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Transport and Anisotropic Diffusion M odels
for Movement in Oriented Habitats

Thomas Hillen and Kevin J. Painter

Abstract A common feature of many living organisms is the ability towva@and
navigate in heterogeneous environments. While modelspfatiad spread of popu-
lations are often based on the diffusion equation, here wetaiadvertise the use
of transport models; in particular in cases where data frogividual tracking are
available. Rather than developing a full general theoryaféport models, we focus
on the specific case of animal movement in oriented habifais.orientations can
be given by magnetic cues, elevation profiles, food soumradisturbances such as
seismic lines or roads. In this case we are able to preserdardast the three most
common scaling limits, (i) the parabolic scaling, (ii) thgderbolic scaling, and (iii)
the moment closure method. We clearly state the underlygagraptions and guide
the reader to an understanding of which scaling method id irsevhat kind of
situations. One interesting result is that the macroscdpftvelocity is given by
the mean direction of the underlying linear features, amddiffusion is given by
the variance-covariance matrix of the underlying oriertabitat. We illustrate our
findings with specific applications to wolf movement in habstwith seismic lines.
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1 Introduction

1.1 Biological Motivation

Successful navigation through a complicated and evolvinyenment is a funda-
mental task carried out by an enormous range of organisnggalithn paths can be
staggering in their length and intricacy: at the microscqumiale, nematode worms
can determine the shortest path through the intricate rikestructure of the soil
to locate plant roots [40] while at the macroscopic scalensal return from the
ocean upstream through bifurcating rivers and streamsdwsat their original
birth site [27]. Selecting a path requires the detectioo¢essing and integration of
a myriad of cues drawn from the surrounding environment. &myninstances the
intrinsic orientation of the environment provides a valeatavigational aid. The
earth’s magnetic field provides one such example: specgsasturtles and whales
use an inbuilt compass to navigate to breeding or feedingg®[27], while butter-
flies and other insects fly up slopes to local peaks in a maggitagstrategy known
as “hilltopping” [38]. Pigeons [26] and cane toads [6] haeeb shown to fly or hop
in the direction of roads, while caribou and wolves move gltire seismic lines cut
into forests by oil exploration companies [31]. An alignet/ieonment also plays
a fundamental role in the migration of individual cells: ngarell types, including
immune cells, fibroblasts and certain types of cancer calisate in alignment with
the fibre network constituting the surrounding extracaliuhatrix (ECM).

The above examples provide the motivation for the preseueipahere we focus
on mathematical models for movement in oriented habitadgfagir scaling limits.
The aim is to clarify some of the tools of the trade, allowihg teader to adapt the
methods to any given specific situation, such as those edtktove. In the case of
the present paper we shall use cell movement in collagaretis® derive the model
equations, before demonstrating their adaption to wolf eneent on seismic lines
and the motion of organisms in a stream. We note that thesddshe considered
illustrative examples rather than indepth studies, altitowe note that a detailed
application to glioma growth will be covered in a forthcomipaper [37].

1.2 Mathematical Modelling

Transport models (often referred to as kinetic models) farppwerful tool in the
analysis and modelling of animal and cell movement. Modepeamental meth-
ods allow us to track an individual's movement in intricatgadl, whether by GPS
tracking of mammals [41, 31] or through confocal microscaopyells in tissues
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[14, 13]. The wealth of data generated can be employed taerecise informa-
tion on mean travel speeds, velocities, the distributidnofing angles, the “choice”
of new velocities amongst others. Within this context tlasport model fits natu-
rally, relying on particle speed and turning distributi@sskey inputs.

Transport models have a long history in continuum mechakimsexample, the
theory of dilute gases is entirely based on the kinetic Bodten equation of inter-
acting gas particles [8]. Over the last few decades thigyheas been transferred to
the modelling of living entities, with the obvious advargaaf shipping previously
developed methodologies with it [34, 35, 19, 9, 39, 4]. Hogrewholesale removal
from the shelf of continuum mechanics is inadvisable: ma@shmust be carefully
adjusted to reflect the biological situation.

A highly utilized tool in the study of transport models is ans@eration of scal-
ing limits, thus allowing approximation to a reduced (angiitglly simpler) model
such as a diffusion- or drift-dominated partial differah@quation. A variety of scal-
ing limits have been considered, found under the generdihgaofparabolic limit,
diffusion limit hyperbolic limit Chapman-Enskog expansiohilbert expansions
andmoment closure§19, 9, 10, 16]) (with, most likely, many further termingjies
dispersed throughout the literature).

In the hope that we can make transport equations more breadlssible for
ecological and cellular processes, in this chapter we eglach systems as a means
of modelling migration. We will open the following sectionitiva presentation of
the transport equation approach, as well as a specific fatioalthat incorporates
guided movement due to a fixed and oriented environment. rEhasively simple
model will be used to motivate and illustrate the varioudisga. Here, with our
attention fixed on ecological applications, we restricemtion to the three most
commonly used methods: (i) the parabolic scaling, (ii) tipérbolic scaling, and
(i) the moment closure. We will not attempt to present thestrabstract and general
theory, rather we focus on a nontrivial and interesting aaich retains enough
simplicity to directly apply each of the scaling limits al@own particular, we will
attempt to answer the following questions:

e Isthere a better method among those three methods?

e How and when do we employ hyperbolic scaling, parabolicisgadr moment
closure?

e What are the specific assumptions behind these three medinddsow do they
differ?

e Inwhich cases do these scalings lead to the same results?

While all methods have been discussed individually, asfavenare aware there has
not been a study which directly compares these methods iadblegical context.
We find that each of the methods (i), (ii) and (iii) have theimorange of applicabil-
ity and there are situations when one is favourable overttineroAs it turns out, the
parabolic limit (i) plays a central role, as special casg@i)odind (iii) both lead back
to (i). To illustrate the findings and methodologies in a sf@arent manner we will
explore some simple case studies and consider specificappiis, including the
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movement of wolves and caribou along seismic lines in WasBanada. Finally,
we will provide a brief discussion of the findings.

2 Transport equations

The application of transport equations to biological pss&s grew from seminal
work of the 1980s (see [1, 34]) as an approach for modelliotpgical movement,
whether by cells or organisms. Transport equations tylyicafer to mathematical
models in which the particles of interest are structuredh®jrtposition in space,
time and velocity. Here we will usp(t,x,v) to describe the population density of
cells/organisms at time> 0, locationx € Q C R" and velocityv € V C R". We
will generally consider an unbounded spatial dom@ir= R" to avoid specifying
boundary conditions and, given that we consider biologicalement, the set of
possible velocitie¥ is taken to be compact. It is worth noting that this is a key
distinction from the kinetic theory of gas molecules, whére R" permits (at least
theoretically) individual molecules to acquire infinite mentum. Here we shall
typically consideV = [s1,5] x S %, with0< 5 <5 < .

The time evolution op(t, X, v) is described by theransport equation

pe(t,x V) + V- Op(t,x,v) = Zp(t, x,v), (1)

where the index denotes the partial time derivative aifdis theturning operator
a mathematical representation for modelling the veloditgnges of the particles.
In many instances” could be described by a nonlinear interaction operatorrinco
porating changes in velocity due to interactions betwedividuals. For example,
the coherence of a fish school is maintained through an ishdialialtering velocity
in response to that of an immediate neighbour, while cepaijpulations of cells
migrate as a cohort by forming strong adhesive bonds withn treégghbours. Here
we will ignore such scenarios, thus allowing us to focus di@rgion on the simpler
case of linear operator®’.

Typically, .Z is defined via an integral operator representation

L) = —HpW) + 1 [ TO0uV)P/)dV. )

where the first term on the right hand side gives the rate athvparticles switch
away from velocityv and the second term denotes the switching into veladitym

all other velocities. The parametgris theturning rate with 1/u the mean run
time between individual turns. The kern€lx,v,v') denotes the probability den-
sity of switching velocity fromv' to v, given that a turn occurs at location The
mathematical properties df set the stage for much of the theory that follows and,
it is certainly possible to set down a general theory forgpamt equations (see for
example[19, 39, 7, 25]). However, the resulting burden ebaded functional anal-
ysis would overwhelm the aims of the present paper. Rathefpaus on a simple
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yet non-trivial case which allows us to present the scalieghods in a transparent
manner. Specifically, we restrict to the case in which theitg operator does not
depend on the incoming veloci:

T(x,v,V) =q(x,V)

whereq satisfiesq > 0. This assumption limits the applicability, since animags

well as cells have a tendency to maintain a particular doadjpersistence) such
that the incoming and outgoing velocities show a strongatation. Here we ignore
this form of persistence, and we assume that the dominaitiegtibnal cue is given

by the oriented environment. As mentioned already, a gétreement is possible,
but it would deter from our purpose to present the theory ielatively transparent
way.

2.1 Movement in an oriented environment

Here we present a dedicated and simple model based on tisparaequation (1)
with turning operator (2) to describe movement in an oriéréavironment. We
follow the modelling approach developed by [17] and extehidg36] to describe
contact-guided movement of cells within a network, for eptaran extracellular
matrix (ECM) predominantly composed of collagen fibres. Wiinate the model
by briefly describing its derivation in relation to cell maewent, as in the above
articles, while noting that the model itself is quite geharal can easily be adapted
to model the movement of organisms in an oriented landsapshown in later
sections.

The ECM imparts orienteering cues to cells through theidésey to follow
fibres, a process known as contact guidance [12, 15]. Morerghy, contact guid-
ance describes the oriented motility response of cells igo&nopy in the environ-
ment, whether it arises from collagen fibres, muscle fibrearonal axons, arteries
and so forth. Contact guidance is believed to play imporntales in tissue develop-
ment, homeostasis and repair, from patterning of the paictiorbud of the teleost
embryo [45] to immune cell guidance [43, 44] and fibroblagtdimted tissue repair
following injury [15]. Particular interest in contact-gléd migration of cells further
stems from its influence in directing the pathways of invasiancer cells [13, 14].

Following the approach in [17] and [36], we represent thermed structure of
the environment by defining a directional distributiqfx,®) for 8 € S"1, with
g > 0andfs-1G(x,0)d8 = 1. In the case of cell migration, the fibres along which
cells migrate do not provide a particular direction to moeain(i.e. there is no
“up” or “down” a collagen fibre) and in such instances we woagdume symmetry
d(x,—8) = G(x, 8) for all 8 € S"1. For more on distinct forms for the directional
distribution, see below.

To model contact-guided migration, we assume that cellsshtheir new direc-
tion according to the given fibre network, hergge, v) ~ §(x,V), wherev'=v/||v||
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denotes the corresponding unit vector. Note that this assuhmat cells only take
guidance information from the directional distributiohete is no explicit compo-
nent for random migration or orientation to chemical si¢jnglcues built directly

into the turning operator, although these can be built inéodirectional distribution
as we demonstrate later. Singés a probability distribution olv, andd a probabil-

ity distribution onS"~1, we need to scale appropriately:

B CS _ [ axodye d 7(S-shforsi<s
qxv) ===, with w—'/vq(x’v)dv_{gnl fors;=s,=s

For this choice of turning kernel, equation (2) simplifies to

Zo0) = paxvE-9(v).  with §i= [ o

We make one final simplification, which is to assume individirave a fixed speed
s i.e.V = sS"1, While the extension tv = [s;,s,] x S™ is trivial, it introduces
some cumbersome integration constants that blur the acellgetails.

To summarise, the transport model we study in this papexendiy

p[(t,X7V) +V- DD(LX,V) = [J(q(X,V)ﬁ(t,X) - p(LX,V)) )

onR" x sS"1, whereq(x, V) is the direction distribution that represents the external
network structure.

It is worth noting that different cell types adopt distincigmation strategies,
with correspondingly variable degrees of interaction wfith surrounding network.
For individually migrating cells the two principle migrati strategies are amoeboid
and mesenchymal. While the former is characterised by figetontact between
cells and the ECM, and correspondingly minimal distortidrihee network [44],
the latter involves extensive structural modification af E8CM via a processes of
cell-mediated proteolytic degradation. Consequentlystamd-alone equation (3)
is more appropriately a model for amoeboid rather than nedsenal migration.
The latter would require augmentation of (3) with an evalntequation for varying
q(t,x,v) due to cell-matrix interactions: while such extensionstasen extensively
considered in detail in [17] and [36], we do not consider thisher here.

As mentioned earlier, while originally developed in the o of cell migration
the above transport equation can easily be adapted to ecal@gpplications. For
example, to model the population movements of hilltoppingédsflies we would
reinterpretp as the density of butterflies, as a spatially varying directional dis-
tribution with a maximum corresponding to the local direntbf increasing slope,
with parameters andu for butterfly speed and frequency of turns to be estimated
from tracking of individual flights.
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2.2 Environmental distributions

Representing anisotropy of the environment through thectional distributiong
provides the means to describe a wide range of orienteddapds. Here we briefly
consider some potential forms fqr

Strictly-aligned environments
A strictly aligned environment with local directione S"* can be modelled by
choosing the singulag-distribution:

1_ .
90 v) = = &(I-).
The above effectively forces an individual to chogses a movement direction fol-
lowing a turn. A full mathematical solution theory of (3) feuchq requires a notion
of measure valued solutions, which was developed in [18] diskuss this case in
connection to applications in Section 7.3.

Regularly-aligned environments
For many landscapes, while oriented structures provideectibnal cue, the in-
dividuals will typically move over a wide range of directmri-or example, while
wolves preferentially follow the seismic lines cut intoésted areas they also move
off the lines and into surrounding forest. Similarly, butlies do not take the steep-
est route during hilltopping, rather their flight patternctivates [38]. Such be-
haviours can be accounted for by allowiqtp take the form of a regular probability
distribution ovelV.

In summary, we assume thabas the general form

q(x,.) € L2(V), q(x,v) >0, /Vq(x,v)dv: 1. (4)

With the above assumptions in place it is noteworthy to noerttvo statistical quan-
tities later revealed to be of importance, the expectatishthe variance-covariance
matrix:

Eq( = [ vaxvdu Va0 = [ (v=Eq())(v—Eq(x) acvdv.

The producwv' denotes the dyade product of two vectors and it defines axmatri
Other authors prefer to use tensorial notation suohvhs= v v[9, 10].

Furthermore, we consider potential restrictionsoptmat could result from dis-
tinct forms of environmental anisotropy. While informatiprovided by magnetic
cues, the sun and ocean currents could provide a unidine¢tmovement cue, to-
pographical information in the form of roads, seismic liaesl collagen fibres may
only provide bidirectional anisotropy, i.e. animals orlsalhoose both directions
with equal probability. In this latter case, we would assweym@metry ofq,
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Q(X, _V) = Q(X, V)'

A direct consequence of this symmetry is

Eq=0 and Vq(x):/vaq(x,v)dv.
v

3 Theparabolic scaling

In this and the following two sections we discuss the threecgral scalings: (i)
parabolic scaling, (ii) hyperbolic scaling and (iii) monterosure. We will show
that each of the methods have their own range of applicglalitd that there are sit-
uations when one is favourable over the other. With the aimaifing this method-
ology broadly accessible, we aim for transparent presentay revealing all steps
in the analysis, noting that such details are often omittetthé literature. To illus-
trate the structuring of what follows, the graphic (Figuyedtlines the relationships
between the scalings as they will be discussed in this maiptiSthe parabolic limit
(i) is found to play a pivotal role, as special cases of (iigl & (iii) both lead back
to (i). For readers less motivated by the technical aspéetbat follows, we would
like to note that each section is concluded with a summayisox and a comparison
between the scalings is presented in Section 6.

3.1 Motivation of the parabolic limit

As illustrated in Figure 1, the parabolic limit marks a fatbp for scaling in our
analyses, with all paths eventually leading to it. Givemdtbvious and considerable
importance to the modelling community, we therefore disdhés case first. Two
ways to motivate the parabolic limit are (a) an appropriesdisg of space and time,
and (b) large turning rates and large speeds of the partitlesse two approaches
are, in fact, equivalent, as we next illustrate.

E. coli bacteria on a petri-dish display an average turning raje sf1/secand
an average speed s& 10-°mnysec(see [19]), whereas durations for experiments
that investigate population level dynamics are typicaflthe order of hours or days.
Taking a unitU = 10000seq =~ 3h), the turning rate and speed on this timescale
become

1 mm
=10*= and s=10°P—.
H=20 U
Hence, introducing a small parameter
£=1072,

we have
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kinetic model
transport equation
moment closure

balance equations for hyperbolic
y

scaling
mass, momentum and energ

parabolic
fast momentum scaling
relaxation

hyperbolic limit }

drift—diffusion equation
diffusion
dominated

Fig. 1 Relations between the scalings and limit equations as sheclin the text.

parabolic limit
diffusion equation

p=0(s2), ands=0(g1).
By writing u = £ 21 ands= £ 1§ we obtain the equation
P+&'80-Op=¢ 2f(qp—p),

where, forv € V, we writes = v with 8 € S"~1. Removing the ~’s on the scaled
parameters and rearranging we obtain

ep+ev-Op=p(gp—p). (5)
Alternatively, we can simply introduce macroscopic time apace scales
2t

T =&, & =¢x

and rescale model (3) accordingly to obtain
g?pr+ev-Ogp=U(qp—p). (6)

Formally, equations (5) and (6) are identical, though wesribat we shall employ
the second formulation with the new time and space coore&taté).
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3.2 Parabolic limit in an oriented landscape

We first study the properties of the turning operator definmet’gV ):

ZLoV) = pax V)¢ —9).

The kernel of.Z is given by the linear spac&y(x,.)). Hence we work in the
weighted Lebesgue spat%,l(V) where the inner product of a functioin with

gis given by g
V —
/Vf(v)q(x,v)mz/vf(v)dVZ f

On the complement sefg)*, we can define a pseudo-inverse by solving the resol-
vent equation. Given a functiap € (g)* we solve forg € (g)* such that

Zo=y. (7)

Sinceq, Y € (q)*, we have(E: i = 0 and the resolvent equation (7) reduces to
1
¢=-7 ¥ (8

where the pseudo-inverse appears as multiplication wijih 2.
To analyse the scaled equation (6) we take the scaled catedim, £ ) and make
a regular expansion ig, called aHilbert expansion

p(T,&,v) = po(T,&, V) +€pa(T,&,v) + £2p2(1,€,v) + hot.
Substituting into (6) and comparing orders of magnitude: of

e &2 The terms of leading order ar# po(T, &,v) = 0 which implies
Po(T,&,V) = d(&,V)po(T, ).
e ¢&l: The terms of order one are
(0-V)po=-Zp1.

This equation can be solved ég)+, if the right hand side satisfies the solvability
condition(0J- V) pg € (g)*. This condition reads

JRGRY RN RY % =0 [ va(€.v) v (r.©)

Crucially, this term is only equal to zero for arbitrapy when we impose the
following extra condition omy:

Eq= /Vvq(E,v)dv: 0. 9
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We can then solve for the first order term and find
1
pl(TaEaV) = _HD -V Fb(TaEaV)'

e £2: The second order terms are
por +V-Op1=Zp>.

From assumption (4) it follows tha}, 2 ¢(v)dv= 0 for all ¢ € Lg,l. Hence we

integrate the above equation and use index notation for atimmover repeated
indices:

0:/\/(po,r+V'Dp1)dV,
= For =, [ =)0V (Ra(r.£)aE.v) d.

= Boc 00 (/\/\/vjq(E,V) dvﬁou,a).

This last equation can be written as a diffusion equationtlier macroscopic
densitypo(T,§):

Po.r(T,&) = OO(D(£)Po(T, &) (10)
with a macroscopidiffusion tensor
Yl
D(&) =+, [ Wa(€.vav (11)

Since we assumdg, = 0 in (9), we find that the diffusion tensor for the particles
is given by the variance-covariance matrix of the undegdyibre network:

1
D(§) = —Vq(&).
u
With g assumed to be non-singular, the variance-covariancexmar{and hence
the diffusion tensob) is positive definite and symmetric and equation (11) is uni-
formly parabolic.

We summarise this limit in the following result:



14 Contents

The Parabolic Scaling. In addition to (4) we make the following assumptiops:
(A1)
Eq= / v((x,v)dv= 0. (12)
Y%
(A2) There exists a small parameger- 0 such that either

— il

p=e2p,  s=¢'§

or

wherefi,§, 17, & are of order one.
Let p(1,¢&,V) be a solution of the scaled kinetic equation
2pr+ev-Ogp=p(qp— p). (13)

Then the leading order terpy of a regular expansiop= po+ £p1+ £2p2 + ...
satisfies

Po(T, &€, V) = Po(T,£)q(¢, V),

wherepp(T, &) is solution of the parabolic limit equation
Po.r(1.€) =00(D(E)po(T,€)) (= a0 (DY (&)p(1.8)))  (14)

with diffusion tensor

D) = o, [ wie( v (15)

4 The hyperbolic scaling

The parabolic limit of the previous section considered rascopic time and space
scales, where time is scaled quadraticallg iand space linearly. For the parabolic
limit to work it was necessary to specilly = 0, with a diffusion equation arising.

In the hyperbolic scaling we will observe tHag corresponds to a drift term, which
dominates when nonzero, and that in the hyperbolic limit exéve both a drift term

and a diffusion correction. For that, we assume that macroscopic time and space
scales are both linear in i.e.

o=c¢t, &=¢x

1 This section is an adaptation of Section 4.1.3 from[17].dsvinspired by Dolak and Schmeiser
[11] who apply this scaling to chemotactic movement and]ewviieir results do not directly apply
here, the methods are the same.
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Under this rescaling, the transport equation (1) becomes
Eps+E(v-O)p=ZLp. (16)

Again, we use the operator properties &f on the spacé;g,l(V) and split the
solution into two parts (th€hapman-Enskog expansjon

p(0,&.v) = p(o,&)a(&,v) +ep-(0,&,V) 17

dv
with / L(o,&v ,v—:/ (o, &,v)dv=0.
, P (0:8.v)a( >q(5’v) |, P 8)
Substituting the expansion (17) into (16) gives:
£Poq+ €2pg +e(v-0)(pg) + £2(v-O)pt = & (5q+ epL)
=e¥pt. (18)
Integrating (18) oveY and dividing bye yields

50+D-(/\;quvﬁ+£/vpldv) _o, (19)

where we used _ P
1oy, 9 Ly —
/v pydv= aa'/vp dv=0.

Once again, the expectation@fppears

p_g-l-D-(IEqFT—i-e'/\./vpidv) o0, (20)

and to leading order this is the drift-dominated model
po+ 0 (Eqp) =0, (21)

where the drift velocity is given by the expectationopf

We determine the next order correction term by construaimgpproximation
to p-. From (20) we obtaip,, substitute into (18) and divide ey

Zpt = —qO0- (Eq5+£/\;vpLdv) +epg + (v-O)(pa) +&(v-O)pt
= (v-0)(pg) — qO- (Eqp) + O(e). (22)

Hence to leading order we have:
Zp" ~q(v—Eq) - Op+ (v-0g— g0 Eg)p. (23)

To apply the pseudo-inverse & on (g)+, we must check the solvability condition
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' L dv ' 1
/.fp q—:/fp dv,
Jv q JV

RS D[i/v(q(v—Eq)dVJr 5/\/(v~Dq—qD-Eq)dv
= 0p- (Eq—Eq) + pU- (Eq — Eq),
=0.

Hence we can apply the pseudo-inverseftnd find
pi%—%(q(V—lEq)~Dr7+(V-Dq—qD-lEq)5)- (24)
Substituting (24) into (20) we obtain
Po + 0 (E 5)
=20, ([ v]atv - Eyap+ Vaa- saEhplov)

= — J i
udj/v V—E g)advap

+—0j <U vj(vi(?iq—q/v/ia.qd\/)dv} §>.
u Y% %
The two integrals inside the square brackets can be writen a
/vj(vi(?iq—q/v/ia.qd\/)dv
Y% %
= / vjvi&.qdv—/vjqdv/ vigqdy
%
/ qudv

/ v-Ogdyv

Hence we obtain

Po+ 0+ (EqP) = 0 [ viv—Eq)"adv-0p

+£D. ((/V(V—Eq)(v- Dq)dv) 5) . (25)

We define the diffusion tensdd as before, i.e. as a multiple of the variance-
covariance matrix od:

D(x) := HVq = \;(v— Eq)(V—Eq)"q(x,v)dv. (26)
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We collect two properties db:

/\/V(V—Eq)Tq(E,v)dv:/(v—]Eq)(v—Eq)Tq(EN)dv: uD(€),

\

and
00(Dp) = d;(D' p)
= 39 (%./\;\/(Vj —]Eé)qdwﬁ)
_ %&. (—/vialeg qdv5+/\/'(vi _E)ojg dv5+/\/'(vi ~E)qdw, 5)
= %D- <—/v divIqudv5+/v(v—IEq) . quvﬁ+/v(v—Eq)qdv- Dp>
Then, with (25), we arrive at the limit equation with coriieatterm
Po -+ 0 (EqP) = eD(0(DE)P) +  Bq(D-Eo)). (27)
Equivalently, we can use the momentxjdb write the limit equation as
5U+D'(Eq5):ED(D(Vq(f)@-FEq(D'Eq)F_’)- (28)

Critically, if Eq ~ 0 (as in the parabolic case) we obtain the same diffusion term
as for the parabolic scaling in (14). In fact, fig = 0 we can simply rescale the
hyperbolic limit equation (28) by = €0 to obtain an identical limit to (14).

The Hyperbolic Scaling. Further to (4) we make the following assumptions:

(B1)
o = &t, & =¢&x,

whereag, & are of order one.

Let p(o,¢&,v) be a solution of the scaled kinetic equation

EPg+&v-Usp= p(qp—p). (29)

-

Then the solutiorp can be split intop = pq+ £p*, where the leading orde
termp(o, &) is approximated by the solution of the drift-diffusion etjaa

Po+ 0 (Eqp) = ED(D(Vq(E)ﬁ)+[Eq(D'Eq)]5)~ (30)

From the construction it is expected that the approximattoould be second order
in &, although to our knowledge this has not yet been shown.
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5 The moment approach

Moment closure provides a third way to derive macroscopigaégns from the
transport model (1). As in the previous cases, it was firseliged in a physical
context to describe the dynamics of fluids and gases and wthetiefore adopt the
physical definitions within the present biological contéite principle players are
mass, momentum and energy, with the goal of defining modedtems for these
quantities?.

Given a particle distributiop(t, x, v), the mass is defined as
pitx) = | plt.xvidv,
v

the momentum as _
p(t,x)U (t,x) := / vp(t,x,v)dv,
Jv

and the internal energy by

E(t,x) = /v lv—U (t,x)[p(t,x,v)dv.

The momentum implicitly defines the ensemble (or macrosjoeilocity

U(t,x) = /vp(t,x7v)dv.

1
p(t,x) Jv

The energy is the trace of the pressure tensor

P(t,x) — /V(v—u (t,%)) (V—U (t,%)7 p(t, % v)dv,

in the sense that
E(t,x) = tr P(t,x).

In a physical context mass, momentum and energy have vetisprmeanings yet
applied to biology we must consider carefully their appratgr biological reinter-
pretation. The total masg, and ensemble velocityl, correspond directly to their
physical quantities, describing respectively the totalsity of individuals and their
average velocity. The momentupb) is somewhat different, since cells and animals
generally cannot be regarded as hard spheres and pehisenot the physical mo-
mentum an ensemble of cells would generate if it hits an ebfjecexample. The
biological momentum can simply be regarded as the averagielpdlux, i.e. the
total density,p, multiplied by the mean velocity). The energy is the trace of the
full pressure tensor and direct interpretations of eithresgure or energy are hard
to find. We can, instead, consider these from a statisticqabeetive. The ratip/p

2 This section is an adaptation from [10].
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is a probability density with respect to the velocity, witly p the expectation and
P/p the variance-covariance matrix. Consequentlyp gives the mean velocity
andP/p gives information on the breadth of the distributippip. The variance-
covariance tensdP/p is symmetric, but can be anisotropic and allowing greater
spread in one direction than others. The endtgp is the (magnitude of the) vari-
ance with,/E/p the standard deviation.

We need one more variable which, in the physical contextesponds to the
energy flux:

QX = [ v=U [y =U(tx)p(t.x v
JV
The vectorQ is a trace of a full third order moment, with magnitude dontéacby
cells not moving with the mean velocity and direction givertiee mean direction

of the outliers, relative to the ensemble velodity
In a similar way, we can also define the ensemble pressurertehthe system

Polt.X) = [ UE0U(EX)T pltx vdv= Pt 0U (U (1.7
Y%
and the ensemble energy flux
QoltX) = [ UZ(tXU(EX)P(X VAV =Bt )UZE XU (LX),
%
Next, we will derive differential equations for the macrop quantities mass,
p, momentumpU, and energyE. To obtain the mass conservation equation, we
simply integrate (3) oveV to obtain

The momentum equation is derived through multiplicatio®fby v and integrat-
ing (omitting space, time anddependencies for clarity):

/Vp[ dv+/v(v~D)pdv: u/quvﬁ—u/vpdv,
v v v v
(FTU)H—D-/VVVTpdv: HPEq— ppU. (32)
The pressure tensor can be written as
P= / (v—U)(v—U)"pdy,
%
= /vap dv—/Uva dv—/vUTp dv+/UUTp dv,
= /vap dv—puu’. (33)

We use this expression in (32) and obtain the momentum exuati
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(PU)e+ 0+ (PUUT) = —OP + p(plEg — pU). (34)

For the energy equation, we multiply (3) b§and integrate:

/vzptdv+/v2(v-D)p dv= u/vzq dvﬁ—u/vzp dv,
Et+D-/vv2p dv= u/vzq dvp— uE. (35)

We study the two integral terms in (35) separately. To obgainexpression for
[ wW?p, we study the heat flug:

Q= [Iv-UPv-U)pdv,
= /vvzpdv— /VZU pdv—/Z(vU)vpdv
+/'2(vu)u pdv+ /Uzvpdv— /uzu odv,
= /vvzpdv—UE—ZU -/vapdv+2U-(5UUT),
:/vvzpdv—UE—ZU-]P’, (36)

where we used (33) in the last equality.
To obtain the second ordgterm, we compute

tr Vg = /(vi —Ey)(vi —Eg)qdv,
\%
= /viviqdv— /viEqiqdv—/Egviqdvqt/]EinEqiqdv,
- / V2qdv— 2. 37)
Hence the energy equation (35) becomes
Ei+0-(EU) = —-0Q—20- (U-P)+ u(tr Vg + E§ —E). (38)

The equations for masp, momentumpU, and energyE, are given by (31, 34, 38)
respectively. However, this system is not closed, due tarttlesion of the higher
order moment® andQ. To resolve this, we can attempt a derivation of differdntia
equations for these higher moments, although in doing so bigher order mo-
ments will appear: if fact, the sequence of moment equai®nsending and we
face amoment closure problerithus, we must find a mechanism for estimating the
higher order moments in order to close the system of equaf(i®h, 34, 38). Two
standard ways of finding a moment closure are through (1)gb#ilerium distribu-
tion and (2) entropy maximisation. Here we focus on the firsthud, noting that
details of the entropy method can be found elsewhere (&§. [1
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5.1 Moment closure

The principal assumption here is that the system is closeudilerium and that
the higher order moments are dominated by this equilibriganlier, we computed
ker.Z = (q). Hence the equilibrium distribution has the form

pe(t,X,V) = FT(t7X)q(X7V)'
For this distribution, we can explicitly compute the mongent

® Mass, X
pelt ) = [ Bt )a06v) = Pt );
e momentum,

Pe(t,X)Ue(t, x) = /vﬁ(t,x)q(x,v)dv: p(t,x)Eq(X);

e pressure tensor,

Pe(t.) = [ (v—Eq)(v—Eq)T Plta0a(x)ov=Blt)Va00: (39

e energy flow,

Qe(t,X) :/|v|2v§(t,x)q(x,v)dv: p(t,X) Tq(x), (40)

where we introduce the third order momentof

Tqy(x) = /vzvq(x, v)dv.

These formulae reveal that at equilibrium all momentum isied by the ensemble,
which is moving in the mean network directifily, and that all energy and pressure
is produced by the variance-covariance matrix of the ugdegldistribution. The
above expressions for the pressure tensor and energy fluenguloyed to close
system (31, 34, 38) for mass, momentum, and energy. We sistrels that here
we are making an approximaticaand that even though we retain the equality sign
p,U, E areapproximationgo the exacp,U, E values.
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Moment Closure. In addition to (4) we assume that

(C1) the macroscopic quantiti®&sandQ are given by their equilibrium dig
tributions (39, 40).

Then the masp, the momentunpU and the energ are approximated by the
solution of the closed system:

p+0(pU) =0 (41)
(PU)e+0- (pUUT) = —0(pVq) + p(PEq — pU) (42)

E:+0-(EU) = —0O(pTq) — 20- (U - (pVy))
+u(tr Vqg+EZ—E) (43)

We note that for the closed system (41, 42, 43), the first twaggns are inde-
pendent of the enerdy. Hence, equation (43) decouples and we can study the first
two equations (41) and (42) independently.

5.2 Fast flux relaxation

The derivatives on the left hand side of equations (41, 4PalBave characteristic
form g+ O (U @), termed the directional derivative gfin the direction of the
flow U (also known as the material derivative or characteristiévegve). As a

special case we assume that the flux relaxes quickly to itdilegum, i.e. we set

0=—0(pVq) + H(PEq— pU),
which we can solve fopU to give

_ 1 _
pU = —HD(qu) + pEq.

Using this expression in (41) yields the drift-diffusionuedjon

B + O(PEq) = %DD(EVq)- (44)
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Fast Flux Relaxation. In addition to (4) we assume that:

(C1) the macroscopic quantiti®andQ are given by the equilibrium dis
tributions as in (39, 40);
(C2) the momentunpU relaxes fast to its equilibrium.

Then the total masg(t, x) is approximated by the solution of the drift-diffusipn
limit equation

B -+ O(PEq) = %DD(ﬁVq)- (45)

6 Comparison between scalings

In this section we will summarise the various scaling methadd compare and
contrast our findings. First we will focus on the forms of theit equations them-
selves, with an explanation of the relationships betweemttbefore proceeding
to examine their underlying assumptions. For convenieficerparison, we unify
the notation by setting = p = pg and specifying a generic time coordinat@ot-

ing thatt had been rescaled tofor the derivation of the parabolic and hyperbolic
limits).

6.1 Relationships between limit equations

The three scaling approaches resulted in the following liouit equations:
e Parabolic scaling (PS),
1
U = EDD(un)i (P

e Hyperbolic scaling (HS),
U+ 0 (Equ) =0; HS

e Hyperbolic scaling with correction terms (HC),
U +0- (Equ) = %DD(un)—i-%D-(Eq(D-Eq)u); (HO)
e Moment closure (MC),
U+ O(Equ) = %DD(un) . (MC)

Clearly the above equations reveal significant overlapekample, moment closure
(MC) is a combination of the paraboliP§ and hyperbolic scalingH{S), containing
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both diffusion and drift terms. Consequently, we refer te garabolic scaling as
thediffusion-dominatedase, with the hyperbolic scaling theft-dominatedcase.
More formally, the relationships between the limiting etipras can be grouped into
the following lemma.

Lemma 1. We summarise the relationships into five scenarios.

1. (Diffusion-dominated) In the caseEq = 0 all three approaches (PS,HC,MC)
lead to the parabolic limit (PS), while (HS) is trivial.

2. (Diffusion-dominated) If Eq =~ O(£2), then equations (HC) and (MC) coincide
with the parabolic limit (PS) to ordeg.

3. (Drift-diffusion limit) If Eq ~ O(¢) equation (HC) is identical to (MC) to lead-
ing order (assuming a suitable scaling of time in (HC)).

4. (Drift-dominated) If V4 ~ O(¢), then (MC) coincides with the hyperbolic scal-
ing (HS) to leading order.

5. (Drift-dominated) If u ~ O(¢~1), then (MC) once again coincides with (HS) to
leading order.

6.2 Assumptions behind limit equations

Having explored the relationships behind the limit equaiave next consider their
underlying assumptions.

(Parabolic) Here the expectatidfi; = 0 and there exists a small parameter O
such that either = £%t,& = ex, wheret and & are both of order one, qu =

£ 2[1,s= £ 1§ whereji andSare both of order one.

(Hyperbolic) There exists a small parameter> 0 such thato = €t,& = €x,
whereo andé are both of order one.

(Moments) The higher moment® andQ are given by the equilibrium distribu-
tion and the momentupU relaxes quickly.

While an all-encompassing interpretation of these assiompis somewhat diffi-
cult, we provide the following intuitive scenarios. In thaléwing section, these
distinctions will be illuminated further through specifip@ications.

(Parabalic) The time scale is one in which particles are fast and turruieat]y,
with movement close to a Brownian random movement. The enwient pro-
vides no specific directional cue (or, at least, a relativebak directional cue)
and hencefq ~ 0 (i.e. movement up or down a given direction is effectively
equal). Directional bias is included through possible @nigpy of the variance-
covariance tensov of the underlying medium.

(Hyperbolic) Once again, time and space scales are chosen such thalegartic
are fast and turn often. But now the movement has a very clezstibnal com-
ponentEq # 0 and the drift component dominates.
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(Moments) Here it is assumed that the pressure tensor is close to tieypee
tensor of the equilibrium. Effectively, the system as a wehisInear to equilib-
rium with subsequently small differential pressure teriifsis implies that the
population density is “somewhat” closely aligned with the underlying tissue.

We note that all three methods lead to an anisotropic ddfusiquation of the
form
U =00(DU) (46)

i.e. the diffusion tensor lies inside the two derivativesthe literature, anisotropic
diffusion is usually associated with an equation in diveggeform,

Vi = O(DOV). (47)

This second form is derived from material physics, wherentlagerial flux is taken
to be proportional to the gradiendv with proportionality factoD. As we also dis-
cuss in section 7.1.3 below, the above two models are qufeelnt. If D is positive
definite, equation (47) obeys the maximum principle andtsmis converge to ho-
mogeneous steady states (on bounded domains with zeroeflundlary conditions,
for example). In contrast, equation (46) does not have ammaxi principle and, as
we see later, spatial patterns can evolve.

When deriving diffusion equations from stochastic proessboth of the above
versions (46) and (47) can be generated. For example, OtanteStevens [35]
present a careful analysis that reveals how different agsans for an individual’s
local response to the environment results in distinct nsmpic models, including
the above two forms. Here we have shown how a model of type ddégs very
naturally. It is certainly possible that a distinct set o$@a®ptions to those used in
this paper could also give rise to a model of type (47), howexedo not take this
further at present.

7 Examples and applications

During the last few sections we have established a toolkigémerating distinct
macroscopic equations, originating from the same tratspodel for movement of
an individual (whether cell or organism) in an oriented eowiment. In this section
we demonstrate these findings through a combination of elemmapd some specific
applications.

7.1 Bidirectional and nondirectional environments

Here we consider environments in which the orientationalscdo not provide a
single direction to the biased movement. Examples ranga fte movement of
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wolves along seismic lines, hikers along footpaths, arsnaédng roads or cells
along collagen fibres: i.e., while there is a tendency to nvaitle the alignment of
the environment, there is no specific “up” or “down”. As pravsly specified, we
model this by assuming symmetrydn

q(X, _V) = q(xv V) )

with the direct consequence
Eq=0 and Vq(x):/vaq(x,v)dv.
v

In relation to the above scaling methods, Item 1. of Lemmagieg we have no
drift term and all methods lead (eventually) to the diffusiinit

P = 0(OD(X)p), (48)

whereD(x) = %Vq(x) is an anisotropic diffusion tensor.

7.1.1 Isotropic diffusion: the Pear son walk

We illustrate the above with the simplest version of a tranisprocess as expressed
by (3) in a completely uniform directional field (i.e. we hawv@ondirectional envi-
ronment): the Pearson walk. Individuals are assumed to mvitiea constant speed
s(V = sS"1) and the underlying directional field is uniform:

1 st
R i)

Again,qis symmetric and hendgq = 0. The variance is computed as

- gn - ¢ sl ¢
_ T _ S  2a-1 Tqer— > ® "l _ S
Vq—'/ wlq(v)dv= |S”*1|52§ Joua WY do T n In = —In,

wherell, denotes the identity matrix.
Hence, the drift component will be zero and the diffusiorsatiopic with diffu-
sion constarit 2

3 A general formula for directional moments, such(as/™ dy = |S"1|/nT, can be found in Hillen
[16].
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7.1.2 Anisotropic diffusion example

We present a specific example together with some simuladifthe transport model
and its diffusive limit. Specifically, we consider a migragi population within a
simple rectangular landscape (set to be of dimengie§, 10] x [—10,10]) with an
oriented section centring on the origin. The orientatidieddl strength is assumed
to reduce with distance, effectively becoming isotropithie periphery. See Figure
2A-D for a representation of this environment.

For the directional distributiog we consider the bimodal von Mises distribution:

q(x, 0) = 4m](;(k) (eke‘y—i-e’ke‘y) ’ (49)

where@ € St defines the movement direction of the population griSt defines
the dominating alignment of the local environmdptdenotes the modified Bessel
function of first kind of ordem. Note that the von Mises distribution is the ana-
logue of a normal distribution on a circle. The paramétéefines the strength of
anisotropy and is termed thparameter of concentratiomhe above bimodal von
Mises distribution clearly has two local maxima, one o y and one fol® = —y
[3]. Fork — 0 it converges to a uniform distribution (i.e. isotropichie for k — co
it converges to a sum of two point measures in directipasd—y.

To represent an environment in which anisotropy varieseémtlanner described,
we assumé(x) decays exponentially with distance from the origin

k(X) = koe X"

where, in this example, we det= 10 andr = 0.25. This leads to high anisotropy in
the centre of the domain and almost no directional bias irpgrghery. Generally,
y could vary in space (for example, as in a curving road) howheee we set it
constant and in the direction of the diagonglx) = (1/v2,1/v/2)". Figure 2A
represents the environmental anisotropy for the centnaiquoof the field, with the
orientation and size dfrepresented by the direction and length of the individuna li
segments. For the three field positions indicated we plottineesponding bimodal
von Mises distributions in 2B-2D.

We first simulate the original transport model by substitgtthe abovek and
y into (49) and solving equation (3). For details of the numeerimethods used
throughout this section, we refer to the Appendix. We asstimag@opulation is ini-
tially homogeneous and unaligned, wiglix,v,0) = constant andgp(x,0) = 1. To
limit the impact from boundaries we impose periodic bougdanditions along
edges. In Figure 2E-G we plot the macroscopic cell dengityt) att = 50 for
three distinct speeds, and turning ratey: (E)s=0.1,4 =0.01; (F)s=1,u =1,
(G) s=10,u = 100. Note that the parabolic limit corresponds to the lingitsce-
nario in whichs — oo, 1 — o0 with 8/ constant and we can therefore expect (G) to
most accurately reflect the solution to the parabolic motleé simulations reveal
the impact of the environmental anisotropy on the poputatiear from the origin
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the population is almost uniformly distributed. Nearer tdemtre a heterogeneous
population distribution arises due to movement into theredd region with subse-
quent transport in the direction of alignment. The bidil@zal movement in this
region results in symmetry in the population distributiaith a “dumbbell-like”
pattern arising composed from regions of higher and lowesitg The aggrega-
tions develop due to transport along the aligned region e/tteey accumulate in
the peripheral, isotropic regions. Notice that there isaxastor adhesion involved
in these aggregations; the patterns result solely fromeoengtry of the underlying
network.

We next determine the corresponding driiig] and diffusion {/) for the macro-
scopic equations by finding the moments of the bimodal voreMidistribution.
Such computations are usually quite involved and requirkipheitrigonometric in-
tegrals (see [30]), however in the Appendix we present amradtive method based
on the divergence theorem. Specifically, we find

Eq(x) = 0,
L1 k)Y, | (k)
Vet =3 (1‘ Is(k(x))) Lt i)Y (50)

Thus, as expected for the bidirectional case, the drift isappears while diffusion
generates a tensor composed from an isotrdpiterm) and non-isotropic compo-
nent {y'-term). Consequently, the macroscopic version of the parsequation
simulated above is the anisotropic diffusion equation

= %D(DVq(X)FTL (51)

where the heterogeneous and anisotropic diffusion tesgvén by (50) using the
choices fory andk(x) above that define our direction distribution. Simulatiors a
shown in Figure 2H for a simulation of (51) witt/u = 1, with p(x,t) plotted at

t = 50. Notably, the population distribution quantitativelytohes the output from
the transport model under the simulated parabolic limitisgaf sandpu.

7.1.3 Steady states

The above simulations suggest a capacity of the model torgen@homogeneous
steady states, at first a little surprising for a pure diffusmodel. Closer scrutiny
of (51) reveals how these patterns could arise as we deratasfirough the one-
dimensional example. Consider the following distinct meder movement of a

population within an interval:

Ur = (d(X)Ux)x (52)

and
U = (d(X)U)xx (53)
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Fig. 2 Population heterogeneity arising due to bidirectionat¢matation of the environment. (A)-
(D) representation of the imposed anisotropy, with (A) esenting strength of anisotrogylength
of line segments) and alignment in the field (figure truncatiet!5 to aid clarity of presentation)
and (B)-(D) plotting the corresponding distribution (4@)each point indicated, as a function of
6 = (cosp, sing) for @ € [0,2m). Note that two dominating and equal orientations ariseesorr
sponding toy = +(v/2/2,v/2/2). (E)-(G) Simulation of the transport model (3) under the @sgd

g, showing the predicted macroscopic cell dengitgt timet = 50 for (E)s= 0.1, u = 0.01; (F)
s=1u=1; (G)s=10,u = 100. (H) Simulation of the parabolic limit (51) at the sammei

t = 50 withs?/u = 1 and the diffusion tensor as computed from (50). For detditee numerical
implementations we refer to the Appendix.
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with homogeneous Neumann conditions assumed at the baesdaquation (53)
can be expanded intg = (d’(x)u+ d(x)uy)x, revealing an additional advective term
with advective velocityd’ in comparison to (52). To determine the impact of this
extra term we examine steady states for (52) and (53).

At steady state, Equation (52) leads((x)uyx)x = O which, after integrating
and applying the boundary conditions, yielitix)ux = 0. This impliesux = 0 and
u(x) is constant at steady state. This is what we expect for a pffiusidn process.
Steady states for (53), on the other hand, saf{dfi)u)xx = 0 and hence we find
(d(x)u)x = 0. Thus,d(x)u = ¢ (constant) and

For spatially varyingd(x), equation (53) clearly allows nonuniform steady states,
with the corresponding(x) being high or low in small or large diffusion regions,
respectively. The additional advective term lies at thateafathis nontrivial steady
state.

7.1.4 Application to seismic line following

Having confirmed that the diffusion model (51) can accuyatelpture predicted
behaviour of the original transport model, at least undevemnt scalings, we now
apply the method to tackle a specific ecological problemf walvement in certain
habitats. The model as discussed is particularly usefuédscribing the movements
of populations in environments containing linear featuwesh as roads, rivers, val-
leys, or seismic lines. Work by McKenzie and others [30, 3pdmined the move-
ment patterns of wolves in a typical Western Canadian higloibasisting of boreal
forest cut by seismic lines. Seismic lines are clear-catigiit lines (with a width
of about 5m) used by oil exploration companies for testingibfeservoirs. Typical
densities are approximately8kmof lines on kn? and both wolves and ungulates
(such as caribou) use these lines to move and forage, lesasignificant impact
on predator prey-interactions.

To describe the movement of wolves in such a habitat, Mckenzged GPS
data generated from 4 individual wolves and estimated petens for a diffusion-
advection model, dividing the habitat into three areasséismic lines, (ii) near
seismic lines (less or equal 50 m), and (iii) far from seistinies (larger than 50m).
Wolves demonstrated preferred movement along lines, vatit@sionally leaving
lines to reenter forest. In particular, wolf movement dataeismic lines supported
a fit to the directional distribution given by the bimodal vidises distribution (49),
wherey(x) € S now describes the direction of the seismic line @hd S* the
movement direction of the wolves.

To model this scenario we consider the parabolic limit of aderlying transport
model in which wolf direction varies according to being onadira seismic line.
With no up or down information provided by the seismic lines therefore have
a bidirectional local environment and can expect the dgmsitvolves,w(x,t), to
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follow the anisotropic diffusion equation
S
W = HD(Dqu), (54)

where the anisotropic diffusion tens@y, is given by equation (50)(x) will corre-
spond to the direction of a seismic line whKe&x) varies according to a position on
or off a seismic line.

To illustrate the applicability, consider for the moment @inate system
aligned with a seismic line, i.e.= e;. Here we can directly compute the diffusion

tensor: :
1 Io(K
J(1+p) o
0 1 ( _ w)
2 To(K)
The termiy(k) /lo(k) enhances the mobility along a seismic line and reduces mobil
ity in perpendicular direction. Moreover, flar— oo (corresponding to an increasing
strength of anisotropy)y(k)/lo(k) — 1 and the above diffusion tensor collapses to
one-dimensional diffusion along the seismic line.
Away from the seismic lines wolves show no clear tendencyigraie towards

or away from seismic lines [30]. Effectively, away from tlireds we sek(x) = 0 in
the bimodal von Mises distribution (49) and we obtain thérguic diffusion tensor:

Vg=

Vg= 1.]12. (55)
2

Using these ideas, we next simulate the expected populdigiribution for
wolves in a typical habitat containing seismic lines. Thesd@hotograph in Figure
3Ais of a Northern Alberta landscape in winter, demonstigai woodland habitat
criss-crossed with a combination of roads (thicker lineg) seismic lines (thinner
lines). This image was digitised into a binary map, Figure 8Bowing areas of
seismic lines (or roads) (white) and away from seismic lifidack). An automated
processing of this image was applied to calculate the aiemt at a point speci-
fied as seismic line, with this orientation determining tleetor fieldy(x) used to
compute the anisotropic diffusion tensor (50). In FiguretBi€ anisotropy is repre-
sented for a small square section indicated by the boxediai@B, with the long
axes at each point representing the direction (and streodtthe alignment. We
setk = 2.5 for points marked as on a seismic line dag 0 for points marked as
off a seismic line. To limit the impact from boundary condits we remark that the
digitised region in B was buffered with a perimeter of isgimdiffusion.

Preliminary simulations for the distribution of wolves, are shown for two ini-
tial conditions: a uniform distributiow(x, 0) = 1 in Figure 3D-F and a 2D Gaussian-
type distribution centered in the field for 3Gw(x,0) = 100>, In the former
we observe the emergence of a spatially variable wolf pdjmun#rom homogeneity,
with a clear tendency of the population to accumulate andapogferentially along
the lines, shown at times (D)= 0, (E)t = 1 and (F)t = 10. The diffusion from the
concentrated initial distribution further reveals thigferential spread, with wolves
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clearly dispersing more rapidly along the lines than thiotige surrounding lines;
here, wolf distribution is shown at (&)= 0, (H)t =1 and ()t = 5.

o

5 10 0 5 10 0 5 10

Fig. 3 Wolf distribution in anisotropic environments. (A) Aeriphotograph of a Northern Al-
berta (Canada) landscape, showing criss-crossing selisragcand roads. (B) Binary map created
from (A) with lines marked as white. (C) Blow-up of boxed regiin (B), showing detail of the
anisotropic diffusion tensor automatically generatednftbe image in (B). (D-F) Numerical sim-
ulation of equation (54) for a uniform distributian(x, 0) = 1, using the computed diffusion tensor
generated from (B) and settisg)/ 1 = 1. Wolf densityw(x t) is plotted at times (D=0, (E)t =1
and (F)t = 10. (G-I). Numerical simulation fow(x,0) = 1008 %%/ (wherex; marks the domain
centre), showingv(x,t) at times (Gt =0, (H)t = 1 and (I)t = 5. Note that the simulated domain
is a little larger than that plotted, with the surroundingie@ssumed isotropic and implemented to
reduce the impact of boundary conditions (note that thisneagigible impact on the qualitative
results presented). For details of the numerical impleatant we refer to the Appendix.
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7.2 Unidirectional environments

In many cases an environmental cue can provide a specifictidineas in the mag-
netic fields used by migrating turtles and whales, the sldpeeoground for hilltop-
ping butterflies, the movement of organisms towards foodcgsuor the current of a
river. To include such cues we can remove the symmetry agsamfpr g imposed
in the bidirectional case.

To examine how this impacts on the scaling limit we consiberspecific exam-
ple of attraction to a food supply. We IE{x) denote a given food distribution, with
x € R?, and assume that individuals more or less accurately igethi direction
of the food source (e.g. by smelling) and move towards maxifita We therefore
consider the unit vector that describes the orientatiohefield to be given by

=
V)= TEF G

Since orientation of individuals is rarely perfect (i.e.vement will not be directly
in the direction of the food) we take a (unimodal) von Misestrdbution about the
gradient off:

o, (56)

40x.6) = 27110( k)

The above defines a direction distribution in which indiatbualign and migrate in
the direction of the source. Note that varying degree ofhatignt could also be in-
corporated, for example through allowikgo depend on the size & or ||OF (x)]|.
To determine the macroscopic terms we again compute the mtsro&the distri-
bution (see Appendix):

Eq(X) = <k> v (57)

! 2(K) LK) 10\ 1
Vo= 3 (1 1a ) 2 (wm oig) ) B9
Notably, the drift ternE is now nonzero and in the direction @f (x), whereas the
diffusion term has two components: an isotropic part andréanted nonisotropic

part, which is proportional talF (x)OF (x)T. The resulting macroscopic equation is
therefore of the form of an anisotropic drift-diffusion edion

&
pt + SO(Eqp) = HD(Dqu)- (59)

It is worth noting two limiting scenarios. For the parametéconcentratiork
becoming small (i.e. the food source provides a weak oriemal cue), then

1
imEq=0 ImVy==I
Ky K1p 4= 22
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and we obtain uniform isotropic diffusion and no accumulatat the food source.
For the parameter of concentratikibecoming large (i.e. the food source provides
a strong orientational cue), then

limEq = limVq=0

k—oo0 a=V k—00 a9 ’

and hence we obtain the pure drift equation in which cells endivectly towards
the food source with speexd

7.2.1 Anisotropic diffusion-drift example

To illustrate how unidirectional environments impact ort@aning, we present a
scenario analogous to the example of (7.1.2). Specificaly;onsider a population
in a landscape with a unidirectional patch in the centre efdbmain. We assume
the above von Mises distribution (56) with the main orieiotatallong the diagonal
y=(1/vV2,1/V2)T, .
q(xv 6) - zmo(k)

Once agairk(x) is assumed to decay exponentially from the centre to thelpery
of the domain, with

(6-y

k(x) = koe .

Here we sekg =5 andr = 1.0.

We again perform a direct simulation of the original tram$paodel (3) with the
above choice fog and solving subject to the same initial and boundary cowfti
as for the example of Section 7.1.2. As we observe in FigurehdEedirected patch
significantly impacts on the subsequent distribution ofgbpulation. Rapid trans-
portation through the oriented region results in a markel#lgreased population
density within this region. This generates a large “plurfieé-structure adjacent to
this region.

We simulate the corresponding anisotropic diffusiontédgfuation. For the above
von Mises distribution we compute the heterogeneous driftdiffusion terms from
(57) and (58) respectively and substitute these into (58jufations show an excel-
lent quantitative match with the transport model, Figureagtee again confirming
the validity of the macroscopic scaling process.

7.2.2 Relation to haptotaxisand chemotaxis

As a brief remark we note that unidirectional environmeiats be reinterpreted in
terms of modelling haptotaxis (directed migration of cétisesponse to regions
of high adhesivity in the ECM), chemotaxis (directed movatna response to
chemical gradients) and other forms of gradient followiHgptotaxis and chemo-
taxis are typically modelled by an advective type term in Pm&dels (e.g. see
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3

Fig. 4 Population heterogeneity arising due to unidirectionardation of the environment. (A)-
(D) representation of the imposed anisotropy, with (A) esnting strength of anisotrogylength

of line segments) and the directional alignment of the fiéilglife truncated at-3 to aid clarity

of presentation) and (B)-(D) plotting the correspondingtritbution (56) at each point indicated,
plotted as a function 0® = (cosg,sing) for ¢ € [0,2m). Note that the dominating orientation
corresponds ty = (v/2/2,v/2/2). (E) Simulation of the transport model (3) under the imposed
g, showing the predicted macroscopic cell dengitgt timet = 50 for s= 10 andu = 100. (F)
Simulation of the diffusion-drift limit (59), using= 10 ands’ /i = 1 and plotted at = 50, with

the diffusion tensor computed from (58) and the drift teriicaiated according to (57). For details
of the numerical implementation we refer to the Appendix.

[24, 20, 33, 29, 2]), with cell velocity proportional to thdlgesion/chemical gradi-
ent.

The present work provides new motivation for such models.example, we
assumé- (x) describes the ECM adhesivity field surrounding a cell and tak von
Mises distribution (56) to describe oriented movement tolwéigher adhesion, i.e.
we takeq to be given by

1 -0F
a(x,v) = 5q||DF)(||V||)meXp<km> '
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Furthermore, we let the speedepend on the strength of the gradiefJF (x)||).
SinceEq # 0, the parabolic limit does not apply and we employ insteadhtyper-
bolic scaling. Drift subsequently dominates with diffusiof lower order and the
corresponding macroscopic model becomes (to leading)order

s(I[BF D)
IOF |

ut+2n11(k)D-< DFu) ~0.

The fieldF could also be reinterpreted to describe other forms ofdacigration.

7.3 Singular distributions

The theories above have been derived for regular meag@s only and, while it
is possible to extend some of the results to singular meagsee for example [18,
7]), the mathematical overhead becomes enormous; herenpé/sapply the formal
limit equations in good faith. Singular measures, howewar play an important
role either in describing certain oriented fields or repnéisg a limit scenario for
previously considered cases.

7.3.1 Strictly bidirectional: degener ate diffusion

If we consider the earlier bimodal von Mises distributio®)4nd letk — o we
converge to two point measures in directigrnend —y. Such distributions could be
considered as completely aligned and bidirectional ndtai@pecifically, we let

406 = 5 (80 (4) + 80 (V).

and find
Eq=0 and Vgq=yy'. (60)
Thus, there is zero drift and diffusion is given by a rank-teresorVy, i.e. diffusion

occurs only along thg/ — y axis. The corresponding diffusion tendde= ﬁVq is
degenerate and not elliptic, hence the general solutiooryhfer parabolic equa-
tions does not apply. In a forthcoming paper we develop nushioat allows us to
describevery wealsolutions for such degenerate problems [21].

7.3.2 Strictly Unidirectional: Relation to ODEs

For the corresponding unimodal von Mises distribution (&&h k — c we obtain
a singular distribution. This defines a strictly aligneddirgctional field and, as
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described in [17], there is a striking relation between ¢éhésit equations and the
theory of ordinary differential equations (ODE).
The solution of the autonomous differential equation

X(t) = f(x(t)) (61)

in the domairR" is given by the solution semigroup(t, Xp) which describes orbits
that are tangential to the vector fieldx). In our notation here, we assume that this
vector fieldf (x) € V defines a given direction at each poinfifi and define

a(x, V) = S (x)(V), (62)
whered; denotes the point measure with masg ia V. In this case we find
Eq(x) =f(x), and Vq=0.

This is a clearly drift-dominated situation and the hypdidxcaling is appropriate.
Iltem 4. of Lemma 1 applies and we obtain the limit equation

u + O(f(x)u) = 0.

This hyperbolic PDE has the characteristics

which is the ODE from above. Hence typical movement pathsaofigles in an
environment given by a singular measure (62) are orbitse€tiresponding ODE.

7.4 Life in a stream

An example that amalgamates various cases above (noneliractunidirectional
and singular) is the movement of living organisms in a stréaimich, for conve-
nience, is assumed to be two dimensional).

Movement can be split into two principal contributions:tf@nsport due to the
current, and (ii) active movement by the individuals. Fangport due to the cur-
rent we lety(x) denote the direction of the stream (assumed quasi-corstanthe
timescale of interest), and lefi(6) = ,x)(0) define the stream current. We aug-
ment this transport with a degree of turbulence, expresisetie random movement
contributiongy(8) = [S"|~1,

For the active movement we assume individuals are biaseatttsa given food
source

OF (x)

— 1 T (x) i —
Q3(6)— zmo(k)eker( , with F(X)—m,
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whereF (x) describes the distribution of food inside the stream. Tgéijncompu-
tations, we assume individuals have a preferred speesl V = sS"1. Hencegis
a convex combination of the above effects:

q(x,v) =s"" (a101(9) + a202(V) + a303(9)) ,

whereay + a2+ as =1, anda; > 0 fori = 1,...,3., andv’=v/||v|| denotes the unit
vector in direction o¥.
In this case, the macroscopic drift component is given by

Eq = a1y(x) + saz2mm1 (k) (X).

Drift arises as the interplay between transport due to tfeasty(x) and movement
towards the food sourdg(x). The diffusion term is given by

Slaz, 03 ( |2(k)) I2(K) (ll(k))z T
DX)=— | =L+ —=(1- == |b+as| —=— | —= rxrx |,
¥ u [2 272 o)) 2" 2 \lo(k)  \lo(k) (r e
derived from a combination of random movement and the ingaéresponse to the

food source. We note that more detailed modelling of riversgstems and species
survival has been undertaken by Lutscher, et al. [28].

8 Conclusion and Discussion

The principal aims of this paper have been to demonstrateffieetiveness of
transport equations as a method for modelling cell or anmmalement, to explain
and summarise the various scaling limits that allow thepragimation to distinct
macroscopic models, and to consider a few pertinent eamdbgpplications, such
as wolf movement on seismic lines, attraction to a food seard movement in
rivers.

The transport model is a natural model for movement, relgisidt does on ex-
perimentally measurable data such as speeds and turnexfoatits key inputs.
While it is certainly possible to study the transport modegctly, both the analyt-
ical and numerical overheads can be costly. For exampleytheerical solution of
the simple (and assumed 2D) transport model given by (3)iresjdiscretisation
not only over space, but also orientation; extensions ®veglt scenarios such as
3D, variable speeds or more intricate turning functions iaignificantly add to
the computational time. Simplifying to the relatively sgfatforward macroscopic
model, which still possesses details of the underlying asicopic processes in its
macroscopic parameters, allows far faster numerical coatipn while opening the
vault to a wealth of analytical tools.

Typically the scaling methods considered here (parabaiadirsy, hyperbolic
scaling, and moment closure) are studied separately aad ibe difficult for unfa-
miliar readers to determine why one method is chosen ovahandy focussing
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on a specific formulation of a transport model, originallyeleped to describe cell
movement in network tissues, we could transparently detieevarious limiting
equations and expose the assumptions that underlie them.

Responding to a question posed during the introductiomitld/be bold to cate-
gorically state a “best” method and instead models musteatdd on a case by case
basis. Succinctly, it comes down to the relative size oftdnifd diffusion terms:
when the model is drift-dominated, as occurs for environisi@nth a strong cue
in a specific direction, the hyperbolic approximation apgliwhen the model is
diffusion-dominated, as for environments with either nioectional or bidirectional
orientation, the parabolic limit is appropriate; if the teffects are of a similar order
then either the moment closure or the hyperbolic model vathections provide the
most appropriate approximation.

It is worth noting that the clarity of the analysis here is sedi product of the
simplicity of our transport model. Full analyses for moregeal kinetic equations
can become highly technical and fill entire textbooks (faaraple, see [8] for di-
luted gases or [39, 5] for biological applications). Witle thim of illuminating the
various scaling limits we have made a number of conveniesuraptions and it is
worth describing some of the limiting factors here, andrtipetential importance
for biological applications.

e \We have not considered time-varying habitats. In many ntgs, the environ-
ment can change considerably on the timescale of movemiémgy éndepen-
dently (for example, the changing position of the sun orrattens in wind
strength) or through direct modification by the migratingpiation (e.g. forma-
tion of pheromone trails by ants or restructuring the ECM &ls8. The addition
of t-dependence in the orientation functigradds a significant level of com-
plexity and, while the scaling limits do apply, they requiletailed analysis and
consideration on a case by case basis. For details of subsasn the context
of mesenchymal cell migration we refer to [17].

e Inthis paper, the environment has been assumed to only tropdhe turning of
individuals, not on their speed. While it is trivial to extetihe original transport
model to incorporate more general speed dependenciegjltisecuent compu-
tations to calculate the scaling limits are often complest abscure their basic
features. We note that in the context of taxes above, we higea gne simple
example on how to perform scaling for nonconstant speedsomb-dimensional
case has been studied in detail in [23, 22]

e Appropriate boundary conditions on bounded domains recggecial attention.
For example in the case of the seismic lines above, what waeilcheaningful
boundary conditions on and off the seismic lines for bothdtiginal transport
model and the subsequent macroscopic limits? We circurgatad this issue in
the simulations by buffering the simulated region with arsunding isotropic
region and using periodic boundary conditions, howeveetionditions could
certainly be considered. For example, zero-flux boundanditmns could be
one relevent choice, as assumed in [31].

e More complicated formulations for the turning kerfi€k, v,v') and non-constant
turning ratesu(t,x, p,v) arise naturally in many applications. Obviously, any
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such choice should be tailored according to the applicatiader analysis, how-
ever the ensuing calculations can become highly intric@tge important yet
complicated case is the incorporation of interactions ketwindividuals. For
example, the patterns formed by many migrating populatibosn bird flocks

to wildebeest, are highly structured through the respohs@ individual to the

movement of a neighbour.

e The simple model here has neglected aspects such as a @sisg (individuals
are assumed to move continuously) or population kinetios.example, mod-
elling the impact of seismic lines on the predator-prey dyita of wolves and
caribou would require an extension of the model to includeagate caribou
population and appropriate predator-prey interactiomgif, while tailoring the
original transport model to include such extensions istiredly straightforward,
the subsequent calculation of scaling limits would reqtreatment on a case by
case basis.

e On a technical side, in our theorems we have typically usedchtition“is ap-
proximated by” to denote the formal limit considerationgydously, to refer to
an approximation property would require proof of convexgem an appropri-
ate function space and we have completely omitted thesesdsere. Rigorous
convergence results for the parabolic limit can be found & P].

Migration, whether cellular or animal, clearly is immensedlevant to a plethora
of crucial biological and ecological processes. Distinetimods offer different ad-
vantages, allowing multiple windows through which the uhdeg mechanisms
can be observed. In this paper, our aim has been to conezatréte transport (and
associated macroscopic) equations, with the key aim ofdihgdllumination on
this useful modelling approach.

Appendix
9 Moments of von Misesdistributions

The appendix is used to present an alternative method fopating moments of
a von Mises distribution. Usually, moments are computedubh explicit trigono-
metric integrations (see e.g. [30], [32], [3]) however heseinstead apply the di-
vergence theorem. While this method is easily generalsadditrary space dimen-
sions, explicit trigonometric integration becomes insiegly cumbersome with in-
creases in the space dimension.

Given a unit vectoy € S, we first study the (unimodal) von Mises distribution

_ 1 ko-
Q(e)—me Y (63)

In the main text it is noted that the moments employ Bessedtfans and we
begin by collecting a few of their properties.J{f(x) denote the Bessel functions of
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first kind, then
In(X) := (—i)""In(ix)

denotes the Bessel function of first kind with purely imagynargument, or the
modified Bessel functionBor these we have the relation
1 r2m K
In(K) = — / cogng)&°¥dg. (64)
21 Jo
Two further important relations include the differentiaturrence

%Mmm:ﬂhM> (65)

for n> 0, and the recurrence relation

I = 20000~ In 1(%). (66)

9.1 Unimodal von Mises distribution
To compute the total mass of the (unimodal) von Mises distidin (63) we denote
the angle betwee@ andy by ¢:

(e)de—i/znekcmd —1
o W= om0 o =5

where we used (64).
To compute the expectation, we note

27l o(K)Eq = /S'1 ey,
= [ divy ¥y,
JB1(0)
= kye“Ydv,
B1(0)
1 p2m
:ky/ / gkoPrdrd g,
Jo Jo
1
:ky/ 2mrlo(rk)dr,
0
1
:any/ rlo(rk)dr.
0

To solve the last integral, we use (65) and write
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o(rk) = ") _ 2 9 0 00) i = 3 S (k).
Then 1 1 1. 11(K)
/o rlo(rk)dr = mrJ1(|k) = mlll(k) = (67)
and we find (K
Eq = To(K) Y. (68)

The variance-covariance matrix is given by
Vg= /1(9 —Eq)(v—Eq)Tq(8)d6 = /1 067 q(6)d0 — EqE].
S Js

To find the second moment gfwe consider two test vectoesb € R? and employ
index notation for automatic summation over repeated gglic

2rno(|<)a/l 667q(6)d6 b — /'1ajeib,- 6ie® v dg
S JS

= [, 6'(ab;ole¥)do

0 :
_ i .b.Jk‘)Md
/1531(0)0\/'(& Ve dv

— [ abevdve [ a(v-b)kye¥dv
J2y0) B1(0)

—ab| ekV-Vdv+ka-yb-/ ve“Ydy (69)
JB1(0) JB1(0)

The first integral in (69) can be solved directly

v Loke ! l1(k)
e Vdv:/ / e VrdrdG:/ 2mmrlo(rk)dr = 2m——~,
B1(0) 0 Jst 0 k

where we used (64) and (67) in the penultimate and ultimetersispectively. Using
(64) we can transform the second integral from (69) as fatow

. 1, 1 g
/ vé“"Vdv:/ / ree”‘e'yrdrdez/ r2/ 0e*ev4p
JB1(0) 0 Jst Jo Jst
1
— 2ny / F21y (rk)dr, (70)
0

where we used (68) in the last step.
Now we use the differential recurrence relation (65) to evrit

o & 0000) b = — o (i)

2 _ _i P 2 ; _
rely(rk) = ik2(|rk) di(irk) = Kdr
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Continuing from (70) we find

. 1
L véav——2ny & o (Pik))dr = ~2nyp () =220 (71)
510 o kdr K

Substituting all the integrals back into equation (69)
1(k)

2(K)

ik 2my- b2
al 667q(0)dOb=a-b—2FK 1ka k
/Sl a(6) 2mo(k) oY 2mo(k)

e
Finally, we use the identity (66) far= 1 to replace

1l 1 (1_ w)

klo(k) 2 lo(k)
and the second moment is given by

/e q(6)d6 — —ﬂz+%(wﬂ%}12). (72)

Together with the formula for the expectation (68) we find

T T
Vq:/Slee q(6)d6 — EqE]

)

1 u(k)) 12(K) (u(k )2 T
= (1-S L+ | S — [ s : 74
2 (1) =+ (i -~ (5w ) 7
Clearly, if the parameter of concentratibbecomes small (i.& — 0) thenEq — 0
andVg — 3L,
9.2 Bimodal von Mises distribution

Computations for the bimodal von Mises distribution

q(8) = 4711:(L)(k) (eke‘y+e*ke‘y)

are very similar. Since the bimodal von Mises distributisrsymmetric (or undi-
rected) we havéq =0 andVg = [ 667q(6)d6. We apply formula (72) for each of
the componentd® ande 9" separately and sum. We find
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( —w) I, + wny.

1
Va= 3 (M im0 ) 2 0

10 Numerical methods

10.1 Simulations of transport model

Simulations of the transport model (3) were performed witMethod of Lines
(MOL) approach, in which space and velocity are discretigtxia high-dimensional
system of time-dependent ODEs (the MOL-ODESs). For the parisequations
presented, the rectangular spatial domain (of dimendignsLy) was discretised
into a uniform mesh of 201 by 201 points, while velocity= s(cosa,sina) (for
a € [0,2m)) was discretised into 100 uniformly spaced orientationthwai fixed
speeds. Spatial terms for particle movement were approximatedoinservative
form using a third-order upwinding scheme, augmented bylflaiing to maintain
positivity. The resulting MOL-ODEs were integrated in timging the ROWMAP
stiff systems integrator [42], with a fixed absolute and treéaerror tolerance of
10~7. Similar approaches to those above were employed in [36].

10.2 Simulations of macroscopic models

Simulations of both the anisotropic diffusion (51) and atvispic drift-diffusion
(59) model were performed with a similar MOL approach. This@tnopic diffusion
term was factored into diffusive and convective terms ardesbin conservative
form, applying a central difference scheme for the formet finst order upwinding
for the latter. The additional drift terms in the drift-difion model were also solved
with first order upwinding and the resulting MOL-ODEs weréegrated in time
using ROWMAP with error tolerances of 10 For the two simulations in Figures
2 and 4 we used 201 by 201 mesh points for the spatial disatietis while for the
simulations in Figure 3 we use 500 by 500 mesh points. We atiesimulations
with finer spatial discretisations and smaller toleran@sahstrated no appreciable
quantitative difference.
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