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Current understanding of the critical outbreak condition on temporal networks relies on approximations
(time scale separation, discretization) that may bias the results. We propose a theoretical framework to
compute the epidemic threshold in continuous time through the infection propagator approach. We
introduce the weak commutation condition allowing the interpretation of annealed networks, activity-
driven networks, and time scale separation into one formalism. Our work provides a coherent connection
between discrete and continuous time representations applicable to realistic scenarios.
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Contagion processes, such as the spread of diseases,
information, or innovations [1–5], share a common theoreti-
cal framework coupling the underlying population contact
structurewith contagion features to provide an understanding
of the resulting spectrum of emerging collective behaviors
[6]. A common keystone property is the presence of a
threshold behavior defining the transition between a macro-
scopic-level spreading regime and one characterized by a null
or negligibly small contagion of individuals. Known as the
epidemic threshold in the realm of infectious disease dynam-
ics [1], the concept is analogous to the phase transition in
nonequilibrium physical systems [7,8], and is also central in
social contagion processes [5,9–13].
A vast array of theoretical results characterize the

epidemic threshold [14], mainly under the limiting assump-
tions of quenched and annealed networks [4,15–18], i.e.,
when the time scale of the network evolution is much
slower or much faster, respectively, than the dynamical
process. The recent availability of data on time-resolved
contacts of epidemic relevance [19] has, however, chal-
lenged the time scale separation, showing it may introduce
important biases in the description of the epidemic spread
[19–33] and in the characterization of the transition
behavior [31,34–37]. Departing from traditional approx-
imations, few novel approaches are now available that
derive the epidemic threshold constrained to specific
contexts of generative models of temporal networks
[22,32,35,38–41] or considering generic discrete-time
evolving contact patterns [42–44]. In particular, the
recently introduced infection propagator approach
[43,44] is based on a matrix encoding the probabilities
of transmission of the infective agent along time-respecting
paths in the network. Its spectrum allows the computation
of the epidemic threshold at any given time scale and for an
arbitrary discrete-time temporal network. Leveraging an
original mapping of the temporal network and epidemic

spread in terms of a multilayer structure, the approach is
valid in the discrete representation only, similarly to
previous methods [17,18,35].
Meanwhile, a large interest in the study of continuously

evolving temporal networks has developed, introducing
novel representations [19,20,27,45] and proposing optimal
discretization schemes [44,46,47] that may, however, be
inaccurate close to the critical conditions [48]. Most
importantly, the two representations—continuous and dis-
crete—of a temporal network remain disjointed in current
network epidemiology. A discrete-time evolving network is
indeed a multilayer object interpretable as a tensor in a
linear algebraic representation [49]. This is clearly no
longer applicable when time is continuous, as it cannot
be expressed in the form of successive layers. Hence, a
coherent theoretical framework to bridge the gap between
the two representations is still missing.
In this Letter, we address this issue by analytically

deriving the infection propagator in continuous time.
Formally, we show that the dichotomy discrete time–
continuous time translates into the separation between a
linear algebraic approach and a differential one, and that the
latter can be derived as the structural limit of the former.
Our approach yields a solution for the threshold of
epidemics spreading on generic continuously evolving
networks, and a closed form under a specific condition
that is then validated through numerical simulations. In
addition, the proposed novel perspective allows us to cast
an important set of network classes into one single rigorous
and comprehensive mathematical definition, including
annealed [4,50,51] and activity-driven [35,52] networks,
widely used in both methodological and applied research.
Let us consider a susceptible-infected-susceptible (SIS)

epidemic model unfolding on a continuously evolving
temporal network of N nodes. The SIS model constitutes
a basic paradigm for the description of epidemics with
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reinfection [1]. Infectious individuals (I) can propagate the
contagion to susceptible neighbors (S) with rate λ, and
recover to the S state with rate μ. The temporal network is
described by the adjacency matrix AðtÞ, with t ∈ ½0; T�. We
consider a discretized version of the system by sampling
AðtÞ at discrete time steps of length Δt (Fig. 1). This yields
a finite sequence of adjacency matrices fA1; A2;…; ATstep

g,
where Tstep ¼ ⌊T=Δt⌋, and Ah ¼ AðhΔtÞ. The sequence
approximates the original continuous-time network with
increasing accuracy as Δt decreases. We describe the SIS
dynamics on this discrete sequence of static networks as a
discrete-time Markov chain [17,18]:

phþ1;i ¼ ð1 − ph;iÞ
�
1 −

Y
j

ð1 − λΔtAh;jiph;jÞ
�

þ ph;ið1 − μΔtÞ; ð1Þ

where ph;i is the probability that a node i is in the infectious
state at time step h, and μΔt (λΔt) is the probability that a
node recovers (transmits the infection) during a time step
Δt, for sufficiently small Δt.
By mapping the system into a multilayer structure

encoding both network evolution and diffusion dynamics,
the infection propagator approach derives the epidemic
threshold as the solution of the equation ρ½PðTstepÞ� ¼ 1

[43,44], where ρ is the spectral radius of the following
matrix:

PðTstepÞ ¼
YTstep

k¼1

½1 − μΔtþ λΔtAk�: ð2Þ

The generic element PijðTstepÞ represents the probability
that the infection can propagate from node i at time step 1
to node j at time step Tstep, when λ is close to λc and within
the quenched mean-field approximation (locally treelike
network [53]). For this reason, P is denoted as the infection
propagator.

To compute the continuous-time limit of the infection
propagator, we observe that P obeys the recursive relation
Pðhþ 1Þ ¼ PðhÞ½1 − μΔtþ λΔtAhþ1�. Expressed in con-
tinuous time and dividing both sides by Δt, the relation
becomes

Pðtþ ΔtÞ − PðtÞ
Δt

¼ PðtÞ½−μþ λAðtþ ΔtÞ�; ð3Þ

that in the limit Δt → 0 yields

_PðtÞ ¼ PðtÞ½−μþ λAðtÞ�; ð4Þ

a system of N2 coupled differential equations whose
components are

_PijðtÞ ¼
X
k

½λAkjðtÞ − μδkj�PikðtÞ: ð5Þ

The lhs of Eq. (4) is the derivative of P that is well behaved
if all entries are continuous functions of time. AijðtÞ are,
however, often binary, so that their evolution is a sequence
of discontinuous steps. To overcome this, it is possible to
approximate these steps with one-parameter families of
continuous functions, compute the threshold, and then
perform the limit of the parameter that recovers the
discontinuity. More formally, this is equivalent to inter-
preting derivatives in the sense of tempered distribu-
tions [54].
In order to check that our limit process correctly

connects the discrete-time framework to the continuous
time one, let us now consider the standard Markov chain
formulation of the continuous dynamics:

_piðtÞ ¼ λ½1 − piðtÞ�
X
j

AijðtÞpjðtÞ − μpiðtÞ: ð6Þ

Performing a linear stability analysis of the disease-free
state [i.e., around piðtÞ ¼ 0] in the quenched mean-field
approximation [17,18], we obtain

_piðtÞ ¼
X
j

½λAijðtÞ − μδij�pjðtÞ: ð7Þ

We note that this expression is formally equivalent to
Eq. (5). In particular, each row of Pij of Eq. (5) satisfies
Eq. (7). Furthermore, the initial condition Pijð0Þ ¼ δij
guarantees that in varying the row i, we consider all vectors
of the space basis as initial condition. Every solution pðTÞ
of Eq. (7) can therefore be expressed as a linear combi-
nation of the rows of PðTÞ. Any fundamental matrix
solution of Eq. (7) obeys Eq. (5) within the framework
of the Floquet theory of nonautonomous linear sys-
tems [55].
The equivalence of the two equations shows that our

limit of the discrete-time propagator encodes the dynamics

l1

l2

l3

Δt

A1 A2 A3 A4

FIG. 1. Discrete sampling of a continuous-time temporal net-
work. Links (l1, l2, l3) activate in time as marked by the colored
segments (top). This time evolution is sampled at intervals Δt,
building a sequence of snapshots (bottom), corresponding to
adjacency matrices fA1; A2;…g.
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of the continuous process. It is important to note that the
limit process leading to Eq. (4) entails a fundamental
change of paradigm on the representation of the network
structure and contagion process, where the linear algebraic
representation suitable in discrete time turns into a differ-
ential geometrical description of the continuous-time flow.
While network and spreading dynamics in discrete time are
encoded in a multilayer adjacency tensor, the continuous
time description proposed in Eq. (5) rests on a representa-
tion of the dynamical process in terms of a manifold whose
points are adjacency matrices (or a rank-2 tensor in the
sense of Ref. [49]) corresponding to possible network and
contagion states. The dynamics of Eq. (5) is then a curve on
such a manifold, indicating which adjacency matrices to
visit and in which order. In practice, we recover that the
contagion process on a discrete temporal network corre-
sponding to an ordered subset of the full multilayer
structure of Ref. [49] becomes in the limit Δt → 0 a
spreading on a continuous temporal network represented
through a one-dimensional ordered subset of a tensor field
(formally the pullback on the evolution curve). The two
frameworks, so far considered independently and mutually
exclusive, thus merge coherently through a smooth tran-
sition in this novel perspective.
We now turn to solving Eq. (4) to derive an analytic

expression of the infection propagator. By defining the
rescaled transmissibility γ ¼ λ=μ, we can solve Eq. (4) in
terms of a series in μ [56],

PðtÞ ¼ 1þ
X
j>0

μjPðjÞðtÞ; ð8Þ

with Pð0Þ ¼ 1 and under the assumption that γ remains
finite around the epidemic threshold for varying recovery
rates. The recursion relation from which we derived Eq. (4)
provides the full propagator for t ¼ T. Equation (8) com-
puted in T therefore yields the infection propagator for the
continuous-time adjacency matrix AðtÞ, and is defined by
the sum of the following terms:

PðjÞðTÞ ¼
Z

T

0

dx1

Z
x1

0

dx2 � � �
Z

xj−1

0

dxj½γAðxjÞ − 1�

· ½γAðxj−1Þ − 1� � � � ½γAðx1Þ − 1�: ð9Þ
Equations (8) and (9) can be put in a compact form by using
Dyson’s time-ordering operator T [57]. It is defined as
T Aðt1ÞAðt2Þ ¼Aðt1ÞAðt2Þθðt1− t2ÞþAðt2ÞAðt1Þθðt2− t1Þ,
with θ being Heaviside’s step function. The expression of
the propagator is thus

PðtÞ ¼ T exp

�Z
t

0

dx½−μþ λAðxÞ�
�
: ð10Þ

Equation (10) represents an explicit general solution for
Eq. (4) that can be computed numerically to arbitrary
precision [56]. The epidemic threshold in the continuous-
time limit is then given by ρ½PðTÞ� ¼ 1.

We now discuss a special case where we can recover a
closed-form solution of Eq. (10), and thus of the epidemic
threshold. We consider continuously evolving temporal
networks satisfying the following condition (weak commu-
tation): �

AðtÞ;
Z

t

0

dxAðxÞ
�
¼ 0; ∀ t ∈ ½0; T�; ð11Þ

i.e., the adjacency matrix at a certain time AðtÞ commutes
with the aggregated matrix up to that time. In the intro-
duced tensor field formalism, the weak commutation
condition represents a constraint on the temporal trajectory,
or equivalently, an equation of motion for AðtÞ.
Equation (11) implies that the order of factors in Eq. (9)

no longer matters. Hence, we can simply remove the time-
ordering operator T in Eq. (10), yielding

PðTÞ ¼ eT½−μþλhAi�; ð12Þ
where hAi ¼ R

T
0 dtAðtÞ=T is the adjacency matrix averaged

over time. The resulting expression for the epidemic
threshold for weakly commuting networks is then

λc ¼
μ

ρ½hAi� : ð13Þ

This closed-form solution proves to be extremely useful
as a wide range of network classes satisfies the weak
commutation condition of Eq. (11). An important class is
constituted by annealed networks [4,50,51]. In the absence
of dynamical correlations, the annealed regime leads to
h½AðxÞ; AðyÞ�i ¼ 0, as the time ordering of contacts
becomes irrelevant. Equation (11) can thus be reinterpreted
as h½AðtÞ; AðxÞ�ix ¼ 0, where the average is carried out over
x ∈ ½0; tÞ. For long enough t,

R
t
0 dxAðxÞ=t approximates

well the expected adjacency matrix hAi of the annealed
model, leading the annealed regime to satisfy Eq. (13). This
result thus provides an alternative mathematical framework
for the conceptual interpretation of annealed networks in
terms of weak commutation. Originally introduced to
describe disorder on quenched networks [58,59], annealed
networks were mathematically described in probabilistic
terms, with the probability of establishing a contact
depending on the degree distribution PðkÞ and the two-
node degree correlations Pðk0jkÞ [50]. Here we show that
temporal networks whose adjacency matrix AðtÞ asymp-
totically commutes with the expected adjacency matrix are
found to be in the annealed regime.
Equation (13) can also be used to test the limits of the

time scale separation approach, by considering a generic
temporal network not satisfying the weak commutation
condition. If μ is small, we can truncate the series of
the infection propagator [Eq. (8)] at the first order,
P ¼ 1þ μPð1Þ þOðμ2Þ, where Pð1ÞðTÞ ¼ T½γhAi − 1�, to
recover indeed Eq. (13). The truncation thus provides a
mathematical expression of the range of validity of the
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time-separation scheme for spreading processes on tem-
poral networks, since temporal correlations can be dis-
regarded when the network evolves much faster than the
spreading process.
Extending the result of the annealed networks, we show

that the weak commutation condition also holds for net-
works whose expected adjacency matrix depends on time
as a scalar function (instead of being constant as in the
annealed case), hAðtÞi ¼ cðtÞhAð0Þi. Also in this case we
have h½AðxÞ; AðyÞ�i ¼ 0, so that the same treatment per-
formed for annealed networks applies. Examples are
provided by global trends in activation patterns, as often
considered in infectious disease epidemiology to model
seasonal variations of human contact patterns (e.g., due to
the school calendar) [60].
When the time scale separation approach is not appli-

cable, we find another class of weakly commuting temporal
networks that are used as a paradigmatic network example
for the study of contagion processes occurring on the same
time scale of contacts evolution—the activity-driven model
[35]. It considers heterogeneous populations where each
node i activates according to an activity rate ai, drawn from
a distribution fðaÞ. When active, the node establishes m
connections with randomly chosen nodes lasting a short
time δ (δ ≪ 1=ai). Since the dynamics lacks time corre-
lations, the weak commutation condition holds, and the
epidemic threshold can be computed from Eq. (13). In the
limit of large network size, it is possible to write the average
adjacency matrix as hAiij ¼ ðmδ=NÞðai þ ajÞ þOð1=N2Þ.
Through row operations we find that the matrix has
rankðhAiÞ ¼ 2, and thus only two nonzero eigenvalues,
α, σ, with α > σ. We compute them through the traces
of hAi (tr½hAi� ¼ αþ σ and tr½hAi2� ¼ α2 þ σ2) to obtain
the expression of ρ½hAi� for Eq. (13): ρ½hAi� ¼ α ¼
mδðhai þ

ffiffiffiffiffiffiffiffiffi
ha2i

p
Þ. The epidemic threshold becomes

λcδ ¼
μ

mðhai þ
ffiffiffiffiffiffiffiffiffi
ha2i

p
Þ ; ð14Þ

yielding the same result of Ref. [35], provided here that the
transmission rate λ is multiplied by δ to make it a
probability, as in Ref. [35].
Finally, we verify that for the trivial example of static

networks, with an adjacency matrix constant in time,
Eq. (13) reduces immediately to the result of Refs. [17,18].
We now validate our analytical prediction against

numerical simulations on two synthetic models. The first
is the activity-driven model with activation rate ai ¼ a,
m ¼ 1, and average interactivation time τ ¼ 1=a ¼ 1, fixed
as the time unit of the simulations. The transmission
parameter is the probability upon contact λδ and the model
is implemented in continuous time. The second model is
based on a bursty interactivation time distribution PðΔtÞ ∼
ðϵþ ΔtÞ−β [31], with β ¼ 2.5 and ϵ tuned to obtain the
same average interactivation time as before, τ ¼ 1. We

simulate a SIS spreading process on the two networks with
four different recovery rates, μ ∈ f10−3; 10−2; 10−1; 1g,
i.e., ranging from a value that is 3 orders of magnitude
larger than the time scale τ of the networks (slow disease),
to a value equal to τ (fast disease). We compute the average
simulated endemic prevalence for specific values of λ, μ
using the quasistationary method [61] and compare the
threshold computed with Eq. (13) with the simulated
critical transition from extinction to endemic state. As
expected, we find Eq. (13) to hold for the activity-driven
model at all time scales of the epidemic process (Fig. 2), as
the network lacks temporal correlations. The agreement
with the transition observed in the bursty model, however,
is recovered only for slow diseases, as at those time scales
the network is found in the annealed regime. When network
and disease time scales become comparable, the weakly
commuting approximation of Eq. (13) no longer holds, as
burstiness results in dynamical correlations in the network
evolution [31].
Our theory offers a novel mathematical framework that

rigorously connects discrete-time and continuous-time
critical behaviors of spreading processes on temporal
networks. It uncovers a coherent transition from an adja-
cency tensor to a tensor field resulting from a limit
performed on the structural representation of the network
and contagion process. We derive an analytic expression of
the infection propagator in the general case that assumes a

(a)

(b)

FIG. 2. Performance of the infection propagator estimate of the
epidemic threshold in the continuous-time limit under the weak
commutation approximation [Eq. (13)]. Panels report the average
simulated endemic prevalence as a function of λδ=μ for the
activity-driven model (a) and the bursty model (b). Different
colors refer to explored values of the recovery rate μ. The vertical
dashed line is the prediction for the critical transmissibility
provided by Eq. (13).
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closed-form solution in the introduced class of weakly
commuting networks. This allows us to provide a rigorous
mathematical interpretation of annealed networks, encom-
passing the different definitions historically introduced in
the literature. This work also provides the basis for
important theoretical extensions, assessing, for example,
the impact of bursty activation patterns or of the adaptive
dynamics in response to the circulating epidemic. Finally,
our approach offers a tool for applicative studies on the
estimation of the vulnerability of temporal networks to
contagion processes in many real-world scenarios, for
which the discrete-time assumption would be inadequate.
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