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Abstract: Chemotaxis, the guided migration of cells in response to chemical gradients, is vital to a
wide variety of biological processes, including patterning of the slime mold Dictyostelium, embryonic
morphogenesis, wound healing and tumour invasion. Continuous models of chemotaxis have been
developed to describe many such systems, yet few have considered the movements within a hetero-
geneous tissue composed of multiple subpopulations. In this paper, a partial differential equation
(PDE) model is developed to describe a tissue formed from two distinct chemotactic populations.
For a “crowded” (negligible extracellular space) tissue it is demonstrated that the model reduces to
a simpler one-species system while for an “uncrowded” tissue it captures both movement of the en-
tire tissue (via cells attaching to/migrating within an extracellular substrate) and the within-tissue
rearrangements of the separate cellular subpopulations. The model is applied to explore the sorting
of a heterogeneous tissue, where it is shown that differential-chemotaxis not only generates classical
sorting patterns previously seen via differential-adhesion, but also demonstrates new classes of be-
haviour. These new phenomena include temporal dynamics consisting of a travelling wave composed
of spatially sorted subpopulations reminiscent of Dictyostelium slugs.

Keywords: Differential-chemotaxis – cell sorting – continuous model – morphogenesis – Dic-
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1 Introduction

Morphogenesis, the patterning of a developing embryo, is contingent on the complex interplay of a

multitude of intracellular and intercellular signalling pathways, leading to the precise spatio-temporal

triggering of cell behaviour, including division, apoptosis, differentiation and cell movement. Various

theoretical models have been proposed to explain morphogenetic patterning. In chemical prepattern

models such as the Turing reaction-diffusion model (Turing 1952), graded chemical signals provide the

“positional information” (Wolpert 1969) to differentiate cells while in mechanochemical (e.g. Murray

2003) or chemotaxis models (e.g. Hillen and Painter 2008) it is the dynamical interaction between

the cells and their surrounding environment (e.g. extracellular matrix (ECM), chemoattractants) that

drives spatial pattern formation.

Cell movement plays numerous roles during both embryonic patterning and functioning of the adult

organism. Migration can occur either as the coordinated movement of entire cell tissues, sheets and

clusters (collective cell migration) or through the movement of cells as individual objects (individual

cell migration), for a review see Friedl and Brocker (2000). The environment in which cells migrate

also varies. Certain cells, such as fibroblasts and leukocytes, have the capacity to move within sparsely

populated (i.e. low cell density) environments such as the dermal layer of the skin. In many cases,

however, migration can continue even within a densely populated (high cell density) environment with

limited extracellular space, for example the migration of border cell clusters in Drosophila (Montell

2006), the rearrangement of epithelial monolayers during insect wing development (Nardi 1994), the

infiltration of solid tumours by macrophages (Murdoch et al. 2004) and the movement of individual

cells within slime mold aggregation mounds (Early et al. 1995). For dense tissues, an important

question arises concerning how movement of one cell population impacts on the distribution of another

population.

The movement of eukaryotic cells such as fibroblasts or Dictyostelium is a multi-step process

involving the extension of cell protrusions (e.g. lamellipodia, pseudopodia, filopodia), attachment to

an external substrate through the formation of adhesion complexes, translocation of the cell body

and detachment at the rear of the cell (Lauffenburger and Horwitz 1996). Creation of the adhesion

complexes is vital: they provide anchoring points for transmitting the forces required for movement as

well as stimulating biochemical signalling processes. For movement in sparsely populated structures,

such as the dermis, these anchor the cell to the surrounding extracellular matrix. In a dense cellular
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tissue, the cells form their adhesion complexes with neighbouring cells and the forces generated by a

moving cell are therefore exerted on its neighbours. Effectively, a cell can pull itself forward only by

pulling other cells back and the net local movement will therefore be zero (see also Odell and Bonner

1986; Dallon and Othmer 2004): for tissue-level movement to occur their must be an attachment to

some surrounding rigid structure.

Coordinated migration hinges on the ability of cells to translate and integrate external guidance

cues into a specific movement response. Cues include oxygen or extracellular chemicals (e.g. chemoat-

tractants and repellents), the ECM (e.g. haptotaxis, contact guidance) and interactions with other

cells (e.g. cell-cell adhesion or contact guidance). Chemotaxis, the guidance of cells in response to

chemical gradients, is essential to many biological cell populations. For bacteria, chemotaxis guides

cells to nutrients and away from harmful substances. During development, chemotaxis has been iden-

tified in a number of processes: in the chick embryo, primitive streak cells navigate via a combination

of attractive and repulsive responses to members of the FGF family (Yang et al. 2002; Dormann and

Weijer 2006); a repulsive response to Wnt-3a directs cardiac progenitors during early heart formation

(Yue et al. 2008); patterning of the nervous system is co-ordinated through growth cone guidance

to a multitude of attractive and repulsive chemotactic factors (Charron and Tessier-Lavigne 2005).

Chemotaxis continues to operate in the adult, notably in the responses of fibroblasts to PDGF during

wound healing (Heldin and Westermark. 1999) or as part of the immune response to infection (Wu

2005). Chemotaxis occurs at various stages of tumour development, including angiogenesis (Larrivee

and Karsan 2000), cancer invasion (Condeelis et al. 2005) and macrophage infiltration of tumours

(Murdoch et al. 2004).

A classic in vivo example of chemotactic-driven patterning lies at the heart of morphogenesis in the

cellular slime mold Dictyostelium discoideum (Figure 1, see also the reviews in Dormann and Weijer

2006; Kimmel and Firtel 2004). In an abundant nutrient environment, Dictyostelium cells exist as dis-

persed and free-living single amoebae. Starvation induces their organisation into dense multicellular

aggregates (mounds) composed of approximately 100,000 cells. Differentiation generates distinct sub-

populations of pre-spore and pre-stalk cell types which are initially dispersed throughout the mound,

but subsequently undergo “spatial sorting” resulting in the compartmentalisation of prestalk cells to

the mound top. The mound transforms into a migrating “slug” which undergoes further differenti-

ation and pattern formation, finally evolving into a fruiting body composed of dead and vacuolated
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Figure 1: Left: schematic of stages in the Dictyostelium lifecycle. Right: cell sorting for two adhesive
populations u (black) and v (white): following disassociation and random mixing of the cell types,
“sorting” occurs in which the cell populations reassemble into distinct spatial configurations. Accord-
ing to the Differential-adhesion hypothesis, these configurations depend on the self-adhesion Su, Sv

(between u and u, between v and v) and cross-adhesion C (between u and v) strengths. For two
populations, the observed patterns are mixing (in which the populations are uniformly distributed –
requires dominant cross adhesion C > Su+Sv

2 ), engulfment (in which the more cohesive population is
engulfed by the less cohesive population – requires Sv < C < Su (or Su < C < Sv)), partial engulf-
ment (for which the cross adhesion strength is less than both the self adhesion strengths – C < Su and
C < Sv) and complete sorting (for which C = 0 and the two populations form separate aggregations).
Figure adapted from Foty and Steinberg (2004).

stalk cells which support the surviving spores until more favourable environmental conditions allow

their germination and re-release as single amoebae. Both during the initial aggregation of the single

amoebae and the subsequent reorganisation of the cells within mounds and slugs, cells remain highly

mobile and their movement is co-ordinated via a chemotactic relaying system in which the amoebae

migrate up gradients of the chemical cAMP, produced by the cells themselves.

The ability of cells to spatially sort within a dense/cellular tissue is also crucial to embryonic de-

velopment, the organs of which form with the distinct tissue layers (epidermis, mesoderm, endoderm)

precisely arranged. Classic experiments by Townes and Holtfreter (1955) demonstrated that following

the disassociation and random mixing of distinct embryonic populations, they were able to reorgan-

ise back into their original embryonic arrangement. A long series of theoretical and experimental

studies by Steinberg et al. (see Foty and Steinberg (2004); Steinberg (2007) for reviews) led to the

“differential-adhesion hypothesis”: differences in the numbers and types of cell adhesion molecules at

the cell membrane would result in local cell rearrangements, eventually leading to macroscopic organ-

isation. The final configuration of the populations would be determined by the self-adhesion (between
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two cells of the same type) and cross-adhesion (between two cells of different type) strengths, see

Figure 1. Theoretical investigations using both discrete (e.g. Glazier and Graner 1993; Palsson and

Othmer 2000) and continuous (e.g. Armstrong et al. 2006) models have demonstrated the capacity

for differential adhesion to pattern a heterogeneous tissue.

Clearly, sorting can be driven solely through the local rearrangement of cells via differential-

adhesion. As described above, in many morphogenetic processes longer range signalling cues such as

chemoattractants play a role – for Dictyostelium the chemical cAMP serves as a chemotactic cue while

in chick gastrulation primitive streak cells are attracted by gradients of FGF-4 and repelled by gradients

of FGF-8. These examples raise the question as to whether differential responses to long range signals

such as chemoattractants can pattern/organise a heterogeneous tissue. However, despite the numerous

theoretical investigations exploring differential-adhesion induced patterning, a corrresponding study

into differential-chemotaxis is lacking. In the context of Dictyostelium slug patterning, it is known

that pre-spore and pre-stalk cells have distinct motility responses (Early et al. 1995) and differential

chemotaxis has been postulated as a mechanism for driving this sorting (Matsukuma and Durston

1979). A variety of theoretical models have shown that differential chemotaxis may pattern the

Dictyostelium slug (e.g. Pate and Othmer 1986; Vasiev and Weijer 1999; Palsson and Othmer 2000;

Umeda and Inouye 2004).

1.1 Paper Outline

The aim is to derive continuous equations capable of describing a heterogeneous tissue composed of

multiple motile cell subpopulations. Specifically, the model will be judged on its capacity to allow

both tissue-level movement and within-tissue movements of the separate subpopulations. In the next

section the relevant modelling is reviewed and its limitations (with respect to the above objectives)

highlighted. In Section 3, a phenomenological approach is employed to motivate the derivation of a

continuous PDE model, while in Section 4 its suitability is explored. In Section 5 the model is applied

to explore the capacity for differential chemotaxis to drive sorting/patterning of a heterogeneous tissue.

The paper concludes with a discussion of the results and an outlook to future explorations.
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2 Modelling Cell Movement in Tissues

Various methods are employed to model population-level chemotactic movement. Broadly, these can

be classified as either discrete or continuous: in the former, cells are modelled as discrete objects

while in the latter populations are represented by continuous variables for the cell densities. Discrete

models offer certain advantages, such as the ease by which cell interactions or extra populations can be

incorporated, yet their numerically taxing character and the difficulty of extracting analytical insight

encourages simultaneous development and study of continuous models.

2.1 Continuous models for chemotaxis: single cell population models

Continuous modelling of chemotaxis dates to the seminal works of Patlak in the 1950s (Patlak 1953)

and Keller and Segel in the 1970s (Keller and Segel 1970, 1971). The Keller-Segel model, initially

developed to describe aggregation of Dictyostelium, forms a cornerstone for modelling chemotaxis. In

its basic form, this system comprises a pair of coupled partial differential equations for the cell density

u(x, t) and chemical concentration a(x, t):

ut = ∇(Du(u, a)∇u − χ(u, a)u∇a) + f(u, a) , (1a)

at = Da∇
2a + g(u, a) . (1b)

In the above, cell dynamics derive from population kinetics and movement, the latter comprising

a diffusive flux modelling undirected (random) cell migration and an advective flux with velocity

dependent on the gradient of the signal, modelling the contribution of chemotaxis. Du(u, a) describes

the diffusivity of the cells while χ(u, a) is the chemotactic sensitivity: generally, both functions will

depend on both the levels of u and a. f and g respectively describe cell growth and signal kinetics.

Often, cells migrate in response to externally generated chemical gradients, e.g. the response of

commisural axons to gradients of various factors secreted at the floor plate (Charron and Tessier-

Lavigne 2005), and the impact of cells on the chemical distribution may be relatively small. In

other instances the cells may play a major role in the signal dynamics either through producing it or

regulating its degradation, an apt example being the regulation of cAMP by Dictyostelium cells. The

incorporation of cell-regulated chemical dynamics into equations (1) has received significant attention

due to its capacity to generate self-organisation: an autocrine-type mechanism in which cells migrate

up gradients of a self-secreted signal can result in their accumulation into aggregation mounds. This
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spatial patterning property of the Keller-Segel equations has contributed to their extension to a variety

of models for biological patterning, including stages in the lifecycle of Dd (e.g. Keller and Segel 1970;

Höfer et al. 1995) or pattern formation in bacteria (e.g Woodward et al. 1995; Tyson et al. 1999).

Under certain formulations of equations (1) this self aggregating property has been shown to lead

to finite time “blow-up” in which cell densities form singularities. Evolution to infinite cell densities,

however, is biologically/physically unrealistic and reveals limitations in the specific formulation of the

model. A focus for a number of studies has been to derive (biologically) plausible and “regularised”

forms of equations (1) for which solutions do not blow-up: the review by Hillen and Painter (2008)

describes a number of these models in detail.

One such method was to incorporate the effects of a maximum tissue density (Hillen and Painter

2001; Painter and Hillen 2002): the singularity formation observed in the minimal model generates

infinite cell densities, thereby neglecting the finite-size of biological cells. Via the assumption that

movement occurs only if there is sufficient available space, a class of volume-filling models is derived

that incorporates a cell density-dependent chemotactic sensitivity. In its simplest form,

ut = Du∇
2u − χu∇ (u(1 − u/k)∇a) , (2a)

at = Da∇
2a + γu − δa . (2b)

with initial data 0 ≤ u(x, 0) ≤ k (where k represents the “maximum tissue density”). For appropriate

parameter values, the above permits aggregations to develop yet solutions do not blow-up and remain

bounded below the maximum tissue density.

2.2 Continuous models for chemotaxis: multiple population models

Many biological tissues are heterogeneous and can contain multiple populations with distinct motility

properties, e.g. the subpopulations generated during Dictyostelium morphogenesis or the guidance

of cells into distinct tissue layers during embryonic gastrulation. For a cell to move within a tissue,

it must form adhesion complexes with either the surrounding ECM/extracellular surface, other cells

(in packed tissues) or a combination; clearly at high cell densities the movement of one population

may significantly impact on the movement of another. While the incorporation of additional popula-

tions into discrete chemotaxis models is relatively straightforward, their incorporation into continuous

models poses a number of challenges.

6



Trivially, the equation for u in (1) can be replaced with a set of equations representing the evolution

of the densities for the various cell populations. The question arises as to how the movement of one

population is influenced by the other cells, i.e. the appropriate dependence of the functions Du and

χ on the population densities. For highly dispersed populations or low density tissues, it may be

reasonable to assume movement is independent of other cells (e.g. Sherratt and Nowak 1992). For

denser tissues, however, cell contacts are inevitable and the impact of cell interactions should be

considered. Despite this, relatively few continuous models have investigated this aspect.

One method is to adopt phenomenological reasoning. For example, Gatenby and Gawlinski (1996)

develop a reaction-diffusion model describing tumour invasion into healthy tissue in which tumour cell

invasion was represented by a diffusion coefficient decreasing with increasing healthy tissue density, i.e.

a denser tissue was assumed to reduce the capacity for the tumour cells to invade. More sophisticated

derivations were attempted by Sherratt (2000) to model “contact-inhibition” between two cell types

and Painter and Sherratt (2003) through a discrete lattice approach; in the PDE models that followed

the movements of one population intrinsically depended on the distributions of other populations.

Simpson et al. (2006) have used similar continuous models to model the invasion of a population of

grafted neural crest cells into a host tissue. In the applications of these models it was demonstrated that

increasing tissue densities could significantly impede movement, even culminating in the “trapping” of

a population at packed densities. This model response may be reasonable to describe certain cell types

(e.g. contact-inhibited populations or flagellar bacteria such as E. coli), yet is clearly inadequate as a

description for the continued movement of other cell types in dense tissues, for example the pre-stalk

and pre-spore cells within the Dictyostelium mound as described earlier.

An alternative approach to model movement of multiple subpopulations in a tissue is to employ

mass-conservation and multiphase methods. Pate and Othmer (1986) considered the former for the

patterning of pre-spore/pre-stalk cells within Dictyostelium by representing the slug as a heteroge-

neous tissue at a constant total cell density. Subpopulations inside the slug were assumed to move

by displacing others such that the total density is preserved; a number of expansions have been con-

sidered (e.g. Umeda 1993; Umeda and Inouye 1999). Significantly, these authors demonstrated that

differences in the chemotactic responses of the subpopulations were sufficient to drive the sorting

of the Dictyostelium slug. Yet the requirement that the overall cell density is constant prevents its

application to earlier (preaggregated) phases of Dictyostelium development. Multiphase models have
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also been developed to model biological tissues: the cell population(s), extracellular matrix and water

that make up a typical tissue are assumed to constitute the distinct components of a multi-phase

mixture and the governing equations for their movement derive from mass and momentum balance

considerations. In the context of cell movement, this approach has been utilised by Byrne and Owen

(2004) to model chemotaxis and by Webb et al. (2007) to model the infiltration of macrophages into

a solid tumour.

3 Derivation of the Continuous Model

The aim is to derive continuous models for movement in a heterogeneous (i.e. multiple cell-type)

tissue. A discrete-space, continuous-time equation is initially postulated for the density of cells on a

lattice before scaling to obtain a continuous macroscopic partial differential equation (PDE) model.

Similar methods have been employed in a number of earlier models (e.g. Othmer and Stevens 1997;

Painter and Hillen 2002; Painter and Sherratt 2003) and, although biologically naive, it offers a simple

path to the PDE system (the focus here). A rigorous derivation from a realistic individual model (e.g.

an individual velocity-jump process, see Alt 1980; Othmer et al. 1988; Hillen 2002) is left for future

work. As described above, an earlier attempt (Painter and Sherratt 2003) using this method was only

partially successful: the model captured the expected dependency on the populations in the movement

terms, yet led to “population trapping” at high tissue densities, at odds with the behaviour of certain

populations (e.g. post-aggregation stages of Dictyostelium). As described earlier, movement of cells is

contingent on their ability to anchor to an external substrate via adhesion complexes: for an isolated

cell moving in a sparsely populated tissue the forces can be directly transmitted to the surrounding

extracellular matrix while for cells in a densely packed population with little extracellular material

(e.g. Dictyostelium mound/slug) the adhesion complexes form with the neighbouring cells. In this

latter case, a cell can only pull itself forward by pulling other cells back, thus displacing its neighbour.

We assume a heterogeneous tissue composed of two cell types defined on a discrete 1D lattice

of uniform spacing h. The densities of the two populations at x are denoted by Ux and Vx while

Wx = Ux +Vx defines the total cell density. We let Wmax ( = constant) represent the maximum tissue

density; note that it would also be possible to allow this to vary in space. Setting ux = Ux/Wmax,

vx = Vx/Wmax and wx = Wx/Wmax, ux and vx now represent the proportion occupied by each cell

type at x while wx and 1 − wx represent the proportions of occupied/unoccupied space.
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It is assumed that movement takes place either through movement unimpeded into neighbouring

unoccupied space or by an “active” cell (i.e. one that pulls forward) displacing a “passive” cell (i.e.

one that is pulled back) in neighbouring occupied space via a process of “location-swapping”. For the

two populations on a discrete 1D lattice of uniform spacing h, these give rise to the following three

possibilities (schematically represented in Figure 2):

(1) type u (or v) cells at x move into unoccupied space at x ± h with rate P 1±
x ux(1 − wx±h) (or

Q1±
x vx(1 − wx±h));

(2) active type u (or v) cells at x displace passive type u (or v) cells at x ± h with rate P 2±
x uxux±h

(or Q2±
x vxvx±h);

(3) active type u (or v) cells at x displace passive type v (or u) cells at x ± h with rate P 3±
x uxvx±h

(or Q3±
x vxux±h).

The rate functions P,Q integrate the various factors impinging on the movement of the cells. Incor-

porating the above modes of movement, we obtain the following evolution equations for u and v at x:

dux

dτ
= +P 1−

x+hux+h(1 − wx) + P 1+
x−hux−h(1 − wx) − P 1−

x ux(1 − wx−h) − P 1+
x ux(1 − wx+h)

+P 3−
x+hux+hvx + P 3+

x−hux−hvx − P 3−
x uxvx−h − P 3+

x uxvx+h (3a)

−Q3−
x+hvx+hux − Q3+

x−hvx−hux + Q3−
x vxux−h + Q3+

x vxux+h ,

dvx

dτ
= +Q1−

x+hvx+h(1 − wx) + Q1+
x−hvx−h(1 − wx) − Q1−

x vx(1 − wx−h) − Q1+
x vx(1 − wx+h)

+Q3−
x+hvx+hux + Q3+

x−hvx−hux − Q3−
x vxux−h − Q3+

x vxux+h (3b)

−P 3−
x+hux+hvx − P 3+

x−hux−hvx + P 3−
x uxvx−h + P 3+

x uxvx+h .

In the equation for u, the first line corresponds to moves of type (1), the second to moves of type (3) in

which active cells of type u displace passive cells of type v and the third to moves of type (3) in which

active cells of type v displace passive cells of type u; note that moves of type (2) simply cancel. In the

extension to 2D we will assume a von Neumann neighbourhood in which cells move to their 4 nearest

neighbours on a square lattice; it is also possible to consider a Moore neighbourhood composed of the

8 nearest neighbours.

To derive a fully continuous model, each of the functions P 1±,3±, Q1±,3± must be defined. In vivo,

various guidance signals are integrated to orient the cell, for example cell-cell interactions (adhesion,
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(a) Type 1 movement (b) Type 2 movement (c) Type 3 movement

Figure 2: Schematic showing the various movements allowed for an active cell at position x moving
into (a) free space, (b) displacing a passive cell of same type at x ± h or (c) displacing a passive cell
of different type at x ± h.

contact inhibition), the extracellular matrix (e.g. haptotaxis, contact guidance) and extracellular

signalling molecules such as chemotactic and chemokinetic cues. Here the only guidance is assumed

to stem from chemotaxis and cells bias movement according to a local chemical gradient:

P±

x ≡ Q±

x ≡ k(1 + κ(ax±h − ax)) (4)

where a represents the distribution of the chemotactic signal. k is a positive phenomenological con-

stant which represents the “capacity for movement”: this parameter would depend on a host of factors,

principally the biochemical details surrounding the formation of adhesion complexes and biophysical

properties regarding the local tissue environment. κ represents the ratio of chemotactic:random guid-

ance. Note that the sign of κ can be positive or negative to describe chemoattraction or chemorepulsion.

The above forms have been adopted in earlier derivations of chemotactic equations (e.g. Othmer and

Stevens 1997; Painter and Hillen 2002): their employment here is motivated by their simplicity rather

than strict biological accuracy.

3.1 Single cell population

Derivation of the macroscopic PDE from the discrete-space/continuous time equation (3) is straight-

forward: the process is illustrated following the restriction to a homogeneous tissue (i.e. a single cell

population u). Setting v = 0 in equations (3) we obtain

dux

dτ
=

(
P 1−

x+hux+h + P 1+
x−hux−h

)
(1 − ux) − ux

(
Px

1−(1 − ux−h) − P 1+
x (1 − ux+h)

)

with P 1± given by equation (4). x is reinterpreted as a continuous variable, the RHS terms are

expanded as Taylor’s series and the scaling τ = λt is introduced. Assuming that limλ→∞,h→0 kλh2 =

Du, limλ→∞,h→0 2kκλh2 = χu (where Du, χu are constants) and extending the process to higher
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dimensions, we obtain the cell equation in the volume-filling model (2). Note that in the 2D derivation

the same form of equation can also be derived when considering a Moore neighbourhood (i.e. 8 nearest

neighbours in the underlying discrete space model) although the precise form for the limits vary.

3.2 Multiple cell populations

For two populations u and v it is assumed that the movement properties are essentially the same:

P 1±
x = k1

u(1 + κu(ax±h − ax)) , P 3±
x = k3

u(1 + κu(ax±h − ax))) ,
Q1±

x = k1
v(1 + κv(ax±h − ax)) , Q3±

x = k3
v(1 + κv(ax±h − ax)) .

(5)

As earlier, each of the k1’s are constant parameters for the capacity of movement within uncrowded

regions, while the k3’s are the corresponding parameters for crowded regions: in vivo these parameters

would depend on the capacity of the cells to bind to either other cells or the substrate. Substituting

(5) into equations (3), deriving the PDE model and extending to higher dimensions gives the two-

population model

∂u

∂t
=

(1u)
︷ ︸︸ ︷

αu∇ ((1 − w)∇u + u∇w) +

(2u)
︷ ︸︸ ︷

(βu + βv)∇ (v∇u − u∇v)

−

(3u)
︷ ︸︸ ︷

αuφu∇ ((1 − w)u∇a) −

(4u)
︷ ︸︸ ︷

(βuφu − βvφv)∇ (uv∇a) , (6a)

∂v

∂t
=

(1v)
︷ ︸︸ ︷

αv∇ ((1 − w)∇v + v∇w) +

(2v)
︷ ︸︸ ︷

(βu + βv)∇ (u∇v − v∇u)

−

(3v)
︷ ︸︸ ︷

αvφv∇ ((1 − w)v∇a) −

(4v)
︷ ︸︸ ︷

(βvφv − βuφu)∇ (uv∇a) , (6b)

where αu,v = limλ→∞,h→0 k1
u,vλh2, βu,v = limλ→∞,h→0 k3

u,vλh2, φu,v = limλ→∞,h→0 2κu,vλh2. A list of

the parameters and their interpretations is provided in table 1. The RHS terms in the above equations

break down as:

• terms (1u) (or (1v)) derive from the random (i.e. diffusive) motility of cells u (or v) in uncrowded

regions (i.e. movement of type (1) in figure 2) with uncrowded random motility coefficient αu

(or αv);

• terms (2u) (or (2v)) arise from the random component in which active u (or v) cells displace

passive cells of type v (or u) (i.e. movement of type (3) in figure 2) with crowded random motility

coefficient βu (or βv);
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Parameter Definition

αu(αv) Random motility coefficient of populations u (v) in uncrowded regions. Note that
this parameter corresponds to the cell diffusion coefficient in dispersed populations.

βu(βv) Random motility coefficient of populations u (v) in crowded regions.
αuφu(αvφv) Chemotactic efficiency of population u (v) within uncrowded regions.
βuφu(βvφv) Chemotactic efficiency of population u (v) within crowded regions.

Table 1: List of the parameters and their interpretations for equations (6).

• terms (3u) (or (3v)) follow from the chemotactic component to movement of cells u (or v) in

uncrowded regions with uncrowded chemotactic efficiency αuφu (or αvφv);

• terms (4u) (or (4v)) derive from the chemotactic component to the movement in which active

cells of type u (or v) displace passive cells of type v (or u) with crowded chemotactic efficiency

βuφu (or βvφv).

Adding equations (6) gives the evolution equation for the total cell distribution:

∂w

∂t
= ∇ ((1 − w)(αu∇u + αv∇v) + (αuu + αvv)∇w) −∇ ((1 − w)(αuφuu + αvφvv)∇a) . (7)

As should be expected, the terms in (7) only derive from migration in uncrowded regions: movement

through displacement has no bearing on the total cell density.

The aim is to explore the capacity of equations (6) to model different types of movement in both

crowded (dense) and uncrowded (dispersed) tissues. To concentrate solely on the movement terms we

dispense of cell kinetics, though note that cell growth, death or transdifferentiation between the two cell

types can easily be incorporated. Realistic initial conditions require 0 ≤ u(x, 0), v(x, 0) ≤ w(x, 0) ≤ 1:

cell densities are neither negative nor exceed the maximum tissue density. For the signal kinetics both

an independent chemotactic signal profile and the following two-population extension of the linear

signal dynamics in equations (2) are considered:

∂a

∂t
= Da∇

2a + µu + νv − δa , (8)

where µ and ν represent the rates of signal production by u and v respectively, Da is the chemical

diffusion coefficient and δ represents chemical degradation: the focus here is on patterning via cell

interactions and linear signalling kinetics are chosen for their simplicity.

12



4 Migration in crowded/uncrowded tissues

4.1 Migration in a crowded tissue

For a crowded tissue it is assumed that the extracellular space between cells is minimal; for example,

mound and slug stages in Dictyostelium, epithelial tissues or certain types of solid tumour. Therefore

w(x, 0) = 1 and, via equation (7), w(x, t) = 1 for t > 0. This conservation law allows the reduction of

equations (6) to a single cell equation by setting v = 1 − u, resulting in the crowded-tissue model:

∂u

∂t
= ∇ ((βu + βv)∇u − (βuφu − βvφv)u(1 − u)∇a) and

∂u

∂t
= −

∂v

∂t
(9)

Thus, the movement of u is exactly countered by that of v to maintain uniform total density: the

above equations are similar to those employed by Pate and Othmer (1986) to describe pre-spore and

pre-stalk patterning within the Dictyostelium slug. Note further that the above two-equation system

reduces to the single cell volume-filling model (2). In the special case of symmetric populations (i.e.

both populations equally efficient), βuφu = βvφv and all tactic terms disappear. The properties of

equations (9) can be understood by examining two scenarios: a response by cells to a fixed gradient

and an autocrine process in which cells produce their own chemotactic signal 1.

4.1.1 Fixed gradient

Here it is assumed that a chemoattractant diffuses through the tissue from a source (at x = 0) to

create the fixed profile

a(x) = a0 exp(−θx) . (10)

where a0, θ are positive parameters. The signal is presumed to be an attractant for both u and v with

u the more efficient population: βuφu > βvφv > 0. Initially u is placed further away from the source:

u(x, 0) = (1 + tanh(x1(x − x0))) /2 and v(x, 0) = 1 − u(x, 0) = (1 − tanh(x1(x − x0))) /2 .

Equations (9) with a(x) given by (10) are solved on a 1D domain [0, L] subject to zero-flux boundaries

conditions.

For cells unable to move in crowded tissues (βu = βv = 0), the RHS terms in equations (9) vanish

and the solutions are trivial. No movement is possible and u is trapped away from the chemotactic

source (Figure 3 (a)). Immobilisation of a motile cell population as a result of close packing may

1Note that while the model considers minimal extracellular space, it is implicitly assumed that there is enough space

between cells for small extracellular molecules to pass.
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Figure 3: Simulations of population movement in a crowded and heterogeneous tissue. (a)/(b)
Response to a fixed attractant gradient (direction of increasing attractant indicated by arrow). In (a)
it is assumed that there is no movement by displacement (βu,v = 0) and populations u (top row) and
v (bottom row) are immobilised: the more efficient population (u) remains trapped further from the
chemotactic source. In (b), cell displacement occurs (βu,v = 0.01) and the more efficient population
(u) is able to displace the weaker one at the attractant source. For both (a) and (b), equations (9)
were solved with a given by (10) on the domain [0, 4] subject to the stated initial/boundary conditions
with x0 = 3, x1 = 5, a0 = 1, θ = 0.25 and φu = 200, φv = 100. (c)/(d) Cells produce the chemotactic
signal. In (c) βu,v = 0 and the populations are again immobilised: cells remain at the quasi-uniform
initial distribution. In (d) βu,v = 0.01 and cell migration can continue within the crowded tissue.
Chemotactic sorting occurs provided condition (12) is satisfied and the two populations separate into
distinct spatial compartments. For (c) and (d), equations (11) were solved numerically on the 1D
domain [0 , 10] subject to periodic boundary conditions with u(x, 0) = 0.25+r(x), v(x, 0) = 1−u(x, 0)
(where r(x) is a small (1%) random spatial perturbation) and a(x, 0) set at its steady state value.
Other parameters were set at φu = 200, φv = 100 and ρ = 0.0. Simulations were performed as
described in the appendix with ∆x = 0.02 in (a) and (b) and ∆x = 0.05 in (c) and (d).

be applicable in certain systems, yet is certainly not universally valid. Allowing cells to move in a

crowded tissue (at least one of βu,v > 0), permits migration to continue (Figure 3 (b)) and, as the

more efficient population, the net movement of u is up gradients in a resulting in its displacement of

v at the attractant source. Increasing the size of βuφu − βvφv accelerates this process.

4.1.2 Autotactic responses

The analysis is expanded to explore the conditions under which a heterogeneous and packed tissue can

spatially sort via differential chemotactic responses. Equations (9) are coupled to the signal dynamics

(8) (with v = 1− u) and (without loss of generality) u is assumed to produce chemical (µ > 0) and at
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a greater (or equal) rate to v (ν ≤ µ). Introducing the scalings

t̂ = δt , x̂ =

√

δ

Da
x , â =

δ

µ
a ,D =

(βu + βv)

Da
, χ =

µ(βuφu − βvφv)

Daδ
, ρ =

ν

µ
,

generates the following nondimensional equations (after dropping the ‘hats’)

∂u

∂t
= D∇2u − χ∇ (u(1 − u)∇a) , (11a)

∂a

∂t
= ∇2a + ρ + (1 − ρ)u − a . (11b)

Note that 0 ≤ ρ ≤ 1 and D ≥ 0. The above are studied on a 1D ([0, L]) domain subject to periodic

boundary conditions and realistic initial conditions (u(x, 0) ∈ [0, 1]). The model (11) is equivalent to

the volume-filling model (2) derived previously in Painter and Hillen (2002) and possesses the uniform

steady state (us, vs) = (us, ρ + us(1 − ρ)) (where us ∈ [0, 1] follows from the initial data). Linear

stability analysis determines the instability condition

χ(1 − ρ) >
D

us(1 − us)
. (12)

The above implies χ > 0 and ρ 6= 1 for patterning to occur: sorting requires the cell populations to

have both different chemotactic responses and different rates of signal production. Further, patterning

may occur even when the signal acts as a repellent for both u and v. With βu = βv = 0 (no movement

in crowded tissues), χ = D = 0 and the RHS terms in (11a) vanish: patterning will not occur and the

cell populations remain immobilised (see Figure 3 (c)). For at least one of βu,v > 0 (with condition

(12) met) sorting of the tissue into compartmentalised populations can occur (e.g. see Figure 3 (d)).

4.2 Migration in uncrowded tissues

We assume next that a significant portion of unoccupied space exists between the cells: w0 < 1 where

w0 is the spatially averaged proportion of occupied space. To reduce the number of parameters for

the study, it will be assumed the two cell types are identical with the exception of their chemotactic

efficiency: therefore αu = αv = α and βu = βv = β in equations (6), i.e. the capacities for movement

for the two cell types are the same. The following three general cases will be investigated:

1. movement takes place only by displacement of other cells, α = 0, β > 0 (i.e. only moves of types

(2)/(3) in Figure 2);

2. movement takes place only through moving into free space, α > 0, β = 0 (i.e. only moves of

type (1) in Figure 2);
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3. cells equally adept at moving into free space/moving through displacement, α = β > 0.

The first is applicable to cells unable to attach to an extracellular surface/substrate. In this case, as

argued earlier, we should expect no tissue-level movement to occur. The second models populations

unable to develop physical attachments with other cells (i.e. unable to form cell-cell adhesions) – at

high cell densities (close to the maximum density), we expect within tissue movement to be highly

restricted. Equations (6) are coupled to the linear signal kinetics (8) and studied numerically subject

to three distinct initial configurations (illustrated in Figure 4 column (a)): an initially uniform tissue

(top row) and nonuniform tissues (middle and bottom rows). Note that the initial distributions of the

subpopulations u and v are the same (subject to a small random perturbation). In the simulations

shown in Figure 4, u is the only signal secreter (ν = 0) and displays greater chemotactic efficiency

(φu > φv). The equations are numerically solved until solutions have evolved to a heterogeneous

steady state distribution (as defined in the appendix).

For 1. movement only by displacement, cells are unable to migrate into unoccupied space: α = 0 in

equation (7) implies that the total cell density is fixed. As expected, the net movement of the tissue in

this case is zero (Figure 4 (b)). Within the tissue, however, subpopulations move via displacement and

differential chemotaxis permits within-tissue sorting of the two populations similar to that previously

observed. Note that for the initial distribution in the bottom row, the total cell density at the troughs

is zero and no transfer from one peak to the other occurs: this is reflected in both subpopulations

being present in each of the peaks.

For 2. α > 0 and the total cell density will vary over time: the capacity for cells to migrate

into free space enables movement of the entire tissue and chemotaxis drives aggregation into a single

mound, Figure 4 (c). However, inside the mound w . 1 and, since β = 0, from equations (6) we

expect restricted movement of the subpopulations. This is reflected in the lack of within-tissue sorting

of the subpopulations.

For 3., by combining both movement by displacement and into free space, an amalgamation of the

above results is observed: movement into free space results in tissue level patterning (evolution into a

single aggregation) while movement by displacement allows within-tissue sorting of the subpopulations

into distinct compartments. For the chosen parameters, this results in the formation of an “engulfed”

distribution in which the more efficient/signal producing population (u) is focused to the centre and

the less efficient one (v) is confined to the periphery (Figure 4 (d)). Note that the initial distribution
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(a) (b) (c) (d)

Figure 4: Tissue and subpopulation movement in a heterogeneous tissue. Initially, the tissue is
distributed according to one of the three configurations indicated in column (a) (note that initially the
u and v subpopulations are almost equally distributed). (b) α = 0.0, β = 0.01. Movement only occurs
by displacement and the distribution of the tissue remains unchanged. Within-tissue redistribution
results in the sorting of population u from population v. (c) α = 0.01, β = 0.0. Movement only
into free space and the tissue accumulates into a single aggregate. No within-tissue sorting of the
populations can occur. (d) α = β = 0.01. A single aggregation develops in which the distinct
subpopulations spatially sort, eventually forming an “engulfed” pattern. Other parameters are set at
φu = 200.0, φv = 100.0, Da = µ = δ = 1.0 and ν = 0.0. Equations (6) with (8) were solved on a 1D
domain [0, 4] as described in the appendix using ∆x = 0.04 and periodic boundary conditions. Note
that in the first row, aggregations develop at a random location due to the noise in the initial data.
For the bottom two rows the positions of aggregations are determined by the bias in the initial cell
distribution.

does not notably alter the configuration of the population. Further note that in these simulations we

have conveniently set α = β; choosing α > β (i.e. movement into free space is “easier” than movement

by displacement) or β > α (movement by displacement is “easier” than movement into free space) does

not greatly alter the final pattern, but does impact on the timing of the various patterning processes.

In this section, it was shown that the model is capable of describing movements of and within a

heterogeneous tissue: different assumptions on the capacity of the populations to move markedly alter

the different types of patterning observed. In Figure 4, (d), the populations sorted into an engulfed

distribution, analogous to those observed for adhesion driven sorting (e.g. Foty and Steinberg 2004;
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Armstrong et al. 2006). The parameters for α and β were identical and thus the patterning can be

attributed to the different chemotactic efficiencies. In the next section, the extent to which differential

chemotaxis can spatially organise a heterogeneous tissue is investigated further.

5 Cell sorting via differential chemotaxis

Population displacement and distinct responses to a chemotactic signal were shown above to drive

within-tissue sorting of distinct subpopulations. The distinct motility responses of pre-spore and pre-

stalk cells (Early et al. 1995) appears to play a key role during Dictyostelium sorting and differential

chemotaxis has been postulated as a mechanism for this process (Matsukuma and Durston 1979). A

variety of theoretical models support this theory (e.g. Pate and Othmer 1986; Vasiev and Weijer 1999;

Palsson and Othmer 2000; Umeda and Inouye 2004).

While experimental (reviewed in Foty and Steinberg (2004); Steinberg (2007)) and theoretical (e.g.

Glazier and Graner (1993); Armstrong et al. (2006)) studies have explored the capacity for differential-

adhesion to sort tissues, a detailed investigation into differential-chemotaxis induced patterning is

lacking. We use the model to initiate this study here, comparing the results with those obtained via

differential-adhesion. A heterogeneous tissue is considered comprised of two populations (u and v)

exhibiting one of the following interactions (see also Figure 5):

• a single chemotactic signal produced by both populations (Figure 5 (i)),

• dual chemotactic signals, each produced by a distinct cell population (Figure 5 (ii)).

The former is relevent to Dictyostelium mound patterning, although we do not intend to directly model

this system: any applications would require careful consideration of appropriate signalling dynamics.

Multiple tactic signals have been identified as playing a role in the patterning of a number of biological

systems, for example a combination of attraction to FGF4 and repulsion by FGF8 directs primitive

streak cells during chick gastrulation (Yang et al. 2002).

Comparing with differential-adhesion, a single signal can be likened to two populations presenting

the same type of adhesion receptor at their membrane, albeit at varying densities: the populations will

be intrinsically linked through their production of/response to the same signal. The latter scenario

(dual signals) can be compared with two populations presenting multiple classes of adhesion receptors

at varying concentrations: the interactions between the populations will depend on their precise
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Figure 5: Illustration of the two sorting scenarios. (i) Two cell populations (u and v) both produce
and respond to a single signal (a). (ii) The two cell populations (u and v) each produce a distinct
chemotactic signal (a and b).

response to the different signals. This analogy indicates similar patterning can be expected, yet certain

differences demand remark. Firstly, chemotactic responses can be either attractive or repulsive while

adhesion is strictly attractive. Secondly, for differential adhesion the cross-population interactions are

symmetric since adhesive binding between the two separate cell types will generate equal but opposite

forces. For differential chemotaxis, this symmetry vanishes: the response of u to the signal produced

by v is likely to be different to that of v to the signal produced by u.

5.1 Sorting under a single signal

The single signal case expands the study in Section 4. Thus, equations for cell movement are given

by (6) while the chemical dynamics are given by (8). In Section 4 it was demonstrated that distinct

chemotactic responses could lead to the within tissue sorting of subpopulations in a crowded tissue

(see Figure 3 (d)) and to the engulfment of one population by the other in the case of an uncrowded

tissue (see Figure 4 (d)). The focus of this study is to determine the range of patterning that can be

induced via differential chemotaxis and, to focus on the relevent parameters, it is therefore assumed

that the two cell populations are equivalent with the exception of their chemotactic sensitivities with

both populations equally adept at moving in crowded/uncrowded regions:

αu = αv = βu = βv ≡ α . (13)

The above restriction both reduces the number of free parameters and simplifies the equations. The

behaviour reported in the following sections can also be observed when restriction (13) is lifted,

although a thorough analysis has not been conducted. As before, it is assumed that µ > 0 and
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0 ≤ ν ≤ µ in equations (8). By setting (13) in equations (6) and introducing the scalings

t̂ = δt , x̂ =

√

Da

δ
x , â =

δ

µ
a ,D =

α

Da
, χu =

αφuµ

Daδ
, χv =

αφvµ

Daδ
, ρ =

ν

µ
,

we arrive at the nondimensional system (after dropping the ‘hats’)

∂u

∂t
= D∇((1 + v)∇u) − D∇(u∇v) − χu∇(u(1 − u)∇a) + χv∇(uv∇a) , (14a)

∂v

∂t
= D∇((1 + u)∇v) − D∇(v∇u) − χv∇(v(1 − v)∇a) + χu∇(uv∇a) , (14b)

∂a

∂t
= ∇2a + u + ρv − a . (14c)

Note that 0 ≤ ρ ≤ 1. In the above, the populations differ only with respect to their chemotactic

efficiencies (χu and χv) to a and rate of signal production (ρ). Equations (14) will be studied on

both a 1D domain [0, L] and 2D square [0, L] × [0, L] with periodic boundary conditions. Initially, a

uniform total cell density w(x, 0) = w0 is considered, composed of an equal mixture of the 2 cell types.

Specifically,

u(x, 0) = w0/2 + Φ(x) and v(x, 0) = w0/2 − Φ(x) ,

where Φ(x) is a small random perturbation, normalised such that the spatially averaged cell densities

are both equal to w0/2. The above ensures that the two cell populations are uniformly distributed

throughout the tissue, thus modelling the initial dispersing and random mixing of the subpopulations.

5.1.1 Numerical analysis

A linear stability analysis of the 1D case about its homogeneous steady state determines the following

third order characteristic polynomial for the eigenvalues λ:

0 = λ3 + a(k2)λ2 + b(k2)λ + c(k2) , with (15)

a(k2) = 2(1 + k2(Dw0 + 2D + 1)) ,

b(k2) = k2(D(2 + D + w0(1 + D))k2 + (D(2 + w0) + w2
0(1 + ρ)(χu + χv)/4 − w0(χu + ρχv)/2)) ,

c(k2) = k4(D2(1 + w0)k
2 + D(D(1 + w0) + w3

0(χu + χv)(1 + ρ)/4 − w0(χu + ρχv)/2)) ,

where k is the wavenumber. A complete analysis into the conditions under which at least one of the

eigenvalues has a positive real component (and hence instability of the steady state) is algebraically

intricate and outside the aims of the present paper: we remark only that instability will depend

on the sizes/signs of the above coefficients and hence on the sizes of the chemotactic sensitivities.
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Instead, a numerical analysis into the properties of equations (14) is employed. We set D = 0.01

as an appropriate value (i.e. random cell motility is two orders of magnitude slower than chemical

diffusion), and assume the χ’s are restricted to the ranges

−2 ≤ χu, χv ≤ 2 .

Solutions are obtained through numerical integration of (14) until solutions have either converged to

a stationary solution (defined numerically) or a maximum upper time limit is reached (see appendix

for details). Note that we cannot determine whether the solutions obtained numerically represent

stationary solutions or slowly-evolving transients. Indeed, either possibility is conceivable within

chemotactic systems (e.g. Hillen and Painter 2008). Comprehensively addressing these issues would

require nonlinear analysis, outside the aim of the present work.

A systematic exploration of the (χu, χv, ρ) parameter space was conducted, revealing three major

behaviour types: no patterning (solutions evolved to the uniform steady state), stationary patterns (so-

lutions evolve to a nonuniform steady-state distribution) and temporal patterns (nonuniform solutions

undergoing sustained temporal dynamics). The second and third types can be further subclassified

according to the spatial arrangement of cell populations or the form of the temporal behaviour. Us-

ing the same terminology as introduced for adhesion-driven sorting (see Figure 1), for the stationary

patterns

(a) Single population aggregations (one population aggregated, other remains dispersed, Figure 6

(a));

(b) Complete sorting (subpopulations organise into separate aggregations for u and v, Figure 6 (b));

(c) Engulfment (single aggregation with one subpopulation enclosed by the other, Figure 6 (c));

(d) Mixing (single aggregation forms with no within-aggregation sorting of u and v, Figure 6 (d)).

Each of the above classes are robust with respect to the initial total cell density (rows in Figure 6

(i)). Only in the limiting scenario w0 = 1.0 do the pattern classes become indistinguishable: for

w0 = 1, equations (14) revert to the crowded tissue model and the only patterns are mixing or

compartmentalisation of u and v within the tissue (see Section 4.1.2). On a larger domain, separate

and sorted aggregations initially develop which subsequently coarsen (as observed previously for single-
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(i) Stationary patterns in 1D for increasing total cell density

(ii) Corresponding stationary patterns in 2D

(iii) Coarsening of the engulment pattern on a larger domain

Figure 6: (i) Examples of the 4 classes of stationary pattern found for equations (14). The distributions
of u (solid line) and v (dashed line) are shown for (a) single population aggregates (χu, χv, ρ) =(1, 0, 1),
(b) complete sorting (1,−2, 0), (c) engulfment (2, 1, 1), and (d) mixing (1, 1, 1). Note that in (d)
the distributions of u and v are indistinguishable. From top to bottom, the initial total cell density
is increased from 0.2 to 1.0. (ii) Corresponding stationary patterns on a 2D square domain. The
distributions in 2D are represented by plotting the total (u+v) density (black mesh) and representing
the proportions of u and v within the aggregation by the underlying colorplot (regions with low total
cell density are shaded white for clarity). In the 2D simulations w0 = 0.25. (iii) Coarsening of
the engulfment pattern on a larger initial domain. The populations initially aggregate into multiple
aggregations which merge over time. In the above simulations, equations (14) were solved as described
in the appendix on the domains (i) [0, 4] (∆x = 0.05), (ii) [0, 3] × [0, 3] (∆x = ∆y = 0.04) and (iii)
[0, 12] (∆x = 0.1) with periodic boundary conditions.
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(i) oscillating aggregation

(ii) travelling wave aggregation

Figure 7: Examples of sustained spatio-temporal patterning in the one-signal model. (i) Oscillating
aggregation. The left-most frame gives the “space-time plot” (black indicates a higher proportion of
v-cells, white indicates a higher proportion of u cells) and the other frames show snapshots of the
spatial distribution for u (solid line) and v (dashed) at the indicated times. (ii) Travelling aggregation
(moving with constant speed/shape in the direction indicated by the arrow). Equations (14) were
solved on the 1D domain [0, 8] for (i) χv = −2.0 and (ii) χv = −1.0 with remaining parameters set at
χu = ν = 0.0 and w0 = 0.4. For each of the above simulations, equations (14) were solved as described
in the appendix on the domain (i) [0, 8] (∆x = 0.1) and periodic boundary conditions.

population chemotaxis models, e.g. Hillen and Painter 2008). This is shown in Figure 6 (iii) for the

“engulfment” class.

Two classes of sustained spatio-temporal dynamics were identified:

(a) Oscillating aggregations – aggregations undergo sustained oscillations (Figure 7 (i));

(b) Travelling aggregations – travelling wave in the form of a migrating aggregation (Figure 7 (ii)).

It is worth remark that oscillating aggregations have also been reported in a 3 variable chemotaxis

model by Painter and Hillen (2002), however for a single cell population responding to two chemical

signals.

5.1.2 Patterning in the (χu, χv, ρ) space

The correlation between chemotactic efficiency and pattern type was investigated by systematic ex-

ploration of (χu, χv, ρ) space. Equations (14) were numerically solved at different (χu, χv) points and

fixed ρ and the pattern was classified at the end of each run. The plots in Figure 8 display the results
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for (a) ρ = 1 (populations produce equal amounts of signal) and (b) ρ = 0, (only u produces signal).

Simulations at intermediate values of ρ reveal interlying behaviour.

Explicit calculation of the dispersion relation (15) at each parameter set revealed a range of positive

wavenumbers with a positive and real eigenvalue for locations giving rise to stationary patterns and

eigenvalues with both positive real and non-zero imaginary parts at locations giving rise to spatio-

temporal patterns. When ρ = 1 (Figure 8 (a)) the patterning is symmetric about the diagonal and

no temporal behaviour is observed. The following general relationships were observed

• Single aggregation peaks generally occur for χu > 0, χv = 0 (or vice versa). Here, aggregation

of the chemotactic population occurs through signal production/chemoattraction feedback. The

non-tactic population is displaced from the region occupied by the aggregation and remains

dispersed.

• Complete sorting occurs for χu > 0 > χv (or χv > 0 > χu). The signal production/positive

chemotaxis feedback creates the primary aggregation of one population while the chemorepulsive

response of the second population forces them into a separate aggregation mound.

• Engulfment occurs for χu > χv > 0 (or χv > χu > 0). The positive chemotaxis by both

populations result in a single aggregation. The more sensitive population accumulates at the

centre (corresponding to the chemoattractant peak) through its displacement of the less sensitive

population.

• Mixing occurs for χu ∼ χv > 0. With positive and similar chemotactic sensitivities, aggregation

into a mound occurs yet the small difference in chemotactic sensitivities prevents any within-

mound sorting of the subpopulations.

When ρ = 0 (Figure 8 (b)) similar relationships define the patterns, yet asymmetry in the production

rate rotates the patterning into the χu > 0 region. Note further that sustained temporal patterns can

develop (as illustrated in Figure 7). Patterning in this instance derives from the aggregation of v into

a mound through its repulsion from the signal produced by u. However, it is worth stressing that the

temporal behaviour observed was only found in restricted parameter regions and was highly sensitive

to both domain size and initial conditions.

Above, we demonstrated that a single chemotactic signal can generate a wide variety of patterning
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Figure 8: Variation of pattern type with chemotactic efficiencies for equations (14) when (a) ρ = 1
and (b) ρ = 0. Equations (14) were solved as described in the appendix on a 1D domain [0, 4] (using
∆x = 0.05 and periodic boundary conditions).

in a heterogeneous tissue. Comparing with differential-adhesion, earlier we likened the single signal

case to two cell populations displaying the same class of adhesion receptor (albeit at different con-

centrations): in differential-adhesion only attractive responses are possible and therefore only mixing

or engulfment can be expected. With differential-chemotaxis, positive and negative responses extend

the patterning to include complete sorting and temporal patterns. Further, we note that only simple

kinetics have been considered here: chemotactic populations may also regulate degradation of the

signal, possibly leading to a greater range of patterning.

5.2 Sorting behaviour under two signals

The analysis is extended such that populations u and v each generate distinct chemotactic signals (a

and b respectively) that elicit chemotactic responses from both populations. Thus, each of u and v

display both a self-taxis (to a and b) and cross-taxis (to b and a) response. The derivation of equations

(6) assumed a single chemotactic cue yet extension to multiple chemotactic signals is straightforward

(e.g. see Painter et al. 2000; Luca et al. 2003). Specifically, functions (5) are assumed to incorporate

biases to local gradients in a and b:

P,Q ≡ k(1 + κa(ax±h − ax) + κb(bx±h − bx)) .

The derivation of the macroscopic model follows as for equations (6) and, after incorporating linear

chemical kinetics, employing the same assumptions as given by (13) and nondimensionalising, the
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Definition Interpretation

χu−a self-tactic sensitivity of u chemotactic response of u to the chemical produced by u
χv−b self-tactic sensitivity of v chemotactic response of v to the chemical produced by v
χu−b cross-tactic sensitivity of u chemotactic response of u to the chemical produced by v
χv−a cross-tactic sensitivity of v chemotactic response of v to the chemical produced by u

Table 2: Parameters and definitions for the self and cross-chemotactic sensitivity parameters

following model is derived (see appendix for full details):

∂u

∂t
= ∇(

(1u)
︷ ︸︸ ︷

D(1 + v)∇u − Du∇v−

(2u)
︷ ︸︸ ︷

u(1 − u) (χu-a∇a + χu-b∇b)+

(3u)
︷ ︸︸ ︷

uv (χv-a∇a + χv-b∇b)) (16a)

∂v

∂t
= ∇ (D(1 + u)∇v − Dv∇u − v(1 − v) (χv-a∇a − χv-b∇b) + uv (χu-a∇a + χu-b∇b)) (16b)

∂a

∂t
= ∇2a + u − a (16c)

∂b

∂t
= Dc∇

2b + v − δb (16d)

In the above, we denote by χu-a the chemotactic sensitivity of u to signal a (and so on). In the

equation for u, the terms in (1u) describe the random component to movement, terms in (2u) describe

chemotactic movement of u up gradients in a and b and terms in (3u) arise from the displacement of

u due to chemotaxis of v to a and b. The v equation can be interpreted analogously. With the focus

on differential-chemotaxis induced patterning, we set D = 0.01 and assume a and b have equivalent

diffusion and degradation rates (Dc = δ = 1). These restrictions allow us to concentrate on those

parameters defining the self- and cross- chemotactic responses, defined in Table 2.

The above equations are studied both on a 1D domain [0, L] and 2D square [0, L] × [0, L] with

periodic boundary conditions. We consider the same initial tissue as for the single signal case, i.e.

an initial uniform total cell density w(x, 0) = w0 consisting of equal proportions of the two uniformly

distributed subpopulations. With these initial conditions, equations (16) (with δ = 1) possess a steady

state at (w0/2, w0/2, w0/2, w0/2); stability analysis can be performed, yet the fourth-order polynomial

precludes calculation of an explicit condition for instability.

Numerical simulations were conducted as for the single signal case under variation of the 4 chemo-

tactic sensitivities restricted to the ranges

−2 < χu−a, χu−b, χv−a, χv−b < 2 .

Despite the restrictions already imposed, the taxing nature of numerics excludes complete investigation
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into this parameter space. Two methods were utilised: (1) chemotactic-sensitivity values were chosen

randomly (within the above ranges) and (2) a systematic exploration of the “self-tactic” parameter

space was conducted at specific cross-tactic sensitivity pairings. Together, this provides reasonable

insight into the scope of patterning yet it is impossible to rule out whether other behaviour is possible

in uncharted regions. As for the single signal case, a variety of both stationary and temporal patterns

was observed.

5.2.1 Pattern types

As before, parameter regimes were found in which solutions evolved to each of the 4 main stationary

pattern types described for the single signal model. An additional stationary pattern class, termed

partial engulfment (corresponding to the terminology used to describe adhesion-driven sorting) was

also found. Intuitively, this occurs when the two cell populations have strong and positive self-taxis

(resulting in aggregation in response to their own signal) and a lower level of positive cross-taxis

(allowing the aggregations to join together). Representatives of each of the stationary pattern types

(in both 1D and 2D) are plotted in Figure 9 (i).

For a single-signal, sustained temporal behaviour was found only in restricted regions of the pa-

rameter space and their formation was sensitive to factors such as domain size and initial conditions.

In the extension to dual-signals, spatio-temporal patterns were both frequently observed and robust,

indicating expansion to wide regions of parameter space. An expanded range of spatio-temporal

patterns was identified, including analogues of some of the stationary pattern types: in figure 9 (ii)

“engulfed” and “partially-engulfed” travelling aggregations are illustrated. In 2D, these temporal pat-

terns take the form of a migrating and patterned “slug”: an aggregation develops that migrates across

the domain with constant speed and within which the two subpopulations are compartmentalised.

An example is shown in the bottom row of Figure 9 (ii) and a movie of this process is available at

http://www.ma.hw.ac.uk/~painter/diffchemotaxis/index.html. Note that the slug simulations

in 2D have employed biased initial conditions to speed up the formation of the pattern, though the

same behaviour is also observed using random initial data.

5.2.2 Patterning in (χu−a, χv−b) space

To determine the correspondence between sensitivity parameters and pattern type, an exploration

of the self-tactic space (χu−a, χv−b) was conducted for various cross-tactic sensitivity (χu−b, χv−a)
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Figure 9: (i) Representative stationary patterns in the dual signal sorting model. Distributions for
u (solid line) and v (dashed line) are plotted for 1D (top row) and 2D domains at different points
in (χu−a, χv−b, χu−b, χv−a) space. (a) Single population aggregates for (χu−a, χv−b, χu−b, χv−a) =
(2, 0, 0, 0), (b) Complete sorting for (2, 1, 0, 0), (c) Partial engulfment for (2, 1.5, 1.0, 0.75), (d) Engulf-
ment for (2, 0.5, 1, 1) and (e) Mixing for (1, 1, 1, 1). In (e) the distributions of u and v are indistin-
guishable. Simulations as described in the appendix on the 1D domain [0, 4] (with ∆x = 0.05) or 2D
square [0, 3]× [0, 3] (with ∆x = ∆y = 0.05) and periodic boundary conditions. (ii) Representative tem-
poral patterns in the dual signal sorting model. The first two rows demonstrate 1D temporal patterns,
including an “engulfed wave” found at (χu−a, χv−b, χu−b, χv−a) = (2, 0.5, 0, 1) and a “sorted wave”
at (2, 2, 0, 1). The left-most frame provides the space-time evolution for u (blue) and v (red) with
successive panels to the right giving snapshots of u and v at the times indicated by dashed-lines in the
space-time plot. The direction of wave propagation is indicated by the arrows. The bottom-most row
shows a migrating “slug” in 2D for (χu−a, χv−b, χu−b, χv−a) = (2, 0.5, 0, 1). Left to right plots show
total tissue density (black mesh) and the distribution of u and v (underlying colorplot) at the times
indicated. For the temporal patterns, simulations were performed as described in the numerics on the
1D domain [0, 4] (with ∆x = 0.05) or 2D square [0, 10] × [0, 10] (with ∆x = ∆y = 0.2) and periodic

28



Figure 10: Dependency between patterning form and chemotactic sensitivity values. Plots indicate
the pattern type found at different points in the self-tactic sensitivity (χu−a, χv−b) space at specific
cross-tactic sensitivity pairs. Patterns were classified following simulations of equations (16) on a 1D
domain [0, 4] (using ∆x = 0.08 and periodic boundary conditions) as described in the appendix.

pairings. The results of the analysis are presented in the plots of Figure 10. For symmetric cross-taxis

(χu−b = χv−a, Figure 10 (a)–(c)), only stationary patterns are observed and the patterning type is

symmetric in (χu−a, χv−b) space. It is worth noting that when self-tactic and cross-tactic sensitivities

are all positive and χu−b = χv−a, we obtain the same pattern types at the same sensitivity relationships

as determined for differential-adhesion (see Figure 1).

For asymmetric cross-tactic responses (χu−b 6= χv−a, Figure 10 (d) – (e)), both stationary and

temporal patterning can be observed. Increasing the asymmetry between the cross-tactic responses

expands the region under which spatio-temporal patterning is found: the predominant spatio-temporal

patterns correspond to partially-engulfed travelling aggregations as illustrated in Figure 9 (ii). Intu-

itively, these travelling patterns occur through subpopulations first accumulating into distinct aggre-

gations via their self-tactic responses. An attractive cross-tactic response joins the two aggregations,
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yet asymmetry leads to a directional bias and ongoing movement.

6 Conclusions

In this paper, a continuous model was developed to describe movement of a tissue composed of multiple

chemotactic subpopulations. By allowing cells both to migrate into free space (corresponding to a cell

crawling across a substrate or through extracellular matrix) and to migrate through displacement of

neighbours (corresponding to pulling itself across the surface of another cell in a crowded tissue), the

model can describe migration in both dispersed and aggregated tissues.

Application of the model to cell sorting permitted insight into the capacity for differential-chemotaxis

to pattern a heterogeneous tissue: in addition to capturing the same patterns observed through

differential-adhesion, the possibility of positive and negative responses and asymmetries in the cross

responses expanded the range of patterning. In particular, we observed the formation of migrating

and patterned “slugs” (so-called due to their qualitative likeness to those observed in Dictyostelium).

The propulsion of these aggregations is “internally-generated” – it arises through the responses of the

cells to signal gradients generated inside the mound, rather than to an external gradient.

An important point to stress is that although the model does not explicitly incorporate cell-

adhesion, it is implicitly assumed: the different movement types (i.e. into free space/within tissues)

require adhesion complexes to form either between cells or between cells and the extracellular sub-

strate (e.g. ECM). Without these complexes, cells are unable to generate the forces to pull themselves

past other cells or move across a surface. Here, these are phenomenologically represented in the

“capacity for movement” parameters in Equations (5): a high value of ki could correspond to a cell

that rapidly migrates through an extracellular matrix or across an external substrate (through rapid

formation/turnover of the adhesion complexes). An area for future study would be to investigate

how the two processes of differential chemotaxis and adhesion may interact and enhance patterning.

Intuitively, chemotaxis could allow the longer range communication between the different cell subpop-

ulations, thereby accelerating the initial organisation and sorting of the two populations. Differential

adhesion may act to locally refine and modify the precise arrangements of the cell types. To address

these questions in detail, however, it may be necessary to adopt a more sophisticated approach to mod-

elling adhesion, for example the integro-PDE based approach developed in Armstrong et al. (2006).

On this note, it is tempting to speculate whether the framework can be directly extended to model
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adhesion: cell adhesion results from the binding of transmembrane receptors and one approach would

be to replace the existing variables for diffusible extracellular chemoattractants with non-diffusing

variables for the adhesive receptor concentrations. Any such approach, however, would require the

receptor distributions to be correctly transported along with cell migration.

In the modelling here, a generic approach was adopted: the principal aims were to test the capacity

of the model to describe the different types of migration and investigate differential-chemotaxis pat-

terning. Therefore, simple (linear) forms were adopted to describe cell-signal interactions, however,

in specific applications greater attention should be paid to the appropriate kinetics. A number of

systems invite future expansion of the modelling, such as patterning in the slime mold Dictyostelium.

As described previously, cells aggregate into a mound which undergoes differentiation into pre-stalk

and pre-spore cells. The factor DIF is known to play a crucial role in the initiation, regulation and

proportioning of the pre-spore (approx 75%) and pre-stalk cells (for a review see Kimmel and Firtel

2004). Compartmentalisation of the sub-populations is followed by the transformation to a migrating

slug in which pre-stalk cells undergo further differentiation and organisation. The distinct motility

responses of pre-spore/pre-stalk cells (Early et al. 1995) has led to the hypothesis that differential-

chemotaxis may pattern Dictyostelium: Feit et al. (2007) have demonstrated that pre-spore cells have

lower chemotactic sensitivities to pre-stalk cells. The modelling here supports previous theoretical

studies (e.g. Pate and Othmer 1986; Vasiev and Weijer 1999; Palsson and Othmer 2000; Umeda

and Inouye 2004) suggesting that differential chemotaxis may play a role in Dictyostelium patterning.

Clearly, the continuous framework presents a convenient approach to expand the analysis such that the

various factors (e.g. cell subpopulations, cAMP, DIF, etc.) can be integrated and their contribution

to the patterning process understood.

A second area for future modelling is control of cell movement during early embryonic development:

chick gastrulation is co-ordinated through the primitive streak, a transitory structure that extends

anteriorly across the developing embryo from the posterior pole before retreating posteriorly and

laying down the neural tube and notochord in its wake. Studies by Yang et al. (2002) reveal that cells

undergo complex and coordinated migration pathways during gastrulation and that a combination

of chemoattractants and chemorepellents direct primitive streak cells. The capacity of the model to

incorporate multiple motile cell populations offers a method to investigate competing theories as to

how these processes are coordinated.
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A number of mathematical questions also arise from the modelling. During the derivation of

the equations, it was assumed that cells could either move into free space (if available) or displace

neighbours when confronted by a packed tissue. Clearly, it is reasonable to expect solutions should

remain bounded between zero and the maximum tissue density. The numerical simulations presented

earlier indicate that this is the case: in none of the cases considered were the densities for u, v or u+ v

observed to decrease below zero or increase above 1. A rigorous demonstration of this in equations

(6) remains unaddressed. It is worth noting, however, that the limiting “crowded tissue” model (11)

is identical to the volume-filling model of Hillen and Painter (2001); here, boundedness is known and,

furthermore, solutions exist globally in time.

A second question arises from the study into sorting: the numerical approach adopted here illus-

trates the patterning range and indicates the coincidence between pattern type and parameter values.

The derivation of a more explicit relationship, however, will require more detailed analysis. A further

question lies in the form and speed of temporal patterns: as seen in Figure 9 (ii), travelling wave

aggregations develop with distinct wavespeeds. Observations alone suggest that the speed of these

waves depends on the magnitude of the chemotactic sensitivities and, in particular, the degree of

asymmetry in the cross-tactic responses. Determining a more precise dependency of the wavespeed

on model parameters remains to be explored.

The mechanisms underpinning the patterning of the embryo remain one of the outstanding ques-

tions in biology. The capacity for certain cell types to migrate in response to environmental signals

is crucial not only to embryonic patterning, but also in physiological and pathological processes of

the adult: e.g. cell migration during tumour invasion is believed to be a key step in the formation of

metastases. While we have focused on a simple two-population system here, the continuous framework

developed offers a flexible approach through which a wide range of complex biological processes can

be modelled.
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Appendix A: details of the numerical scheme

The numerical simulations employ a Method of Lines approach to solve the generic equations (6) in

which spatial terms are initially discretised to yield a system of time-dependent ODEs (the MOL-

ODEs). Spatial terms comprise of diffusive and advective terms for cell movement and are approxi-

mated in conservative form. For the discretisation, the 1D (2D) domain is uniformly discretised into

nx (nx×ny) points of spacing ∆x (∆x, ∆y). We note that the spatial discretisation varied in different

simulations to ensure reasonably accuracy while minimising computational cost. For the advective

terms we employed a first order upwinding scheme while the diffusive terms are solved using a stan-

dard central difference scheme: possible extensions for a future investigation would be to consider

higher order upwinding schemes to limit the impact from numerical diffusion. Integration in time

of the MOL-ODE systems was performed using an implicit scheme (and compared with an explicit

scheme for testing): here we employed the ROWMAP stiff systems integrator (Weiner et al. 1997, see

also Gerisch and Chaplain 2007 for its application in other models of cell movement). A detailed inves-

tigation into the relative advantages of different time schemes for optimal balance between accuracy

and computational cost would be necessary for future applications.

In the numerical investigations, equations were solved until either a maximum time limit was

reached (arbitrarily set at t = 10000) or until solutions had converged to a numerically-defined steady

state. On a 1D domain [0, L] we calculated

1

T

1

L

nx∑

i=1

∆x |(cj(xi, t + T ) − cj(xi, t))|

for each species cj , where cj(xi, t) represents the numerical approximation at position xi and time t.

Solutions were stopped if

max(cj , j = 1 . . . ns) < Css

where ns is the number of species. For the simulations here, we used Css = 10−6 and T = 25.0.

Simulations were also performed with smaller Css, however the time taken for solutions to converge is

extended. Note that it is impossible to rule out whether the solutions obtained represented the true

steady state solution or a long-time transient.
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Appendix B: derivation of the two signal model.

We assume the discrete-space, continuum time model given by equations (3). Assuming cells migrate

in response to two chemotactic signals (a and b), we take

P 1±
x = k1

u(1 + κu−a(ax±h − ax) + κu−b(bx±h − bx)) , P 3±
x = k3

u(1 + κu−a(ax±h − ax) + κu−b(bx±h − bx)) ,
Q1±

x = k1
v(1 + κv−a(ax±h − ax) + κv−b(bx±h − bx)) , Q3±

x = k3
v(1 + κv−a(ax±h − ax) + κv−b(bx±h − bx)) .

We substitute the above into equations (3), derive the continuum limit and extend to 2D as before.

Assuming linear signal kinetics in which a is only produced by u and b is only produced by v,

∂u

∂t
= αu∇ ((1 − w)∇u + u∇w) + (βu + βv)∇ (v∇u − u∇v)

− αuφu−a∇ ((1 − w)u∇a) − (βuφu−a − βvφv−a)∇ (uv∇a)

− αuφu−b∇ ((1 − w)u∇b) − (βuφu−b − βvφv−b)∇ (uv∇b) ,

∂v

∂t
= αv∇ ((1 − w)∇v + v∇w) + (βv + βu)∇ (u∇v − v∇u)

− αvφv−a∇ ((1 − w)v∇a) − (βvφv−a − βuφu−a)∇ (uv∇a)

− αvφv−b∇ ((1 − w)v∇b) − (βvφv−b − βuφu−b)∇ (uv∇b) ,

∂a

∂t
= Da∇

2a + µu − δaa ,

∂b

∂t
= Db∇

2b + νv − δbb ,

where

αu,v = lim
λ→∞,h→0

k1
u,vλh2 ,

βu,v = lim
λ→∞,h→0

k3
u,vλh2 ,

φu−a,u−b,v−a,v−b = lim
λ→∞,h→0

2κu−a,u−b,v−a,v−bλh2 .

The above can be interpreted analogously to equations (6): the additional terms in the cell dynam-

ics stem from the response to the additional chemotactic signal. Assuming (13) in the above and

introducing the nondimensional scalings

t̂ = δat , x̂ =
√

Da

δa
x , â = δa

µ
a , b̂ = δa

ν
b , D = α

Da
, Dc = Db

Da
,

χu-a = φu-aµ
Daδa

, χu-b = αφu-bµ
Daδa

, χv-a = αφv-aν
Daδa

, χv-b = αφv-bν
Daδa

.

we arrive (after dropping the ‘hats’) at equations (16).
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