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Global Existence for Chemotaxis with Finite

Sampling Radius

T. Hillen∗ K. Painter† C. Schmeiser‡

February 3, 2006

Abstract: Migrating cells measure the external environment
through receptor-binding of specific chemicals at their outer cell
membrane. In this paper we incorporate this non-local sampling
into a chemotactic model. We prove that, in contrast to the
classical chemotaxis model, the non-local model has globally ex-
isting solutions for any space dimension. We use a classification
of spikes and plateaus and show that steady state solutions can-
not be of spike-type. Finally, we use numerical simulations to
support the theoretical results, illustrate the ability of the model
to give rise to pattern formation and consider some biologically
relevent extensions of the model.

Keywords: Chemotaxis, non-local gradient, global existence, pattern
formation

1 Introduction

Chemotaxis, the active orientation of cells and organisms along chemical
gradients, plays a crucial role in many biological processes, including em-
bryonic development, immunology and cancer growth. Accordingly, a vast
amount of research, both experimental and theoretical, has been devoted to
understanding the mechanistic basis of chemotaxis.
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In 1953, Patlak [32] introduced the first mathematical model for chemo-
taxis. A similar model was derived by Keller and Segel in 1970 [17], albeit
under different assumptions. These pioneering works have initiated an in-
tensive mathematical investigation of the Patlak-Keller-Segel (PKS) model
over the last 30 years. Of particular interest is the following special case,
which we refer to as the classical chemotaxis model:

ut = ∇ · (∇u− χu∇s)
st = Ds∆s + αu− βs.

(1)

The function u(x, t) denotes the population density at time t and location
x, while s(x, t) denotes the concentration of a chemical signal; in the above
model this is produced by the species themselves. The parameters χ, α, β, Ds

are non-negative. The system (1) has been studied on bounded domains
with appropriate boundary conditions (Neumann, Dirichlet, Robin etc.) or
on unbounded domains. An important feature of the above model lies in
its ability to exhibit pattern formation, or “aggregation”: an example of a
typical aggregation pattern for (1) can be found in Figure 4 (a). As such,
models based on the above equations have been applied to a wide range of
biological pattern formation processes, including mound formation in the
slime mold Dictyostelium, bacterial pattern formation, animal pigmentation
patterns and limb bud patterning ([17, 38, 30, 21]).

In this paper we study a simple modification of the classical chemotaxis
model (1), where the gradient sensing term ∇s is replaced by the non-local

gradient
◦
∇ρ s:

ut = ∇ · (∇u− χu
◦
∇ρ s)

st = Ds∆s + αu− βs,
(2)

where for ρ > 0 the non-local gradient, which was introduced in [25], is
defined as

◦
∇ρ s(x, t) =

n

ωρ

∫

Sn−1

σs(x + ρσ, t) dσ, (3)

where ω = |Sn−1| and Sn−1 denotes the (n− 1)-dimensional unit sphere in
Rn. The nonlocal gradient describes sensing of the chemical signal over an
effective sampling radius ρ > 0.

As we shall demonstrate, the modified model, while still capable of giv-
ing rise to the fundamental pattern formation behaviour, overcomes certain
shortcomings of the classical chemotaxis model — namely the global in time
existence and boundedness of solutions of (2) for ρ > 0 in any space dimen-
sion as well as that patterns are of plateau-type. Details behind this model
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and about the analysis will be given later. First we summarise some results
of the classical chemotaxis model (1) relevant to the analysis here.

For (1) on bounded domains it has been shown that the qualitative be-
haviour of solutions depend strongly on the space dimension. An extensive
review article by D. Horstmann, [14], concerning (1) and related models
provides greater detail, here we summarise the essentials. In one space di-
mension, solutions exist globally, a fact only recently proven ([24]). In Hillen
and Potapov [12] numerical and asymptotic arguments have been applied
to demonstrate solutions to (1) in one-dimension typically form spikes. For
two-dimensional domains, global existence depends on a threshold: when
the initial mass lies below the threshold solutions exist globally, while above
the threshold solutions blow up in finite time (see references in Horstmann
[14] or in Hillen and Painter [11], and [7] for a recent result). Under the
biologically relevant cases for aggregation to occur, the initial conditions
typically lie above this threshold — hence while the model does predict
aggregation, this takes the form of a finite time blow-up.

While the early evolution of solutions to (1) may be a reasonable accurate
description for the initial aggregation of microorganisms and cells, blow-up
is undesirable from a modelling perspective — formation of a singularity is
clearly biologically unrealistic. Chemotacting bacteria such as Salmonella
typhimurium or slime molds such as Dictyostelium tend to aggregate in
finite size swarms. Further, the blow-up behaviour of the model prevents
modelling post-aggregation stages: for example, during the formation of
a fruiting body in Dictyostelium, a number of distinct stages take place
following the initial aggregation of the cells, including the differentiation
and sorting into pre-stalk and pre-spore cells and formation of a “slug” (e.g.
see [40]). Hence, system (1) can only be considered valid up to a certain time
point, after which further modelling assumptions must be considered. In the
literature (at least) four mechanisms have been identified which can prevent
blow-up: (i) saturation effects, (ii) volume filling, (iii) attraction-repulsion
mechanisms, (iv) finite sampling radius.

All of the above mechanisms, based on biologically realistic considera-
tions, can alter the above equations (1) such that solutions exist globally.
Hence we call them regularizations. While (i), (ii), (iii) have been studied
in the literature, the aim of this paper is to study (iv) in detail.

As seen for the classical chemotaxis model (1), typical non-trivial solu-
tions form very sharp and thin local maxima (spikes). These spikes remain
bounded in 1-D and blow up in n-D, n ≥ 2. For the volume filling model
typical patterns are of plateau-type (see Painter and Hillen [28], Dolak and
Schmeiser [6]). In Hillen [9] a classification of spikes versus plateaus is given,
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using the non-local gradient (3). We show in this paper that solutions of (2)
are global in time and steady states are of plateau-type. We prove that the
non-local chemotaxis model (2) cannot have spike steady states.

The paper is organized as follows. In section 2 we derive finite sampling
radius from biological observations. We properly define the nonlocal gradi-
ent and we show some basic properties of

◦
∇ρ. In section 3 we prove global

in time existence of solutions to the model (2) in any space dimension. The
proof relies on the trace theorem for the nonlocal gradient and the Nash
estimate. In section 4 we employ linear stability analysis to determine the
conditions under which aggregation is possible, we summarise the classifica-
tion into spikes and plateaus from [9], and we show that (2) cannot have spike
steady states. Moreover, we construct approximate plateau steady states.
In section 5 we present numerical simulations for the non-local model (2),
illustrate the possibility of pattern formation and the dependence on the
sampling radius ρ > 0. In particular, we show that as ρ → 0 the solutions
become singular (blowup). We close the paper with a discussion section 6,
where we compare our findings to the known results of the three previously
studied regularizations (i)-(iii). In addition we give an outlook to future
research directions.

2 The Finite Sampling Radius

While details vary between systems, common to all processes of chemosensi-
tive movement is the detection and response to an external signal. In cells,
detection of the external chemoattractant typically occurs through binding
to specific membrane receptors, for example Rappel et al. [34] demonstrate
that cells polarise in a signal gradient by measuring the actual signal concen-
tration along their body membrane. Incorporating the “sampling radius”
into models for chemotaxis thus arises naturally from these considerations:
at its most intuitive level it could represent the movement response through
signal detection at the cell membrane. In practice, this sampling radius
may be many times larger than the physical extent of the cell: studies on
the physics of chemoreception by Purcell and Berg [2] indicate that the effec-
tive sampling volume depends on the time taken for a signal to be processed
by a cell, and for realistic parameter values in Dictyostelium this can swell
the physical sampling volume by several times [26]. The actual sampling
volume can also be affected by cell shape: migrating cells extend a variety
of cellular protrusions, including pseudopodia, lammellipodia and filopodia,
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the latter extending up to 80-100 µm in length.
Such considerations led Othmer and Hillen [25] to propose the inclusion

of a finite sampling radius in a model, as defined in (3). In this section we
demonstrate how such models can be derived from two different approaches:
the first, a phenomological approach, considers its derivation from a force
balance approach, while the latter considers the derivation directly from the
kinetic transport equation.

2.1 Derivation from Force Balance

Our phenomological derivation for a class of non-local models including 2
follows the approach in [31]. Macroscopic movement equations derive from
Newton’s law by considering the forces exerted by a cell in multiple direc-
tions. We assume that the cell density, u(x, t) follows the general conserva-
tion law

ut = −∇ · J + g(.)

where g(.) represents cell kinetics and J describes the cell flux. Herein we
assume kinetics are negligible on the timescale of movement (g(.) = 0). We
assume the flux comprises of both a diffusive component, modelling random
effects, and a guided component modelling the chemotactic response,

J = Jdiffusion + Jchemotaxis

where we take Jdiffusion = −D∇u for simplicity. Following the approach
of [31] we propose the chemotactic flux takes the form

Jchemotaxis = uφF

where φF represents the chemotactic velocity with motility coefficient φ
(which could incorporate effects due to other chemicals, ECM or cell in-
teractions) and F is the net force generated by the cell in response to the
chemical environment. The above follows directly from Newton’s law, as-
suming negligible inertia (reasonable at the low speeds of cell migration)
and that drag is proportional to velocity.

The mechanism for force generation varies greatly between cells. In
ameoboidal cells such as Dictyostelium and leukocytes, force is generated
through the creation of adhesive attachments at the cell membrane with
the substrate/ECM; such cells frequently extend pseudopods in multiple
directions during movement, e.g. Varnum-Finney et al. [39]. Under this
assumption, a one-dimensional cell centred at x and of radius ρ can generate
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forces in the positive/negative direction of magnitude f± ≡ f(a(x ± ρ)),
where a represents the number of adhesive attachments made by the cell.
The net force is

F = f(a(x + ρ))− f(a(x− ρ)).

which, upon substituting into the flux gives,

J = −Duux + uφ(f(s(x + ρ))− f(s(x− ρ))).

Our mass conservation thus takes the form of the non-local PDE

ut = Duuxx − (uφ(f(a(x + ρ))− f(a(x− ρ))))x .

The extension into higher dimensions is similar. The magnitude of the force
in a direction ν will depend on the number of attachments made at the
boundary in that direction,

f(ν) = f(a(x + νρ)).

Summing over all directions to obtain the net force, substituting into the
conservation equation we obtain a non-local model for cell movement:

ut = Du∆u−∇ ·
(

uφ

∫

Sn−1

νf(a(x + νρ))dν

)
.

where ν now represents the outer-unit norm and Sn−1 the surface of the
unit n-sphere.

To apply the model to chemotactic-cell movement, we must consider
the generation of force in response to an external signal. Here, in the in-
terests of model simplicity, we ignore many of the details; a comprehen-
sive model could incorporate any number of processes, including binding of
chemoattractant to cell surface receptors, internal signalling, etc. We take
the simplest assumption: the number of focal attachments, and hence the
force, generated along the membrane is directly proportional to the local
chemoattractant concentration, i.e.

f(a(x + νρ)) ∝ b(x + νρ)) (4)

where b represents the concentration of attractant-bound receptors. Under
the simple model for attractant-receptor binding (Section 6.1), we assume

b =
Ks

γ + s
(5)
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Clearly, for sufficiently large γ, we can take b ∝ s, leading to the non-local
model

ut = Du∆u−∇ ·
(

uφ

∫

Sn−1

νs(x + νρ))dν

)
,

st = Ds∆s + h(u, s).

With the scaling φ = n
ωρ , we obtain the nonlocal system (2)-(3). This scaling

is chosen to permit direct comparison with the classical chemotaxis system
(1).

2.2 Derivation from a Kinetic Transport Equation

The nonlocal model can also be derived from a kinetic transport model, in
which cells are assumed to perform a velocity jump process. The nondimen-
sionalized master equation then has the form

ε2ft + εv · ∇f = T0(f) + εT1(f) ,

where f(x, v, t) is the distribution function of cells in the position-velocity
phase space, and the small dimensionless parameter ε results from a macro-
scopic diffusion scaling. The left hand side of the equation models movement
with constant velocities, whereas the right hand side describes the velocity
jumps. We consider a dominating isotropic process, where all possible post-
jump velocities have the same probability:

T0(f)(x, v, t) =
1
|V |uf (x, t)− f(x, v, t) =

1
|V |

∫

V
[f(x, v′, t)− f(x, v, t)]dv′ .

Here V and |V | denote the set of all possible velocities (assumed to be
rotationally symmetric) and its measure, respectively. This is the simplest
possible model. For the second process, the cell measures the chemical
concentration along a sphere with radius ρ around its position x. Post-jump
velocities with directions of higher chemical concentration occur with higher
probability. The turning operator is given by

T1(f)(x, v, t) =
∫

V

[
φ

(
s

(
x + ρ

v

|v| , t
))

f(x, v′, t)− φ

(
s

(
x + ρ

v′

|v′| , t
))

f(x, v, t)
]

dv′ ,

where the rate φ (s (x + ρv′/|v′|, t)) (φ increasing) of jumping from velocity
v to v′ could be modelled as proportional to the concentration of bound
receptors as a function of the extracellular signal s. A continuum model of
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Keller-Segel type can be derived by the macroscopic limit ε → 0. We shall
sketch the formal procedure. More details and rigorous justifications can be
found in [10], [25], [4].

Obviously, the limiting distribution function is independent from the
velocity: f0(x, v, t) = u(x, t)/|V | with the macroscopic cell density u, which
is not determined by the limiting equation T0(f0) = 0. After dividing the
transport equation by ε, we have

εft + v · ∇f = T0

(
f − f0

ε

)
+ T1(f) .

Denoting the limit of (f − f0)/ε by R, we obtain

R = −v · ∇f0 + T1(f0) + u1

Finally, division of the transport equation by ε2 and integration with respect
to v gives the conservation equation

(uf )t +∇ ·
∫

V
v
f − f0

ε
dv = 0 .

In the limit ε → 0, the convection-diffusion equation

ut +∇ · (−D∇u + uvs) = 0 ,

is obtained. The diffusivity is given by D = |V |−1
∫
V v ⊗ v dv, and the

macroscopic chemotactic velocity can be computed as

vs = χ

∫

Sn−1

σφ (s (x + ρσ, t)) dσ , (6)

where the constant χ results from the integral in the radial direction. For
linear φ, the chemotactic velocity is proportional to the nonlocal approxima-
tion of the gradient as in (2). In Section 5, numerical experiments are also
carried out with a nonlinear φ, modelling saturation of bound receptors.

3 The Nonlocal Chemotaxis Model Prevents Blow-
up

The main theoretical result of this paper is global existence and uniform
boundedness of solutions of (2) subject to the initial conditions

u(x, 0) = uI(x) , s(x, 0) = sI(x) . (7)

Let ‖ · ‖p denote the Lp(Rn)-norm.
We start with a general lemma on convection-diffusion equations.
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Lemma 3.1 Let the components of the vector field v : Rn × (0,∞) → Rn

be uniformly bounded, and let uI ∈ L∞(Rn) ∩ L1(Rn) satisfy uI ≥ 0. Then
the solution of the initial value problem

ut = ∇ · (∇u− uv) , u(x, 0) = uI(x) ,

satisfies u ∈ L∞((0,∞)× Rn) and

sup
t
‖u‖∞ ≤ C(‖uI‖1, ‖uI‖∞, sup

t
‖v‖∞, n) .

Proof: We start with a formal computation. For 1 ≤ p < ∞, we obtain

d

dt
‖u‖p

p = 2(p− 1)
(
−2

p
‖∇(up/2)‖2

2 +
∫

Rn

up/2v · ∇(up/2) dx

)

≤ 2(p− 1)
(
−1

p
‖∇(up/2)‖2

2 +
p

4
sup

t
‖v‖2

∞‖u‖p
p

)
. (8)

Now, similarly to [1] we use the Nash inequality [23]

‖f‖1+2/n
2 ≤ cn‖f‖2/n

1 ‖∇f‖2 ,

with f = up/2 and with the abbreviation zp(t) = ‖u(·, t)‖p
p:

dzp

dt
≤ 2(p− 1)zp


p

4
sup

t
‖v‖2

∞ − z
2/n
p

pc2
nz

4/n
p/2


 . (9)

This will lead to a global-in-time bound for zp in terms of a bound for zp/2.
The strategy of the rest of the proof is to iteratively obtain bounds for z2k

for all k ∈ IIN and to show that these bounds are uniform in k such that the
result of the lemma follows by k →∞.

By interpolation, we have that

‖uI‖p ≤ ‖uI‖(p−1)/p
∞ ‖uI‖1/p

1 ≤ max{‖uI‖∞, ‖uI‖1} =: K .

We use induction to show that

z2k(t) ≤ Mk, (10)

where

Mk = max{K2k
, A2nkM2

k−1}, M0 = K,
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and a k-independent constant

A := 2−n(sup
t
‖v‖∞cn)n.

Indeed, for k = 0 we use z1 ≤ K (as a consequence of conservation of mass)
and obtain from (9) that

dz2

dt
≤ 2z2

(
1
2

sup
t
‖v‖2

∞ − z
2/n
2

2c2
nK4/n

)
. (11)

The right hand side of (11) has two zeroes, at z2 = 0 and z2 = 2nAK2. If
the initial condition z2(0) ≥ 2nAK2 then z2(t) ≤ z2(0) = ‖u(., 0)‖2

2 ≤ K2.
If z2(0) ≤ 2nAK2 then z2(t) ≤ 2nAK2. Which proves the claim (10) for
k = 1.

Now assume (10) holds for k − 1. Then

dz2k

dt
≤ 2(2k − 1)z2k

(
2k

4
sup

t
‖v‖2

∞ − z
2/n

2k

2kc2
nM

4/n
k−1

)
. (12)

The zeroes of the right hand side (12) are now 0 and A2nkM2
k−1. With the

same argument as above we conclude that

z2k(t) ≤ max{K2k
, A2nkM2

k−1}
which proves the claim (10).

Again by induction it is straightforward to show that

K2k ≤ 2knM2
k−1,

Hence with B = max{A, 1}, we may change the definition of the upper
bounds to

Mk = B2knM2
k−1 , M0 = K .

The solution of this recursion is

Mk = B2k−12aknK2k
,

with ak = k + 2ak−1, a0 = 0. Since ak = 2k+1− k− 2 < 2k+1 and B ≥ 1, we
obtain Mk ≤ (B4nK)2

k
and, thus, the uniform-in-k bound

sup
t
‖u‖2k ≤ 4n max{‖uI‖∞, ‖uI‖1} max

{
1, 2−n(sup

t
‖v‖∞cn)n

}
,

completing the proof.
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Theorem 3.1 Let χ, ρ, Ds, α, and β be positive constants and let the initial
data satisfy

uI ∈ L∞(Rn) ∩ L1(Rn) , sI ∈ W 1,q(Rn) ,

with 1 < q < n
n−1 . Then (2), (7) has a global solution with

u ∈ L∞((0,∞)× Rn) ,

i.e., the cell density is uniformly bounded in position and time.

Remark 1 Almost the same proof can be used for a quasistationary model
for the chemoattractant, i.e., when the time derivative is cancelled in the
s-equation. Instead of the result for parabolic equations from [16] a corre-
sponding result from potential theory would have to be used. Since we work
in whole space the assumption β > 0 on the decay of the chemoattractant
helps, but is possibly not essential.

Proof: Local existence is a standard result, and global existence will be a
consequence of the estimates we shall derive.

By the assumptions on the initial data and mass conservation we have
‖u‖1 = ‖uI‖1. This implies (analogously to Hwang-Kang-Stevens [16]) that
s is bounded in W 1,q(Rn) uniformly in t.

The sphere Sρ with centre in the origin and radius ρ is a smooth (n−1)-
dimensional manifold. Therefore, by the standard result on traces, W 1,q(Rn)
is continuously embedded in W 1−1/q,q(Sρ) and, consequently, also in L1(Sρ)
(by the boundedness of Sρ). Therefore,

| ◦∇ρ f(x = 0)| ≤ c‖f‖W 1,q(Rn)

holds. The choice f(x) = s(x0 + x, t) and the translation invariance of the

W 1,q(Rn)-norm imply that ‖ ◦
∇ρ s‖∞ is bounded uniformly in time.

Now the proof is completed by an application of the previous lemma.

4 Steady States

In this section we investigate steady states of the non local chemotaxis model
(2). We will show that steady states cannot have spike local maxima and
construct approximative plateau steady states.
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Steady states of the non local model (2) satisfy the equations

0 = ∇ · (∇u− χu
◦
∇ρ s)

0 = Ds∆s + αu− βs,
(13)

4.1 Linear Stability Analysis in 1-D

To compare the stability properties of the model (2) to those of the classical
chemotaxis model (1) we perform a linear stability analysis at the homoge-
neous steady state for the one-dimensional case of (2).

A homogeneous steady state for system (13) is given by (ū, s̄) where s̄ =
αū/β, and ū is determined by the initial population density. Linearization
of (2) in 1-D at the steady state gives

ut = uxx − χū(
◦
∇ρ s)x

st = Dssxx + αu− βs,
(14)

We use Fourier transformation to obtain the characteristic equation between
eigenvalues λ and modes k. The 1-D nonlocal gradient is

◦
∇ρ s =

1
2ρ

(s(x + ρ)− s(x− ρ))

while its Fourier transform is given by

F(
◦
∇ρ s) = i

sin(kρ)
ρ

F(s).

Transforming the linearized system (14), we find that the stability is deter-
mined by the eigenvalues λ of the matrix

Ak :=

(
−k2 kχū sin(kρ)

ρ

α −Dsk
2 − β

)
.

The trace and determinant of Ak are

trAk = −k2(1 + Ds)− β < 0 detAk = k2(Dsk
2 + β)− αχūk

sin(kρ)
ρ

.

For k = 0 we find detA0 = 0. Hence, for k = 0 there exists an eigenvalue
λ0 = 0, which relates to the conservation property of (2). For a given
total population we obtain instability, if we find a mode k > 0 for which
detAk < 0. This translates into the condition

k(Dsk
2 + β) < αχū

sin(kρ)
ρ

. (15)
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Note that for ρ → 0, we have sin(kρ)
ρ → k. Then (15) reduces to the necessary

condition for pattern formation in the classical chemotaxis model (1), i.e.

Dsk
2 + β < αχū. (16)

Since for each ρ > 0, sin(kρ)
ρ < k, condition (15) for instability in the non-

local model is stronger than the corresponding condition (16) for the classical
model. In particular, given that (16) is satisfied, it is always possible to
determine a bounded ρc for which no pattern formation is possible for ρ > ρc.
Since | sin(x)| ≤ 1 we can explicitly calculate

ρc = sup
k>0

{
αχū

k(Dsk2 + β)

}
.

For example, if we study (2) with homogeneous Dirichlet boundary con-
ditions on an interval [0, L], then the supremum would be obtained for
k = π/L.

4.2 Properties of the Non-Local Gradient

The nonlocal gradient (3) has the properties that
◦
∇ρ s(x, t) = 0 for constant

distribution s and that for differentiable s(x) we have

lim
ρ→0

◦
∇ρ s(x) = ∇s(x).

It is rather useful to study the Taylor expansion of the non local gradient
for small ρ > 0. In Hillen [9] it is shown that

◦
∇ρ s(x) = ∇s(x) +

ρ2

2(2 + n)
∇(∆s(x)) +O(ρ4), (17)

where n is the space dimension and ∆ denotes, as usual, the Laplacian.
Hence the first correction term to ∇s is of third order.

We replace ∇s in the classical chemotaxis model (1) by the nonlocal

gradient
◦
∇ρ s and obtain the nonlocal chemotaxis model (2).

As shown in [9] the nonlocal gradient can be used to classify local maxima
and to distinguish spikes versus plateaus.
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Definition 4.1 (from [9]) A local maximum x0 of f : U ⊂ Rn → R is called
a

spike ⇐⇒ ∃ ρ∗ > 0 such that
◦
∇ρ

(∇f(x0)
)− Hess

(
f(x0)

)
is positive

definite for all 0 < ρ < ρ∗,

plateau ⇐⇒ ∃ ρ∗ > 0 such that
◦
∇ρ

(∇f(x0)
)− Hess

(
f(x0)

)
is negative

definite for all 0 < ρ < ρ∗.

Using the n-dimensional Taylor expansion we have proven in [9]

Theorem 4.1 Assume f ∈ C5(U) and Hess
(
∆f(x0)

)
is invertible. Then

x0 is a spike ⇐⇒ Hess
(
∆f(x0)

)
is positive definite,

x0 is a plateau ⇐⇒ Hess
(
∆f(x0)

)
is negative definite.

4.3 No Spikes

Theorem 4.2 Assume the steady state u(x), s(x) of (2) have a common
local maximum. Then this maximum cannot be a spike.

Proof. We rewrite the first equation of (13) as

0 = ∇ · (∇u− χu∇s + χu(∇s− ◦
∇ρ s))

and introduce

ψ = ue−χs.

Then we obtain

0 = ∇ · (∇ψeχs) + χ∇ · (u(∇s− ◦
∇ρ s))

= eχs
(
∆ψ + χ∇ψ · (2∇s− ◦

∇ρ s)

+χψ(∇s · (∇s− ◦
∇ρ s) +∇ · (∇s− ◦

∇ρ s))
)

(18)

Now we assume that u, s and ψ have a common local maximum at x0 ∈ M ,
i.e.

∇ψ(x0) = 0, ∆ψ(x0) < 0, ∇u(x0) = 0, ∆u(x0) < 0, ∇s(x0) = 0, ∆s(x0) < 0.
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Then (18) reduces to

0 = ∆ψ + χψ(∆s−∇· ◦∇ρ s). (19)

If the local maximum is a spike as defined in Definition 4.1, then the matrix

◦
∇ρ (∇s(x0))−Hess(s(x0))

is positive definite. This implies in particular that

∆s(x0)−∇·
◦
∇ρ s(x0) < 0,

which together with ∆ψ(x0) < 0 gives a contradiction to (19). Hence x0

cannot be a spike.

4.4 Approximate Plateaus

We saw in the previous subsection that steady state solutions are not of spike
type. Here we show that pattern formation still can occur in form of plateau
solutions. We were not successful to explicitly find plateau solutions for the
nonlocal model (13), we can, however, find approximate steady states.

For ρ small enough the nonlocal gradient can be approximated as shown
in (17). We take the first two terms and define

φ(x) := s +
ρ2

2(2 + n)
∆s

Then the approximate steady states on a smooth bounded domain Ω satisfy
the fourth order equation

0 = ∇ · (∇u− χu∇φ)
0 = Ds∆s + αu− βs,

(20)

¿From this representation we see that the nonlocal gradient regularizes the
same way as a fourth order term does. System (20) has a similar structure
as the classical PKS model (1), which was studied by Nanjundiah [22]. We
use the same transformation here:

Ψ = ue−χφ

and obtain

0 = (∆Ψ + χ∇Ψ · ∇φ)eχφ.
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Hence Ψ satisfies a Hopf maximum principle, thus Ψ(x) must be constant.

Ψ(x) = Ψ.

Since Ψ = ue−χφ we find

u = Ψeχφ φ =
1
χ

(lnu− c), c = lnΨ.

The steady state system (20) becomes

s + ρ2

2(2+n)∆s = 1
χ(lnu− c)

Ds∆s = βs− αu,
(21)

We use the second equation of (21) to replace ∆s in the first equation, which
gives

s
(
1 + βρ2

2(2+n)D

)
= αρ2

2(2+n)Du + 1
χ(lnu− c)

Ds∆s = βs− αu,
(22)

For convenience we introduce

κ :=
ρ2χ

2(2 + n)D

and we solve the first equation of (22) for s:

s =
ακu + lnu− c

χ + βκ

This expression for s is then used in the second equation of (21) to obtain a
second order equation for u:

∆u

(
ακ +

1
u

)
− (∇u)2

u2
=

β

D
ln u− c

D
− ακ

D
u. (23)

We study the one-dimensional case on an interval [0, l] with homogeneous
Neumann boundary conditions in more detail. In one space dimension equa-
tion (23) can be written as a first order system

u′ = w

w′ = Dw2+βu2 ln u−cu2−αχu3

D(αχu2+u)

(24)

with boundary conditions

w(0) = 0 w(l) = 0.
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Figure 1: (a) The vectorfield for the case of three roots of the equation (25).
(b) Plateaus solutions appear as closed circles around the third equilibrium
point.

The steady states of (24) satisfy w = 0 and u = 0 or

β ln u− c− αχu = 0. (25)

The equation (25) has zero, one or two roots. In a systematic analysis of all
cases (not shown here) it turns out that only the case of three roots gives
non-trivial steady states. In Figure 1 we show an example for D = 1, µ =
0.12, β = 1, ν = 1, κ = 10. In Figure 1 (a) the vectorfield of (24) is shown
and in Figure 1 (b) typical nontrivial plateau steady states are shown in the
phase plane.

Note that for ρ → 0 equation (25) becomes β ln u = c, hence it has
exactly one root at u = ψeβ. The third root diverges to ∞ and the plateau
steady states disappear.

5 Numerical Results

5.1 Numerical Method

We turn our attention to numerical solutions of the non-local chemotaxis
model. The right-hand sides of the system (2) are discretised in conser-
vative flux form, employing a second order central differencing scheme for
the diffusion terms and a high order upwinding method with a Koren flux
limiting function for the advective term. The conservative flux form is appro-
priate for the diffusion-advection equation, as it ensures mass conservation
([15, 18]). Flux limiting allows higher order upwinding for the advective
term while maintaining positivity of solutions. This has previously be em-
ployed to solve standard chemotactic type systems (e.g. [38]). The direction
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for the upwinding will depend on the sign of the non-local term in the advec-
tive component, calculated at the boundary between adjacent mesh points.
In one dimension, it is thus necessary to calculate concentration data at
c(xb±ρ), where xb denotes the midpoint between adjacent mesh points. We
approximate c(xb ± ρ) by linear interpolation using the nearest two mesh
points. The two-dimensional problem is solved analogously, yet determining
the non-local term now requires calculation of the integral on a circle of
radius ρ, centred on the mid-point between adjacent mesh points. We ap-
proximate this by discretising the surface into a lattice of surface grid points,
and employing linear interpolation from the surrounding domain grid points
to give cell/chemical densities at the surface, see Figure 2 (a). Time integra-
tion is carried out using an explicit trapezoidal scheme; investigations into
higher order schemes (e.g. 4th order Runge-Kutta) yielded little difference.
More efficient time integration techniques, for example applying “operator-
splitting” and using distinct methods (e.g. implicit, explicit) to each right
hand side term would be required for more extensive numerical studies.

For simplicity in calculating the non-local terms, we set periodic bound-
ary conditions; biologically relevant boundary conditions (e.g. Dirichlet or
zero-flux) can also be applied, yet one must pay appropriate attention to
the non-local term near the boundaries. To determine the accuracy of the
solver, a series of test simulations are performed. Since an explicit solu-
tion is unknown, an “accurate” reference solution is obtained at time T ,
Uref (x, T ) by solving the equations on a highly refined grid. For the small
time steps necessary in implementing the explicit trapezoidal rule, temporal
errors become negligible and can safely be ignored. Solutions are obtained
for different grid steps h to obtain Uh(x, T ), and we determine the error by
calculating the discrete L1 norm,

‖Eh‖1 =
∑

i

hn|Uh(xi, T )− Uref (xi, T )|

where n is the dimension. Plots of h vs ‖E‖1 are shown for n = 1 in Figure
2 (b) and n = 2 in Figure 2 (c). Errors are shown for two methods of
solving the advective term, the high order scheme with flux limiting and a
simple first order scheme. The latter requires a large number of grid points to
achieve comparable accuracy to the high order scheme. The numerical order
of accuracy for the high order scheme can be determined as approximately
2, in line with previous results, e.g. [15]. The results from other numerical
tests are comparable.
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Figure 2: (a) To calculate the integral at the point X, we discretise the
surface into regularly spaced lattice points (white circles). The chemical
concentrations/cell densities at each white circle necessary for calculating
the integral are determined through interpolation of the surrounding domain
lattice points (black circles). (b) ‖E‖1 errors for the 1D numerical scheme.
For this we solve the model equations in 1D with the following parameters:
Du = Dv = α = β = 0.01, χ = 0.05 and ρ = 0.1 on the domain [0, 1] with
periodic BCs. ICs are u(x, 0) = 1.0 and v(x, 0) = 0.5 + 1.0e−(x−0.5)2 . For
the reference solution we use a mesh with grid step h = 1/5000. The time
step is 10−6 and we compare solutions at t = 5. (c) ‖E‖1 errors for the 2D
numerical scheme. Parameters as in (b) except χ = 0.04 and ρ = 0.05on the
domain [0, 1]× [0, 1]. We use a reference solution with grid step h = 1/500
and compare solutions at t = 0.2.

5.2 Aggregation Results

5.2.1 1D Numerics

In Figure 3 we show the results of a typical simulation of the 1D non-local
model. Parameters have been selected such that the instability condition,
(15), is satisfied. The numerics demonstrate the formation of multiple cell
aggregations, which subsequently undergo a coarsening process until a single
peak remains. This behaviour is analogous to that observed in Keller-Segel
type models of chemotaxis (e.g. see [28]).

To demonstrate the effect of the sampling radius, we simulate the model
over a range of ρ. For ρ → 0, the non-local model reduces to the classi-
cal Keller-Segel model (1) and we plot solutions for this case in Figure 4
(a) for comparison. Numerical simulations at small ρ, Figure 4 (b) demon-
strate a predictably close match. Increasing the radius results in a lower
peak/broader aggregation, (c)-(f). It is possible to use condition (15) to
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Figure 3: Evolving cell (solid) and chemical (dotted) profiles for the 1D non-
local model. The following parameters are chosen: Du = Ds = α = β = 1.0,
ρ = χ = 2.0 on a domain [0, 40] with periodic boundary conditions. We ini-
tially set u(x, 0) = 1.0 and a small random perturbation of the homogeneous
steady state for the chemical concentration. 401 mesh points are used for
the grid.

determine the critical value for ρ above which patterning is no longer pos-
sible. The lowest non-zero mode k satisfying the boundary conditions is
k = 2π/L, where L is the domain length. Substituting this, together with
the parameters listed in Figure 4, into (15) we determine ρc = 2.2552 to 4
d.p. This value is both confirmed by and validates the accuracy of the nu-
merical simulations: for ρc = 2.255 an aggregation (albeit small) eventually
develops, Figure 4 (g), while an increase of ρc to 2.256 results in no pattern
formation, (h).

5.2.2 2D Numerics

We extend the numerical analysis to two dimensions. In 2D the classical
Keller-Segel model is known to exhibit finite time blow-up (for suitable ini-
tial data). A typical scenario is shown in Figure 5 (a): already at T = 13.8
the cell density is highly concentrated, and the solution can no longer be
computed (numerical blow-up). In Figures 5 (b)-(e) we plot cell density pro-
files under different ρ for the non-local model. The global existence result for
the non-local model is confirmed by the numerics: inclusion of a sampling
radius prevents blow-up and allows solutions to evolve to a heterogeneous
steady state solution. The 2D numerics parallel the 1D observations: de-
creasing ρ results in a concentrated solution and a plot of the maximum
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Figure 4: Intermediate (dashed) and long term (solid) cell density profiles for
the non-local model under various ρ: (a) ρ = 0, corresponding to the classical
Keller-Segel model, at times T = 30 and 200; (b) ρ = 0.1 at T = 30, 200;
(c) ρ = 0.2 at T = 30, 200; (d) ρ = 0.5 at T = 30, 200; (e) ρ = 1.0 at
T = 40, 500; (f) ρ = 2.0 at T = 40, 500; (g) ρ = 2.255 at T = 1000, 200000;
(h) ρ = 2.255 at T = 1000, 200000. Parameter values as for Figure 3 on
a domain [0, 10] (201 mesh points). Initial conditions are u(x, 0) = 1.0,
v(x, 0) = 0.95 + 0.1 exp(−0.1(x− 5)2).

density vs ρ appears consistent with convergence to a blow-up solution as
ρ → 0, Figure 5 (f). Increasing ρ results in a dispersed peak and above some
critical radius ρc aggregation is no longer possible Figure 5 (e) .

In Figure 6 we plot solutions on a larger initial domain; here initial
conditions consist of a random spatial perturbation from the homogeneous
steady state. Simulations indicate pattern formation, with a number of cell
aggregations emerge at (roughly) equally spaced locations. Altering the
sampling radius alters both the density of the peak, but also the number of
the aggregations to emerge.

5.3 Model Variations

Numerical investigations above have been limited to the system (2) with
(3). The numerical results confirm the earlier analysis: critically, we observe
global existence for the non-local model. However, forms for the nonlocal
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Figure 5: (a) Numerical simulation of the classical Keller-Segel model (ρ =
0). Simulation shown at t = 13.8, just prior to “numerical blow-up”. (b)-(e)
Steady state cell density patterns for the non-local model for increasing ρ:
(b) ρ = 1.0, T = 100 (c) ρ = 2.0, T = 150 (d) ρ = 2.5, T = 300, (e)
ρ = 3.0, T = 300. (f) Plot showing peak cell density as a function of ρ.
Model parameters as for Figure 3 on the domain [0, 10] × [0, 10] (75 by 75
grid points used). Initial conditions are u(x, y, 0) = 1.0 and s(x, y, 0) =
0.5 + e−0.5((x−5)2+(y−5)2) on the domain [0, 10]× [0, 10].
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Figure 6: Top row: cell density evolution for ρ = 3.0 for (a) t = 100, (b)
t = 150 (c) t = 200. Bottom row: cell density evolution for ρ = 6.0 for
(d) t = 200, (e) t = 300 (f) t = 400. Parameters as for 3 on the domain
[0, 40]× [0, 40] (100 × 100 mesh points). Initially we take n(x, y, 0) = 1 and
a random perturbation about the homogeneous chemical concentration.

term other than (3) are clearly valid, as indicated in the derivations. Here
we consider the implications of different choices for the non-local term.

5.3.1 Dependence on the Sampling Radius

Different ρ-scalings of the non-local term can have a large impact on the
dependence of solutions on ρ. In the above simulations, the non-local term
(3) features a scaling by n

ωρ . While this allows direct comparison with the
classical model, it can perhaps be criticised on other grounds. The linear
stability analysis of Section 4.1 demonstrates an upper bound on the sam-
pling radius for a patterning instability to occur. The existence of this upper
bound is intuitive: above a certain radius, the size of the sampling region
will be so large that any spatial variations are lost. However, in (15) there
is no lower bound on the sampling radius for a patterning instability. In re-
ality, it is believed only larger cells can spatially resolve a gradient; smaller
organisms such as E. coli must employ temporal sensing to expand their
sampling radius. It may therefore be more reasonable to expect a mini-
mum sampling radius for pattern formation, below which cells are unable to
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resolve a spatial gradient, and hence aggregate.
This behaviour can be incorporated into the model with different ρ scal-

ings of the non-local term 3. For example, suppose we replace the n
ωρ with 1

ω
(or 1 in 1-D) in Equation (3): this corresponds to a scaling of 1/membrane
surface area rather than 1/cell volume. A 1D linear stability analysis along
the lines of Section 4.1 predicts an alternative instability condition to (15)

sin(kρ) >
k2(Dsk

2 + β)
2χαuk

.

For non-zero k the above now determines a critical radius ρc, below which
pattern formation is not possible; using the parameters of the simulations in
Figure 7, and choosing the minimum non-zero k (corresponding to a single
peak solution) we find ρc = 0.275. This value is confirmed in the numerical
simulations of Figure 7. For ρ < ρc, Fig 7(a), no aggregations develop while
ρ > ρc gives rise to pattern formation, Fig 7(b)-(c). The behaviour is also
observed in 2D Fig 7(d)-(f).

5.3.2 Incorporation of Receptor Binding

During the derivations of the model, linear functions have been chosen to
describe key processes for simplicity. More plausible, nonlinear forms, can
also be chosen; for example by taking a saturating dependence on the signal
concentration (i.e. of the form (5) in (4) or in (6)), we derive the following
non-local term:

∫

Sn−1

σ
s(x + Rσ, t)

k + s(x + Rσ, t)
dσ.

Replacing the integral term in equation 3 with the above still allows pattern
formation, albeit with a less concentrated peak, Figure 8 (a).

5.3.3 Non-Diffusing Scenarios

Tactic responses to non-diffusing substances can occur in a number of in-
stances. “Haptotaxis”, for example, describes cell movement along gradients
of adhesion molecules tightly bound to a rigid extracellular matrix. Non-
diffusing chemical species for classical chemotaxis models can create greater
numerical challenges; steeper gradients occur and blow-ups develop even in
1D. Numerics indicate that the finite-sampling method resolves these diffi-
culties and solutions still appear to exist globally, Figure 8 (b).
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Figure 7: (a)-(c) 1D cell densities for an alternative ρ-scaling of the non-local
term: (a) ρ = 0.25; (b) ρ = 0.3 at t = 1000 (dashed) and t = 3000 (solid);
(c) ρ = 1.0 at t = 500 (dashed) and t = 3000 (solid). At larger R, multiple
peaks emerge initially and subsequently coalesce into a single aggregation.
(d)-(f) 2D cell density patterns: (d) ρ = 1.0 at t = 200; (e)-(f) ρ = 2.0 at
times t = 100 and t = 200 respectively. For both 1&2D numerics we use
the parameters of Figure 5 on the domains [0, 20] (1D) and [0, 10] × [0, 10]
(2D). Initial conditions are u(x, 0) = 1 and a random perturbation around
the homogeneous chemical steady state.

6 Discussion

In this paper we introduced a non-local gradient sensing term into the clas-
sical chemotaxis equations. We have proven that solutions to the non local
model exist globally in time, independent of the space dimension. We have
seen that, as ρ → 0, the solutions become higher and steeper and finally
blow-up for ρ = 0. In addition, plateau steady states cease to exist for
ρ = 0.

In the introduction we mentioned three alternative regularizations to the
non-local sensing that also prevent blow-up: (i) saturation, (ii) volume fill-
ing, and (iii) attraction-repulsion. In reality, all four mechanisms may be
operation and thus we summarize the results for each of these regulariza-
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Figure 8: Asymptotic cell density for two model variations: (a) “receptor-
binding” non-local term; (b) non-diffusion of the chemical species. Model
parameters and initial conditions as for Figure 3 except in (a) where χ =
8 and k = 1 and (b) where Ds = 0. Simulations solved on a domain
[0, 10]× [0, 10] with 51 by 51 grid points.

tions,

6.1 Saturation Effects

If we assume the signal s binds to certain cell surface receptors, for high
levels of s all receptors may be occupied and the cell is unable to detect
a gradient. Following the argument of Othmer and Stevens [27], we let S
denote the chemical signal, R a free cell surface receptor and B an occupied
one, and

R + S
k1

­
k−1

B.

If this is fast, the quasi steady-state will be b = Ks
s+γ , with equilibrium con-

stant γ = k−1

k1
, and lower case letters denoting concentrations. Assuming

cells base their movement on a local gradient of the number of bound recep-
tors, we derive a non-linear chemotactic form, χ(s) (e.g. see [27]), where

χ(s) ∼ Kγ

(γ + s)2
,
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and the classical chemotaxis model (1) is modified to

ut = ∇ · (∇u− uχ(s)∇s)
st = Ds∆s + αu− βs.

(26)

The above χ(s), and other forms, are commonly used in applications. Segel
and Jackson [37] assume a Weber-Fechner response law χ(s) = c1

s . Rivero
et al. [36] replace the whole expression χ(s)sx by

χ(s)sx ∼ tanh
(

c1sx

c2 + s2

)
.

Ford and Lauffenburger [8] and also Tyson, Lubkin and Murray [38] assume
the receptor kinetic model from above: χ(s) = c1

c2+s2 , which was generalised

by Levine and Sleeman [19] to χ(s) = a(γ−β)
(s+γ)(s+β) . Höfer, Sherrat and Maini

[13] assume χ(s) = χ0sm

Am+sm .
Biler [3] studied saturation effects in chemotaxis models from a theoret-

ical point of view. He introduced a chemotactic potential, φ, which is given
as the integral of χ:

χ(s)∇s = ∇φ(s).

The potential is defined to be strictly sublinear, if

χ(s) > 0, χ(s) → 0, as s →∞, χ(s)s is increasing.

Then Biler shows the following result [3]:

Theorem 6.1 If n = 2 and φ(s) is strictly sublinear the solution to (26)
exist globally in time. Moreover, if n ≤ 2 and χ(v) = χ0/v with χ0 < 2/n
then the solutions of (26) exist globally in time.

6.2 Volume Filling

Hillen and Painter [11, 28] introduced mechanistic descriptions of volume
effects. It is assumed that cells have a certain finite (nonzero) volume and
the occupation of an area by cells limits other cells from penetrating it. This
effect was modelled by introducing a function q(u) describing the probability
of finding space for a local cell density u. A typical example is q(u) =
1− u/Umax, for 0 ≤ u ≤ Umax, where Umax denotes a maximum cell density.
The volume filling model reads (see [28])

ut = ∇ · (D(q(u)− q′(u)u)∇u− χuq(u)∇s)
st = Ds∆s + αu− βs.

(27)
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The qualitative properties of the volume filling model is quite well under-
stood. Global existence of solutions in any space dimension has been shown
in [11] for special cases and in Wrzosek [41] for the full model (27). Also,
Wrzosek [41] showed the existence of a compact global attractor. The struc-
ture of the attractor can be understood using Lyapunov functions [42]. In
[28] it was shown numerically that typical patterns are of plateau type with
long transient times. In Potapov and Hillen [33] the metastability of steady
states was studied and the underlying bifurcation diagram was identified.
The leading unstable eigenvalues are exponentially small. In Dolak and
Schmeiser [6] the plateau interactions were studied using asymptotic meth-
ods. Dolak and Schmeiser are able to obtain a system of ODE’s for the
location of transition layers. Finally, in Dolak and Hillen [5], the volume
filing idea has been used to model pattern formation of Dictyostelium dis-
coideum and Salmonella typhimurium.

6.3 Attraction-Repulsion Mechanisms

Many motile cells demonstrate both chemoattraction and chemorepulsion,
depending on the environmental signal; for example E. coli bacteria demon-
strate attraction to sugars and amino acids and repulsion from noxious sub-
stances. Incorporating these competing factors into the classical chemotaxis
model results in the following model

ut = ∇ · (∇u− χau∇a + χru∇r)
at = Da∆a + g(u, a, r)
rt = Dr∆W + h(u, a, r).

(28)

Models of the above type have been examined by a number of authors (e.g.
[29, 20, 28]). In [28] the authors examined a specific form of the above
equation in which g(u, a, r) = αau−βaa and h(u, a, r) = αaua−βar. An in-
terpretation for this model would be secretion of both an internally produced
chemoattractant and a chemorepellent signal; for example a toxic substance
produced as a byproduct of the internal biochemical pathways involved in
chemotaxis/synthesis. The qualitative properties of (28) are currently un-
der investigation. In Renclawowicz and Hillen [35], it is shown that there
are special cases of (28) that have global in time solutions, whereas other
special cases show finite time blow-up solutions. A general theory for (28)
still needs to be developed.
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6.4 Future Work

The explicit incorporation of a non-local sampling radius for the cell response
to its environment provides a new level of detail for describing cell migration
in response to external cues. In this paper, we have explored the general
property of solutions to the model including its ability to exhibit pattern
formation, the global existence of solutions and the nature of the steady
states.

Numerical simulations of the model indicated the global existence prop-
erties of the non-local model may extend to even stronger cases than that
determined theoretically in Section 3. For example under zero-diffusion of
the chemical species, a case that leads to blow-up even in 1D for the classical
chemotaxis model, steady state patterns still develop (Figure 8 (b)). This
result remains to be demonstrated analytically.

While this paper has not had a specific biological application in mind, it
is necessary to consider the use of the model in specific biological processes.
The explicit incorporation of a non-local sampling radius, with its length
scale of cell diameters, limits the ability to perform numerical explorations
at “truly macroscopic scales” (for example, the size of large tissues/organs
or Dictyostelium and bacteria aggrgations). Thus, this model may be most
appropriate at a “mesoscopic-level” - i.e. where the length scales of move-
ment are not “hugely” greater than the size of individual cells, but when a
macroscopic approach is still desirable. Two such applications include the
formation of vascular patterns, or the invasion of tumour cells into surround-
ing tissue. An open question is thus raised as to whether it is possible to
derive fully macroscopic models (i.e. PDE models) which retain the impor-
tant characteristics of the non-local sampling radius. A clue to one approach
for this may lie in the Taylor Expansion of the non-local term, Equation (17).
While applying the first non-zero term in this expansion leads straight to
the classical Keller-Segel model, using the first two non-zero terms adds a
fourth order dissipative term.
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